JP2009050920A - Manufacturing method of glass substrate for magnetic disc - Google Patents

Manufacturing method of glass substrate for magnetic disc Download PDF

Info

Publication number
JP2009050920A
JP2009050920A JP2007216839A JP2007216839A JP2009050920A JP 2009050920 A JP2009050920 A JP 2009050920A JP 2007216839 A JP2007216839 A JP 2007216839A JP 2007216839 A JP2007216839 A JP 2007216839A JP 2009050920 A JP2009050920 A JP 2009050920A
Authority
JP
Japan
Prior art keywords
polishing
acid group
sulfonic acid
main surface
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007216839A
Other languages
Japanese (ja)
Inventor
Mizuho Ishida
瑞穂 石田
Kayoshi Yoshida
香良 吉田
Hiroshi Usui
寛 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007216839A priority Critical patent/JP2009050920A/en
Priority to SG2012060422A priority patent/SG183731A1/en
Priority to PCT/JP2008/064711 priority patent/WO2009025259A1/en
Priority to CN200880001536.8A priority patent/CN101588895B/en
Publication of JP2009050920A publication Critical patent/JP2009050920A/en
Priority to US12/477,197 priority patent/US20090239450A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Abstract

<P>PROBLEM TO BE SOLVED: To reduce roll-off without deteriorating a grinding rate in a grinding process of a main surface of a circular glass plate when manufacturing a glass substrate for a magnetic disc. <P>SOLUTION: This manufacturing method includes the process of grinding the main surface of a circular glass plate by using acid grinding liquid including water-soluble polymer wherein at least one of carboxylic acid group, salt of carboxylic acid group, sulfonic acid group and salt of sulfonic acid group is bonded to a main chain and colloidal silica or fumed silica, or acid grinding liquid including 0.02-0.1 mass% of a surface-active agent containing sulfonic acid group with respect to 100 mass% of colloidal silica or fumed silica. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁気ディスク用ガラス基板の製造方法に関し、特にガラス円板の主表面を研磨する方法に関する。   The present invention relates to a method for manufacturing a glass substrate for a magnetic disk, and more particularly to a method for polishing a main surface of a glass disk.

ハードディスクドライブ等の情報処理機器に搭載される磁気ディスクに対する高記録密度化の要請は近年強くなっており、このような状況の下、従来のアルミニウム基板に替わってガラス基板が広く用いられるようになってきている。   In recent years, the demand for higher recording density for magnetic disks mounted on information processing equipment such as hard disk drives has been increasing. Under these circumstances, glass substrates have been widely used in place of conventional aluminum substrates. It is coming.

磁気ディスク用ガラス基板は、例えば、円形ガラス板の中央に円孔を開け、面取り、主表面ラッピング、端面鏡面研磨を順次行い、円形ガラス板の主表面を研磨して製造される。   The glass substrate for a magnetic disk is manufactured, for example, by making a circular hole in the center of a circular glass plate, sequentially performing chamfering, main surface lapping, and end mirror polishing, and polishing the main surface of the circular glass plate.

磁気ディスクの記録容量を高めるには記録面積を広くする必要があり、磁気ディスク用ガラス基板の主表面はより外周側まで平坦であることが望ましい。図1は主表面を研磨した後の磁気ディスク用ガラス基板の端面近傍を模式的に示す断面図であり、図中のaはチャンファー面(面取りされた面)、bは外周端面、cは主表面外周部、dはチャンファー面aと主表面外周部cとの境界であるが、主表面外周面cからチャンファー面aに連続してロールオフ(端面ダレ)が生じており、記録面積を減少させている。   In order to increase the recording capacity of the magnetic disk, it is necessary to increase the recording area, and it is desirable that the main surface of the magnetic disk glass substrate is flat to the outer peripheral side. FIG. 1 is a cross-sectional view schematically showing the vicinity of an end face of a glass substrate for a magnetic disk after the main surface is polished. In the figure, a is a chamfer surface (a chamfered surface), b is an outer peripheral end surface, and c is The main surface outer peripheral portion, d is a boundary between the chamfer surface a and the main surface outer peripheral portion c, and roll-off (end surface sag) is continuously generated from the main surface outer peripheral surface c to the chamfer surface a. The area is reduced.

また、図1において点線で示されている直線は、ロールオフの大きさを定めるための基準線gである。この基準線gは、主表面外周部cのうち境界dから主表面中心に向かって2.5mm以上5mm以下の部分fと重なるかこの部分fを最もよく近似する直線として定められる。主表面外周部cのうち境界dから主表面中心に向かって0.25mm以上5mm以下の部分はロールオフ測定領域eである。そして、ロールオフの大きさは、ロールオフ測定領域eにおける主表面外周部cの基準線gからの最大高さ及び最小高さの差である。   Moreover, the straight line shown with the dotted line in FIG. 1 is the reference line g for determining the magnitude | size of roll-off. This reference line g is defined as a straight line that best overlaps or approximates a portion f of 2.5 mm or more and 5 mm or less from the boundary d toward the center of the main surface in the outer peripheral portion c of the main surface. A portion of 0.25 mm or more and 5 mm or less from the boundary d toward the center of the main surface in the outer peripheral portion c of the main surface is a roll-off measurement region e. The roll-off magnitude is the difference between the maximum height and the minimum height from the reference line g of the main surface outer peripheral portion c in the roll-off measurement region e.

このように記録容量を高めるにはロールオフの減少が必須であり、これまで研磨装置の改善の他に、研磨液の改善も行われている。例えば、水、シリカ粉末等の砥粒、ポリオキシエチレンポリオキシプロピレンアルキルエーテルまたはポリオキシエチレンポリオキシプロピレンコポリマーからなる界面活性剤、無機酸または有機酸を含有する研磨液(特許文献1参照)や、水、シリカ粉末、酸、スルホン酸またはその塩からなる界面活性剤を含有し、pHが0〜4の研磨液(特許文献2参照)等が知られている。   Thus, in order to increase the recording capacity, it is essential to reduce the roll-off. In addition to the improvement of the polishing apparatus, the polishing liquid has been improved. For example, abrasives such as water, silica powder, a surfactant made of polyoxyethylene polyoxypropylene alkyl ether or polyoxyethylene polyoxypropylene copolymer, a polishing liquid containing an inorganic acid or an organic acid (see Patent Document 1) A polishing liquid containing a surfactant composed of water, silica powder, acid, sulfonic acid or a salt thereof and having a pH of 0 to 4 (see Patent Document 2) is known.

特開2002−167575号公報JP 2002-167575 A 特開2007−63372号公報JP 2007-63372 A

酸性の研磨液を用いると、ガラス表面が軟化して砥粒による研磨が効率良く行われ、研磨レートが向上する。また、欠点が少ないという利点もある。しかし、
特許文献1に記載の研磨液に添加されている界面活性剤は、酸性領域ではシリカの分散性を低下させ凝集を引き起こす。
When an acidic polishing liquid is used, the glass surface is softened, polishing with abrasive grains is efficiently performed, and the polishing rate is improved. There is also an advantage that there are few defects. But,
The surfactant added to the polishing liquid described in Patent Document 1 reduces the dispersibility of silica in the acidic region and causes aggregation.

一方、特許文献2に記載の研磨液は、芳香環を含有する界面活性剤を用いているため、ロールオフを低減させる効果があるものの、研磨レートが低く、生産効率において好ましくない。   On the other hand, since the polishing liquid described in Patent Document 2 uses a surfactant containing an aromatic ring, it has an effect of reducing roll-off, but the polishing rate is low, which is not preferable in production efficiency.

そこで本発明は、磁気ディスク用ガラス基板を製造するに当たり、円形ガラス板の主表面の研磨工程において、研磨レートを落とすことなく、ロールオフを低減することを目的とする。   Accordingly, an object of the present invention is to reduce roll-off without lowering the polishing rate in the polishing process of the main surface of a circular glass plate when manufacturing a glass substrate for a magnetic disk.

上記の課題を解決するために本発明は、 カルボン酸基、カルボン酸基の塩、スルホン酸基及びスルホン酸基の塩の少なくとも1つが主鎖に結合している水溶性ポリマーと、コロイダルシリカまたはヒュームドシリカとを含有する酸性の研磨液を用いて円形ガラス板の主表面を研磨する工程を有する磁気ディスク用ガラス基板の製造方法、並びにコロイダルシリカまたはヒュームドシリカ100質量部に対し、スルホン酸基を有する界面活性剤を0.02〜0.1質量部含有する酸性の研磨液を用いて円形ガラス板の主表面を研磨する工程を有する磁気ディスク用ガラス基板の製造方法を提供する。   In order to solve the above problems, the present invention provides a water-soluble polymer in which at least one of a carboxylic acid group, a salt of a carboxylic acid group, a sulfonic acid group and a salt of a sulfonic acid group is bonded to the main chain, colloidal silica or The manufacturing method of the glass substrate for magnetic disks which has the process of grind | polishing the main surface of a circular glass plate using the acidic polishing liquid containing a fumed silica, and sulfonic acid with respect to 100 mass parts of colloidal silica or fumed silica Provided is a method for producing a glass substrate for a magnetic disk, which comprises a step of polishing a main surface of a circular glass plate using an acidic polishing liquid containing 0.02 to 0.1 parts by mass of a surfactant having a group.

本発明で用いる研磨液により、ロールオフが少なく、即ち記録面積が広く高記録容量を可能にした磁気ディスク用ガラス基板を、効率よく製造することができる。   With the polishing liquid used in the present invention, it is possible to efficiently produce a glass substrate for a magnetic disk with little roll-off, that is, a large recording area and a high recording capacity.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の磁気ディスク用ガラス基板の製造方法では、円形ガラス板は、主表面の研磨までは公知の工程により処理される。   In the method for manufacturing a glass substrate for a magnetic disk of the present invention, the circular glass plate is processed by a known process until the main surface is polished.

例えば、フロート法で成形したシリケートガラスから
円形ガラス板を切り出し、その中央に円孔を開け、面取り、主表面ラッピング、端面鏡面研磨を順次行う。
For example, a circular glass plate is cut out from a silicate glass formed by the float method, a circular hole is opened in the center, and chamfering, main surface lapping, and end surface mirror polishing are sequentially performed.

また、主表面ラッピング工程を粗ラッピング工程と精ラッピング工程とに分け、それらの間に形状加工工程(円形ガラス板中央の孔開け、面取り、端面研磨)を設けてもよい。主表面研磨工程の後に化学強化工程を設けてもよい。尚、中央に円孔を有さないガラス基板を製造する場合には当然、円形ガラス板中央の孔開けは不要である。   Further, the main surface lapping step may be divided into a rough lapping step and a fine lapping step, and a shape processing step (drilling at the center of the circular glass plate, chamfering, end polishing) may be provided between them. A chemical strengthening step may be provided after the main surface polishing step. In addition, when manufacturing the glass substrate which does not have a circular hole in the center, naturally the drilling | piercing of a circular glass plate center is unnecessary.

次いで、主表面の研磨を行う。本発明においては、研磨液として、カルボン酸基、カルボン酸基の塩、スルホン酸基及びスルホン酸基の塩の少なくとも1つが主鎖に結合している水溶性ポリマーと、コロイダルシリカまたはヒュームドシリカとを含有する酸性の第1の研磨液、もしくはコロイダルシリカまたはヒュームドシリカ100質量部に対し、スルホン酸基を有する界面活性剤を0.02〜0.1質量部含有する酸性の第2の研磨液を用いる。   Next, the main surface is polished. In the present invention, as the polishing liquid, a water-soluble polymer in which at least one of a carboxylic acid group, a salt of a carboxylic acid group, a sulfonic acid group and a salt of a sulfonic acid group is bonded to the main chain, colloidal silica or fumed silica is used. The acidic second polishing liquid containing, or the colloidal silica or the fumed silica 100 parts by mass, the acidic second abrasive containing 0.02 to 0.1 parts by mass of a surfactant having a sulfonic acid group. Use polishing liquid.

(第1の研磨液)
カルボン酸基、カルボン酸基の塩、スルホン酸基及びスルホン酸基の塩の少なくとも1つが主鎖に結合している水溶性ポリマーとは、単量体成分(モノマー)としてカルボン酸基またはスルホン酸基を有する単量体(モノマー)を少なくとも一種含む単独重合体や共重合体である。カルボン酸基の塩またはスルホン酸基の塩が主鎖に結合している水溶性ポリマーとは、カルボン酸基またはスルホン酸基が主鎖に結合している水溶性ポリマーをアルカリで中和することにより得られ、カルボン酸基のプロトン(H)やスルホン酸基のプロトンが他のプラスイオン(対イオン)で置換されたものである。カルボン酸基やスルホン酸基の塩を形成する対イオンとしては、Naイオン、Kイオン等のアルカリイオン、アンモニウムイオン、アルキルアンモニウムイオン等が挙げられる。また、カルボン酸基やスルホン酸基、もしくはそれらの塩は主鎖の末端に結合していてもよい。
(First polishing liquid)
A water-soluble polymer in which at least one of a carboxylic acid group, a salt of a carboxylic acid group, a sulfonic acid group and a salt of a sulfonic acid group is bonded to the main chain is a carboxylic acid group or a sulfonic acid as a monomer component (monomer) A homopolymer or copolymer containing at least one monomer having a group (monomer). A water-soluble polymer in which a salt of a carboxylic acid group or a salt of a sulfonic acid group is bonded to the main chain is to neutralize the water-soluble polymer in which the carboxylic acid group or sulfonic acid group is bonded to the main chain with an alkali. In which the proton of the carboxylic acid group (H + ) or the proton of the sulfonic acid group is substituted with another positive ion (counter ion). Examples of counter ions that form salts of carboxylic acid groups and sulfonic acid groups include alkali ions such as Na ions and K ions, ammonium ions, and alkyl ammonium ions. In addition, the carboxylic acid group, the sulfonic acid group, or a salt thereof may be bonded to the end of the main chain.

カルボン酸基を有する単量体(モノマー)としては、例えば、アクリル酸、マレイン酸、イタコン酸、メタクリル酸等が挙げられる。スルホン酸基を有する単量体(モノマー)としては、例えば、2−アクリルアミド−2−メチルプロパンスルホン酸、イソプレンスルホン酸、メタクリルスルホン酸、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸等が挙げられる。また、スルホン酸基は、炭素鎖等の基Aを介在して主鎖に結合していてもよい(下記〔化2〕の(6)参照)。   Examples of the monomer (monomer) having a carboxylic acid group include acrylic acid, maleic acid, itaconic acid, and methacrylic acid. Examples of the monomer (monomer) having a sulfonic acid group include 2-acrylamido-2-methylpropanesulfonic acid, isoprenesulfonic acid, methacrylsulfonic acid, vinylsulfonic acid, styrenesulfonic acid, and allylsulfonic acid. . The sulfonic acid group may be bonded to the main chain via a group A such as a carbon chain (see (6) of [Chemical Formula 2] below).

水溶性ポリマーは、更に他の単量体(モノマー)を含む共重合体であってもよい。他の単量体(モノマー)としては、例えば、アクリル酸エステル、マレイン酸エステル、イタコン酸エステル、メタクリル酸エステル、アクリルアミド、アクリロニトリル、スチレン、アセチレン、ブタジエン、イソブチレン、プロピレン、ビニルアルコール、塩化ビニル、エチレン、アリルアルコール、酢酸ビニル等が挙げられる。   The water-soluble polymer may be a copolymer further containing another monomer (monomer). Examples of the other monomer (monomer) include acrylic acid ester, maleic acid ester, itaconic acid ester, methacrylic acid ester, acrylamide, acrylonitrile, styrene, acetylene, butadiene, isobutylene, propylene, vinyl alcohol, vinyl chloride, and ethylene. , Allyl alcohol, vinyl acetate and the like.

水溶性ポリマーとして、下記に示す単量体(モノマー)からなるカルボン酸系ポリマー及びスルホン酸系ポリマーを好適に例示できる。   Suitable examples of the water-soluble polymer include carboxylic acid polymers and sulfonic acid polymers composed of the monomers shown below.

カルボン酸系ポリマー:

Figure 2009050920
Carboxylic acid polymer:
Figure 2009050920

スルホン酸系ポリマー:

Figure 2009050920
Sulfonic acid polymers:
Figure 2009050920

水溶性ポリマーは、主鎖が直鎖状であることが好ましい。直鎖状のポリマーは、コロイダルシリカやヒュームドシリカを包囲してこれらの表面に吸着し、凝集を防ぐ効果があり、また被研磨体であるガラス表面に広がるように存在してガラス表面を保護し、凸部分が選択的に研磨されるようにする機能することや、潤滑剤的に機能して研磨パッドやガラス、キャリアの摩擦抵抗を下げる効果も期待される。更には研磨の際に使用される研磨パッド(通常はウレタンパッド)中に浸透して可塑剤的な効果も期待でき、研磨液の粘度調整やチクソ性付与を行うこともでき、何れもロールオフの減少に大きく寄与する。その他に、キズの発生の抑制、洗浄性の向上による表面付着物(コンタミ)の低減の効果が期待できる。これに対し架橋状のものは、酸性中で不溶化して析出しやすく塊状となり、これらの効果が少ない。
水溶性ポリマーは、研磨レートの観点から、直鎖状の主鎖中にベンゼン環([化2]の(3)、(4))、ナフタレン環([化2]の(5))、グルコースやセルロース等の立体的にかさばる構造が含まれていないものが更に好ましい。
The water-soluble polymer preferably has a linear main chain. The linear polymer surrounds colloidal silica and fumed silica and adsorbs to these surfaces to prevent agglomeration, and also spreads over the glass surface that is the object to be polished, thus protecting the glass surface. In addition, a function of selectively polishing the convex portion and an effect of reducing the frictional resistance of the polishing pad, glass, and carrier by functioning as a lubricant are also expected. Furthermore, it can penetrate into the polishing pad (usually a urethane pad) used for polishing and can be expected to have a plasticizer effect. It can also adjust the viscosity of the polishing liquid and impart thixotropy. Greatly contributes to the reduction of In addition, it can be expected to reduce surface deposits (contamination) by suppressing the generation of scratches and improving cleaning properties. On the other hand, the cross-linked one is insoluble in acidity and easily precipitates to form a lump, and these effects are small.
From the viewpoint of polishing rate, the water-soluble polymer has a benzene ring ([Chemical Formula 2] (3), (4)), a naphthalene ring ([Chemical Formula 2] (5)), glucose, in the linear main chain. More preferred are those which do not contain a three-dimensionally bulky structure such as cellulose or cellulose.

また、直鎖状のポリマーによる上記の効果は、分子量が大きいほど顕著に現れるため、重量平均分子量で5300以上であることが好ましく、6000以上であることがより好ましい。尚、重量平均分子量の上限には制限がないが、製造面を考慮して1000000が適当である。   In addition, since the above-described effect due to the linear polymer appears more prominently as the molecular weight increases, the weight average molecular weight is preferably 5300 or more, and more preferably 6000 or more. In addition, although there is no restriction | limiting in the upper limit of a weight average molecular weight, 1000000 is suitable in consideration of a manufacturing surface.

水溶性ポリマーの研磨液中の含有量は、コロイダルシリカまたはヒュームドシリカ100質量部に対し0.001〜10質量部が好ましく、0.01〜5質量部がより好ましい。   0.001-10 mass parts is preferable with respect to 100 mass parts of colloidal silica or fumed silica, and, as for content in the polishing liquid of a water-soluble polymer, 0.01-5 mass parts is more preferable.

コロイダルシリカは、珪酸ナトリウム等の珪酸アルカリ金属塩を原料とし、水溶液中で縮合反応させて粒子を成長させる水ガラス法、またはテトラエトキシシラン等のアルコキシシランを原料とし、アルコール等の水溶性有機溶媒を含有する水中で縮合反応させて成長させるアルコキシシラン法で得られる。   Colloidal silica is a water-glass method in which alkali metal silicates such as sodium silicate are used as raw materials, and are subjected to a condensation reaction in an aqueous solution to grow particles, or alkoxysilanes such as tetraethoxysilane as raw materials, and water-soluble organic solvents such as alcohols. It is obtained by an alkoxysilane method in which a condensation reaction is carried out in water containing.

ヒュームドシリカは、四塩化珪素等の揮発性珪素化合物を原料とし、酸素水素バーナーによる1000℃以上の高温下で加水分解させて成長させる気相法で得られる。   Fumed silica is obtained by a vapor phase method in which a volatile silicon compound such as silicon tetrachloride is used as a raw material and is hydrolyzed and grown at a high temperature of 1000 ° C. or higher with an oxygen-hydrogen burner.

他に、官能基でこれらシリカを表面修飾あるいは表面改質したもの、界面活性剤や他の粒子で複合粒子化したもの等も用いることができる。   In addition, those obtained by surface modification or surface modification of these silicas with functional groups, those obtained by combining composite particles with surfactants or other particles, and the like can also be used.

中でも、基板表面の表面粗さ及びスクラッチを低減する観点からコロイダルシリカが好ましい。これらのシリカは単独で又は2種以上を混合して用いても良い。   Among these, colloidal silica is preferable from the viewpoint of reducing the surface roughness and scratches on the substrate surface. These silicas may be used alone or in admixture of two or more.

これらシリカの一次粒子の平均粒径は、1〜100nmである。該平均粒径は、スクラッチを低減する観点及び表面粗さ(中心線平均粗さ:Ra)を低減する観点から、1〜80nmが好ましく、3〜60nmがより好ましく、5〜40nmがさらに好ましい。   The average particle diameter of primary particles of these silicas is 1 to 100 nm. The average particle diameter is preferably 1 to 80 nm, more preferably 3 to 60 nm, and even more preferably 5 to 40 nm from the viewpoint of reducing scratches and reducing the surface roughness (centerline average roughness: Ra).

また、研磨液中のこれらシリカの含有量は典型的には5〜40質量%である。   The content of these silicas in the polishing liquid is typically 5 to 40% by mass.

研磨液は、酸を添加して酸性に調整される。酸性度には制限はないが、酸性度が高すぎるとウレタンパッドが劣化しやすく、酸性度が低いとガラス表面が軟化しにくくなり研磨レートが低くなるため、pH1〜6とすることが好ましく、pH4以下とすることがより好ましい。使用する酸としては、硝酸、塩酸、硫酸等の無機酸や有機酸を用いることができる。   The polishing liquid is adjusted to be acidic by adding an acid. The acidity is not limited, but if the acidity is too high, the urethane pad is liable to deteriorate, and if the acidity is low, the glass surface is difficult to soften and the polishing rate is lowered. More preferably, the pH is 4 or less. As the acid to be used, inorganic acids and organic acids such as nitric acid, hydrochloric acid and sulfuric acid can be used.

尚、研磨液には、必要に応じてその他の成分を添加することができる。その他の成分としては、水中で非帯電(ノニオン系)またはマイナス帯電(アニオン系)するものが洗浄性の観点から好ましく、例えば、乾燥防止のためのアニオン系ポリマーや多価アルコール類(エチレングリコール、グリセリン、ソルビトール、マンニトール、ジグリセリン等)、有機酸(グルコン酸、クエン酸、リンゴ酸、コハク酸、酒石酸、酢酸等)、ガラス表面を覆い保護して選択研磨するための糖類(トレハロース、ファイントース、プルラン等)やセルロース系ポリマー(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等)、フェニル基またはナフタレン基含有ポリマー(ポリスチレンスルホン酸、フェノールスルホン酸ホルマリン縮合物、ナフタレンスルホン酸ホルマリン縮合物等)、研磨液の表面張力を低下させるアニオン系界面活性剤(アルキルスルフォン酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、アルキルジフェニルエーテルジスルホン酸、アリールフェノールスルホン酸ホルムアルデヒド縮合物、ジブチルナフタレンスルホン酸等)等を適量添加してもよい。   In addition, other components can be added to the polishing liquid as necessary. As other components, those which are uncharged (nonionic) or negatively charged (anionic) in water are preferable from the viewpoint of detergency, for example, anionic polymers and polyhydric alcohols (ethylene glycol, Glycerin, sorbitol, mannitol, diglycerin, etc.), organic acids (gluconic acid, citric acid, malic acid, succinic acid, tartaric acid, acetic acid, etc.), saccharides for covering and protecting the glass surface (trehalose, finetose) , Pullulan, etc.) and cellulose polymers (hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, etc.), phenyl group or naphthalene group-containing polymer (polystyrene sulfonic acid, phenolsulfonic acid formalin condensate, naphthalenesulfonic acid formalin condensation) Etc.), anionic surfactants (alkyl sulfonic acid, alkyl benzene sulfonic acid, alkyl naphthalene sulfonic acid, alkyl diphenyl ether disulfonic acid, arylphenol sulfonic acid formaldehyde condensate, dibutyl naphthalene sulfonic acid, etc.) that reduce the surface tension of the polishing liquid, etc. May be added in an appropriate amount.

(第2の研磨液)
スルホン酸基を有する界面活性剤としては、下記に示すものを例示できる。尚、式中のRは炭素数12〜14のアルキル基である。
(Second polishing liquid)
Examples of the surfactant having a sulfonic acid group include those shown below. R in the formula is an alkyl group having 12 to 14 carbon atoms.

Figure 2009050920
Figure 2009050920

スルホン酸基を有する界面活性剤の含有量は、コロイダルシリカまたはヒュームドシリカ100質量部に対し0.02〜0.1質量部であり、好ましくは0.03〜0.1質量部である。含有量が0.02質量部未満ではロールオフ低減及び研磨レートの維持の効果が不十分となり、0.1質量部を超えると、研磨レートが大きく低下する。   Content of surfactant which has a sulfonic acid group is 0.02-0.1 mass part with respect to 100 mass parts of colloidal silica or fumed silica, Preferably it is 0.03-0.1 mass part. If the content is less than 0.02 parts by mass, the effect of reducing roll-off and maintaining the polishing rate will be insufficient, and if it exceeds 0.1 parts by mass, the polishing rate will be greatly reduced.

コロイダルシリカやヒュームドシリカ、その他の成分、酸性度は第1の研磨液と同様である。   Colloidal silica, fumed silica, other components, and acidity are the same as in the first polishing liquid.

主表面の研磨方法は従来と同様に行えばよく、例えば、2枚の研磨パッドで円形ガラス板を挟み、上記の研磨液を研磨パッドと円形ガラス板との界面に供給しながら研磨パッドを回転させて行う。   The polishing method for the main surface may be performed in the same manner as in the past. For example, a circular glass plate is sandwiched between two polishing pads, and the polishing pad is rotated while supplying the above polishing liquid to the interface between the polishing pad and the circular glass plate. To do.

研磨パッドとしては、ショアD硬度が45〜75、圧縮率が0.1〜10%かつ密度が0.5〜1.5g/cmである発泡ウレタン樹脂、ショアA硬度が30〜99、圧縮率が0.5〜10%かつ密度が0.2〜0.9g/cmである発泡ウレタン樹脂、または、ショアA硬度が5〜65、圧縮率が0.1〜60%かつ密度が0.05〜0.4g/cmである発泡ウレタン樹脂からなるものが典型的である。尚、研磨パッドのショアA硬度は20以上であることが好ましい。20未満では研磨速度が低下するおそれがある。 As a polishing pad, a urethane foam resin having a Shore D hardness of 45 to 75, a compression ratio of 0.1 to 10% and a density of 0.5 to 1.5 g / cm 3 , a Shore A hardness of 30 to 99, and a compression A foamed urethane resin having a rate of 0.5 to 10% and a density of 0.2 to 0.9 g / cm 3 , or a Shore A hardness of 5 to 65, a compressibility of 0.1 to 60%, and a density of 0 What consists of foaming urethane resin which is 0.05-0.4 g / cm < 3 > is typical. The Shore A hardness of the polishing pad is preferably 20 or more. If it is less than 20, the polishing rate may decrease.

尚、ショアD硬度およびショアA硬度はそれぞれJIS K7215に規定されているプラスチックのデュロメータA硬さ及びD硬さを測定する方法によって測定される。
また、圧縮率(単位:%)は次のようにして測定される。即ち、研磨パッドから適切な大きさに切り出した測定試料について、ショッパー型厚さ測定器を用いて無荷重状態から10kPaの応力の負荷を30秒間加圧した時の材料厚さtを求め、次に厚さがtの状態から直ちに110kPaの応力の負荷を5分間加圧した時の材料厚さt1を求め、tおよびtの値から(t−t)×100/tを算出し、これを圧縮率とする。
The Shore D hardness and Shore A hardness are measured by the methods of measuring the durometer A hardness and D hardness of plastic specified in JIS K7215, respectively.
The compression rate (unit:%) is measured as follows. That is, for a measurement sample cut out to an appropriate size from a polishing pad, a material thickness t 0 when a stress of 10 kPa is applied for 30 seconds from a no-load state using a shopper type thickness measuring device is obtained, then thickness seek material thickness t1 when pressure load pressure for 5 minutes immediately 110kPa stress from the state of t 0, the value of t 0 and t 1 (t 0 -t 1) × 100 / t 0 is calculated and used as the compression rate.

研磨圧力は、4kPa以上であることが好ましい。4kPa未満では研磨時のガラス基板の安定性が低下してばたつきやすくなり、その結果主表面のうねりが大きくなるおそれがある。   The polishing pressure is preferably 4 kPa or more. If it is less than 4 kPa, the stability of the glass substrate at the time of polishing is lowered and fluttering tends to occur, and as a result, the waviness of the main surface may increase.

主表面の研磨量は、0.3〜1.5μmが適当であり、研磨液の供給量や研磨時間、研磨液中のシリカ濃度、研磨圧力、回転数等を調整する。   The polishing amount of the main surface is suitably from 0.3 to 1.5 μm, and the supply amount and polishing time of the polishing liquid, the silica concentration in the polishing liquid, the polishing pressure, the rotational speed, etc. are adjusted.

尚、上記の主表面研磨の前に、予備的に主表面を研磨してもよい。この予備的主表面研磨は、例えば、円形ガラス板を研磨パッドで挟み、酸化セリウム砥粒スラリーを供給しながら研磨パッドを回転させて行うことができる。   The main surface may be preliminarily polished before the main surface polishing. This preliminary main surface polishing can be performed, for example, by sandwiching a circular glass plate with a polishing pad and rotating the polishing pad while supplying a cerium oxide abrasive slurry.

そして、上記の主表面研磨の後、洗浄、乾燥して磁気ディスク用ガラス基板が得られる。洗浄及び乾燥は公知の方法で行われるが、例えば、酸性洗剤溶液への浸漬、アルカリ性洗剤溶液への浸漬、ベルクリン及びアルカリ洗剤によるスクラブ洗浄、アルカリ性洗剤溶液への浸漬、ベルクリン及びアルカリ洗剤によるスクラブ洗浄、アルカリ性洗剤溶液への浸漬した状態での超音波洗浄、純水浸漬状態での超音波洗浄、純水浸漬状態での超音波洗浄を順次行った後、スピンドライ乾燥もしくはイソプロピルアルコール蒸気乾燥等の方法で乾燥を行う。   After the main surface polishing, the glass substrate for magnetic disk is obtained by washing and drying. Cleaning and drying are performed by a known method. For example, immersion in an acidic detergent solution, immersion in an alkaline detergent solution, scrub washing with veggrine and an alkaline detergent, immersion in an alkaline detergent solution, scrub washing with bergulin and an alkaline detergent After performing ultrasonic cleaning in an alkaline detergent solution, ultrasonic cleaning in pure water, ultrasonic cleaning in pure water, spin drying or isopropyl alcohol vapor drying, etc. Dry by the method.

以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものでははい。   EXAMPLES The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited thereby.

<試験1:第1の研磨液について>
(被験体の作製)
フロート法で成形されたシリケートガラス板を、外径65mm、内径20mm、板厚0.635mmのガラス基板が得られるようなドーナツ状円形ガラス板(中央に円孔を有する円形ガラス板)に加工した。尚、内周面及び外周面の研削加工はダイヤモンド砥石を用いて行い、ガラス板上下面のラッピングは酸化アルミニウム砥粒を用いて行った。
<Test 1: First polishing liquid>
(Preparation of subject)
A silicate glass plate formed by the float process was processed into a donut-shaped circular glass plate (a circular glass plate having a circular hole in the center) from which a glass substrate having an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of 0.635 mm was obtained. . The inner peripheral surface and the outer peripheral surface were ground using a diamond grindstone, and the upper and lower surfaces of the glass plate were lapped using aluminum oxide abrasive grains.

次に、内外周の端面を、面取り幅0.15mm、面取り角度45°となるように面取り加工を行った。内外周加工の後、研磨材として酸化セリウムスラリーを用い、研磨具としてブラシを用い、ブラシ研磨により端面の鏡面加工を行った。加工量は半径方向の除去量で30μmであった。   Next, chamfering was performed on the inner and outer end faces so that the chamfering width was 0.15 mm and the chamfering angle was 45 °. After the inner and outer peripheral processing, a cerium oxide slurry was used as an abrasive, a brush was used as a polishing tool, and the end surface was mirror-finished by brush polishing. The processing amount was 30 μm in terms of the removal amount in the radial direction.

その後、研磨材として酸化セリウムスラリー(酸化セリウム平均粒径:約1.1μm)を用い、研磨具としてウレタンパッドを用いて、両面研磨装置により上下主表面の研磨加工を行った。加工量は上下主表面の厚さ方向で計35μmであった。   Thereafter, the upper and lower main surfaces were polished by a double-side polishing apparatus using a cerium oxide slurry (average particle diameter of cerium oxide: about 1.1 μm) as an abrasive and a urethane pad as a polishing tool. The processing amount was 35 μm in total in the thickness direction of the upper and lower main surfaces.

更に、研磨剤として上記の酸化セリウムよりも平均粒径が小さい酸化セリウム(平均粒径:約0.2μm)を用い、研磨具としてウレタンパッドを用いて、両面研磨装置により上下主表面の研磨加工を行った。加工量は上下面の厚さ方向で計1.6μmであった。また、このようにして作製された円形ガラス板の主表面をVeeco社製AFMを用いて測定したところ、表面粗さRaは0.48nmであった。   Further, the upper and lower main surfaces are polished by a double-side polishing apparatus using cerium oxide (average particle diameter: about 0.2 μm) having an average particle size smaller than that of the above cerium oxide as an abrasive and a urethane pad as a polishing tool. Went. The amount of processing was 1.6 μm in total in the thickness direction of the upper and lower surfaces. Moreover, when the main surface of the circular glass plate produced in this way was measured using AFM manufactured by Veeco, the surface roughness Ra was 0.48 nm.

(研磨液の調製)
研磨液組成を表1に示すが、実施例用として、コロイダルシリカスラリー(一次粒子の平均粒子径20〜30nm、シリカ粒子濃度48質量%)、表記の添加剤(スルホン酸系ポリマーまたはカルボン酸系ポリマー)、硝酸、純水からなる研磨液を調製した。コロイダルシリカ濃度は15質量%とし、スルホン酸系ポリマーまたははカルボン酸系ポリマーの添加量は、コロイダルシリカ添加量に対する量として表記した。また、研磨液のpHは2とした。尚、表中のスルホン酸系共重合体「A−6021」は東亜合成社製で重量平均分子量100000であり、スルホン酸系共重合体「A−6020」は東亜合成社製で重量平均分子量10000である。また、カルボン酸系共重合体アンモニウム塩「ポイズ2100」は花王社製で重量平均分子量35000であり、カルボン酸系共重合体アンモニウム塩「A−30L」は東亜合成社製で重量平均分子量6000であり、カルボン酸系共重合体「A−10SL」は東亜合成社製で重量平均分子量6000である。
(Preparation of polishing liquid)
The polishing liquid composition is shown in Table 1, but for the examples, colloidal silica slurry (average particle diameter of primary particles 20-30 nm, silica particle concentration 48% by mass), indicated additive (sulfonic acid polymer or carboxylic acid type) (Polymer), nitric acid, and pure water were prepared. The colloidal silica concentration was 15% by mass, and the amount of sulfonic acid polymer or carboxylic acid polymer added was expressed as the amount relative to the amount of colloidal silica added. The pH of the polishing liquid was 2. In the table, the sulfonic acid copolymer “A-6021” manufactured by Toa Gosei Co., Ltd. has a weight average molecular weight of 100,000, and the sulfonic acid copolymer “A-6020” manufactured by Toa Gosei Co., Ltd. has a weight average molecular weight of 10,000. It is. The carboxylic acid copolymer ammonium salt “Poise 2100” is manufactured by Kao Corporation and has a weight average molecular weight of 35,000, and the carboxylic acid copolymer ammonium salt “A-30L” is manufactured by Toa Gosei Co., Ltd. and has a weight average molecular weight of 6000. Yes, the carboxylic acid copolymer “A-10SL” is manufactured by Toagosei Co., Ltd. and has a weight average molecular weight of 6000.

また、比較例用として、コロイダルシリカスラリー(一次粒子の平均粒子径20〜30nm、シリカ粒子濃度48質量%)、表記の添加剤、硝酸、純水からなる研磨液を調製した。尚、コロイダルシリカ濃度、添加剤量の定義、pHは実施例用研磨液と同様である。また、比較例1及び比較例2については、添加剤無添加、即ち、コロイダルシリカスラリー、硝酸、純水からなる研磨液とした。表中のスルホン酸系共重合体「A−6016A」は東亜合成社製で重量平均分子量2000である。また、ナフタレンスルホン酸ホルムアルデヒド縮合物は縮合度2〜3の合成品である。   Further, as a comparative example, a polishing liquid composed of colloidal silica slurry (average particle diameter of primary particles 20 to 30 nm, silica particle concentration 48 mass%), the indicated additive, nitric acid, and pure water was prepared. The colloidal silica concentration, the definition of the additive amount, and the pH are the same as those of the polishing liquid for examples. Moreover, about the comparative example 1 and the comparative example 2, it was set as the polishing liquid which does not add an additive, ie, a colloidal silica slurry, nitric acid, and a pure water. The sulfonic acid copolymer “A-6016A” in the table is manufactured by Toa Gosei Co., Ltd. and has a weight average molecular weight of 2000. Naphthalene sulfonic acid formaldehyde condensate is a synthetic product having a condensation degree of 2 to 3.

各研磨液について、スラリー粘度を束機産業社製 TOKI RESOLを用いて25℃で測定した。また、表面張力を、協和界面科学社製(CBVP−Z)を用いて室温にて測定した。   About each polishing liquid, slurry viscosity was measured at 25 degreeC using TOKI RESOL made from a bundle machine industry company. Moreover, the surface tension was measured at room temperature using Kyowa Interface Science Co., Ltd. (CBVP-Z).

(主表面の研磨)
上記の被験体の主表面を、上記の研磨液及び研磨具として発泡ウレタン樹脂からなる仕上用研磨パッドを用いて研磨した。研磨機にはスピードファム社製9B型両面研磨機を使用し、研磨圧力8kPa、キャリア周速40m/min、研磨液供給速度40ml/minで25分間(実施例1〜8、比較例1、比較例3〜14)、または研磨圧力12kPa、キャリア周速40m/min、研磨液供給速度60ml/minで15分間(実施例2、比較例2)研磨した。次いで、研磨後の被験体を、酸性洗剤溶液への浸漬、アルカリ性洗剤溶液への浸漬、ベルクリン及びアルカリ洗剤によるスクラブ洗浄、アルカリ性洗剤溶液への浸漬、ベルクリン及びアルカリ洗剤によるスクラブ洗浄、アルカリ性洗剤溶液への浸漬した状態での超音波洗浄、純水浸漬状態での超音波洗浄、純水浸漬状態での超音波洗浄を順次行い、スピンドライ乾燥した。尚、研磨液を交換する度に、研磨パッドを、純水を供給しながら3分間ブラシ洗浄を行った。
(Main surface polishing)
The main surface of said subject was grind | polished using the polishing pad for finishing which consists of urethane foam resin as said polishing liquid and polishing tool. As a polishing machine, a 9B type double-side polishing machine manufactured by Speed Fem Co., Ltd. was used, and the polishing pressure was 8 kPa, the carrier peripheral speed was 40 m / min, and the polishing liquid supply speed was 40 ml / min for 25 minutes (Examples 1 to 8, Comparative Example 1, Comparison) Examples 3 to 14), or polishing pressure of 12 kPa, carrier peripheral speed of 40 m / min, polishing liquid supply speed of 60 ml / min for 15 minutes (Example 2, Comparative Example 2). Next, the polished subject is immersed in an acidic detergent solution, immersed in an alkaline detergent solution, scrubbed with bergrin and an alkaline detergent, immersed in an alkaline detergent solution, rubbed with bergrin and an alkaline detergent, into an alkaline detergent solution. Were subjected to ultrasonic cleaning in an immersed state, ultrasonic cleaning in a pure water immersion state, and ultrasonic cleaning in a pure water immersion state, followed by spin dry drying. Each time the polishing liquid was changed, the polishing pad was subjected to brush cleaning for 3 minutes while supplying pure water.

そして、下記に示す特性評価を行った。測定結果を表1に併記するが、実施例1〜8及び比較例3〜14については比較例1に対する相対値で、実施例9については比較例2に対する相対値でそれぞれ示してある。   And the characteristic evaluation shown below was performed. The measurement results are also shown in Table 1. Examples 1 to 8 and Comparative Examples 3 to 14 are shown as relative values with respect to Comparative Example 1, and Example 9 is shown as a relative value with respect to Comparative Example 2.

尚、実施例1〜8、比較例3〜14では、測定の前に比較例1の研磨液を用いて測定して基準値を求めておき、実施例9については測定の前に比較例2の研磨液を用いて特性値を測定して基準値を求めておき、それぞれの測定値と予め求めておいた基準値とを比較した。   In Examples 1 to 8 and Comparative Examples 3 to 14, measurement was performed using the polishing liquid of Comparative Example 1 before measurement, and a reference value was obtained. For Example 9, Comparative Example 2 was measured before measurement. Reference values were obtained by measuring characteristic values using the above polishing liquid, and each measured value was compared with a reference value obtained in advance.

(特性評価)
(1)研磨レート
研磨レートは、研磨前後の重量変化と研磨面積30.02[cm]、研磨基板比重2.77[g/cm]より求めた。比較例1の研磨レートは、0.020〜0.030[μm/min]であり、比較例2の研磨レートは、0.035〜0.045[μm/min]であった。結果を表1に示すが、数値が1より大きいと比較例1または比較例2よりも研磨レートが高く、1よりも小さいと比較例1または比較例2よりも研磨レートが低いことを示す。この相対研磨レートは、実用上0.7以上が合格である。
(Characteristic evaluation)
(1) Polishing rate The polishing rate was determined from the change in weight before and after polishing, the polishing area 30.02 [cm 2 ], and the specific gravity of the polishing substrate 2.77 [g / cm 3 ]. The polishing rate of Comparative Example 1 was 0.020 to 0.030 [μm / min], and the polishing rate of Comparative Example 2 was 0.035 to 0.045 [μm / min]. The results are shown in Table 1. When the numerical value is larger than 1, the polishing rate is higher than Comparative Example 1 or Comparative Example 2, and when it is smaller than 1, the polishing rate is lower than Comparative Example 1 or Comparative Example 2. The relative polishing rate is practically 0.7 or more.

(2)ロールオフ
ロールオフ値をZygo社製NV5000を用いて測定した。測定は、研磨前後に同じ箇所にて基板端面測定(ロールオフ測定)を行ない、研磨前後のロールオフ変化量(端面のダレ具合)を測定した。結果を表1に示すが、数値が小さいほど端面ダレが少なく、好ましいことを示す。この相対ロールオフは0.9未満が合格である。
(2) Roll-off The roll-off value was measured using NV5000 made by Zygo. In the measurement, the substrate end face measurement (roll-off measurement) was performed at the same location before and after polishing, and the roll-off change amount (end face sagging condition) before and after polishing was measured. The results are shown in Table 1, and the smaller the numerical value, the smaller the end face sagging and the better. This relative roll-off is less than 0.9.

(3)表面粗さ
表面粗さRaをVeeco社製AFMを用いて測定した。結果を表1に示すが、数値が1を越えると比較例1または比較例2と比べて表面粗さが悪化していることを示し、1より小さいと比較例1または比較例2よりも表面粗さが良化したことを示しており、数値が低いほど、表面粗さが少なく好ましいことを示す。
(3) Surface roughness The surface roughness Ra was measured using AFM manufactured by Veeco. The results are shown in Table 1. When the numerical value exceeds 1, it indicates that the surface roughness is worse than that of Comparative Example 1 or Comparative Example 2, and when it is smaller than 1, the surface is larger than Comparative Example 1 or Comparative Example 2. This shows that the roughness is improved, and the lower the numerical value, the smaller the surface roughness and the better.

(4)分散性
研磨前の研磨液と研磨後の研磨液を回収し、日揮装社製粒度分布測定機(マイクロトラック)を用いてD50値と分布幅sd値を測定した。比較例1または比較例2のD50値と分布幅sd値の測定値よりも低い場合を「◎」、変わらない場合を「○」、高い場合を「×」とした。研磨後回収スラリーのD50値と分布幅sd値が低いほど、研磨中にスラリーの凝集が起こっておらず、添加剤のスラリー凝集抑制効果(スラリーの安定化効果)が高いことになる。
(4) Dispersibility The polishing liquid before polishing and the polishing liquid after polishing were collected, and the D50 value and the distribution width sd value were measured using a particle size distribution measuring machine (Microtrack) manufactured by JGC. The case where it was lower than the measured values of the D50 value and the distribution width sd value of Comparative Example 1 or Comparative Example 2 was “◎”, the case where it was not changed was “◯”, and the case where it was high was “X”. The lower the D50 value and the distribution width sd value of the recovered slurry after polishing, the more the slurry is not aggregated during polishing, and the slurry aggregation suppressing effect (slurry stabilizing effect) of the additive is higher.

Figure 2009050920
Figure 2009050920

Figure 2009050920
Figure 2009050920

Figure 2009050920
Figure 2009050920

表1に示すように、本発明に従い、カルボン酸系ポリマーまたはスルホン酸系ポリマーを添加した酸性の研磨液を用いることで、研磨レートの低下を抑えつつ、ロールオフを減少することができる。また、表面性状も良好であり、コロイダルシリカの分散性にも優れる。   As shown in Table 1, according to the present invention, by using an acidic polishing liquid to which a carboxylic acid polymer or a sulfonic acid polymer is added, roll-off can be reduced while suppressing a decrease in the polishing rate. Moreover, the surface property is also good and the dispersibility of colloidal silica is also excellent.

<試験2:第2の研磨液について>
(研磨液の調製)
表2に示すように、コロイダルシリカスラリー(一次粒子の平均粒子径20〜30nm、シリカ粒子濃度48質量%)、表記の添加剤(スルホン酸系界面活性剤)、硝酸、純水からなる研磨液を調製した。コロイダルシリカ濃度は15質量%とし、スルホン酸系界面活性剤の添加量は、コロイダルシリカ添加量に対する量として表記した。また、研磨液のpHは2とした。尚、表中のアルキルスルホン酸「ラムテルPS」は花王社製、アルキルベンゼンスルホン酸「LH200」はライオン社製、アルキルベンゼンスルホン酸「LS250」はライオン社製、アルキルベンゼンスルホン酸「LH900」はライオン社製である。
<Test 2: Second polishing liquid>
(Preparation of polishing liquid)
As shown in Table 2, a polishing liquid comprising a colloidal silica slurry (average particle diameter of primary particles 20 to 30 nm, silica particle concentration 48 mass%), the indicated additive (sulfonic acid surfactant), nitric acid, and pure water. Was prepared. The colloidal silica concentration was 15% by mass, and the amount of sulfonic acid surfactant added was expressed as the amount relative to the amount of colloidal silica added. The pH of the polishing liquid was 2. In the table, the alkylsulfonic acid “Ramtel PS” is manufactured by Kao Corporation, the alkylbenzenesulfonic acid “LH200” is manufactured by Lion, the alkylbenzenesulfonic acid “LS250” is manufactured by Lion, and the alkylbenzenesulfonic acid “LH900” is manufactured by Lion. is there.

(主表面の研磨及び特性評価)
試験1と同様にして主表面を研磨し、同様の特性評価を行った。結果を表2に併記するが、比較例1に対する相対値で示してある。
(Main surface polishing and characteristic evaluation)
The main surface was polished in the same manner as in Test 1, and the same characteristics were evaluated. The results are shown together in Table 2, but are shown as relative values with respect to Comparative Example 1.

Figure 2009050920
Figure 2009050920

表2に示すように、スルホン酸基を有する界面活性剤を特定量含有する研磨液を用いることで、研磨レートの低下を抑えつつ、ロールオフを減少することができる。また、表面性状も良好であり、コロイダルシリカの分散性にも優れる。   As shown in Table 2, roll-off can be reduced while suppressing a decrease in the polishing rate by using a polishing liquid containing a specific amount of a surfactant having a sulfonic acid group. Moreover, the surface property is also good and the dispersibility of colloidal silica is also excellent.

主表面研磨後の円形ガラス基板の外周部近傍を示す模式図である。It is a schematic diagram which shows the outer peripheral part vicinity of the circular glass substrate after main surface grinding | polishing.

符号の説明Explanation of symbols

a:チャンファー面
b:外周端面
c:主表面外周部
d:チャンファー面aと主表面外周部cの境界
e:ロールオフ測定領域
g:ロールオフの大きさを定めるための基準線
a: chamfer surface b: outer peripheral end surface c: main surface outer peripheral portion d: boundary between chamfer surface a and main surface outer peripheral portion c e: roll-off measurement region g: reference line for determining roll-off size

Claims (4)

カルボン酸基、カルボン酸基の塩、スルホン酸基及びスルホン酸基の塩の少なくとも1つが主鎖に結合している水溶性ポリマーと、コロイダルシリカまたはヒュームドシリカとを含有する酸性の研磨液を用いて円形ガラス板の主表面を研磨する工程を有する磁気ディスク用ガラス基板の製造方法。   An acidic polishing liquid containing a water-soluble polymer in which at least one of a carboxylic acid group, a carboxylic acid group salt, a sulfonic acid group and a sulfonic acid group salt is bonded to the main chain, and colloidal silica or fumed silica. The manufacturing method of the glass substrate for magnetic discs which has the process of grind | polishing the main surface of a circular glass plate using. 前記水溶性ポリマーにおいて、主鎖が直鎖状であることを特徴とする請求項1記載の磁気ディスク用ガラス基板の製造方法。   2. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the main chain of the water-soluble polymer is linear. 前記水溶性ポリマーの重量平均分子量が6000以上であることを特徴とする請求項1または2の磁気ディスク用ガラス基板の製造方法。   The method for producing a glass substrate for a magnetic disk according to claim 1 or 2, wherein the water-soluble polymer has a weight average molecular weight of 6000 or more. コロイダルシリカまたはヒュームドシリカ100質量部に対し、スルホン酸基を有する界面活性剤を0.02〜0.1質量部含有する酸性の研磨液を用いて円形ガラス板の主表面を研磨する工程を有する磁気ディスク用ガラス基板の製造方法。   A step of polishing the main surface of the circular glass plate using an acidic polishing liquid containing 0.02 to 0.1 parts by mass of a surfactant having a sulfonic acid group with respect to 100 parts by mass of colloidal silica or fumed silica. A method for producing a magnetic disk glass substrate.
JP2007216839A 2007-08-23 2007-08-23 Manufacturing method of glass substrate for magnetic disc Pending JP2009050920A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007216839A JP2009050920A (en) 2007-08-23 2007-08-23 Manufacturing method of glass substrate for magnetic disc
SG2012060422A SG183731A1 (en) 2007-08-23 2008-08-18 Process for producing glass substrate for magnetic disks
PCT/JP2008/064711 WO2009025259A1 (en) 2007-08-23 2008-08-18 Process for producing glass substrate for magnetic disk
CN200880001536.8A CN101588895B (en) 2007-08-23 2008-08-18 Process for producing glass substrate for magnetic disk
US12/477,197 US20090239450A1 (en) 2007-08-23 2009-06-03 Process for producing glass substrate for magnetic disks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216839A JP2009050920A (en) 2007-08-23 2007-08-23 Manufacturing method of glass substrate for magnetic disc

Publications (1)

Publication Number Publication Date
JP2009050920A true JP2009050920A (en) 2009-03-12

Family

ID=40378161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216839A Pending JP2009050920A (en) 2007-08-23 2007-08-23 Manufacturing method of glass substrate for magnetic disc

Country Status (5)

Country Link
US (1) US20090239450A1 (en)
JP (1) JP2009050920A (en)
CN (1) CN101588895B (en)
SG (1) SG183731A1 (en)
WO (1) WO2009025259A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021478A1 (en) * 2009-08-17 2011-02-24 コニカミノルタオプト株式会社 Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP2011110637A (en) * 2009-11-25 2011-06-09 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic disk
JP2011210286A (en) * 2010-02-26 2011-10-20 Asahi Glass Co Ltd Method of manufacturing glass substrate for magnetic recording medium
JP2011233205A (en) * 2010-04-28 2011-11-17 Asahi Glass Co Ltd Information recording medium glass substrate, polishing colloidal silica slurry for manufacturing thereof, and information recording medium
JP2013025844A (en) * 2011-07-21 2013-02-04 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP2014151424A (en) * 2013-02-13 2014-08-25 Fujimi Inc Polishing composition, method of producing the same and method of manufacturing polished article
US9053736B2 (en) 2010-04-20 2015-06-09 Kao Corporation Method for manufacturing an aluminosilicate glass substrate for hard disks
JP2018032450A (en) * 2016-08-23 2018-03-01 山口精研工業株式会社 Polisher composition for magnetic disk substrates
JP2019079583A (en) * 2017-10-24 2019-05-23 山口精研工業株式会社 Polishing agent composition for magnetic disk substrate
JP2019182955A (en) * 2018-04-05 2019-10-24 花王株式会社 Polishing liquid composition
WO2021053732A1 (en) 2019-09-17 2021-03-25 Agc株式会社 Abrasive agent, method for grinding glass, and method for producing glass

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233621B2 (en) * 2008-12-02 2013-07-10 旭硝子株式会社 Glass substrate for magnetic disk and method for producing the same.
JP5326638B2 (en) * 2009-02-18 2013-10-30 富士電機株式会社 Method of manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium in which it is used, and perpendicular magnetic recording medium
JP5940270B2 (en) 2010-12-09 2016-06-29 花王株式会社 Polishing liquid composition
JP2014041978A (en) 2012-08-23 2014-03-06 Fujimi Inc Polishing composition, manufacturing method of polishing composition, and manufacturing method of polishing composition undiluted solution
MY182263A (en) * 2014-01-31 2021-01-18 Hoya Corp Method for manufacturing magnetic-disk substrate and method for manufacturing magnetic disk
CN106271959A (en) * 2016-08-15 2017-01-04 安徽省银锐玻璃机械有限公司 The method of glass craft edging
US10479911B1 (en) 2018-06-05 2019-11-19 Cabot Microelectronics Corporation Composition and method for polishing memory hard disks exhibiting reduced edge roll off
CN111421399A (en) * 2020-04-26 2020-07-17 东莞南玻工程玻璃有限公司 Polishing method for removing mildew on glass surface

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102041A (en) * 1996-09-27 1998-04-21 Kao Corp Processing auxiliary composition, abrasive composition and surface processing
JPH11188614A (en) * 1997-12-24 1999-07-13 Kao Corp Workpiece polishing method
JPH11293231A (en) 1998-04-10 1999-10-26 Kao Corp Polishing fluid composition
JP2000087010A (en) 1998-09-14 2000-03-28 Denki Kagaku Kogyo Kk Polishing composition
JP2001064631A (en) 1999-06-23 2001-03-13 Jsr Corp Composition for abrasion and abrasion method
JP2001064632A (en) 1999-06-23 2001-03-13 Jsr Corp Composition for abrasion and abrasion method
JP2002167575A (en) 2000-11-29 2002-06-11 Fujimi Inc Polishing composition and polishing method for polishing memory hard disk using the same
JP2003051468A (en) * 2002-06-04 2003-02-21 Hitachi Chem Co Ltd Cmp polishing method
JP2006193695A (en) 2005-01-17 2006-07-27 Fujimi Inc Polishing composition
JP2007063372A (en) * 2005-08-30 2007-03-15 Kao Corp Polishing liquid composition
JP2007191696A (en) * 2005-12-22 2007-08-02 Kao Corp Polishing liquid composition for glass substrate

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738800A (en) * 1996-09-27 1998-04-14 Rodel, Inc. Composition and method for polishing a composite of silica and silicon nitride
US6569215B2 (en) * 2000-04-17 2003-05-27 Showa Denko Kabushiki Kaisha Composition for polishing magnetic disk substrate
US6409781B1 (en) * 2000-05-01 2002-06-25 Advanced Technology Materials, Inc. Polishing slurries for copper and associated materials
US6656241B1 (en) * 2001-06-14 2003-12-02 Ppg Industries Ohio, Inc. Silica-based slurry
JPWO2003038883A1 (en) * 2001-10-31 2005-02-24 日立化成工業株式会社 Polishing liquid and polishing method
US6821897B2 (en) * 2001-12-05 2004-11-23 Cabot Microelectronics Corporation Method for copper CMP using polymeric complexing agents
US6841480B2 (en) * 2002-02-04 2005-01-11 Infineon Technologies Ag Polyelectrolyte dispensing polishing pad, production thereof and method of polishing a substrate
US6776810B1 (en) * 2002-02-11 2004-08-17 Cabot Microelectronics Corporation Anionic abrasive particles treated with positively charged polyelectrolytes for CMP
US20030162398A1 (en) * 2002-02-11 2003-08-28 Small Robert J. Catalytic composition for chemical-mechanical polishing, method of using same, and substrate treated with same
US7010939B2 (en) * 2002-06-05 2006-03-14 Hoya Corporation Glass substrate for data recording medium and manufacturing method thereof
US20050028450A1 (en) * 2003-08-07 2005-02-10 Wen-Qing Xu CMP slurry
US7294610B2 (en) * 2004-03-03 2007-11-13 3M Innovative Properties Company Fluorinated sulfonamide surfactants for aqueous cleaning solutions
US7303993B2 (en) * 2004-07-01 2007-12-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing compositions and methods relating thereto
US20060205219A1 (en) * 2005-03-08 2006-09-14 Baker Arthur R Iii Compositions and methods for chemical mechanical polishing interlevel dielectric layers
CN102863943B (en) * 2005-08-30 2015-03-25 花王株式会社 Polishing composition for hard disk substrate, polishing method and manufacture method of substrate
GB2433516B (en) * 2005-12-22 2010-11-03 Kao Corp Polishing composition for glass substrate
WO2010038706A1 (en) * 2008-10-01 2010-04-08 旭硝子株式会社 Polishing liquid and polishing method
JP5499324B2 (en) * 2010-04-28 2014-05-21 旭硝子株式会社 Glass substrate for information recording medium, polishing colloidal silica slurry for manufacturing the same, and information recording medium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102041A (en) * 1996-09-27 1998-04-21 Kao Corp Processing auxiliary composition, abrasive composition and surface processing
JPH11188614A (en) * 1997-12-24 1999-07-13 Kao Corp Workpiece polishing method
JPH11293231A (en) 1998-04-10 1999-10-26 Kao Corp Polishing fluid composition
JP2000087010A (en) 1998-09-14 2000-03-28 Denki Kagaku Kogyo Kk Polishing composition
JP2001064631A (en) 1999-06-23 2001-03-13 Jsr Corp Composition for abrasion and abrasion method
JP2001064632A (en) 1999-06-23 2001-03-13 Jsr Corp Composition for abrasion and abrasion method
JP2002167575A (en) 2000-11-29 2002-06-11 Fujimi Inc Polishing composition and polishing method for polishing memory hard disk using the same
JP2003051468A (en) * 2002-06-04 2003-02-21 Hitachi Chem Co Ltd Cmp polishing method
JP2006193695A (en) 2005-01-17 2006-07-27 Fujimi Inc Polishing composition
JP2007063372A (en) * 2005-08-30 2007-03-15 Kao Corp Polishing liquid composition
JP2007191696A (en) * 2005-12-22 2007-08-02 Kao Corp Polishing liquid composition for glass substrate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021478A1 (en) * 2009-08-17 2011-02-24 コニカミノルタオプト株式会社 Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP2011110637A (en) * 2009-11-25 2011-06-09 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic disk
JP2011210286A (en) * 2010-02-26 2011-10-20 Asahi Glass Co Ltd Method of manufacturing glass substrate for magnetic recording medium
US9053736B2 (en) 2010-04-20 2015-06-09 Kao Corporation Method for manufacturing an aluminosilicate glass substrate for hard disks
JP2011233205A (en) * 2010-04-28 2011-11-17 Asahi Glass Co Ltd Information recording medium glass substrate, polishing colloidal silica slurry for manufacturing thereof, and information recording medium
JP2013025844A (en) * 2011-07-21 2013-02-04 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP2014151424A (en) * 2013-02-13 2014-08-25 Fujimi Inc Polishing composition, method of producing the same and method of manufacturing polished article
JP2018032450A (en) * 2016-08-23 2018-03-01 山口精研工業株式会社 Polisher composition for magnetic disk substrates
JP2019079583A (en) * 2017-10-24 2019-05-23 山口精研工業株式会社 Polishing agent composition for magnetic disk substrate
JP7122097B2 (en) 2017-10-24 2022-08-19 山口精研工業株式会社 Abrasive composition for magnetic disk substrate
JP2019182955A (en) * 2018-04-05 2019-10-24 花王株式会社 Polishing liquid composition
JP7083680B2 (en) 2018-04-05 2022-06-13 花王株式会社 Abrasive liquid composition
WO2021053732A1 (en) 2019-09-17 2021-03-25 Agc株式会社 Abrasive agent, method for grinding glass, and method for producing glass
US11370939B2 (en) 2019-09-17 2022-06-28 AGC Inc. Polishing slurry, method for polishing glass, and method for manufacturing glass
US11518912B2 (en) 2019-09-17 2022-12-06 AGC Inc. Polishing slurry, method for polishing glass, and method for manufacturing glass

Also Published As

Publication number Publication date
CN101588895B (en) 2011-10-26
CN101588895A (en) 2009-11-25
US20090239450A1 (en) 2009-09-24
SG183731A1 (en) 2012-09-27
WO2009025259A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP2009050920A (en) Manufacturing method of glass substrate for magnetic disc
US8092280B2 (en) Glass substrate for magnetic disk and method for producing the same
WO2009096294A1 (en) Process for producing glass substrate for magnetic disk
JP5177087B2 (en) Glass substrate for information recording medium, manufacturing method thereof, and magnetic recording medium
JP6376238B2 (en) Colloidal silica abrasive
CN109545680B (en) Rapid preparation method of high-flatness and low-damage monocrystalline silicon carbide substrate
JP5283247B2 (en) Polishing liquid composition for glass substrate
JP5384037B2 (en) Polishing liquid composition for sapphire substrate and method for polishing sapphire substrate
JP6078942B2 (en) Glass substrate manufacturing method, magnetic disk manufacturing method, and polishing composition for glass substrate
JP3841873B2 (en) Polishing abrasive grains and polishing composition
JPH11140427A (en) Polishing liquid and polishing
JP5736681B2 (en) Polishing liquid and method for producing glass substrate for magnetic disk
JP4713064B2 (en) Manufacturing method of glass substrate for information recording medium and glass substrate for information recording medium manufactured by the manufacturing method
US20030228461A1 (en) Glass substrate for data recording medium and manufacturing method thereof
JP5499324B2 (en) Glass substrate for information recording medium, polishing colloidal silica slurry for manufacturing the same, and information recording medium
JP2018174005A (en) Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, glass substrate for information recording medium, and magnetic recording medium
JP5736430B2 (en) Polishing liquid composition for sapphire substrate and method for polishing sapphire substrate
TW201940759A (en) Method for producing silicon wafer
JP2017190395A (en) Colloidal silica slurry for polishing and manufacturing method of glass substrate for magnetic disk using the same
JP2017041294A (en) Manufacturing method of glass substrate for magnetic disk
JP5719833B2 (en) Manufacturing method of glass substrate for information recording medium
JP2011110637A (en) Method for manufacturing glass substrate for magnetic disk
JPWO2012042735A1 (en) Manufacturing method of glass substrate for information recording medium
CN105881190A (en) Control method for computer hard disk substrate roughness
WO2012133373A1 (en) Method for producing magnetic-disk glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130108

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017