JP2007198699A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2007198699A
JP2007198699A JP2006020165A JP2006020165A JP2007198699A JP 2007198699 A JP2007198699 A JP 2007198699A JP 2006020165 A JP2006020165 A JP 2006020165A JP 2006020165 A JP2006020165 A JP 2006020165A JP 2007198699 A JP2007198699 A JP 2007198699A
Authority
JP
Japan
Prior art keywords
heat
hot water
heat pump
pressure
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006020165A
Other languages
Japanese (ja)
Other versions
JP4116645B2 (en
Inventor
Hisahira Kato
央平 加藤
Takashi Okazaki
多佳志 岡崎
Fumitake Unezaki
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006020165A priority Critical patent/JP4116645B2/en
Publication of JP2007198699A publication Critical patent/JP2007198699A/en
Application granted granted Critical
Publication of JP4116645B2 publication Critical patent/JP4116645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of suppressing deterioration in the coefficient of performance of a refrigerating cycle by suppressing a rise in the outlet pressure and outlet temperature of a compressor in the heat reserving operation of water stored in a hot water storage tank. <P>SOLUTION: A heat pump unit 50 comprises a main circuit 11 and a high-low pressure heat exchange circuit 12 including a high-low pressure heat exchanger 5 for heat-exchanging high-pressure refrigerant flowing out of a radiator 2 with low-pressure refrigerant flowing between an evaporator 4 and a compressor 1. A hot water supply unit 60 comprises a hot water supply circuit 14 connecting the hot water storage tank 23 storing water carried in the radiator 2 with a pump 22 to circulate water. A measurement control device 24 provided in the heat pump unit 50 closes an on/off valve 7a and opens an on/off valve 7b in the heat reserving operation for keeping the temperature of water in the hot water storage tank 23 of the hot water supply unit 60 in a predetermined range to operate the high-low pressure heat exchange circuit 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ヒートポンプユニットを用いて貯湯タンク内の水温を所定値に保つための保温運転機能を備えるヒートポンプ式給湯機に関する。   The present invention relates to a heat pump type water heater having a heat retaining operation function for keeping a water temperature in a hot water storage tank at a predetermined value using a heat pump unit.

従来のヒートポンプ給湯機に、冷媒を超臨界圧力まで圧縮する圧縮機、この圧縮機から吐出した冷媒と負荷側媒体とを熱交換する単一の放熱器、冷媒を減圧する膨張弁、及び蒸発器を環状に接続して、冷媒が循環する冷凍サイクルと、単一の放熱器を流通する冷媒により加熱された負荷側媒体をタンクに貯留する給湯回路と、高圧側冷媒圧力を所定の圧力に制御する高圧制御手段とを備えるものが提案されている(例えば、特許文献1参照)。
特開2005−315558号公報
A conventional heat pump water heater, a compressor that compresses the refrigerant to a supercritical pressure, a single radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, an expansion valve that decompresses the refrigerant, and an evaporator Are connected in a ring shape, the refrigeration cycle in which the refrigerant circulates, the hot water supply circuit that stores the load-side medium heated by the refrigerant flowing through the single radiator in the tank, and the high-pressure side refrigerant pressure is controlled to a predetermined pressure Have been proposed (see, for example, Patent Document 1).
JP 2005-315558 A

しかしながら、特許文献1に記載されているヒートポンプ給湯機は、放熱器の利用側入口温度が比較的低い給湯運転における高圧制御に関するものであり、利用側入口温度が高い保温運転では、ヒートポンプ式給湯機の成績係数(COP)が大きく低下するという課題がある。ここで、ヒートポンプ式給湯機の成績係数であるCOPは、放熱器での加熱能力を圧縮機の仕事量で除したものである。   However, the heat pump water heater described in Patent Document 1 relates to high-pressure control in a hot water supply operation in which the use side inlet temperature of the radiator is relatively low, and in the heat insulation operation in which the use side inlet temperature is high, the heat pump type water heater There is a problem that the coefficient of performance (COP) is greatly reduced. Here, COP, which is a coefficient of performance of the heat pump type hot water heater, is obtained by dividing the heating capability of the radiator by the work amount of the compressor.

この発明は、上記のような課題を解決するためになされたもので、貯湯タンク内に貯湯された水の保温運転時における圧縮機の吐出圧力及び吐出冷媒ガス温度上昇を抑制して、冷凍サイクルの成績係数の低下を抑制することができるヒートポンプ式給湯機を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and suppresses an increase in the discharge pressure and discharge refrigerant gas temperature of the compressor during the heat insulation operation of the water stored in the hot water storage tank. It aims at providing the heat pump type water heater which can suppress the fall of the coefficient of performance of.

この発明に係るヒートポンプ式給湯機は、ヒートポンプユニットと、給湯ユニットとを有するヒートポンプ式給湯機において、ヒートポンプユニットは、圧縮機、利用側熱交換器、第一減圧装置、熱源側熱交換器が順次配管で接続された主回路と、利用側熱交換器と第一減圧装置との間の分岐部から分岐し、利用側熱交換器から流出する高圧冷媒と、熱源側熱交換器と圧縮機との間を流れる低圧冷媒とを熱交換する高低圧熱交換器を介して、分岐部と第一減圧装置との間の合流部に合流する高低圧熱交換回路と、この高低圧熱交換回路の分岐部と合流部との間の主回路に設けられた第一開閉弁と、高低圧熱交換回路に設けられた第二開閉弁とを備え、給湯ユニットは、利用側熱交換器を流れる被加熱媒体を貯留する貯留装置と、被加熱媒体搬送装置とを接続して被加熱媒体を循環させる利用側回路を備え、ヒートポンプユニットに設けられた計測制御装置は、ヒートポンプユニットの運転状態の変化に応じて、第一開閉弁を閉じ第二開閉弁を開いて高低圧熱交換回路を作動させる制御を行うことを特徴とする。   The heat pump water heater according to the present invention is a heat pump water heater having a heat pump unit and a hot water supply unit. The heat pump unit includes a compressor, a use side heat exchanger, a first pressure reducing device, and a heat source side heat exchanger in order. A main circuit connected by piping, a high-pressure refrigerant that branches off from a branch portion between the use-side heat exchanger and the first decompression device, and flows out of the use-side heat exchanger, a heat source-side heat exchanger, and a compressor A high-low pressure heat exchange circuit that joins the junction between the branching portion and the first decompression device via a high-low pressure heat exchanger that exchanges heat with the low-pressure refrigerant flowing between the high-low pressure heat exchange circuit, The hot water supply unit includes a first on-off valve provided in the main circuit between the branching section and the junction, and a second on-off valve provided in the high-low pressure heat exchange circuit. A storage device for storing a heating medium and a medium to be heated The measurement control device provided in the heat pump unit includes a utilization side circuit for connecting the device and circulating the medium to be heated, and the second on-off valve closes the first on-off valve in response to a change in the operating state of the heat pump unit. And controlling to operate the high / low pressure heat exchange circuit.

この発明に係るヒートポンプ式給湯機は、上記構成により、放熱器の被加熱媒体の入口温度が高い保温運転時において、高低圧熱交換回路により圧縮機の吐出圧力と吐出冷媒ガス温度の上昇を抑制し、成績係数の低下を抑制できる効果がある。   The heat pump type hot water heater according to the present invention suppresses an increase in the discharge pressure of the compressor and the discharge refrigerant gas temperature by the high-low pressure heat exchange circuit during the heat insulation operation in which the inlet temperature of the heated medium of the radiator is high. In addition, there is an effect of suppressing a decrease in the coefficient of performance.

実施の形態1.
図1乃至図7は実施の形態1を示す図で、図1はヒートポンプ式給湯機100の構成図、図2はヒートポンプ式給湯機100の出湯温度制御に関するフローチャート、図3はヒートポンプ式給湯機100の吐出温度制御に関するフローチャート、図4はヒートポンプ式給湯機100の給水温度の変化による運転状況を示すP−H線図、図5はヒートポンプ式給湯機100の保温運転時における高低圧熱交回路の作用を示すP−H線図、図6はヒートポンプ式給湯機100の保温運転時におけるCOP低下抑制効果を示すP−H線図、図7はヒートポンプ式給湯機100の保温運転時の制御に関するフローチャートである。
Embodiment 1 FIG.
FIG. 1 to FIG. 7 are diagrams showing the first embodiment, FIG. 1 is a configuration diagram of the heat pump type hot water heater 100, FIG. 2 is a flowchart relating to hot water temperature control of the heat pump type hot water heater 100, FIG. 4 is a PH diagram showing an operation state according to a change in the feed water temperature of the heat pump type hot water heater 100, and FIG. 5 is a diagram of the high and low pressure heat exchange circuit during the heat insulation operation of the heat pump type hot water heater 100. FIG. 6 is a PH diagram showing an effect of suppressing the COP reduction during the heat insulation operation of the heat pump type hot water heater 100, and FIG. 7 is a flowchart regarding the control during the heat insulation operation of the heat pump water heater 100. It is.

図1により、ヒートポンプ式給湯機100の構成を説明する。ヒートポンプ式給湯機100は、ヒートポンプユニット50と、給湯ユニット60とで構成される。   The configuration of the heat pump type hot water heater 100 will be described with reference to FIG. The heat pump hot water supply apparatus 100 includes a heat pump unit 50 and a hot water supply unit 60.

ヒートポンプユニット50は、主回路11と、高低圧熱交換回路12と、バイパス回路13と、計測制御装置24とを備える。   The heat pump unit 50 includes a main circuit 11, a high / low pressure heat exchange circuit 12, a bypass circuit 13, and a measurement control device 24.

主回路11には、冷媒(例えば、二酸化炭素(CO))を圧縮する圧縮機1、放熱器2(利用側熱交換器とも言う)、膨張弁3a(第一減圧装置の一例)、ファン21(熱源側媒体搬送装置の一例)を有する蒸発器4(熱源側熱交換器とも言う)が順次配管で接続される。 The main circuit 11 includes a compressor 1 that compresses a refrigerant (for example, carbon dioxide (CO 2 )), a radiator 2 (also referred to as a use-side heat exchanger), an expansion valve 3a (an example of a first pressure reducing device), a fan An evaporator 4 (also referred to as a heat source side heat exchanger) having 21 (an example of a heat source side medium transport device) is sequentially connected by piping.

高低圧熱交換回路12は、放熱器2の出口部から流出する高圧冷媒と蒸発器4の出口部と圧縮機1の入口部との間を流れる低圧冷媒とを熱交換する高低圧熱交換器5と、開閉弁7b(第二開閉弁とする)とを有し(高低圧熱交換器5と開閉弁7bとは直列に接続される)、放熱器2の出口部と膨張弁3aの入口部との間の分岐部12aから分岐し、この分岐部12aと膨張弁3aの入口部との間の合流部12bで主回路11に合流する。この高低圧熱交換回路12の分岐部12aと合流部12bとの間の主回路11に開閉弁7a(第一開閉弁とする)を設ける。開閉弁7aと開閉弁7bとにより、放熱器2の出口部の冷媒が主回路11か高低圧熱交換回路12のどちらかを流れることができるようなっている。   The high-low pressure heat exchange circuit 12 exchanges heat between the high-pressure refrigerant flowing out from the outlet portion of the radiator 2 and the low-pressure refrigerant flowing between the outlet portion of the evaporator 4 and the inlet portion of the compressor 1. 5 and an on-off valve 7b (referred to as a second on-off valve) (the high / low pressure heat exchanger 5 and the on-off valve 7b are connected in series), and the outlet of the radiator 2 and the inlet of the expansion valve 3a It branches from the branch part 12a between these parts, and joins to the main circuit 11 at a junction part 12b between this branch part 12a and the inlet part of the expansion valve 3a. An on-off valve 7a (referred to as a first on-off valve) is provided in the main circuit 11 between the branch part 12a and the junction part 12b of the high / low pressure heat exchange circuit 12. The on-off valve 7a and the on-off valve 7b allow the refrigerant at the outlet of the radiator 2 to flow through either the main circuit 11 or the high / low pressure heat exchange circuit 12.

バイパス回路13は、直列に接続されるキャピラリ6(第三減圧装置の一例)と開閉弁7c(第三開閉弁とする)とを有し、放熱器2の出口部と蒸発器4の入口部との間を流れる冷媒を、圧縮機1の入口部へ流入させる。図1では、放熱器2の出口部と膨張弁3aの入口部との間にバイパス回路13が接続されている例を示すが、放熱器2の出口部と蒸発器4の入口部との間であれば、何処でもよい。バイパス回路13は、圧縮機1の出口温度(冷媒の吐出温度)を下げるために設けられる。   The bypass circuit 13 includes a capillary 6 (an example of a third pressure reducing device) and an on-off valve 7c (referred to as a third on-off valve) connected in series, and includes an outlet portion of the radiator 2 and an inlet portion of the evaporator 4. The refrigerant flowing between the two flows into the inlet of the compressor 1. FIG. 1 shows an example in which a bypass circuit 13 is connected between the outlet portion of the radiator 2 and the inlet portion of the expansion valve 3 a, but between the outlet portion of the radiator 2 and the inlet portion of the evaporator 4. Any place is acceptable. The bypass circuit 13 is provided to lower the outlet temperature (refrigerant discharge temperature) of the compressor 1.

ヒートポンプユニット50、主回路11、高低圧熱交換回路12、バイパス回路13で構成される冷媒回路の冷媒には、例えば、冷凍サイクルにおける高圧側が臨界圧力(約73kg/cm)以上となり、かつ容易に入手可能な二酸化炭素(CO)が用いられる。 For the refrigerant in the refrigerant circuit composed of the heat pump unit 50, the main circuit 11, the high / low pressure heat exchange circuit 12, and the bypass circuit 13, for example, the high pressure side in the refrigeration cycle has a critical pressure (about 73 kg / cm 2 ) or more and is easy. Carbon dioxide (CO 2 ), which is available for the above, is used.

また、ヒートポンプユニット50には、冷凍サイクルの高圧側の冷媒圧力を計測する圧力センサ40が圧縮機1の出口部から膨張弁3の入口部の間に設けられる。図1では、一例として、圧縮機1の出口部と放熱器2の入口部との間に設ける例を示している。   In addition, the heat pump unit 50 is provided with a pressure sensor 40 that measures the refrigerant pressure on the high-pressure side of the refrigeration cycle between the outlet of the compressor 1 and the inlet of the expansion valve 3. FIG. 1 shows an example in which the compressor 1 is provided between the outlet portion of the compressor 1 and the inlet portion of the radiator 2.

また、圧縮機1の出口温度である吐出温度を計測する吐出温度センサ30dが、圧縮機1の出口部に設けられる。   In addition, a discharge temperature sensor 30 d that measures a discharge temperature that is an outlet temperature of the compressor 1 is provided at an outlet portion of the compressor 1.

また、外気温度を計測する外気温度センサ30bが、蒸発器4の空気(熱源側媒体)を搬送するファン21の吸込み側またはヒートポンプユニット50の外郭近傍にそれぞれ設けられている。   In addition, an outside air temperature sensor 30 b that measures the outside air temperature is provided on the suction side of the fan 21 that conveys the air (heat source side medium) of the evaporator 4 or in the vicinity of the outline of the heat pump unit 50.

また、放熱器2には、後述する給湯ユニット60の給湯回路14の一部が設けられ、放熱器2の出湯温度(水側出口温度)を計測する出湯温度センサ30cが設けられている。   Further, the radiator 2 is provided with a part of the hot water supply circuit 14 of the hot water supply unit 60 described later, and is provided with a hot water temperature sensor 30c for measuring the hot water temperature (water side outlet temperature) of the heat radiator 2.

また、ヒートポンプユニット50内には、計測制御装置24が設けられている。計測制御装置24は、圧力センサ40、貯湯水温センサ30a(後述)、外気温度センサ30b、出湯温度センサ30c、吐出温度センサ30dなどの計測情報や、ヒートポンプ式給湯機の使用者から指示される運転情報の内容に基づいて、圧縮機1の運転方法、膨張弁3aの開度、開閉弁7a、開閉弁7b、開閉弁7cの切換え、ポンプ22(後述)の運転方法などを制御する。   A measurement control device 24 is provided in the heat pump unit 50. The measurement control device 24 includes measurement information such as a pressure sensor 40, a hot water storage water temperature sensor 30a (described later), an outside air temperature sensor 30b, a hot water temperature sensor 30c, a discharge temperature sensor 30d, and an operation instructed by a user of the heat pump water heater. Based on the contents of the information, the operation method of the compressor 1, the opening degree of the expansion valve 3a, the switching of the on-off valve 7a, the on-off valve 7b, the on-off valve 7c, the operation method of the pump 22 (described later), and the like are controlled.

給湯ユニット60は、放熱器2を流れる水(被加熱媒体の一例)を貯留する貯湯タンク23(貯留装置の一例)と、ポンプ22(被加熱媒体搬送装置の一例)が搭載され、ヒートポンプユニット50の放熱器2を介して循環するように接続して給湯回路14(利用側回路とも言う)を構成している。   The hot water supply unit 60 is mounted with a hot water storage tank 23 (an example of a storage device) that stores water (an example of a heated medium) that flows through the radiator 2, and a pump 22 (an example of a heated medium conveyance device). The hot water supply circuit 14 (also referred to as a use-side circuit) is configured to be circulated through the radiator 2.

給湯回路14には、貯湯タンク23内の貯湯水温を計測する貯湯水温センサ30aが貯湯タンク23に設けられている。   In the hot water supply circuit 14, a hot water storage water temperature sensor 30 a that measures the temperature of the hot water storage in the hot water storage tank 23 is provided in the hot water storage tank 23.

次に、このヒートポンプ式給湯機100の計測制御装置24の制御動作について説明する。回転数などで制御される圧縮機1及びポンプ22の運転容量は、外気温度センサ30bで計測される周囲の外気温度及び貯湯水温センサ30aで計測される貯湯タンク23内の水温度の情報を用いて、加熱能力もしくは出湯温度センサ30cで計測される出湯温度が予め定められた目標値、例えば目標加熱能力20kw、目標水出口温度65℃となるように制御される。   Next, the control operation of the measurement control device 24 of the heat pump type hot water heater 100 will be described. The operating capacities of the compressor 1 and the pump 22 controlled by the number of revolutions and the like use information on the ambient outside temperature measured by the outside temperature sensor 30b and the water temperature in the hot water storage tank 23 measured by the stored hot water temperature sensor 30a. Thus, the hot water temperature or the hot water temperature measured by the hot water temperature sensor 30c is controlled to be a predetermined target value, for example, a target heating capacity of 20 kW and a target water outlet temperature of 65 ° C.

膨張弁3aは、蒸発器4の出口部を所定の状態、例えば過熱度2degとなるように制御される。   The expansion valve 3a is controlled so that the outlet portion of the evaporator 4 is in a predetermined state, for example, the degree of superheat is 2 deg.

バイパス回路13の開閉弁7cは、吐出温度センサ30dで計測した圧縮機1の吐出温度が設計温度の許容値を超えた場合に開き、圧縮機1の吐出温度上昇を抑制する。   The on-off valve 7c of the bypass circuit 13 opens when the discharge temperature of the compressor 1 measured by the discharge temperature sensor 30d exceeds the allowable value of the design temperature, and suppresses an increase in the discharge temperature of the compressor 1.

また、蒸発器4に空気(熱源側媒体の一例)を搬送するファン21は、予め定められた回転数で運転される。   The fan 21 that conveys air (an example of a heat source side medium) to the evaporator 4 is operated at a predetermined rotation speed.

また、圧力センサ40、貯湯水温センサ30a、外気温度センサ30b、出湯温度センサ30c、吐出温度センサ30dで計測した情報を基に、圧縮機1やポンプ22などの要素機器の制御が、計測制御装置24にて行われる。   Further, based on information measured by the pressure sensor 40, the hot water temperature sensor 30a, the outside air temperature sensor 30b, the hot water temperature sensor 30c, and the discharge temperature sensor 30d, the control of the component devices such as the compressor 1 and the pump 22 is controlled by the measurement control device. 24.

次に、このヒートポンプ式給湯機100の制御動作である出湯温度制御について、図2に示すフローチャートを用いて説明する。出湯温度センサ30cで出湯温度を計測すると(S201)、計測制御装置24は計測した出湯温度とその目標値との関係を判断する(S202)。計測した出湯温度が目標値よりも大きい場合は、圧縮機1の回転数を減少させることで(S203a)、放熱器2の加熱量が低下するため出湯温度も低下する。一方、計測した出湯温度が目標値よりも低い場合は、圧縮機1の回転数を増加させることで(S203b)、放熱器2の加熱量が増加するため出湯温度が上昇する。上記制御を繰り返すことにより、出湯温度を目標値と一致させることができる。   Next, hot water temperature control, which is a control operation of the heat pump type hot water heater 100, will be described with reference to the flowchart shown in FIG. When the hot water temperature is measured by the hot water temperature sensor 30c (S201), the measurement control device 24 determines the relationship between the measured hot water temperature and its target value (S202). When the measured hot-water temperature is larger than the target value, the hot water temperature is lowered by decreasing the number of revolutions of the compressor 1 (S203a) and the heating amount of the radiator 2 is lowered. On the other hand, when the measured tapping temperature is lower than the target value, the tapping temperature rises by increasing the number of revolutions of the compressor 1 (S203b) and the heating amount of the radiator 2 increases. By repeating the above control, the tapping temperature can be matched with the target value.

次に、このヒートポンプ式給湯機の制御動作である吐出温度上昇抑制制御について、図3に示す吐出温度上昇抑制制御のフローチャートを用いて説明する。吐出温度センサ30dで圧縮機1の出口温度である吐出温度を計測すると(S211)、計測制御装置24は計測した吐出温度と、吐出温度の目標値との関係を判断する(S212)。計測した吐出温度が目標値より大きい場合は、開閉弁7cを開くことにより(S213)、放熱器2の出口部と蒸発器4の入口部との間を流れる冷媒が圧縮機1の入口部へ流入し、圧縮機1の過熱度又は入口部乾き度が低下し吐出温度上昇を抑制することができる。   Next, the discharge temperature rise suppression control that is the control operation of the heat pump type hot water heater will be described using the flowchart of the discharge temperature rise suppression control shown in FIG. When the discharge temperature which is the outlet temperature of the compressor 1 is measured by the discharge temperature sensor 30d (S211), the measurement control device 24 determines the relationship between the measured discharge temperature and the target value of the discharge temperature (S212). When the measured discharge temperature is higher than the target value, the refrigerant flowing between the outlet portion of the radiator 2 and the inlet portion of the evaporator 4 is opened to the inlet portion of the compressor 1 by opening the on-off valve 7c (S213). Inflow, the degree of superheat of the compressor 1 or the degree of dryness of the inlet is lowered, and an increase in discharge temperature can be suppressed.

次に、通常の外気温度、例えば外気温度16℃における、このヒートポンプ式給湯機100の保温運転について説明する。保温運転は貯湯水温センサ30aで計測される貯湯タンク23内の水温度が所定値、例えば60℃以下となった場合に始まり、保温運転時における出湯温度の目標値は、例えば80℃となる。このとき、ポンプ22の回転数は貯湯運転と同じとする。   Next, the heat retaining operation of the heat pump type hot water heater 100 at a normal outside air temperature, for example, an outside air temperature of 16 ° C. will be described. The heat insulation operation starts when the water temperature in the hot water storage tank 23 measured by the hot water storage water temperature sensor 30a becomes a predetermined value, for example, 60 ° C. or less, and the target value of the hot water temperature during the heat insulation operation is, for example, 80 ° C. At this time, the rotation speed of the pump 22 is the same as in the hot water storage operation.

図4は、縦軸Pが圧力を示し、横軸Hがエンタルピーを示すP−H線図であり、放熱器2の水側入口温度の変化による冷凍サイクル状態を示す。放熱器2の水側入口温度が17℃(L201)の場合に対し、35℃(L202)に上昇すると蒸発器入口(Ei)の乾き度は高くなる。放熱器2の水側入口温度が60℃(L203)となる給湯運転では、蒸発器4の入口部乾き度が高くなり、冷凍サイクル全体がガスサイクルとなり、蒸発器4に存在する冷媒量が減少し、それにより発生した余剰冷媒は放熱器2側へ移動する。これにより、高圧圧力が上昇し設計圧力の許容値(L301)を超えてしまう場合が発生する。L302は、等温線(放熱器2の水側入口温度が60℃)を示す。   FIG. 4 is a PH diagram in which the vertical axis P represents pressure and the horizontal axis H represents enthalpy, and shows a refrigeration cycle state due to a change in the water-side inlet temperature of the radiator 2. When the water-side inlet temperature of the radiator 2 is 17 ° C. (L201), when the temperature rises to 35 ° C. (L202), the dryness of the evaporator inlet (Ei) increases. In the hot water supply operation in which the water-side inlet temperature of the radiator 2 is 60 ° C. (L203), the dryness of the inlet of the evaporator 4 increases, the entire refrigeration cycle becomes a gas cycle, and the amount of refrigerant present in the evaporator 4 decreases. Then, the surplus refrigerant generated thereby moves to the radiator 2 side. As a result, the high pressure increases and exceeds the allowable value (L301) of the design pressure. L302 indicates an isotherm (the water-side inlet temperature of the radiator 2 is 60 ° C.).

次に、高圧側冷媒圧力上昇抑制手段として、高低圧熱交換回路12を用いた場合の運転について説明する。図1に示す開閉弁7bを開き、開閉弁7aを閉じることで、高低圧熱交換回路12に冷媒を流すことができる。図5に高低圧熱交換回路12を利用した場合における保温運転の冷凍サイクル状態(L204)を示す。高低圧熱交換回路12へ冷媒が流れることにより、放熱器2の出口部から膨張弁3aの入口部の間を流れる高圧冷媒と、蒸発器4の出口部から圧縮機1の入口部の間を流れる低圧冷媒とが熱交換することで(ΔHH=ΔHL)、蒸発器4の入口部乾き度が低下し(Ei→Ei´)、蒸発器4内に存在する冷媒量が増加することにより余剰冷媒が処理され、高圧側冷媒圧力の上昇を抑制することが可能となる。尚、高低圧熱交換回路12を作動させるのは、保温運転時に限られたものではなく、保温運転以外の運転時でも、例えば、圧力センサ40で計測した高圧側冷媒圧力が上昇し、放熱器2に余剰冷媒が貯留する場合に、適宜高低圧熱交換回路12を作動させてもよい。   Next, the operation when the high-low pressure heat exchange circuit 12 is used as high-pressure side refrigerant pressure increase suppression means will be described. By opening the on-off valve 7b shown in FIG. 1 and closing the on-off valve 7a, the refrigerant can flow through the high-low pressure heat exchange circuit 12. FIG. 5 shows the refrigeration cycle state (L204) in the heat insulation operation when the high / low pressure heat exchange circuit 12 is used. As the refrigerant flows into the high-low pressure heat exchange circuit 12, the high-pressure refrigerant flowing between the outlet portion of the radiator 2 and the inlet portion of the expansion valve 3a and between the outlet portion of the evaporator 4 and the inlet portion of the compressor 1 are connected. Heat exchange with the flowing low-pressure refrigerant (ΔHH = ΔHL) reduces the dryness of the inlet portion of the evaporator 4 (Ei → Ei ′), and the amount of refrigerant existing in the evaporator 4 increases, thereby surplus refrigerant. Thus, it is possible to suppress an increase in the high-pressure side refrigerant pressure. The operation of the high / low pressure heat exchange circuit 12 is not limited to the heat insulation operation, and the high pressure side refrigerant pressure measured by the pressure sensor 40 increases, for example, even during an operation other than the heat insulation operation. When excess refrigerant is stored in 2, the high-low pressure heat exchange circuit 12 may be appropriately operated.

他の高圧側冷媒圧力上昇抑制手段としては、圧縮機1の回転数を減少させたり、出湯温度の目標値を下げるなどの、加熱能力自体を低下させる方法があるが、高低圧熱交換回路12を利用すれば、加熱能力または出湯温度の目標値を変えずに高圧側冷媒圧力上昇を抑制することが可能となる。   As other high-pressure side refrigerant pressure rise suppression means, there is a method of reducing the heating capacity itself such as reducing the number of revolutions of the compressor 1 or lowering the target value of the tapping temperature, but the high-low pressure heat exchange circuit 12 Can be used to suppress an increase in the high-pressure side refrigerant pressure without changing the target value of the heating capacity or the tapping temperature.

次に、低外気温度、例えば外気温度が−15℃の場合における、高低圧熱交換回路12を利用した保温運転について図6を用いて説明する。低外気条件では、圧縮機1の入口冷媒密度が小さくなるため、通常の外気条件時と同じ目標値、例えば出湯温度が80℃となるような保温運転を行うと、圧縮機1の回転数が増加し、仕事量が増加する。場合によっては、L205に示すように圧縮機の仕事量(ΔHc)が加熱量(ΔHg)よりも大きくなり、蒸発器4からも放熱(ΔHe)しCOPが1以下となる(ΔHg<ΔHc)ことがある。そこで、蒸発器4のファン21を停止し、蒸発器4での放熱をなくし、L206に示すように、圧縮機1の仕事を全て放熱器2での加熱量にできれば(ΔHc=ΔHg)、COPの低下を抑制することが可能となる。   Next, the heat insulation operation using the high / low pressure heat exchange circuit 12 when the low outside air temperature, for example, the outside air temperature is −15 ° C. will be described with reference to FIG. Under the low outside air condition, the refrigerant density at the inlet of the compressor 1 becomes small. Therefore, when the heat retention operation is performed so that the same target value as that in the normal outside air condition, for example, the tapping temperature is 80 ° C., the rotation speed of the compressor 1 is increased. Increase, work increases. In some cases, as shown in L205, the work amount (ΔHc) of the compressor becomes larger than the heating amount (ΔHg), and heat is also dissipated from the evaporator 4 (ΔHe), resulting in a COP of 1 or less (ΔHg <ΔHc). There is. Therefore, if the fan 21 of the evaporator 4 is stopped, the heat dissipation in the evaporator 4 is eliminated, and the work of the compressor 1 can be entirely heated by the radiator 2 (ΔHc = ΔHg) as indicated by L206, COP Can be suppressed.

また、低外気条件などの場合、貯湯、保温運転によらず、吐出温度が設計温度の許容値以上となる場合がある。この時は、開閉弁7c(第三開閉弁)を開きバイパス回路13(図1)へ冷媒が流れるようにすることで、低温の二相冷媒が圧縮機1の入口部へ流入し、圧縮機1の入口冷媒が湿り状態となり、吐出温度上昇を抑制することが可能となる。   Moreover, in the case of low outside air conditions, the discharge temperature may be equal to or higher than the allowable value of the design temperature regardless of hot water storage or heat insulation operation. At this time, the on-off valve 7c (third on-off valve) is opened so that the refrigerant flows into the bypass circuit 13 (FIG. 1), so that the low-temperature two-phase refrigerant flows into the inlet of the compressor 1, and the compressor 1 inlet refrigerant becomes wet, and it becomes possible to suppress an increase in discharge temperature.

図7は保温運転におけるヒートポンプ式給湯機100の制御に関するフローチャートである。S101では貯湯水温センサ30aで計測した貯湯タンク23内水温度情報を計測制御装置24が受け取り、設定値との比較を行う。貯湯タンク23内水温度が設定値より小さい場合(例えば60℃以下)は、S102で現在保温運転中かを判断し、保温運転を開始していない場合は、S103で保温運転開始指令を発する。そして、S104で高低圧熱交換回路12を作動させ、S105で圧縮機1の運転を開始する。この時、膨張弁3aの開度は予め決められた設定値(例えば250パルス)となっている。S106で外気温度センサ30bで計測した外気温度が設定値(例えば0℃)よりも低い場合は、COPの低下が予想されることから、S107−1で蒸発器4のファン21を停止する。一方、外気温度が設定値よりも高い場合は、蒸発器4のファン21は稼動される。その後は、S108では出湯温度センサ30cで計測した出湯温度が設定値(例えば80℃)となるように圧縮機1の回転数を制御し、S109では吐出温度センサ30dにて計測した吐出温度が所定の範囲内(例えば120℃以下)となるように、膨張弁3aの開度変更、もしくはバイパス回路13の開閉弁7cの開閉を行う。そして、貯湯タンク23内水温度が目標値となるまで上記制御を繰り返し、貯湯タンク内水温度が目標値となれば、S110で保温運転終了指令が発せられ、保温運転が終了する。   FIG. 7 is a flowchart relating to the control of the heat pump type water heater 100 in the heat insulation operation. In S101, the measurement controller 24 receives the water temperature information in the hot water storage tank 23 measured by the hot water storage water temperature sensor 30a, and compares it with the set value. When the water temperature in the hot water storage tank 23 is lower than the set value (for example, 60 ° C. or less), it is determined whether or not the heat insulation operation is currently performed in S102, and if the heat insulation operation is not started, a heat insulation operation start command is issued in S103. Then, the high / low pressure heat exchange circuit 12 is operated in S104, and the operation of the compressor 1 is started in S105. At this time, the opening degree of the expansion valve 3a is a predetermined set value (for example, 250 pulses). If the outside air temperature measured by the outside air temperature sensor 30b in S106 is lower than a set value (for example, 0 ° C.), a decrease in COP is expected, so the fan 21 of the evaporator 4 is stopped in S107-1. On the other hand, when the outside air temperature is higher than the set value, the fan 21 of the evaporator 4 is operated. Thereafter, in S108, the number of revolutions of the compressor 1 is controlled so that the hot water temperature measured by the hot water temperature sensor 30c becomes a set value (for example, 80 ° C.), and in S109, the discharge temperature measured by the discharge temperature sensor 30d is a predetermined value. The opening of the expansion valve 3a is changed or the on-off valve 7c of the bypass circuit 13 is opened / closed so that it falls within the range of Then, the above control is repeated until the water temperature in the hot water storage tank 23 reaches the target value. If the water temperature in the hot water storage tank reaches the target value, a heat insulation operation end command is issued in S110, and the heat insulation operation is ended.

上記制御(図7)により、放熱器2の水側入口温度が高い保温運転でも、高圧圧力上昇を抑制しながら運転可能となり、低外気温度の場合でも、目標加熱能力を下げずにCOP低下を抑制することができる(能力優先運転)。   By the above control (FIG. 7), it is possible to operate even while keeping the water side inlet temperature of the radiator 2 high, while suppressing the increase of the high pressure, and even when the outside temperature is low, the COP can be lowered without reducing the target heating capacity. It can be suppressed (capability priority operation).

上記制御は、加熱能力を優先した運転であったが、圧縮機1の回転数を低下させる、出湯温度の目標値を下げるといったように、加熱能力を低下させ、圧縮機1の仕事量を減らすことで、加熱能力が一定の場合よりもCOPが高い運転(COP優先運転)も可能となる。   The above control is an operation giving priority to the heating capacity, but the heating capacity is reduced and the work amount of the compressor 1 is reduced so as to reduce the rotation speed of the compressor 1 and the target value of the tapping temperature. Thus, an operation with a higher COP (COP priority operation) than when the heating capacity is constant is also possible.

保温運転を、能力優先運転にするか、又はCOP優先運転にするかは、運転条件や使用条件によって切り替えることもできる。例えば、夜間など使用者が利用する湯量が少ない時間帯では、COP優先運転により少しずつ貯湯タンク23内の温度を上昇させ、昼間などの高温のお湯が多量に必要な時間帯では、能力優先運転によりできるだけ早く貯湯タンク23内の温度を上昇させることができる。   Whether the heat retention operation is set to the capacity priority operation or the COP priority operation can be switched depending on the operation condition and the use condition. For example, when the amount of hot water used by the user is small, such as at night, the temperature in the hot water storage tank 23 is gradually increased by the COP priority operation, and in the time zone where a large amount of hot water is required such as during the day, the capacity priority operation is performed. Thus, the temperature in the hot water storage tank 23 can be raised as soon as possible.

また、放熱器2の容積よりも蒸発器4の容積が大きい場合、例えば容積比が放熱器2の容積:蒸発器4の容積=1:5のとき、容積比が小さい場合と比べて、運転条件の違いによって発生する余剰冷媒の処理能力が大きい。つまり、放熱器2の容積に対する蒸発器4の容積が大きいほど蒸発器4に多くの冷媒が存在できることから、余剰冷媒が発生しても高圧圧力は上昇しにくい。   Further, when the volume of the evaporator 4 is larger than the volume of the radiator 2, for example, when the volume ratio is the volume of the radiator 2: the volume of the evaporator 4 = 1: 5, the operation is performed as compared with the case where the volume ratio is small. The processing capacity of surplus refrigerant generated by the difference in conditions is large. That is, as the volume of the evaporator 4 with respect to the volume of the radiator 2 is larger, more refrigerant can be present in the evaporator 4, so even if surplus refrigerant is generated, the high-pressure pressure is less likely to increase.

実施の形態2.
図8乃至図13は実施の形態2を示す図で、図8はヒートポンプ式給湯機200の構成図、図9はヒートポンプ式給湯機200の高圧側冷媒圧力変動時の運転状況を示すP−H線図、図10はヒートポンプ式給湯機200の高圧側冷媒圧力とCOP他との相関を示す図、図11はヒートポンプ式給湯機200の運転状態を示すP−H線図、図12は高低圧熱交換回路12を利用した保温運転時の運転状態を示すP−H線図、図13はヒートポンプ式給湯機200の変形例の構成図である。
Embodiment 2. FIG.
8 to 13 are diagrams showing the second embodiment, FIG. 8 is a configuration diagram of the heat pump type hot water heater 200, and FIG. 9 is a PH showing an operating state of the heat pump type hot water heater 200 when the high-pressure side refrigerant pressure fluctuates. FIG. 10 is a diagram showing the correlation between the high-pressure side refrigerant pressure of the heat pump type hot water heater 200 and COP, etc. FIG. FIG. 13 is a configuration diagram of a modified example of the heat pump type hot water heater 200. FIG. 13 is a PH diagram illustrating an operation state during a heat insulation operation using the heat exchange circuit 12. FIG.

図8により、ヒートポンプ式給湯機200について、図1と異なる部分について説明する。同一部分は説明を省略する。
高低圧熱交換回路12は、開閉弁7bに代えて膨張弁3b(第二減圧装置の一例)を使用し、主回路11に膨張弁3aの出口部と蒸発器4の入口部との間の合流部12bで合流する。また、主回路11の開閉弁7aは使用しない。他の構成は図1と同じである。
With reference to FIG. 8, the heat pump hot water supply apparatus 200 will be described with respect to parts different from those in FIG. 1. The description of the same part is omitted.
The high / low pressure heat exchange circuit 12 uses an expansion valve 3b (an example of a second pressure reducing device) instead of the on-off valve 7b, and is connected to the main circuit 11 between the outlet portion of the expansion valve 3a and the inlet portion of the evaporator 4. Merge at the junction 12b. Further, the on-off valve 7a of the main circuit 11 is not used. Other configurations are the same as those in FIG.

この実施の形態2での高低圧熱交換回路12の利用について説明する。高低圧熱交換回路12を利用した場合の、冷凍サイクルの動作は実施の形態1と同じであるが、実施の形態2では高低圧熱交換回路12に膨張弁3bを設けていることから、使用条件に応じた高圧側冷媒圧力制御が可能となる。   The use of the high / low pressure heat exchange circuit 12 in the second embodiment will be described. The operation of the refrigeration cycle when the high / low pressure heat exchange circuit 12 is used is the same as that of the first embodiment, but in the second embodiment, the expansion valve 3b is provided in the high / low pressure heat exchange circuit 12, so that the operation is performed. High-pressure side refrigerant pressure control according to conditions becomes possible.

COなどのように高圧側が超臨界状態で運転される冷凍サイクルでは、図10に示すように運転条件によって成績係数が最大となる高圧側冷媒圧力値が存在する。図10では、高圧側冷媒圧力値PがP2の時に成績係数(COP)が最大となる。 In a refrigeration cycle in which the high pressure side is operated in a supercritical state, such as CO 2, there is a high pressure side refrigerant pressure value that maximizes the coefficient of performance depending on the operating conditions, as shown in FIG. In FIG. 10, the coefficient of performance (COP) becomes maximum when the high-pressure side refrigerant pressure value P is P2.

図9は、放熱器2の出口の冷媒温度が同一となるように高圧側冷媒圧力を変化させたときの冷凍サイクルを示したP−H線図である。図9において、冷凍サイクルの高圧側冷媒圧力値がP1、P2、P3の順に上昇するにつれて放熱器2での加熱量に相当するエンタルピー差ΔHgが増加する。一方、高圧側冷媒圧力値が上昇すると圧縮機1の仕事量に相当する圧縮機1でのエンタルピー差ΔHcも増大する。   FIG. 9 is a PH diagram illustrating a refrigeration cycle when the high-pressure side refrigerant pressure is changed so that the refrigerant temperature at the outlet of the radiator 2 is the same. In FIG. 9, the enthalpy difference ΔHg corresponding to the heating amount in the radiator 2 increases as the high-pressure side refrigerant pressure value of the refrigeration cycle increases in the order of P1, P2, and P3. On the other hand, when the high-pressure side refrigerant pressure value increases, the enthalpy difference ΔHc in the compressor 1 corresponding to the work amount of the compressor 1 also increases.

この時のΔHg、ΔHcにおける冷凍サイクルの高圧側冷媒圧力値による変化の傾向を示すと図10のようになる。図10は横軸が冷凍サイクルにおける高圧側冷媒圧力P、縦軸が成績係数COP(実線)、放熱器2でのエンタルピー差ΔHg(点線)、圧縮機1でのエンタルピー差ΔHc(一点鎖線)である。図10において、高圧側冷媒圧力上昇に伴う能力に相当するΔHgの増加率が入力に相当するΔHcの増加率よりも下回る領域(P1からP2の範囲)では、ΔHg/ΔHcで表される冷凍サイクルの成績係数(COP)が上昇し、逆に加熱量に相当するΔHgの増加率が入力に相当するΔHcの増加率よりも下回る領域(P2からP3の範囲)では、COPが低下する。従って、COPが最大となる高圧側冷媒圧力Pが存在し、図10におけるP2がそれに該当する。   FIG. 10 shows the tendency of ΔHg and ΔHc at this time to change depending on the high-pressure side refrigerant pressure value of the refrigeration cycle. In FIG. 10, the horizontal axis represents the high-pressure side refrigerant pressure P in the refrigeration cycle, the vertical axis represents the coefficient of performance COP (solid line), the enthalpy difference ΔHg in the radiator 2 (dotted line), and the enthalpy difference ΔHc in the compressor 1 (one-dot chain line). is there. In FIG. 10, in the region where the increase rate of ΔHg corresponding to the capacity associated with the increase in the high-pressure side refrigerant pressure is lower than the increase rate of ΔHc corresponding to the input (range from P1 to P2), the refrigeration cycle represented by ΔHg / ΔHc. In the region where the increase rate of ΔHg corresponding to the heating amount is lower than the increase rate of ΔHc corresponding to the input (range from P2 to P3), the COP decreases. Therefore, there is a high-pressure side refrigerant pressure P at which COP is maximum, and P2 in FIG.

一方、放熱器2の水側入口温度が高い、例えば貯湯タンク23内の水温が60℃となる保温運転を行う場合では、図11に示すように冷凍サイクルがガスサイクルになり、COPが最大となる高圧側冷媒圧力が設計圧力の許容値L301以上となってしまうため、運転可能範囲は図10に示すP1からP2の領域となり、設計圧力の許容範囲内でできるだけ高圧側冷媒圧力を高くすることにより、COP低下を抑制した保温運転が可能となる。   On the other hand, in the case where the water-side inlet temperature of the radiator 2 is high, for example, when performing a heat insulation operation in which the water temperature in the hot water storage tank 23 is 60 ° C., the refrigeration cycle becomes a gas cycle as shown in FIG. Therefore, the operable range is the range from P1 to P2 shown in FIG. 10, and the high pressure side refrigerant pressure should be as high as possible within the allowable range of the design pressure. As a result, it is possible to perform a heat-retaining operation while suppressing a decrease in COP.

実施の形態1のように、主回路11の開閉弁7aを閉じて、高低圧熱交換回路12の開閉弁7bを開いて高低圧熱交換回路12を作動させる場合は、主回路11の冷媒の全てが高低圧熱交換回路12を流れる。それによって、蒸発器4の入口部乾き度が低下し(Ei→Ei´)、蒸発器4内に存在する冷媒量が増加することにより余剰冷媒が処理され、高圧側冷媒圧力の上昇を抑制することが可能となるが、そのときの高圧側冷媒圧力を、COPができるだけ大きくなるように、設計圧力の許容値の範囲内で、変化させることはできない。   When the on / off valve 7a of the main circuit 11 is closed and the on / off valve 7b of the high / low pressure heat exchange circuit 12 is opened to operate the high / low pressure heat exchange circuit 12 as in the first embodiment, the refrigerant of the main circuit 11 All flow through the high / low pressure heat exchange circuit 12. As a result, the dryness of the inlet of the evaporator 4 is reduced (Ei → Ei ′), and the amount of refrigerant existing in the evaporator 4 is increased, so that surplus refrigerant is processed and the rise in the high-pressure side refrigerant pressure is suppressed. However, the high-pressure side refrigerant pressure at that time cannot be changed within the allowable range of the design pressure so that the COP becomes as large as possible.

本実施の形態では、高低圧熱交換回路12に膨張弁3bを使用しているので、高低圧熱交換回路12に流れる冷媒量を制御することができる。即ち、保温運転時に、高圧側冷媒圧力が、図10に示すP2にできるだけ近い圧力になるように、膨張弁3bの開度を制御することができる。   In the present embodiment, since the expansion valve 3b is used in the high / low pressure heat exchange circuit 12, the amount of refrigerant flowing in the high / low pressure heat exchange circuit 12 can be controlled. That is, the opening degree of the expansion valve 3b can be controlled so that the high-pressure side refrigerant pressure is as close as possible to P2 shown in FIG.

図12に、実施の形態2における保温運転時に高低圧熱交換回路12を使用した場合の冷凍サイクルの一例を示す。このときの冷凍サイクルは、図12中のL207のようになる。膨張弁3bを所定の開度とすることで、主回路11と高低圧熱交換回路12へ冷媒の流れを分けることができる。主回路11側へ流れる冷媒は膨張弁3aにより減圧され、冷媒状態はX1となる。また、高低圧熱交換回路12を流れる冷媒は、高低圧熱交換器5にて蒸発器4の出口冷媒と熱交換して温度が低下し、膨張弁3bで減圧され、冷媒状態はX2となる。その後、合流し冷媒状態はEiとなる。このとき、膨張弁3bの開度を高圧側冷媒圧力が設計圧力の許容値L302を超えない範囲で、できるだけ大きくように制御することにより、COP低下を抑制しながらの保温運転が可能となる。尚、高低圧熱交換回路12を作動させるのは、保温運転時に限られたものではなく、保温運転以外の運転時でも、例えば、圧力センサ40で計測した高圧側冷媒圧力が上昇し、放熱器2に余剰冷媒が貯留する場合に、適宜高低圧熱交換回路12を作動させてもよい。   FIG. 12 shows an example of a refrigeration cycle when the high / low pressure heat exchange circuit 12 is used during the heat insulation operation in the second embodiment. The refrigeration cycle at this time is as indicated by L207 in FIG. By setting the expansion valve 3b to a predetermined opening, the refrigerant flow can be divided into the main circuit 11 and the high-low pressure heat exchange circuit 12. The refrigerant flowing to the main circuit 11 side is decompressed by the expansion valve 3a, and the refrigerant state becomes X1. In addition, the refrigerant flowing through the high / low pressure heat exchange circuit 12 exchanges heat with the refrigerant at the outlet of the evaporator 4 in the high / low pressure heat exchanger 5, the temperature is lowered, the pressure is reduced by the expansion valve 3b, and the refrigerant state becomes X2. . Thereafter, the combined refrigerant state becomes Ei. At this time, by controlling the opening degree of the expansion valve 3b to be as large as possible within a range in which the high-pressure side refrigerant pressure does not exceed the allowable value L302 of the design pressure, a heat-retaining operation can be performed while suppressing a decrease in COP. The operation of the high / low pressure heat exchange circuit 12 is not limited to the heat insulation operation, and the high pressure side refrigerant pressure measured by the pressure sensor 40 increases, for example, even during an operation other than the heat insulation operation. When excess refrigerant is stored in 2, the high-low pressure heat exchange circuit 12 may be appropriately operated.

尚、バイパス回路13は、図8では、放熱器2の出口部と膨張弁3aの入口部との間にバイパス回路13が接続されている例を示したが、図13に示すように、膨張弁3aの出口部と蒸発器4の入口部との間にバイパス回路13を接続してもよい。つまり、放熱器2の出口部と蒸発器4の入口部との間であれば何処にバイパス回路13を接続してもよいということである。   In addition, although the bypass circuit 13 showed the example in which the bypass circuit 13 was connected between the exit part of the heat radiator 2 and the inlet part of the expansion valve 3a in FIG. 8, as shown in FIG. A bypass circuit 13 may be connected between the outlet of the valve 3 a and the inlet of the evaporator 4. That is, the bypass circuit 13 may be connected anywhere between the outlet portion of the radiator 2 and the inlet portion of the evaporator 4.

なお、実施の形態1、2において、圧縮機1の形式は、スクロール、ロータリー、レシプロなどどのような種類のものであってもよいし、容量制御の方法もインバータによる回転数制御だけでなく、複数台圧縮機がある場合の台数制御や、ストロークボリューム可変タイプ(多気筒タイプ)ならストロークボリュームを変更するなどの方法をとってもよい。   In the first and second embodiments, the compressor 1 may be of any type such as scroll, rotary, and reciprocating, and the capacity control method is not limited to the rotational speed control by the inverter. For example, the number of units may be controlled when there are a plurality of compressors, or the stroke volume may be changed if the stroke volume is variable (multi-cylinder type).

また、実施の形態1、2において、冷媒をCOとして説明をしたが、COに限るものではなく、エチレン、エタン、酸化窒素などの臨界圧力以上で使用する他の冷媒を用いたものにも適用でき、それらを混合したものを冷媒として用いたものにも適用できる。 In the first and second embodiments, the refrigerant has been described as CO 2 , but the refrigerant is not limited to CO 2, and other refrigerants that are used at a critical pressure or higher such as ethylene, ethane, and nitrogen oxide are used. Can also be applied, and can also be applied to those using a mixture of them as a refrigerant.

また、蒸発器4入口側に温度センサ30e(図示しない)を、圧縮機1の吸入側に温度センサ30f(図示しない)設け、蒸発温度及び吸入温度を計測し、蒸発温度、吐出温度、吸入温度及び使用する圧縮機の性能から吐出圧力を算出できる吐出圧力演算手段を設けることにより、圧力センサ40を設けずに、圧縮機1の出口圧力が算出できるようにしてもよい。   Further, a temperature sensor 30e (not shown) is provided on the inlet side of the evaporator 4, and a temperature sensor 30f (not shown) is provided on the suction side of the compressor 1, and the evaporation temperature and the suction temperature are measured, and the evaporation temperature, the discharge temperature, and the suction temperature. In addition, by providing a discharge pressure calculation means capable of calculating the discharge pressure from the performance of the compressor to be used, the outlet pressure of the compressor 1 may be calculated without providing the pressure sensor 40.

また、実施の形態1、2において、COと共沸性の高い炭化水素類、例えば、プロパン、シクロプロパン、イソブタン、ブタン等と混合し、臨界圧力をCO単体よりも低い冷媒として用いたものにも適用できる。 In the first and second embodiments, hydrocarbons having high azeotropy with CO 2 , such as propane, cyclopropane, isobutane, butane, etc., are mixed and used as a refrigerant whose critical pressure is lower than that of CO 2 alone. It can also be applied to things.

実施の形態1を示す図で、ヒートポンプ式給湯機100の構成図である。1 is a diagram illustrating the first embodiment and is a configuration diagram of a heat pump type hot water heater 100. FIG. 実施の形態1を示す図で、ヒートポンプ式給湯機100の出湯温度制御に関するフローチャート図である。FIG. 5 shows the first embodiment, and is a flowchart relating to the hot water temperature control of the heat pump type hot water heater 100. FIG. 実施の形態1を示す図で、ヒートポンプ式給湯機100の吐出温度制御に関するフローチャート図である。FIG. 5 shows the first embodiment, and is a flowchart relating to discharge temperature control of the heat pump type hot water heater 100. FIG. 実施の形態1を示す図で、ヒートポンプ式給湯機100の給水温度の変化による運転状況を示すP−H線図である。It is a figure which shows Embodiment 1, and is a PH diagram which shows the driving | running state by the change of the feed water temperature of the heat pump type hot water supply apparatus 100. FIG. 実施の形態1を示す図で、ヒートポンプ式給湯機100の保温運転時における高低圧熱交回路の作用を示すP−H線図である。It is a figure which shows Embodiment 1, and is a PH diagram which shows the effect | action of the high-low pressure heat exchanger circuit at the time of the heat retention driving | operation of the heat pump type water heater 100. FIG. 実施の形態1を示す図で、ヒートポンプ式給湯機100の保温運転時におけるCOP低下抑制効果を示すP−H線図である。It is a figure which shows Embodiment 1, and is a PH diagram which shows the COP fall suppression effect at the time of the heat retention operation | movement of the heat pump type hot water heater 100. FIG. 実施の形態1を示す図で、ヒートポンプ式給湯機100の保温運転時の制御に関するフローチャート図である。FIG. 5 is a diagram showing the first embodiment, and is a flowchart relating to control during heat insulation operation of the heat pump type hot water heater 100. FIG. 実施の形態2を示す図で、ヒートポンプ式給湯機200の構成図である。It is a figure which shows Embodiment 2, and is a block diagram of the heat pump type water heater 200. FIG. 実施の形態2を示す図で、ヒートポンプ式給湯機200の高圧側冷媒圧力変動時の運転状況を示すP−H線図である。It is a figure which shows Embodiment 2, and is a PH diagram which shows the driving | running state at the time of the high pressure side refrigerant | coolant pressure fluctuation | variation of the heat pump type water heater 200. FIG. 実施の形態2を示す図で、ヒートポンプ式給湯機200の高圧側冷媒圧力とCOP他との相関を示す図である。It is a figure which shows Embodiment 2, and is a figure which shows the correlation with the high voltage | pressure side refrigerant | coolant pressure of CHP etc. of the heat pump type hot water heater 200. 実施の形態2を示す図で、ヒートポンプ式給湯機200の運転状況を示すP−H線図である。It is a figure which shows Embodiment 2, and is a PH diagram which shows the driving | running state of the heat pump type hot water heater 200. FIG. 実施の形態2を示す図で、高低圧熱交換回路12を利用した保温運転時の運転状態を示すP−H線図である。It is a figure which shows Embodiment 2, and is a PH diagram which shows the driving | running state at the time of the heat retention operation using the high-low pressure heat exchange circuit 12. FIG. 実施の形態2を示す図で、ヒートポンプ式給湯機200の変形例の構成図である。It is a figure which shows Embodiment 2, and is a block diagram of the modification of the heat pump type water heater 200. FIG.

符号の説明Explanation of symbols

1 圧縮機、2 放熱器、3a 膨張弁、3b 膨張弁、4 蒸発器、5 高低圧熱交換器、6 キャピラリ、7a 開閉弁、7b 開閉弁、7c 開閉弁、11 主回路、12 高低圧熱交換回路、12a 分岐部、12b 合流部、13 バイパス回路、14 給湯回路、21 ファン、22 ポンプ、23 貯湯タンク、24 計測制御装置、30a 貯湯水温センサ、30b 外気温度センサ、30c 出湯温度センサ、30d 吐出温度センサ、40 圧力センサ、50 ヒートポンプユニット、60 給湯ユニット、100 ヒートポンプ式給湯機、200 ヒートポンプ式給湯機。   1 compressor, 2 radiator, 3a expansion valve, 3b expansion valve, 4 evaporator, 5 high / low pressure heat exchanger, 6 capillary, 7a on / off valve, 7b on / off valve, 7c on / off valve, 11 main circuit, 12 high / low pressure heat Exchange circuit, 12a branching portion, 12b junction, 13 bypass circuit, 14 hot water supply circuit, 21 fan, 22 pump, 23 hot water storage tank, 24 measurement control device, 30a hot water temperature sensor, 30b outdoor temperature sensor, 30c hot water temperature sensor, 30d Discharge temperature sensor, 40 pressure sensor, 50 heat pump unit, 60 hot water supply unit, 100 heat pump water heater, 200 heat pump water heater.

Claims (9)

ヒートポンプユニットと、給湯ユニットとを有するヒートポンプ式給湯機において、
前記ヒートポンプユニットは、
圧縮機、利用側熱交換器、第一減圧装置、熱源側熱交換器が順次配管で接続された主回路と、
前記利用側熱交換器と前記第一減圧装置との間の分岐部から分岐し、前記利用側熱交換器から流出する高圧冷媒と、前記熱源側熱交換器と前記圧縮機との間を流れる低圧冷媒とを熱交換する高低圧熱交換器を介して、前記分岐部と前記第一減圧装置との間の合流部に合流する高低圧熱交換回路と、
この高低圧熱交換回路の前記分岐部と前記合流部との間の前記主回路に設けられた第一開閉弁と、
前記高低圧熱交換回路に設けられた第二開閉弁とを備え、
前記給湯ユニットは、
前記利用側熱交換器を流れる被加熱媒体を貯留する貯留装置と、被加熱媒体搬送装置とを接続して前記被加熱媒体を循環させる利用側回路を備え、
前記ヒートポンプユニットに設けられた計測制御装置は、前記ヒートポンプユニットの運転状態の変化に応じて、前記第一開閉弁を閉じ前記第二開閉弁を開いて前記高低圧熱交換回路を作動させる制御を行うことを特徴とするヒートポンプ式給湯機。
In a heat pump type water heater having a heat pump unit and a hot water supply unit,
The heat pump unit is
A main circuit in which a compressor, a use side heat exchanger, a first pressure reducing device, and a heat source side heat exchanger are sequentially connected by piping;
A high-pressure refrigerant that branches off from a branch portion between the use side heat exchanger and the first pressure reducing device and flows out of the use side heat exchanger, and flows between the heat source side heat exchanger and the compressor. A high and low pressure heat exchange circuit that merges into a merge portion between the branch portion and the first decompression device via a high and low pressure heat exchanger that exchanges heat with the low pressure refrigerant;
A first on-off valve provided in the main circuit between the branch part and the junction part of the high-low pressure heat exchange circuit;
A second on-off valve provided in the high-low pressure heat exchange circuit,
The hot water supply unit is
A storage device for storing the heated medium flowing through the use side heat exchanger, and a use side circuit for connecting the heated medium transport device and circulating the heated medium;
The measurement control device provided in the heat pump unit performs control to operate the high / low pressure heat exchange circuit by closing the first on-off valve and opening the second on-off valve in response to a change in the operation state of the heat pump unit. A heat pump type water heater characterized by performing.
前記計測制御装置は、前記給湯ユニットの前記貯留装置内の前記被加熱媒体の温度を所定範囲に維持する保温運転時に、前記第一開閉弁を閉じ前記第二開閉弁を開いて前記高低圧熱交換回路を作動させることを特徴とする請求項1記載のヒートポンプ式給湯機。   The measurement control device closes the first on-off valve and opens the second on-off valve during the heat-maintaining operation for maintaining the temperature of the heated medium in the storage device of the hot water supply unit in a predetermined range, and opens the second on-off valve. The heat pump type hot water heater according to claim 1, wherein the exchange circuit is operated. ヒートポンプユニットと、給湯ユニットとを有するヒートポンプ式給湯機において、
前記ヒートポンプユニットは、
圧縮機、利用側熱交換器、第一減圧装置、熱源側熱交換器が順次配管で接続された主回路と、
前記利用側熱交換器と前記第一減圧装置との間の分岐部から分岐し、前記利用側熱交換器から流出する高圧冷媒と、前記熱源側熱交換器と前記圧縮機との間を流れる低圧冷媒とを熱交換する高低圧熱交換器を介して、前記第一減圧装置と前記熱源側熱交換器との間の合流部に合流する高低圧熱交換回路と、
この高低圧熱交換回路に設けられた第二減圧装置とを備え、
前記給湯ユニットは、
前記利用側熱交換器を流れる被加熱媒体を貯留する貯留装置と、被加熱媒体搬送装置とを接続して前記被加熱媒体を循環させる利用側回路を備え、
前記ヒートポンプユニットに設けられた計測制御装置は、前記ヒートポンプユニットの運転状態の変化に応じて、前記前記第二減圧装置の開度を制御して、前記高低圧熱交換回路を作動させる制御を行うことを特徴とするヒートポンプ式給湯機。
In a heat pump type water heater having a heat pump unit and a hot water supply unit,
The heat pump unit is
A main circuit in which a compressor, a use side heat exchanger, a first pressure reducing device, and a heat source side heat exchanger are sequentially connected by piping;
A high-pressure refrigerant that branches off from a branch portion between the use side heat exchanger and the first pressure reducing device and flows out of the use side heat exchanger, and flows between the heat source side heat exchanger and the compressor. A high and low pressure heat exchange circuit that merges into a merge portion between the first pressure reducing device and the heat source side heat exchanger via a high and low pressure heat exchanger that exchanges heat with the low pressure refrigerant;
A second pressure reducing device provided in the high-low pressure heat exchange circuit,
The hot water supply unit is
A storage device for storing the heated medium flowing through the use side heat exchanger, and a use side circuit for connecting the heated medium transport device and circulating the heated medium;
The measurement control device provided in the heat pump unit controls the opening degree of the second decompression device to operate the high-low pressure heat exchange circuit in accordance with a change in the operation state of the heat pump unit. A heat pump type water heater characterized by that.
前記計測制御装置は、前記給湯ユニットの前記貯留装置内の前記被加熱媒体の温度を所定範囲に維持する保温運転時に、高圧側冷媒圧力が設計圧力の許容値を超えない範囲で、該設計圧力の許容値に近づくように、前記第二減圧装置の開度を制御して、前記高低圧熱交換回路を作動させることを特徴とする請求項3記載のヒートポンプ式給湯機。   The measurement control device is configured so that the design pressure is within a range in which the high-pressure side refrigerant pressure does not exceed a design pressure tolerance during a heat-maintaining operation for maintaining the temperature of the heated medium in the storage device of the hot water supply unit within a predetermined range. The heat pump type hot water heater according to claim 3, wherein the high-low pressure heat exchange circuit is operated by controlling an opening degree of the second pressure reducing device so as to approach an allowable value. 前記利用側熱交換器の出口部と前記熱源側熱交換器の入口部との間の前記主回路から分岐し、第三開閉弁及び第三減圧装置を介して前記圧縮機の入口部に合流するバイパス回路を備えたことを特徴とする請求項1乃至4のいずれかに記載のヒートポンプ式給湯機。   Branch from the main circuit between the outlet part of the use side heat exchanger and the inlet part of the heat source side heat exchanger, and join the inlet part of the compressor via a third on-off valve and a third pressure reducing device. The heat pump type hot water heater according to any one of claims 1 to 4, further comprising a bypass circuit. 前記計測制御装置は、前記保温運転時に、前記熱源側熱交換器の熱源側媒体搬送装置を停止することを特徴とする請求項2又は請求項4又は請求項5に記載のヒートポンプ式給湯機。   The heat pump hot water heater according to claim 2, 4 or 5, wherein the measurement control device stops the heat source side medium transport device of the heat source side heat exchanger during the heat insulation operation. 前記計測制御装置は、前記保温運転時に、前記圧縮機の容量を制御して前記利用側熱交換器の熱交換量を制御することを特徴とする請求項2又は請求項4又は請求項5に記載のヒートポンプ式給湯機。   The said measurement control apparatus controls the heat exchange amount of the said utilization side heat exchanger by controlling the capacity | capacitance of the said compressor at the time of the said heat retention operation, Claim 4 or Claim 4 or Claim 5 characterized by the above-mentioned. The described heat pump type hot water heater. 前記利用側熱交換器の容積が、前記熱源側熱交換器の容積よりも小さいことを特徴とする請求項1及至請求項7のいずれかに記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to any one of claims 1 to 7, wherein a volume of the use side heat exchanger is smaller than a volume of the heat source side heat exchanger. 前記ヒートポンプユニットに用いる冷媒に二酸化炭素を用いることを特徴とする請求項1及至請求項8のいずれかに記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to any one of claims 1 to 8, wherein carbon dioxide is used as a refrigerant used in the heat pump unit.
JP2006020165A 2006-01-30 2006-01-30 Heat pump water heater Active JP4116645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020165A JP4116645B2 (en) 2006-01-30 2006-01-30 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020165A JP4116645B2 (en) 2006-01-30 2006-01-30 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2007198699A true JP2007198699A (en) 2007-08-09
JP4116645B2 JP4116645B2 (en) 2008-07-09

Family

ID=38453467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020165A Active JP4116645B2 (en) 2006-01-30 2006-01-30 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4116645B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041860A (en) * 2007-08-09 2009-02-26 Toshiba Carrier Corp Control method of heat pump hot water supply device
JP2009127938A (en) * 2007-11-22 2009-06-11 Hitachi Appliances Inc Heat pump water heater
JP2010121846A (en) * 2008-11-19 2010-06-03 Sanden Corp Vapor compression type refrigerating cycle
JP2010169317A (en) * 2009-01-23 2010-08-05 Hitachi Appliances Inc Heat pump water heater
WO2011155386A1 (en) * 2010-06-11 2011-12-15 ヤンマー株式会社 Engine-driven hot water supply circuit, and engine-driven hot water supply system using same
JP2012127559A (en) * 2010-12-14 2012-07-05 Daikin Industries Ltd Heat pump type hot water supply device
JP2012180945A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Water heater system
CN102721172A (en) * 2012-06-14 2012-10-10 华南理工大学 Compressor variable capacity regulated instant heat pump water heater
CN102893097A (en) * 2010-04-15 2013-01-23 三菱电机株式会社 Controller for water heater system, program for controlling water heater system, and method for operating water heater system
WO2017061233A1 (en) * 2015-10-05 2017-04-13 株式会社デンソー Refrigeration cycle device
CN107166478A (en) * 2016-03-07 2017-09-15 松下知识产权经营株式会社 Heat pump assembly

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041860A (en) * 2007-08-09 2009-02-26 Toshiba Carrier Corp Control method of heat pump hot water supply device
JP2009127938A (en) * 2007-11-22 2009-06-11 Hitachi Appliances Inc Heat pump water heater
JP2010121846A (en) * 2008-11-19 2010-06-03 Sanden Corp Vapor compression type refrigerating cycle
JP2010169317A (en) * 2009-01-23 2010-08-05 Hitachi Appliances Inc Heat pump water heater
CN102893097A (en) * 2010-04-15 2013-01-23 三菱电机株式会社 Controller for water heater system, program for controlling water heater system, and method for operating water heater system
US9562696B2 (en) 2010-04-15 2017-02-07 Mitsubishi Electric Corporation Hot water supply system control apparatus and hot water supply system control program and hot water supply system operating method
CN102893097B (en) * 2010-04-15 2015-08-05 三菱电机株式会社 Hot-water supply system's control device and hot-water supply system's control program and hot-water supply system's method of operation
EP2559953A4 (en) * 2010-04-15 2013-12-18 Mitsubishi Electric Corp Controller for water heater system, program for controlling water heater system, and method for operating water heater system
EP2559953A1 (en) * 2010-04-15 2013-02-20 Mitsubishi Electric Corporation Controller for water heater system, program for controlling water heater system, and method for operating water heater system
WO2011155386A1 (en) * 2010-06-11 2011-12-15 ヤンマー株式会社 Engine-driven hot water supply circuit, and engine-driven hot water supply system using same
JP2011257100A (en) * 2010-06-11 2011-12-22 Yanmar Co Ltd Engine-driven hot water supply circuit and engine-driven hot water supply system using the same
JP2012127559A (en) * 2010-12-14 2012-07-05 Daikin Industries Ltd Heat pump type hot water supply device
JP2012180945A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Water heater system
CN102721172A (en) * 2012-06-14 2012-10-10 华南理工大学 Compressor variable capacity regulated instant heat pump water heater
WO2017061233A1 (en) * 2015-10-05 2017-04-13 株式会社デンソー Refrigeration cycle device
JPWO2017061233A1 (en) * 2015-10-05 2018-02-22 株式会社デンソー Refrigeration cycle equipment
CN107166478A (en) * 2016-03-07 2017-09-15 松下知识产权经营株式会社 Heat pump assembly

Also Published As

Publication number Publication date
JP4116645B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4116645B2 (en) Heat pump water heater
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP6058032B2 (en) Heat pump system
JP6242321B2 (en) Air conditioner
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
JP5349686B2 (en) Refrigeration cycle equipment
JP5205079B2 (en) Heat pump water heater / heater
KR20100123729A (en) Refrigeration device
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
JP2007187407A (en) Refrigeration cycle device and operation method for refrigeration cycle device
EP2378223A1 (en) Complex system for air conditioning and hot water supplying
JP6341326B2 (en) Refrigeration unit heat source unit
JP4407689B2 (en) Heat pump water heater
JP2003176957A (en) Refrigerating cycle device
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP7012208B2 (en) Refrigeration cycle device and liquid heating device equipped with it
KR100542919B1 (en) A heat pump using the heating and conditioning systems
JP2006284034A (en) Air conditioner and its expansion valve control method
JP2007187358A (en) Refrigerating system and cold insulation device
JP5150300B2 (en) Heat pump type water heater
JP6986675B2 (en) Supercritical vapor compression refrigeration cycle and liquid heating device
JP2018124036A (en) Heat pump device
JP2014001916A (en) Refrigeration cycle device
JP3856025B2 (en) Heat pump water heater
JP2006234211A (en) Heat pump water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4116645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250