JP2009021066A - イオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法 - Google Patents

イオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法 Download PDF

Info

Publication number
JP2009021066A
JP2009021066A JP2007181984A JP2007181984A JP2009021066A JP 2009021066 A JP2009021066 A JP 2009021066A JP 2007181984 A JP2007181984 A JP 2007181984A JP 2007181984 A JP2007181984 A JP 2007181984A JP 2009021066 A JP2009021066 A JP 2009021066A
Authority
JP
Japan
Prior art keywords
filament
ion doping
doping apparatus
cross
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007181984A
Other languages
English (en)
Inventor
Tetsuya Yamauchi
哲也 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007181984A priority Critical patent/JP2009021066A/ja
Publication of JP2009021066A publication Critical patent/JP2009021066A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

【課題】投入電力の増大を抑制しつつ、寿命を向上可能なイオンドーピング装置用フィラメントおよびその製造方法、さらに当該イオンドーピング装置用フィラメントを備えたイオンドーピング装置を提供する。
【解決手段】フィラメント11は、導電性を有するタングステン線からなり、当該タングステン線が直線状に延在する2つの直線部12と、複数の直線部12のうち、互いに隣接する直線部12の端部を接続する接続部13とを備えている。そして、直線部12には、接続部13よりもタングステン線が延びる方向に垂直な断面における断面積であるフィラメント断面積が大きい大径部14が形成されている、
【選択図】図2

Description

本発明は、イオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法に関し、より特定的には、投入電力の増大を抑制しつつ、寿命が向上したイオンドーピング装置用フィラメントおよびその製造方法、さらに当該イオンドーピング装置用フィラメントを備えたイオンドーピング装置に関するものである。
低温ポリシリコン液晶ディスプレイなどのTFT(Thin Film Transistor;薄膜トランジスタ)液晶ディスプレイの製造工程においては、大型基板にTFTを形成する必要がある。このとき、TFTのソース領域、ドレイン領域、LDD(Lightly Doped Drain)領域などの形成や、TFTの閾値制御を目的とした不純物の注入には、イオンドーピング装置が使用される。
イオンドーピング装置は、たとえばイオンを発生させるイオン源を含み、イオンを基板に注入するための処理チャンバと、処理チャンバの高真空状態を維持するために処理チャンバの前室として設けられ、処理前後の基板を出し入れするためのL/L(ロードロック)チャンバと、処理チャンバとL/Lチャンバとの間に配置され、両チャンバ間の基板の搬送を行なうための搬送装置を含む搬送チャンバとを備えている。そして、イオン源は、目的の不純物イオンを生成させるためのプラズマ源と、生成された不純物イオンを引出し、所望のエネルギーに加速する電極とを備えている。
ここで、上述のプラズマ源としては、RF(Radio Frequency)放電を利用した方式のプラズマ源とDC(Direct Current)放電を利用した方式のプラズマ源とが知られているが、基板へのイオン注入量を制御するためのビーム電流密度の可変範囲が大きいDCアーク放電を利用した方式が主流となっている。そして、このDCアーク放電を利用した方式のプラズマ源では、タングステン(W)などからなるフィラメントが使用される。
上記フィラメントは消耗品であり、所定の頻度で交換する必要がある。しかし、フィラメントの交換などによるイオン源の稼動の中断頻度が大きくなると、イオンドーピング装置を使用した液晶ディスプレイなどの生産効率を低下させ、製造コストの上昇を招来する。これに対し、イオン源の稼動の中断頻度を抑制するために、種々の提案がなされている(たとえば特許文献1〜5参照)。
特開平1−296548号公報 特開平5−28940号公報 特開平2−109239号公報 特開平1−163952号公報 特開昭61−29057号公報
イオン源の稼動の中断頻度を抑制するためには、イオン源において使用されるフィラメントの寿命を向上させることが有効である。図5は、従来のイオンドーピング装置用フィラメントを示す概略断面図である。また、図6は、図5のイオンドーピング装置用フィラメントが使用され、損傷を受けた状態を示す概略断面図である。図5および図6を参照して、従来のイオンドーピング装置用フィラメントの損傷について説明する。
図5を参照して、従来のイオンドーピング装置用フィラメントであるフィラメント110は、タングステン線からなり、当該線が直線状に延在する2つ直線部120と、2つの直線部120の端部を接続する接続部130とを備えるU字型の形状を有している。直線部120および接続部130においては、線が延びる方向に垂直な断面における断面積(フィラメント断面積)が一定(すなわち線の太さが一定)となっている。そして、フィラメント110がイオンドーピング装置のイオン源において使用された場合、以下のように損傷を受ける。
すなわち、TFTのP型ソース領域やP型ドレイン領域を形成するためにイオンドーピング装置が使用される場合、原料ガスにはジボラン(B)ガスが採用される場合が多い。この場合、フィラメント110を構成するタングステンがジボランガスと反応して脆化し、フィラメントが短時間で断線するおそれがある。そのため、アルゴン(Ar)ガス雰囲気下において放電を行なうクリーニング放電が対策として実施される。これにより、フィラメント110の脆化が抑制され、フィラメント110の寿命が向上する。しかし、クリーニング放電を行なうことで、アルゴンガスによるスパッタリングが発生する。その結果、図6に示すように、フィラメント110の直線部120の一部である損傷部190が損傷を受けて細くなり、最終的には損傷部190においてフィラメント110が断線する。
図7は、従来のイオンドーピング装置用フィラメントの他の例を示す概略断面図である。また、図8は、図7のイオンドーピング装置用フィラメントが使用され、損傷を受けた状態を示す概略断面図である。図7および図8を参照して、従来のイオンドーピング装置用フィラメントの損傷の他の例について説明する。
図7を参照して、従来のイオンドーピング装置用フィラメントの他の例であるフィラメント210は、タングステン線からなり、当該線が直線状に延在する4つ直線部220と、4つの直線部220のうち、互いに隣接する直線部220の端部を接続する3つの接続部230とを備えるM字型の形状を有している。そして、直線部220および接続部230においては、線が延びる方向に垂直な断面における断面積が一定(すなわち線の太さが一定)となっている。そして、フィラメント210がイオンドーピング装置のイオン源において使用された場合、上記フィラメント110の場合と同様に、フィラメント210の脆化の抑制を目的としたクリーニング放電の結果、図8に示すように、フィラメント210の直線部220の一部である損傷部290が損傷を受けて細くなり、最終的には損傷部290においてフィラメント210が断線する。
以上のように、従来のイオンドーピング装置用フィラメントにおいては、原料ガスとの反応による脆化を防止する対策としてクリーニング放電が行なわれているものの、このクリーニング放電の結果、フィラメントの一部に損傷が発生して断線するという問題点があった。これに対し、フィラメント全体を太くすることにより、フィラメントを長寿命化する対策が有効であるとも考えられる。しかし、この場合、フィラメントに投入する投入電力を大きくする必要があり、容量の大きな電源が必要となる。そのため、フィラメント全体を単に太くするという対策は、必ずしも有効な対策とはいえない。
そこで、本発明の目的は、投入電力の増大を抑制しつつ、寿命を向上可能なイオンドーピング装置用フィラメントおよびその製造方法、さらに当該イオンドーピング装置用フィラメントを備えたイオンドーピング装置を提供することである。
本発明に従ったイオンドーピング装置用フィラメントは、導電性を有する線からなり、当該線が直線状に延在する複数の直線部と、複数の直線部のうち、互いに隣接する直線部の端部を接続する接続部とを備えている。そして、直線部には、接続部よりも、線が延びる方向に垂直な断面における断面積であるフィラメント断面積が大きい大径部が形成されている。ここで、接続部は、たとえば、曲線状の形状を有する湾曲部である。
本発明者は、イオンドーピング装置用フィラメントの損傷について詳細な検討を行ない、以下の知見を得た。すなわち、フィラメント全体を太くした場合、上述のようにフィラメントへの投入電力が大きくなる。このとき、原料ガス、たとえばジボランの分解が促進され、目的の不純物イオンであるBの比率(濃度)が小さくなる。その結果、ドーピングの効率が低下し、イオンドーピング装置の処理能力が低下するという問題が生じる。つまり、フィラメント全体を太くすることによりフィラメントを長寿命化する対策は、容量の大きな電源が必要となるだけでなく、イオンドーピング装置の処理能力の低下も招来する。したがって、フィラメント全体を単に太くするという対策は、有効な対策とはいえない。
一方、種々の条件でイオンドーピング装置を稼動させ、フィラメントの損傷状態を確認したところ、フィラメントの直線部に損傷が集中していることが明らかとなった。これに対し、本発明のイオンドーピング装置用フィラメントにおいては、直線部に、フィラメント断面積が接続部よりも大きい大径部が形成されている。これにより、イオンドーピング装置用フィラメントの寿命を向上させることができる。さらに、本発明のイオンドーピング装置用フィラメントにおいては、フィラメント全体が太くなっているわけではないので、上述の電源の容量の問題およびイオンドーピング装置の能率低下の問題を抑制することができる。以上のように、本発明のイオンドーピング装置用フィラメントによれば、投入電力の増大を抑制しつつ、寿命を向上可能なイオンドーピング装置用フィラメントを提供することができる。
上記イオンドーピング装置用フィラメントにおいて好ましくは、大径部は、大径部に隣接する領域に向けて、フィラメント断面積が徐々に減少するように形成されている。
上述のフィラメントの直線部に発生する損傷は、直線部のある点を中心にフィラメントを構成する線の長手方向両側に向けて徐々に緩和される。そのため、上述のように直線部に大径部が形成された場合でも、断面積の最も大きい領域に隣接する領域が直ちに接続部と同じ太さになっている場合、当該領域におけるフィラメントの太さが損傷に対して不十分となり、当該領域において断線が発生するおそれがある。一方、これを回避するために、断面積の最も大きい領域を、損傷を受ける領域全体に広げた場合、上述の電源容量およびイオンドーピング装置の処理能力の低下の問題が大きくなる。これに対し、大径部を、大径部に隣接する領域に向けて、フィラメント断面積が徐々に減少するように形成することにより、損傷の大きくなる領域のフィラメント断面積を十分に確保しつつ、損傷の小さい領域に向けてフィラメント断面積を徐々に小さくし、電源容量およびイオンドーピング装置の処理能力の低下の問題を最小限に抑制することができる。なお、フィラメント断面積は、たとえばフィラメントを構成する線の長手方向に沿った断面において、線の表面が階段状になるように減少してもよいし、直線または曲線的に減少してもよい。
上記イオンドーピング装置用フィラメントにおいて好ましくは、大径部のフィラメント断面積は、接続部のフィラメント断面積の1.1倍以上4倍以下である。さらに、上記イオンドーピング装置用フィラメントにおいて好ましくは、大径部の長さは、直線部および接続部の全長の2%以上50%以下である。
大径部のフィラメント断面積が接続部のフィラメント断面積の1.1倍未満である場合、フィラメントの寿命向上の効果が十分に得られない。一方、大径部のフィラメント断面積が接続部のフィラメント断面積の4倍を超えると、フィラメントに投入すべき電力が許容範囲を超えて大きくなるおそれがある。したがって、大径部のフィラメント断面積は、接続部のフィラメント断面積の1.1倍以上4倍以下であることが好ましい。また、大径部の長さが直線部および接続部の全長の2%未満である場合、フィラメントの寿命向上の効果が十分に得られない。一方、大径部の長さが直線部および接続部の全長の50%を超える場合、フィラメントに投入すべき電力が許容範囲を超えて大きくなるおそれがある。したがって、大径部の長さは、直線部および接続部の全長の2%以上50%以下であることが好ましい。なお、フィラメントへの投入電力増加の許容範囲と、フィラメントの寿命延長の効果とのバランスから、大径部のフィラメント断面積は、接続部のフィラメント断面積の1.2倍以上2.3倍以下、大径部の長さは、直線部および接続部の全長の20%以上40%以下であることが、特に好ましい。
本発明に従ったイオンドーピング装置は、上述の本発明のイオンドーピング装置用フィラメントを備えている。
上述の投入電力の増大を抑制しつつ、寿命を向上可能なイオンドーピング装置用フィラメントを備えていることにより、本発明のイオンドーピング装置は、投入電力の増大が抑制されつつ、フィラメント交換による稼動効率の低下が抑制されたイオンドーピング装置となっている。
本発明に従ったイオンドーピング装置用フィラメントの製造方法は、導電性を有する線からなるイオンドーピング装置用フィラメントの製造方法である。このイオンドーピング装置用フィラメントの製造方法は、母材を準備する工程と、当該母材がフィラメントに加工される工程とを備えている。そして、当該母材がフィラメントに加工される工程においては、イオンドーピング装置用フィラメントが使用されるイオンドーピング装置に、試運転用フィラメントが装着されてイオンドーピング装置の試運転が実施された場合に、試運転用フィラメントにおいて、試運転により損傷して細くなる部位である損傷部位に該当する部位の、線が延びる方向に垂直な断面における断面積であるフィラメント断面積が、損傷部位に該当する部位に隣接する領域よりも大きくなるように、母材がフィラメントに加工される。
本発明のイオンドーピング装置用フィラメントの製造方法によれば、フィラメントの損傷部位に該当する部位のフィラメント断面積が、損傷部位に該当する部位に隣接する領域よりも大きくなるように、母材がフィラメントに加工される。そのため、損傷部位となる部位が大径部となったイオンドーピング装置用フィラメントが得られる。その結果、本発明のイオンドーピング装置用フィラメントの製造方法によれば、投入電力の増大を抑制しつつ、寿命を向上可能なイオンドーピング装置用フィラメントを製造することができる。
以上の説明から明らかなように、本発明のイオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法によれば、投入電力の増大を抑制しつつ、寿命を向上可能なイオンドーピング装置用フィラメントおよびその製造方法、さらに当該イオンドーピング装置用フィラメントを備えたイオンドーピング装置を提供することができる。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
図1は、本発明の一実施の形態におけるイオンドーピング装置の構成を示す概略図である。図1を参照して、本発明の一実施の形態におけるイオンドーピング装置について説明する。
図1を参照して、本実施の形態におけるイオンドーピング装置1は、イオンを基板99に注入するための処理チャンバ60と、処理チャンバ60の高真空状態を維持するために処理チャンバ60の前室として設けられ、処理前後の基板99を出し入れするためのL/L(ロードロック)チャンバ80と、処理チャンバ60とL/Lチャンバ80との間に配置され、処理チャンバ60とL/Lチャンバ80との間において基板99の搬送を行なうための搬送ロボット71が配置されたロボットチャンバ70とを備えている。処理チャンバ60、ロボットチャンバ70およびL/Lチャンバ80のそれぞれは、内部を減圧するための真空ポンプなどの減圧装置(図示しない)に接続されている。また、処理チャンバ60とロボットチャンバ70との間、およびロボットチャンバ70とL/Lチャンバ80との間には、それぞれバルブ扉91が配置されている。この減圧装置およびバルブ扉91により、処理チャンバ60、ロボットチャンバ70およびL/Lチャンバ80は、それぞれ独立に内部を減圧することが可能となっている。
L/Lチャンバ80は、基板99を載置するためのテーブル81を含んでいる。また、L/Lチャンバ80には、イオンドーピング装置1の外部との間で基板99を出し入れするために外部に連通した外部連通口(図示しない)が形成されている。処理チャンバ60は、イオンが導入されるべき基板99を載置するためのドーピングステージ61を含んでいる。ロボットチャンバ70に配置された搬送ロボット71は、L/Lチャンバ80内のテーブル81と、処理チャンバ60内のドーピングステージ61との間において、基板99を搬送する機能を有している。
処理チャンバ60は、DCアーク放電を利用してプラズマを発生させることが可能なイオン源10を含んでいる。イオン源10は、ドーピングステージ61において基板99が載置される面に対向する位置に、処理チャンバ60の内部に突出するように配置されたイオンドーピング装置用フィラメントとしてのフィラメント11と、プラズマ62を発生させるためのアーク電源34と、処理チャンバ60においてフィラメント11が突出する領域を取り囲むように処理チャンバ60の壁面に取り付けられ、プラズマ62を閉じ込める機能を果たす複数のマグネット31とを有している。フィラメント11は、複数個(本実施例では4個)配置されており、これに対応する複数の(本実施例では4個の)フィラメント電源33に接続されている。また、イオン源10は、フィラメント11とドーピングステージ61との間に、フィラメント11に近い側から順にプラズマ電極41、引出電極42、減速電極43および接地電極44を有しており、これらに電位を与える引出電源35、加速電源36および減速電源37を有している。プラズマ電極41、引出電極42、減速電極43および接地電極44には、イオンが通過可能なように多数の貫通孔が形成されている。
次に、フィラメント11の構成の詳細について説明する。図2は、本発明の一実施の形態におけるイオンドーピング装置用フィラメントの構成を示す概略断面図である。なお、図2においては、フィラメント11を構成する線の長手方向に平行な断面が示されている。
図2を参照して、本実施の形態におけるイオンドーピング装置用フィラメントとしてのフィラメント11は、導電性を有し、かつ耐熱性に優れたタングステン線からなっている。そして、当該フィラメント11は、タングステン線が直線状に延在する2つの直線部12と、2つの直線部12の端部を接続する接続部13とを備えており、U字型の形状を有している。そして、直線部12には、接続部13よりもタングステン線が延びる方向に垂直な断面における断面積であるフィラメント断面積が大きい大径部14が形成されている。また、大径部14には、大径部14に隣接する領域に向けて、フィラメント断面積が徐々に減少する連結部15が形成されている。連結部15では、フィラメント断面積は、フィラメント11を構成するタングステン線の長手方向に沿った断面(図2の断面)において、タングステン線の表面が階段状になるように減少している。
より具体的には、フィラメント11は、全長330mmのタングステン線からなっており、直径φ1.2mmの線径(断面積1.13mm)を有している。そして、フィラメント11の2つの直線部12には、それぞれ長さ55mmの大径部14が形成されている。この大径部の長さの合計110mmは、直線部12および接続部13の全長の33%となっている。また、大径部14の中央部は、直径φ1.5mm(断面積1.77mm)となっており、これは接続部の断面積の1.56倍に該当する太さである。また、大径部14の連結部15は、それぞれ長さ5mmとなっている。さらに、大径部14は、直線部12の接続部13側の端部からの距離が、2つ直線部12のそれぞれの長さに対して60%の領域を含むように形成されている。当該領域は、平行して電流が逆方向に流れることで、流れた電流により発生する磁場が互いに相殺し、熱電子の放出効率の高い部分である。そのため、当該領域は、U字型の形状を有するフィラメントにおいて、損傷を受けやすい領域である。
次に、本発明の一実施の形態におけるイオンドーピング装置用フィラメントの製造方法について説明する。図3は、本発明の一実施の形態におけるイオンドーピング装置用フィラメントの製造方法の概略を示す流れ図である。
図3を参照して、本実施の形態におけるイオンドーピング装置用フィラメントの製造方法は、導電性を有する線であるタングステン線からなるイオンドーピング装置用フィラメントの製造方法である。このイオンドーピング装置用フィラメントの製造方法は、母材を準備する母材準備工程と、当該母材がフィラメントに加工されるフィラメント加工工程とを備えている。フィラメント加工工程では、イオンドーピング装置用フィラメントが使用されるイオンドーピング装置に、試運転用フィラメントが装着されて、当該イオンドーピング装置の試運転が実施された場合に、試運転用フィラメントにおいて、試運転により損傷して細くなる部位である損傷部位に該当する部位の、線が延びる方向に垂直な断面における断面積であるフィラメント断面積が、損傷部位に該当する部位に隣接する領域よりも大きくなるように、母材がフィラメントに加工される。
より具体的には、母材準備工程では、タングステンからなるタングステン母材が準備される。一方、イオンドーピング装置用フィラメントの製造方法とは別に、イオンドーピング装置用フィラメントが使用されるイオンドーピング装置に、試運転用フィラメントが装着されて、当該イオンドーピング装置の試運転が実施される試運転工程と、当該試運転工程において試運転により損傷して細くなる部位である損傷部位を確認する損傷部位確認工程とが実施される。そして、本実施の形態におけるフィラメント加工工程においては、損傷部位に該当する部位のフィラメント断面積が、損傷部位に該当する部位に隣接する領域よりも大きくなるように、母材がフィラメントに加工される。ここで、上述のように、損傷部位は、フィラメント11の直線部12となるため、図2に示すように、直線部12に大径部14が形成されることとなる。以上のように、本実施の形態のフィラメント11は製造される。なお、製造しようとするイオンドーピング装置用フィラメントが、使用されようとするイオンドーピング装置において使用された実績がない場合、上述のように試運転工程および損傷部位確認工程が実施される必要があるが、使用された実績があり、損傷部位がすでに明らかとなっている場合、当該部位に大径部14が形成されるようにフィラメント加工工程を実施することができる。
次に、本実施の形態におけるイオンドーピング装置の動作について説明する。図1を参照して、まず、被処理物である基板99が、図示しない外部連通口からL/Lチャンバ80の内部に搬入され、テーブル81上に載置される。そして、外部連通口が閉じられ、密閉された状態で、排気装置によりL/Lチャンバ80の内部が減圧される。所望の真空度にまで減圧された後、L/Lチャンバ80とロボットチャンバ70との間のバルブ扉91が開かれ、搬送ロボット71により基板99がL/Lチャンバ80からロボットチャンバ70の内部に搬入される。その後、L/Lチャンバ80とロボットチャンバ70との間のバルブ扉91が閉じられ、ロボットチャンバ70の内部が排気装置により所望の真空度にまで減圧されたうえで、ロボットチャンバ70と処理チャンバ60との間のバルブ扉91が開けられる。そして、搬送ロボット71により基板99がロボットチャンバ70から処理チャンバ60内に搬入され、ドーピングステージ61上に載置された後、ロボットチャンバ70と処理チャンバ60との間のバルブ扉91が閉じられる。その後、排気装置により所望の圧力に減圧された処理チャンバ60内において、基板99に対して不純物を注入するためのドーピング処理が実施される。このドーピング処理の詳細については後述する。
ドーピング処理が実施された基板99は、上述の場合と反対の手順で、搬入先のチャンバが減圧された上で搬入元のチャンバとの間のバルブ扉91が開閉されて、L/Lチャンバ80内にまで運搬され、最終的にはL/Lチャンバ80の外部連通口から外部に搬出される。このような手順でイオンドーピング装置1の内部において基板99を移動させてドーピング処理を実施することで、処理チャンバ60が常時高真空に保持され、安定したドーピング処理が可能となる。
次に、ドーピング処理の詳細について説明する。図1を参照して、まず、減圧装置により減圧された処理チャンバ60内に、原料ガスとして、たとえばジボランガスが導入される。一方、フィラメント電源33に接続されたフィラメント11のはたらきにより、熱電子が発生し、アーク電源34のはたらきにより処理チャンバ60内にプラズマ62が発生するとともに、マグネット31のはたらきによる磁場により、発生したプラズマ62が、マグネット31により囲まれた領域内に閉じ込められる。これにより、目的の不純物イオンであるBが処理チャンバ60内に生成する。そして、生成した不純物イオンは、プラズマ電極41および引出電極42により引出されたうえで加速され、減速電極43により2次電子の逆流が抑制されることによりイオンビームを形成し、基板99に照射される。これにより、基板99に対するドーピング処理が実施される。
ここで、ドーピング処理が実施されることにより、上述のように、フィラメント11を構成するタングステンがジボランガスと反応して脆化し、フィラメント11が短時間で断線するおそれがある。そのため、ドーピング処理が行なわれた後、アルゴンガス雰囲気下において放電を行なうクリーニング放電が実施される。このとき、フィラメント11には、アルゴンガスによるスパッタリングが発生する。これに対し、本実施の形態におけるフィラメント11においては、当該スパッタリングにより損傷を受けるフィラメント11の直線部12に、大径部14が形成されているため、フィラメント11の寿命が向上している。また、フィラメント11においては、フィラメント11全体が太くなっているわけではないので、電源の容量およびイオンドーピング装置の能率低下の問題が抑制されている。以上のように、本実施の形態のフィラメント11は、投入電力の増大を抑制しつつ、寿命が向上したイオンドーピング装置用フィラメントとなっている。
次に、本実施の形態の変形例について説明する。図4は、本発明の実施の形態の変形例であるイオンドーピング装置用フィラメントの構成を示す概略断面図である。なお、図4においては、フィラメント21を構成する線の長手方向に平行な断面が示されている。
図4を参照して、本変形例におけるフィラメント21は、基本的には図2に基づいて説明した上記実施の形態におけるフィラメント11と同様の構成を有し、同様の効果を奏する。しかし、本変形例におけるフィラメント21は、その形状において、一部フィラメント11とは異なっている。
すなわち、図4を参照して、本変形例におけるフィラメント21は、タングステン線からなり、タングステン線が直線状に延在する4つ直線部22と、4つの直線部22のうち、互いに隣接する直線部22の端部を接続する3つの接続部23とを備えており、M字型の形状を有している。そして、直線部22のそれぞれには、接続部23よりもタングステン線が延びる方向に垂直な断面における断面積であるフィラメント断面積が大きい大径部24が形成されている。また、大径部24には、大径部24に隣接する領域に向けて、フィラメント断面積が徐々に減少する連結部25が形成されている。連結部25では、フィラメント断面積は、フィラメント21を構成するタングステン線の長手方向に沿った断面(図4の断面)において、タングステン線の表面が直線状に減少している。
より具体的には、フィラメント21は、全長180mmのタングステン線からなっており、直径φ1.2mmの線径(断面積1.13mm)を有している。そして、フィラメント21の4つの直線部22には、それぞれ長さ10mmの大径部24が形成されている。この大径部の長さの合計40mmは、直線部22および接続部23の全長の22%となっている。また、大径部14の中央部は、直径φ1.5mm(断面積1.77mm)となっており、これは接続部の断面積の1.56倍に該当する太さである。また、大径部24の連結部25は、それぞれ長さ2.5mmとなっている。さらに、大径部24は、直線部22が並ぶ方向において両端に配置される接続部23側の直線部22の端部からの距離が、直線部22のうち中央に配置された2つの各直線部22の長さに対して50%の領域を含むように4つの各直線部22に形成されている。当該領域は、平行して電流が逆方向に流れることで、流れた電流により発生する磁場が互いに相殺し、熱電子の放出効率の高い部分である。そのため、当該領域は、M字型の形状を有するフィラメントにおいて、損傷を受けやすい領域である。
以下、本発明の実施例1について説明する。本発明のイオンドーピング装置用フィラメントと従来のイオンドーピング装置用フィラメントとを用いて実際にドーピング処理とクリーニング放電とを繰返して行ない、フィラメントが断線するまでの寿命と、必要となった投入電力とを調査する実験を行なった。実験の手順は以下のとおりである。
まず、図2に示す本発明のイオンドーピング装置用フィラメントと、図5に示す従来のイオンドーピング装置用フィラメント(いずれもU字型)を作製した。その後、図1に示すイオンドーピング装置1に上記フィラメント11またはフィラメント110を装着して、原料ガスはジボランガス(水素バランス20%ガス)80sccm、各フィラメント電流値55〜65A(アーク電流0.8A)の条件でドーピング処理を行なった。その後、Ar(アルゴン)ガス10sccm、各フィラメント電流値50〜70A(アーク電流2A)の条件でクリーニング放電を実施した。そして、これを繰返して行ない、フィラメント11またはフィラメント110が断線するまでのドーピング処理の時間を調査し、これをフィラメントの寿命として評価した。また、このときに必要となった投入電力を記録した。
次に、上記実験の結果を説明する。上記実験の結果、本発明のイオンドーピング装置用フィラメントは、従来のイオンドーピング装置用フィラメントに対して、1.1倍の投入電力が必要となった。一方、本発明のイオンドーピング装置用フィラメントの寿命は、従来のイオンドーピング装置用フィラメントの寿命に対して1.6倍となった。このことから、本発明のイオンドーピング装置用フィラメントは、投入電力の増大を従来のイオンドーピング装置用フィラメントに対して10%に抑制しつつ、寿命を60%向上可能であるという優れた効果を奏することが確認された。
なお、上記実施の形態および実施例においては、本発明のイオンドーピング装置用フィラメントの一例としてU字型およびM字型の形状を有するフィラメントについて説明したが、本発明のイオンドーピング装置用フィラメントの形状はこれに限られず、複数の直線部と隣り合う直線部の端部を接続する接続部とを備えた形状を有していればよい。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
本発明のイオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法は、投入電力の増大を抑制しつつ、寿命を向上させることが要求されるイオンドーピング装置用フィラメントおよびその製造方法、さらにフィラメントの交換頻度の低減が求められるイオンドーピング装置に特に有利に適用することができる。
本発明の一実施の形態におけるイオンドーピング装置の構成を示す概略図である。 本発明の一実施の形態におけるイオンドーピング装置用フィラメントの構成を示す概略断面図である。 本発明の一実施の形態におけるイオンドーピング装置用フィラメントの製造方法の概略を示す流れ図である。 本発明の実施の形態の変形例であるイオンドーピング装置用フィラメントの構成を示す概略断面図である。 従来のイオンドーピング装置用フィラメントを示す概略断面図である。 図5のイオンドーピング装置用フィラメントが使用され、損傷を受けた状態を示す概略断面図である。 従来のイオンドーピング装置用フィラメントの他の例を示す概略断面図である。 図7のイオンドーピング装置用フィラメントが使用され、損傷を受けた状態を示す概略断面図である。
符号の説明
1 イオンドーピング装置、10 イオン源、11,21 フィラメント、12,22 直線部、13,23 接続部、14,24 大径部、15,25 連結部、31 マグネット、33 フィラメント電源、34 アーク電源、35 引出電源、36 加速電源、37 減速電源、41 プラズマ電極、42 引出電極、43 減速電極、44 接地電極、60 処理チャンバ、61 ドーピングステージ、62 プラズマ、70 ロボットチャンバ、71 搬送ロボット、80 L/Lチャンバ、81 テーブル、91 バルブ扉、99 基板。

Claims (6)

  1. 導電性を有する線からなり、
    前記線が直線状に延在する複数の直線部と、
    前記複数の直線部のうち、互いに隣接する前記直線部の端部を接続する接続部とを備え、
    前記直線部には、前記接続部よりも前記線が延びる方向に垂直な断面における断面積であるフィラメント断面積が大きい大径部が形成されている、イオンドーピング装置用フィラメント。
  2. 前記大径部は、前記大径部に隣接する領域に向けて、前記フィラメント断面積が徐々に減少するように形成されている、請求項1に記載のイオンドーピング装置用フィラメント。
  3. 前記大径部のフィラメント断面積は、前記接続部のフィラメント断面積の1.1倍以上4倍以下である、請求項1または2に記載のイオンドーピング装置用フィラメント。
  4. 前記大径部の長さは、前記直線部および前記接続部の全長の2%以上50%以下である、請求項1〜3のいずれか1項に記載のイオンドーピング装置用フィラメント。
  5. 請求項1〜4のいずれか1項に記載のイオンドーピング装置用フィラメントを備えた、イオンドーピング装置。
  6. 導電性を有する線からなるイオンドーピング装置用フィラメントの製造方法であって、
    母材を準備する工程と、
    前記イオンドーピング装置用フィラメントが使用されるイオンドーピング装置に、試運転用フィラメントが装着されて前記イオンドーピング装置の試運転が実施された場合に、前記試運転用フィラメントにおいて、前記試運転により損傷して細くなる部位である損傷部位に該当する部位の、前記線が延びる方向に垂直な断面における断面積であるフィラメント断面積が、前記損傷部位に該当する部位に隣接する領域よりも大きくなるように、前記母材がフィラメントに加工される工程とを備えた、イオンドーピング装置用フィラメントの製造方法。
JP2007181984A 2007-07-11 2007-07-11 イオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法 Withdrawn JP2009021066A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181984A JP2009021066A (ja) 2007-07-11 2007-07-11 イオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181984A JP2009021066A (ja) 2007-07-11 2007-07-11 イオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2009021066A true JP2009021066A (ja) 2009-01-29

Family

ID=40360550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181984A Withdrawn JP2009021066A (ja) 2007-07-11 2007-07-11 イオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2009021066A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517684A (ja) * 2008-02-11 2012-08-02 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 半導体プロセスシステムにおけるイオンソース(イオン源)のクリーニング
CN110976694A (zh) * 2019-11-27 2020-04-10 合肥聚能电物理高技术开发有限公司 一种真空状态下钨极灯丝快速成型装置及其成型工艺

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517684A (ja) * 2008-02-11 2012-08-02 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 半導体プロセスシステムにおけるイオンソース(イオン源)のクリーニング
US9991095B2 (en) 2008-02-11 2018-06-05 Entegris, Inc. Ion source cleaning in semiconductor processing systems
CN110976694A (zh) * 2019-11-27 2020-04-10 合肥聚能电物理高技术开发有限公司 一种真空状态下钨极灯丝快速成型装置及其成型工艺
CN110976694B (zh) * 2019-11-27 2021-11-05 合肥聚能电物理高技术开发有限公司 一种真空状态下钨极灯丝快速成型装置及其成型工艺

Similar Documents

Publication Publication Date Title
US8142607B2 (en) High density helicon plasma source for wide ribbon ion beam generation
CN106062918B (zh) 含硼掺杂剂组合物、使用其来改善硼离子注入期间离子束电流和性能的***和方法
CN109950119A (zh) 等离子体处理装置以及等离子体处理方法
JP5659425B2 (ja) 負イオンプラズマを生成する処理システムおよび中性ビーム源
US7382098B2 (en) Plasma producing apparatus and doping apparatus
US8263944B2 (en) Directional gas injection for an ion source cathode assembly
JP2008529314A5 (ja)
JP2008530783A5 (ja)
JP5010129B2 (ja) 発光ダイオード及びその製造方法
TW201515043A (zh) 離子源及其操作方法
KR102642334B1 (ko) 이온 주입 시스템용 립을 포함하는 이온 소스 라이너
US8760054B2 (en) Microwave plasma electron flood
US6504159B1 (en) SOI plasma source ion implantation
JP2016529704A (ja) 注入システムのイオンビーム品質を改善する方法
JP2009021066A (ja) イオンドーピング装置、イオンドーピング装置用フィラメントおよびその製造方法
KR102414061B1 (ko) 다이아몬드 반도체 장치
TW201414868A (zh) 用於延長離子源壽命並於碳植入期間改善離子源功效之方法
JP4401977B2 (ja) イオン源に用いるフィラメントの作製方法及びイオン源
JP4948088B2 (ja) 半導体製造装置
JP6229258B2 (ja) 貼り合わせウェーハの製造方法および貼り合わせウェーハ
US20110070722A1 (en) Manufacturing method of semiconductor device
TW201414672A (zh) 用於延長離子源壽命並於碳植入期間改善離子源功效之組成物
JP5030484B2 (ja) 半導体装置の作製方法
JP6265291B2 (ja) 貼り合わせウェーハの製造方法および貼り合わせウェーハ
JP4337123B2 (ja) Si単結晶微粒子積層方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005