JP2009057617A - Metal-containing thin film, and method for producing the same - Google Patents

Metal-containing thin film, and method for producing the same Download PDF

Info

Publication number
JP2009057617A
JP2009057617A JP2007227658A JP2007227658A JP2009057617A JP 2009057617 A JP2009057617 A JP 2009057617A JP 2007227658 A JP2007227658 A JP 2007227658A JP 2007227658 A JP2007227658 A JP 2007227658A JP 2009057617 A JP2009057617 A JP 2009057617A
Authority
JP
Japan
Prior art keywords
thin film
containing thin
ruthenium
metal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007227658A
Other languages
Japanese (ja)
Inventor
Takumi Tsunoda
巧 角田
Chihiro Hasegawa
千尋 長谷川
Hiroshi Nihei
央 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007227658A priority Critical patent/JP2009057617A/en
Publication of JP2009057617A publication Critical patent/JP2009057617A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat continuous metal-containing thin film with a ruthenium-containing thin film as a lower layer metal film, an to provide a method for producing the same. <P>SOLUTION: Regarding the method for producing a metal-containing thin film using a ruthenium-containing thin film as a lower layer metal film, an organic ruthenium complex is subjected to a chemical vapor deposition process, so as to produce a ruthenium-containing thin film, and then, an organic metal complex is formed on the ruthenium-containing thin film by a CVD process, so as to deposit a metal-containing thin film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機ルテニウム錯体を化学気相蒸着法(Chemical Vapor Deposition法;以下、CVD法と称する))によりルテニウム含有薄膜を製造させた後、次いで、そのルテニウム含有薄膜の上に、有機金属錯体を化学気相蒸着法により金属含有薄膜を形成させることによって得られるルテニウム含有薄膜を下層金属膜とした金属含有薄膜及びその製造法に関する。   In the present invention, an organic ruthenium complex is produced by a chemical vapor deposition method (Chemical Vapor Deposition method; hereinafter referred to as CVD method), and then a ruthenium-containing thin film is produced. The present invention relates to a metal-containing thin film in which a ruthenium-containing thin film obtained by forming a metal-containing thin film by chemical vapor deposition is used as a lower metal film and a method for producing the same.

近年、半導体、電子部品、光学部品等の材料で金属二層薄膜に関し、多くの研究・開発がなされている。例えば、高誘電体材料での電極材料として、白金/ルテニウム二層薄膜が使用されており、その電極特性の向上を目的としている(例えば、非特許文献1参照)。また、不揮発性メモリの一つであるMRAMでの巨大磁気抵抗膜として、磁性層(コバルト、鉄、ニッケル膜など)と非磁性層(ルテニウム膜)からなる二層膜が使用されている(例えば、特許文献1)。又、シリコン半導体の配線用銅膜として、ルテニウム金属層の上に銅膜の成膜が検討されている(例えば、非特許文献2及び3参照)。
The 6th Japan-Korea conference on Ferroelectricity 2006, Poster Session P36 US Patent 5,341,118 J.Electrochem.Soc.,151(2),G109(2004) Electrochem.Solid-State.Lett.,9(10),C171(2006)
In recent years, many researches and developments have been made on metal bilayer thin films using materials such as semiconductors, electronic components, and optical components. For example, a platinum / ruthenium bilayer thin film is used as an electrode material of a high dielectric material, and the purpose is to improve the electrode characteristics (see, for example, Non-Patent Document 1). Further, as a giant magnetoresistive film in an MRAM which is one of nonvolatile memories, a two-layer film composed of a magnetic layer (cobalt, iron, nickel film, etc.) and a nonmagnetic layer (ruthenium film) is used (for example, Patent Document 1). Further, as a copper film for silicon semiconductor wiring, the formation of a copper film on a ruthenium metal layer has been studied (for example, see Non-Patent Documents 2 and 3).
The 6th Japan-Korea conference on Ferroelectricity 2006, Poster Session P36 US Patent 5,341,118 J. Electrochem. Soc., 151 (2), G109 (2004) Electrochem.Solid-State.Lett., 9 (10), C171 (2006)

これらの金属二層膜の成膜方法としては、例えば、白金/ルテニウム膜の成膜ではレーザーパルス融解法により成膜しており、また巨大磁気抵抗膜であるニッケル/ルテニウム膜の成膜はMBE法が使用されているが、これらの成膜方法は量産性が低いことから、工業的製法とは言えず、量産性の高いCVD法による製造方法が求められている。   As a method for forming these metal bilayer films, for example, a platinum / ruthenium film is formed by a laser pulse melting method, and a nickel / ruthenium film that is a giant magnetoresistive film is formed by MBE. However, since these film forming methods have low mass productivity, they cannot be said to be industrial production methods, and manufacturing methods by CVD methods with high mass productivity are demanded.

一方、ルテニウム膜上に銅膜を成膜する方法で、ルテニウム膜を成膜する方法としては、例えば、単層ずつ積み上げる方法(ALD法)であるため、単位時間当たりのルテニウム薄膜の成膜速度が遅いという問題があり、又、銅薄膜製造のための銅錯体として、ヘキサフルオロアセチルアセトナト銅(I)トリメチルビニルシラン((hfac)Cu(tmvs))を使用しているが、当該銅錯体は熱安定性が悪いこと、また再現性良く銅薄膜が得られにくい等の問題があった。   On the other hand, as a method of forming a copper film on a ruthenium film, a method of forming a ruthenium film is, for example, a method of stacking single layers (ALD method), and thus a film formation rate of a ruthenium thin film per unit time. In addition, hexafluoroacetylacetonato copper (I) trimethylvinylsilane ((hfac) Cu (tmvs)) is used as a copper complex for the production of copper thin films. There were problems such as poor thermal stability and difficulty in obtaining a copper thin film with good reproducibility.

本発明の課題は、即ち、上記問題点を解決し、ルテニウム含有薄膜を下層金属膜とした、平坦な連続金属含有薄膜及びその製造法を提供するものでもある。   The object of the present invention is to solve the above-mentioned problems and to provide a flat continuous metal-containing thin film using a ruthenium-containing thin film as a lower metal film and a method for producing the same.

本発明の課題は、有機ルテニウム錯体を化学気相蒸着法によりルテニウム含有薄膜を製造させた後、次いで、そのルテニウム含有薄膜の上に、有機金属錯体をCVD法により金属含有の薄膜を形成させることを特徴とする、ルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法によって解決される。   An object of the present invention is to produce a ruthenium-containing thin film by chemical vapor deposition of an organic ruthenium complex, and then form a metal-containing thin film by using the organometallic complex on the ruthenium-containing thin film by a CVD method. This is solved by a method for producing a metal-containing thin film using a ruthenium-containing thin film as a lower metal film.

本発明により、ルテニウム含有薄膜を下層金属膜とした、平坦な連続金属含有薄膜及びその製造法を提供することができる。   According to the present invention, it is possible to provide a flat continuous metal-containing thin film having a ruthenium-containing thin film as a lower metal film and a method for producing the same.

本発明は、有機ルテニウム錯体をCVD法によりルテニウム含有薄膜を製造させた後、次いで、そのルテニウム含有薄膜の上に、有機金属錯体をCVD法により金属含有薄膜を形成させることによって、ルテニウム含有薄膜を下層金属膜とした金属含有薄膜を製造するが、ルテニウム含有薄膜を製造する工程(以下、第1工程と称する)とルテニウム含有薄膜の上に金属含有薄膜を製造する工程(以下、第2工程と称する)のふたつの工程から構成させる。   In the present invention, a ruthenium-containing thin film is produced by forming a ruthenium-containing thin film by a CVD method and then forming a metal-containing thin film by forming an organometallic complex on the ruthenium-containing thin film by the CVD method. A metal-containing thin film as a lower layer metal film is manufactured. A process for manufacturing a ruthenium-containing thin film (hereinafter referred to as a first process) and a process for manufacturing a metal-containing thin film on a ruthenium-containing thin film (hereinafter referred to as a second process) 2 steps).

本発明の第1工程は、有機ルテニウム錯体をCVD法によりルテニウム含有薄膜を製造する工程であるが、当該工程は、水素源、酸素源又は不活性ガスの存在下にて行うのが望ましい。前記水素源としては、水素ガスが好適に用いられ、酸素源としては、酸素ガスが好適に用いられる。又、不活性ガスとしては、例えば、窒素、ヘリウム、アルゴン等が好適に使用される。   The first step of the present invention is a step of producing a ruthenium-containing thin film from an organic ruthenium complex by a CVD method, and this step is preferably performed in the presence of a hydrogen source, an oxygen source or an inert gas. Hydrogen gas is preferably used as the hydrogen source, and oxygen gas is preferably used as the oxygen source. Moreover, as an inert gas, nitrogen, helium, argon etc. are used suitably, for example.

本発明の第1工程で使用する有機ルテニウム錯体としては、一般式(1)   The organic ruthenium complex used in the first step of the present invention is represented by the general formula (1)

Figure 2009057617
Figure 2009057617

(式中、X及びYは、直鎖又は分枝状の炭化水素基であり、Zは、水素原子又は炭素原子数1〜4の炭化水素基を示す。Lは、少なくともふたつの二重結合をもつ不飽和炭化水素化合物を示す。)
で示されるβ-ジケトナト及び少なくともふたつの二重結合をもつ不飽和炭化水素化合物を配位子とする有機ルテニウム錯体が好適に使用される。
(In the formula, X 1 and Y 1 are linear or branched hydrocarbon groups, Z 1 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. L is at least two (Unsaturated hydrocarbon compound having a double bond.)
An organic ruthenium complex having a β-diketonate represented by the above formula and an unsaturated hydrocarbon compound having at least two double bonds as a ligand is preferably used.

前記の一般式(1)において、X及びYは、直鎖又は分枝状の炭化水素基を示し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基等の炭素原子数1〜6の直鎖又は分枝状の炭化水素基である。Zは、水素原子又は炭素原子数1〜4の炭化水素基を示し、炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の炭素原子数1〜4の直鎖又は分枝状の炭化水素基である。又、Lは、少なくともふたつの二重結合をもつ不飽和炭化水素化合物を示し、例えば、1,5-ヘキサジエン、1,5-シクロオクタジエン、ノルボルナジエン、1,4-シクロヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、4-ビニル-1-シクロヘキセン、1,3-ペンタジエンが好適に使用される。 In the general formula (1), X 1 and Y 1 each represent a linear or branched hydrocarbon group, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, A straight-chain or branched hydrocarbon group having 1 to 6 carbon atoms such as an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group, a neopentyl group, an n-hexyl group, and an isohexyl group. Z 1 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and examples of the hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, A linear or branched hydrocarbon group having 1 to 4 carbon atoms such as a t-butyl group. L represents an unsaturated hydrocarbon compound having at least two double bonds, such as 1,5-hexadiene, 1,5-cyclooctadiene, norbornadiene, 1,4-cyclohexadiene, 2,5- Dimethyl-2,4-hexadiene, 4-vinyl-1-cyclohexene and 1,3-pentadiene are preferably used.

本発明の有機ルテニウム錯体の配位子であるβ-ジケトナトの元となるβ-ジケトンは、公知の方法により容易に合成が可能な化合物である。   The β-diketone which is the base of β-diketonato which is a ligand of the organoruthenium complex of the present invention is a compound that can be easily synthesized by a known method.

本発明においては、CVD法によりルテニウム薄膜を形成させるために、当該有機ルテニウム錯体を気化させる必要があるが、本発明の有機ルテニウム錯体を気化させる方法としては、例えば、有機ルテニウム錯体自体を気化室に充填又は搬送して気化させる方法だけでなく、有機ルテニウム錯体を適当な溶媒(例えば、ヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン等の脂肪族炭化水素類;トルエン等の芳香族炭化水素類;テトラヒドロフラン、ジブチルエーテル等のエーテル類等が挙げられる。)に希釈した溶液を液体搬送用ポンプで気化室に導入して気化させる方法(溶液法)も使用出来る。   In the present invention, in order to form a ruthenium thin film by the CVD method, it is necessary to vaporize the organic ruthenium complex. In addition to the method of vaporizing by packing or transporting to an organic solvent, the organic ruthenium complex is converted into an appropriate solvent (for example, aliphatic hydrocarbons such as hexane, methylcyclohexane, ethylcyclohexane, and octane; aromatic hydrocarbons such as toluene; tetrahydrofuran; And ethers such as dibutyl ether.) A method (solution method) of diluting the solution into a vaporization chamber with a liquid transfer pump and vaporizing the solution can also be used.

成膜対象物(例えば、基板)への金属の蒸着方法としては、公知のCVD法で行うことが出来、例えば、常圧又は減圧下にて、好ましくは水素源、酸素源又は不活性ガスとともに、当該有機ルテニウム錯体を加熱した基板上に送り込んでルテニウム薄膜を蒸着させる方法が使用出来る。又、プラズマCVD法で金属ルテニウム膜を蒸着させる方法も使用出来る。   As a method for depositing a metal on a film formation target (for example, a substrate), it can be performed by a known CVD method, for example, under normal pressure or reduced pressure, preferably with a hydrogen source, an oxygen source or an inert gas. A method of depositing a ruthenium thin film by feeding the organic ruthenium complex onto a heated substrate can be used. Moreover, the method of vapor-depositing a metal ruthenium film | membrane by plasma CVD method can also be used.

前記ルテニウム薄膜を蒸着させる際、反応系内の圧力は、好ましくは1Pa〜200kPa、更に好ましくは10Pa〜110kPaであり、成膜対象物の温度は、好ましくは100〜500℃、更に好ましくは150〜400℃である。又、水素源又は酸素源による金属薄膜を蒸着させる際の全ガス量に対するそれらの含有割合は、好ましくは0.5〜95容量%、更に好ましくは1〜90容量%である(残りは不活性ガスである)。なお、得られたルテニウム下層膜には凹凸部があっても構わない。   When depositing the ruthenium thin film, the pressure in the reaction system is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa, and the temperature of the film formation target is preferably 100 to 500 ° C., more preferably 150 to 400 ° C. Further, the content ratio of the metal thin film by the hydrogen source or oxygen source with respect to the total gas amount is preferably 0.5 to 95% by volume, more preferably 1 to 90% by volume (the rest is an inert gas). is there). The obtained ruthenium underlayer film may have uneven portions.

本発明の第2工程は、有機金属錯体をCVD法により、第1工程において製造したルテニウム含有薄膜の上に金属含有薄膜を製造する工程であるが、当該工程は、水素源又は不活性ガスの存在下にて行うのが望ましい。前記水素源としては、水素ガスが好適に用いられる。又、不活性ガスとしては、例えば、窒素、ヘリウム、アルゴン等が好適に使用される。   The second step of the present invention is a step of producing a metal-containing thin film on the ruthenium-containing thin film produced in the first step by the CVD method using an organometallic complex, but this step involves the use of a hydrogen source or an inert gas. It is desirable to perform in the presence. As the hydrogen source, hydrogen gas is preferably used. Moreover, as an inert gas, nitrogen, helium, argon etc. are used suitably, for example.

本発明の第2工程で使用する有機金属錯体は、好ましくは周期表第8族金属原子又は周期律表第IB族金属原子を中心金属として有するものであり、その中心金属としては、例えば、鉄、コバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金、銅、銀等が挙げられるが、好ましくは白金、イリジウム、コバルト、鉄、ニッケル、銅、銀が使用される。又、その錯体の配位子としては、公知の様々な配位子が適用可能であるが、好ましくはβ-ジケトナトが使用される。即ち、有機金属錯体としては、具体的には、少なくともβ-ジケトナトをひとつは有する金属錯体が好適に使用される。   The organometallic complex used in the second step of the present invention preferably has a group 8 metal atom of the periodic table or a group IB metal atom of the periodic table as a central metal. , Cobalt, nickel, rhodium, palladium, iridium, platinum, copper, silver and the like, preferably platinum, iridium, cobalt, iron, nickel, copper and silver are used. As the ligand of the complex, various known ligands can be applied, but β-diketonate is preferably used. That is, as the organometallic complex, specifically, a metal complex having at least one β-diketonate is preferably used.

前記金属錯体は、例えば、β-ジケトナト基、カルボニル基、オレフィン類等を有する金属錯体であるが、具体的には、CVD法による成膜用の有機金属錯体が好適に用いられる(例えば、特許文献2〜4、非特許文献4参照)。
国際公開第WO2005/087697号公報 特開2003-253444号公報 J. Materials Science, 28(2), 5345(1993) 特開2004-203744号公報
The metal complex is, for example, a metal complex having a β-diketonato group, a carbonyl group, an olefin, and the like. Specifically, an organometallic complex for film formation by a CVD method is preferably used (for example, a patent References 2 to 4 and Non-Patent Reference 4).
International Publication No. WO2005 / 087697 JP 2003-253444 A J. Materials Science, 28 (2), 5345 (1993) JP 2004-203744 JP

一方、本発明での有機金属錯体と水素源又は不活性ガスを用いて金属膜を蒸着させる際、反応系内の圧力は、好ましくは1Pa〜200kPa、更に好ましくは10Pa〜110kPaであり、成膜対象物の温度は、好ましくは100〜500℃、更に好ましくは150〜400℃である。又、水素源又は不活性ガスによる金属薄膜を蒸着させる際の全ガス量に対する水素源の含有割合は、好ましくは0.5〜95容量%、更に好ましくは1〜90容量%である。   On the other hand, when the metal film is deposited using the organometallic complex and the hydrogen source or inert gas in the present invention, the pressure in the reaction system is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa. The temperature of the object is preferably 100 to 500 ° C, more preferably 150 to 400 ° C. Further, the content ratio of the hydrogen source with respect to the total gas amount when the metal thin film is deposited by the hydrogen source or the inert gas is preferably 0.5 to 95% by volume, more preferably 1 to 90% by volume.

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.

参考例1(ビス(アセチルアセトナト)(1,5-ヘキサジエン)ルテニウム(II)(以下、[Ru(acac)2(hd)]と称する)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積100mlのフラスコに、三塩化ルテニウム三水和物8.87g(33.9mmol)、1,5-ヘキサジエン6.12g(74.5mmol)及びイソプロプロピルアルコール60mlを加え、攪拌しながら70℃で4時間反応させた後、アセチルアセトン10.6g(106mmol)及び水酸化ナトリウム4.22g(106mmol)を混合した水溶液を滴下し、攪拌しながら0.5時間反応させた。反応終了後、メチルシクロヘキサン60ml及び水30mlを加え、有機層を分液した後に、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を濃縮した後、濃縮物を減圧下で蒸留(140℃、39Pa)し、黄褐色の粘性液体として、ビス(アセチルアセトナト)(1,5-ヘキサジエン)ルテニウム(II)10.3gを得た(単離収率:80%)。
なお、ビス(アセチルアセトナト)(1,5-ヘキサジエン)ルテニウム(II)は、以下の物性値で示される新規な化合物である。
Reference Example 1 (Synthesis of bis (acetylacetonato) (1,5-hexadiene) ruthenium (II) (hereinafter referred to as [Ru (acac) 2 (hd)])
To a 100-ml flask equipped with a stirrer, thermometer and dropping funnel, add 8.87 g (33.9 mmol) of ruthenium trichloride trihydrate, 6.12 g (74.5 mmol) of 1,5-hexadiene and 60 ml of isopropyl alcohol. Then, the mixture was reacted at 70 ° C. for 4 hours with stirring, and then an aqueous solution in which 10.6 g (106 mmol) of acetylacetone and 4.22 g (106 mmol) of sodium hydroxide were mixed was added dropwise and reacted for 0.5 hour with stirring. After completion of the reaction, 60 ml of methylcyclohexane and 30 ml of water were added, and the organic layer was separated and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the concentrate was distilled under reduced pressure (140 ° C., 39 Pa) to obtain 10.3 g of bis (acetylacetonato) (1,5-hexadiene) ruthenium (II) as a tan viscous liquid. (Isolation yield: 80%).
Note that bis (acetylacetonato) (1,5-hexadiene) ruthenium (II) is a novel compound represented by the following physical property values.

IR(neat(cm-1));3076、2923、1576、1517、1400、1268、1201、1022、933、767、620、432
(β-ジケトン特有のピーク(1622cm-1)が消失し、β-ジケトナト特有のピーク(1576cm-1)が観察された)
元素分析(C16H24O4Ru);炭素:50.2%、水素:6.45%、ルテニウム:26.3%
(理論値;炭素:50.4%、水素:6.34%、ルテニウム:26.5%)
MS(m/e);382、300、43
IR (neat (cm -1 )); 3076, 2923, 1576, 1517, 1400, 1268, 1201, 1022, 933, 767, 620, 432
(The peak specific to β-diketone (1622 cm -1 ) disappeared, and the peak specific to β-diketonato (1576 cm -1 ) was observed.)
Elemental analysis (C 16 H 24 O 4 Ru); carbon: 50.2%, hydrogen: 6.45%, ruthenium: 26.3%
(Theoretical value: Carbon: 50.4%, Hydrogen: 6.34%, Ruthenium: 26.5%)
MS (m / e); 382, 300, 43

実施例1〜4(蒸着実験;新規な金属含有薄膜の製造)
参考例1で得られた有機ルテニウム錯体(ビス(アセチルアセトナト)(1,5-ヘキサジエン)ルテニウム(II);[Ru(acac)2(hd)])を用いて、ルテニウム下層金属膜の製造し、更にそのルテニウム下層金属膜の上に金属膜を蒸着して、その膜特性を評価した。
Examples 1-4 (deposition experiment; production of a novel metal-containing thin film)
Production of ruthenium underlayer metal film using the organic ruthenium complex (bis (acetylacetonato) (1,5-hexadiene) ruthenium (II); [Ru (acac) 2 (hd)]) obtained in Reference Example 1. Further, a metal film was deposited on the ruthenium underlayer metal film, and the film characteristics were evaluated.

[第1工程;ルテニウム膜の成膜工程(ルテニウム下層金属膜の製造)]
図1に示す装置で、気化器6(ガラス製アンプル5)にあるルテニウム錯体7は、マスフローコントローラー1Aを経て導入されたヘリウムガスに同伴し気化器5を出る。気化器5を出たガスは、マスフローコントローラー1C、ストップバルブ2を経て導入された水素、酸素、あるいはヘリウムガスとともに反応器11に導入される。反応系内圧力は真空ポンプ手前のバルブ14の開閉により、所定圧力にコントロールされ、圧力計12によってモニターされる。ガラス製反応器の中央部はヒーター10で加熱可能な構造となっている。反応器に導入されたルテニウム錯体は、反応器内中央部にセットされ、ヒーター10で所定の温度に加熱された被蒸着基板9の表面上で反応し、基板9上に金属ルテニウム薄膜が析出する。反応器11を出たガスは、トラップ13、真空ポンプを経て、大気中に排気される構造となっている。
[First Step: Ruthenium Film Formation Step (Manufacture of Ruthenium Underlayer Metal Film)]
In the apparatus shown in FIG. 1, the ruthenium complex 7 in the vaporizer 6 (glass ampule 5) exits the vaporizer 5 along with the helium gas introduced via the mass flow controller 1A. The gas exiting the vaporizer 5 is introduced into the reactor 11 together with the hydrogen, oxygen, or helium gas introduced through the mass flow controller 1C and the stop valve 2. The pressure in the reaction system is controlled to a predetermined pressure by opening and closing the valve 14 in front of the vacuum pump, and is monitored by the pressure gauge 12. The central part of the glass reactor has a structure that can be heated by the heater 10. The ruthenium complex introduced into the reactor is set at the center in the reactor and reacts on the surface of the deposition substrate 9 heated to a predetermined temperature by the heater 10, and a metal ruthenium thin film is deposited on the substrate 9. . The gas exiting the reactor 11 is exhausted to the atmosphere via a trap 13 and a vacuum pump.

[第2工程;ルテニウム膜上への金属膜の成膜工程]
同様に図1に示す装置にて、バルブ4を閉じた後、有機金属錯体8はマスフローコントローラー1Bを経て導入されたヘリウムガスに同伴し、バルブ3を経て、反応器11に導入される。反応器11の中央には、第1工程で得られたルテニウム膜基板があり、その加熱された被蒸着ルテニウム基板表面上に金属膜が蒸着される。
[Second step: Step of forming metal film on ruthenium film]
Similarly, after the valve 4 is closed in the apparatus shown in FIG. 1, the organometallic complex 8 is accompanied by the helium gas introduced through the mass flow controller 1 </ b> B, and is introduced into the reactor 11 through the valve 3. At the center of the reactor 11 is the ruthenium film substrate obtained in the first step, and a metal film is deposited on the heated ruthenium substrate surface.

上記、第2工程では以下の有機金属錯体を使用した。
実施例1;ビス(アセチルアセトナト)白金(II)錯体(以下、白金錯体1と称する)
実施例2;ビス(2-メトキシ-3,5-オクタンジオナト)ニッケル(II)錯体(以下、ニッケル錯体1と称する)
実施例3;ビス(2-メトキシ-3,5-オクタンジオナト)銅(II)錯体(以下、銅錯体1と称する)
In the second step, the following organometallic complex was used.
Example 1; bis (acetylacetonato) platinum (II) complex (hereinafter referred to as platinum complex 1)
Example 2; bis (2-methoxy-3,5-octandionato) nickel (II) complex (hereinafter referred to as nickel complex 1)
Example 3; bis (2-methoxy-3,5-octandionato) copper (II) complex (hereinafter referred to as copper complex 1)

蒸着条件及び蒸着結果(膜特性)を表1に示す。なお、被蒸着基盤としては、7mm×40mmサイズの矩形のものを使用した。   The deposition conditions and deposition results (film characteristics) are shown in Table 1. In addition, as a substrate for vapor deposition, a rectangular substrate having a size of 7 mm × 40 mm was used.

Figure 2009057617
Figure 2009057617

得られた各膜のうち、代表例として実施例2の透過型電子顕微鏡写真を図2示した。それによると、ルテニウム膜上にニッケル粒子が成膜(ルテニウム含有薄膜を下層金属膜とした銅含有薄膜)されていることが分かる。又、表1から、ルテニウム含有薄膜を下層金属膜とした銅含有薄膜の抵抗率が低いことが分かる。     Among the obtained films, a transmission electron micrograph of Example 2 is shown in FIG. 2 as a representative example. According to this, it can be seen that nickel particles are formed on a ruthenium film (a copper-containing thin film having a ruthenium-containing thin film as a lower metal film). Moreover, it can be seen from Table 1 that the resistivity of the copper-containing thin film using the ruthenium-containing thin film as the lower metal film is low.

該結果より、有機ルテニウム錯体、例えば、Ru(acac)2(hd)を用いて、CVD法によりルテニウム膜を成膜し、そのルテニウム膜上に、有機金属錯体を用いてCVD法にて金属膜を成膜することにより、表面の滑らかな金属膜が得られることが分かる。 From the results, a ruthenium film was formed by a CVD method using an organic ruthenium complex, for example, Ru (acac) 2 (hd), and a metal film was formed by a CVD method using an organometallic complex on the ruthenium film. It can be seen that a metal film having a smooth surface can be obtained by forming a film.

本発明は、有機ルテニウム錯体をCVD法によりルテニウム含有薄膜を製造させた後、次いで、そのルテニウム含有薄膜の上に、有機金属錯体をCVD法により金属含有薄膜を形成させることによって得られるルテニウム含有薄膜を下層金属膜とした金属含有薄膜及びその製造法に関する。   The present invention provides a ruthenium-containing thin film obtained by forming a ruthenium-containing thin film by an CVD method using an organic ruthenium complex and then forming a metal-containing thin film by using the organometallic complex on the ruthenium-containing thin film by the CVD method. The present invention relates to a metal-containing thin film having a lower metal film and a method for producing the same.

蒸着装置の構成を示す図である。It is a figure which shows the structure of a vapor deposition apparatus. 実施例1の方法で合成したルテニウム含有薄膜を下層金属膜としたニッケル含有薄膜及の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of a nickel-containing thin film having a ruthenium-containing thin film synthesized by the method of Example 1 as a lower metal film.

Claims (13)

有機ルテニウム錯体を化学気相蒸着法によりルテニウム含有薄膜を製造させた後、次いで、そのルテニウム含有薄膜の上に、有機金属錯体を化学気相蒸着法により金属含有薄膜を形成させることを特徴とする、ルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。   A ruthenium-containing thin film is produced by chemical vapor deposition of an organic ruthenium complex, and then a metal-containing thin film is formed on the ruthenium-containing thin film by chemical vapor deposition. The manufacturing method of the metal containing thin film which made the ruthenium containing thin film the lower layer metal film. 請求項1記載の方法によって得られる、ルテニウム含有薄膜を下層金属膜とした金属含有薄膜。   A metal-containing thin film obtained by the method according to claim 1, wherein the ruthenium-containing thin film is a lower metal film. 水素源、酸素源又は不活性ガスの存在下、有機ルテニウム錯体を化学気相蒸着法によりルテニウム含有薄膜を製造する、請求項1記載のルテニウム含有薄膜を下層金属膜とした銅含有薄膜の製造法。   The method for producing a copper-containing thin film using the ruthenium-containing thin film as a lower metal film according to claim 1, wherein the ruthenium-containing thin film is produced by chemical vapor deposition of an organic ruthenium complex in the presence of a hydrogen source, an oxygen source or an inert gas. . 水素源又は不活性ガスの存在下、有機金属錯体を化学気相蒸着法により金属含有薄膜を製造する、請求項1記載のルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。   The method for producing a metal-containing thin film using the ruthenium-containing thin film as a lower metal film according to claim 1, wherein the metal-containing thin film is produced by chemical vapor deposition of an organometallic complex in the presence of a hydrogen source or an inert gas. 水素源が水素ガスである、請求項3又は4記載のルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。   The method for producing a metal-containing thin film using the ruthenium-containing thin film according to claim 3 or 4 as a lower metal film, wherein the hydrogen source is hydrogen gas. 酸素源が酸素ガスである、請求項3記載のルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。   The method for producing a metal-containing thin film using the ruthenium-containing thin film according to claim 3 as a lower metal film, wherein the oxygen source is oxygen gas. 有機ルテニウム錯体が、一般式(1)
Figure 2009057617
(式中、X及びYは、直鎖又は分枝状の炭化水素基であり、Zは、水素原子又は炭素原子数1〜4の炭化水素基を示す。Lは、少なくともふたつの二重結合をもつ不飽和炭化水素化合物を示す。)
で示されるβ-ジケトナト及び少なくともふたつの二重結合をもつ不飽和炭化水素化合物を配位子とする有機ルテニウム錯体である、請求項1又は3記載のルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。
The organic ruthenium complex has the general formula (1)
Figure 2009057617
(In the formula, X 1 and Y 1 are linear or branched hydrocarbon groups, Z 1 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. L is at least two (Unsaturated hydrocarbon compound having a double bond.)
A metal-containing material comprising a ruthenium-containing thin film according to claim 1 or 3 as a lower metal film, wherein the ruthenium-containing thin film is an organic ruthenium complex having a β-diketonate represented by the formula (1) and an unsaturated hydrocarbon compound having at least two double bonds as a ligand. Thin film manufacturing method.
少なくともふたつの二重結合をもつ不飽和炭化水素化合物が、1,5-ヘキサジエン、1,5-シクロオクタジエン、ノルボルナジエン、4-ビニル-1-シクロヘキセン又は1.3-ペンタジエンである、請求項7記載のルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。   The unsaturated hydrocarbon compound having at least two double bonds is 1,5-hexadiene, 1,5-cyclooctadiene, norbornadiene, 4-vinyl-1-cyclohexene or 1.3-pentadiene. A method for producing a metal-containing thin film using a ruthenium-containing thin film as a lower metal film. 有機金属錯体が、β-ジケトナトを配位子として有する、請求項1記載の記載のルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。   The method for producing a metal-containing thin film using the ruthenium-containing thin film according to claim 1, wherein the organometallic complex has β-diketonato as a ligand. 有機金属錯体の中心金属が周期表第8族金属原子又は周期律表第IB族金属原子の金属錯体である、請求項1、4又は9記載のルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。   The metal-containing thin film having the ruthenium-containing thin film according to claim 1, 4 or 9, wherein the central metal of the organometallic complex is a metal complex of a group 8 metal atom of the periodic table or a group IB metal of the periodic table. Manufacturing method. 有機ルテニウム錯体を有機溶媒に溶解した溶液をルテニウム供給源とする、請求項1、3又は7記載のルテニウム含有薄膜を下層金属膜とした銅含有薄膜の製造法。   The method for producing a copper-containing thin film using the ruthenium-containing thin film according to claim 1, 3 or 7 as a lower metal film, wherein a solution in which an organic ruthenium complex is dissolved in an organic solvent is used as a ruthenium supply source. 有機金属錯体を有機溶媒に溶解した溶液を銅供給源とする、請求項1、4又は9記載のルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。   The method for producing a metal-containing thin film using the ruthenium-containing thin film according to claim 1, 4 or 9 as a lower metal film, wherein a solution obtained by dissolving an organometallic complex in an organic solvent is a copper supply source. 使用する溶媒が、脂肪族炭化水素類、芳香族炭化水素類及びエーテル類からなる群より選ばれる少なくとも1種の溶媒である、請求項1、11又は12記載のルテニウム含有薄膜を下層金属膜とした金属含有薄膜の製造法。   The ruthenium-containing thin film according to claim 1, 11 or 12, wherein the solvent to be used is at least one solvent selected from the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons and ethers. Of manufacturing a metal-containing thin film.
JP2007227658A 2007-09-03 2007-09-03 Metal-containing thin film, and method for producing the same Pending JP2009057617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227658A JP2009057617A (en) 2007-09-03 2007-09-03 Metal-containing thin film, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227658A JP2009057617A (en) 2007-09-03 2007-09-03 Metal-containing thin film, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009057617A true JP2009057617A (en) 2009-03-19

Family

ID=40553626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227658A Pending JP2009057617A (en) 2007-09-03 2007-09-03 Metal-containing thin film, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009057617A (en)

Similar Documents

Publication Publication Date Title
TWI630200B (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
Ramos et al. Precursor design and reaction mechanisms for the atomic layer deposition of metal films
TWI409250B (en) Organic ruthenium complex and process for producing ruthenium thin film using the ruthenium complex
JP2002533910A (en) Chemical vapor deposition of hybrid electrodes for ferroelectric device structures
TW200948819A (en) Organometallic compounds, processes and methods of use
TWI787353B (en) Process for the generation of metal-containing films
TWI611038B (en) Chemical vapor deposition raw material containing organoruthenium compound and chemical vapor deposition method using the chemical vapor deposition raw material
JP2009510074A (en) Organometallic compounds and methods of use thereof
TW201825700A (en) Cobalt compounds, method of making and method of use thereof
Gaur et al. Ruthenium complexes as precursors for chemical vapor-deposition (CVD)
TWI727091B (en) Metal complexes containing allyl ligands
US6589329B1 (en) Composition and process for production of copper circuitry in microelectronic device structures
US9005705B2 (en) Method for the production of a substrate having a coating comprising copper, and coated substrate and device prepared by this method
JP2009057618A (en) Copper-containing thin film, and method for producing the same
JP2010095795A (en) Ruthenium-containing thin film and method for production thereof
KR102123331B1 (en) Cobalt precursors, preparation method thereof and process for the formation of thin films using the same
JP2009057617A (en) Metal-containing thin film, and method for producing the same
JP2009280865A (en) Method for producing copper-containing film
TWI678428B (en) Atomic layer deposition method for metal thin film
JP2010059471A (en) Ruthenium particle and manufacturing method thereof, and manufacturing method of metal-containing thin film using ruthenium particles for lower metal film
JP2010215982A (en) Method for producing ruthenium-containing film using ruthenium complex organic solvent solution, and ruthenium-containing film
JP5699485B2 (en) Metal complex having β-diketonato having dialkylalkoxymethyl group as ligand, and method for producing metal-containing thin film using the metal complex
JP2009057619A (en) Copper-containing thin film, and method for producing the same
JP2009120916A (en) Platinum-ruthenium-containing mixed particulate thin film, and method for producing the same
US20090326254A1 (en) Organic-metal precursor material and method of manufacturing metal thin film using the same