JP2009018948A - Carbon nanotube thin film - Google Patents

Carbon nanotube thin film Download PDF

Info

Publication number
JP2009018948A
JP2009018948A JP2007180698A JP2007180698A JP2009018948A JP 2009018948 A JP2009018948 A JP 2009018948A JP 2007180698 A JP2007180698 A JP 2007180698A JP 2007180698 A JP2007180698 A JP 2007180698A JP 2009018948 A JP2009018948 A JP 2009018948A
Authority
JP
Japan
Prior art keywords
aqueous solution
metallic
cnt
carbon nanotubes
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007180698A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yanagi
和宏 柳
Hiromichi Kataura
弘道 片浦
Yasumitsu Miyata
耕充 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007180698A priority Critical patent/JP2009018948A/en
Publication of JP2009018948A publication Critical patent/JP2009018948A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain carbon nanotubes which, though black in a state of mixed types, variously presents a color by separating and purifying them into ones of metallic type and ones of semiconductive ones. <P>SOLUTION: According to the present invention, it is possible to prepare metallic carbon nanotubes which present a magenta color, a cyan color, or a yellow color by separating and purifying CNTs with various diameters into ones of metallic type and ones of semiconductive type. This invention relates also to an aqueous metallic carbon nanotube dispersion which presents a cyan color, a magenta color, or a yellow color obtained by placing a carbon nanotube mixture obtained by mixing an aqueous carbon nanotube dispersion with sodium dodecyl sulfate, sodium cholate, and an iodixanol-containing aqueous solution in a centrifugation mixed solution and centrifuging the resultant mixture into an aqueous metallic carbon nanotube dispersion and an aqueous semiconductive carbon nanotube dispersion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、直径の異なる金属性・半導体性を分離したカーボンナノチューブを用いることにより、マゼンタ色、シアン色、イエロー色を呈するカーボンナノチューブの作成、およびそのインクとしての利用に関するものである。   The present invention relates to the production of carbon nanotubes exhibiting magenta, cyan, and yellow colors by using carbon nanotubes with different diameters and metallic and semiconducting properties, and the use thereof as ink.

カーボンナノチューブ(CNTとも言う)は、1991年に非特許文献1に発表されて以来、電界効果トランジスタや、ミクロサイズの配線材料など種々の潜在的な応用が期待される新しい材料として積極的に開発が進められてきた。特に、稀少資源であるインジウムの代替物質として、カーボンナノチューブによる透明導電膜(透明電極)への応用に期待が持たれている。
カーボンナノチューブはチューブ軸方向への周期的束縛条件により、チューブカイラリティに依存した様々な吸収スペクトル構造を備える。即ち、チューブのカイラリティに依存して様々な色を呈する。導電性等の特殊な機能を備えたインクとしての利用が期待されていたが、しかしながら、金属性・半導体性カーボンナノチューブが混在する状況では、可視光領域全体に吸収バンド構造が存在し、黒色を呈していた。その結果、いままでマゼンタ色・シアン色・イエロー色を呈するカーボンナノチューブ全てを分離精製に成功した例は無かった。
Nature,354,56−58,1991.
Carbon nanotubes (also referred to as CNTs) have been actively developed as new materials that are expected to have various potential applications such as field-effect transistors and micro-sized wiring materials since they were published in Non-Patent Document 1 in 1991. Has been promoted. In particular, it is expected to be applied to a transparent conductive film (transparent electrode) using carbon nanotubes as an alternative to indium, which is a rare resource.
Carbon nanotubes have various absorption spectrum structures depending on tube chirality due to periodic constraint conditions in the tube axis direction. That is, it exhibits various colors depending on the chirality of the tube. It was expected to be used as an ink having a special function such as conductivity.However, in the situation where metallic and semiconducting carbon nanotubes are mixed, an absorption band structure exists in the entire visible light region, and black is used. It was presenting. As a result, there have been no examples of successful separation and purification of all carbon nanotubes exhibiting magenta, cyan and yellow colors.
Nature, 354, 56-58, 1991.

本発明の課題は、カーボンナノチューブの金属性・半導体性の分離精製を行うことで、その混合状態では黒色の状況から、様々な色を呈するカーボンナノチューブを獲得する。また、原料となるカーボンナノチューブとして、さまざまな直径を備えるものを利用することにより、マゼンタ色・シアン色・イエロー色を呈するカーボンナノチューブを提供することにある。   An object of the present invention is to obtain carbon nanotubes having various colors from a black state in a mixed state by performing separation and purification of carbon nanotubes in metallic and semiconducting properties. Another object of the present invention is to provide carbon nanotubes exhibiting magenta, cyan, and yellow colors by using carbon nanotubes having various diameters as raw materials.

本発明者は上記課題を解決すべく鋭意研究し、以下の点を見いだして本発明を完成させた。
様々な直径を備えるCNTの金属性・半導体性の分離精製を行うことにより、マゼンタ色・シアン色・イエロー色を呈する金属性カーボンナノチューブを得ることが可能である。
The inventor has intensively studied to solve the above problems, and has found the following points to complete the present invention.
By performing separation and purification of metallic and semiconducting CNTs having various diameters, metallic carbon nanotubes exhibiting magenta, cyan, and yellow colors can be obtained.

本発明によれば、以下のことが可能となる。
(1)マゼンタ色・シアン色・イエロー色を呈する金属性カーボンナノチューブを提供可能である。
According to the present invention, the following becomes possible.
(1) It is possible to provide metallic carbon nanotubes that exhibit magenta, cyan, and yellow colors.

CNTには、そのグラフェンシートの巻き方によって、金属及び半導体性CNTが存在する。通常のCNT材料は、金属性及び半導体性CNTの混合物となっている。混合物は可視光領域全体に吸収バンドが存在する為、ほとんど黒色を呈する。しかしながら、下記の方法により、金属性・半導体性カーボンナノチューブの分離精製をすることにより、シアン色・マゼンタ色・イエロー色を呈するカーボンナノチューブを得ることが可能となる。特に、そのカーボンナノチューブは金属性を示す。   In CNT, metal and semiconducting CNT exist depending on how the graphene sheet is wound. Ordinary CNT material is a mixture of metallic and semiconducting CNTs. Since the mixture has an absorption band in the entire visible light region, the mixture is almost black. However, by separating and purifying metallic and semiconducting carbon nanotubes by the following method, carbon nanotubes exhibiting cyan, magenta and yellow can be obtained. In particular, the carbon nanotubes are metallic.

[シアン色カーボンナノチューブの精製]
レーザー蒸発法を用いて作成されたカーボンナノチューブ(平均直径約1.4nm)6mgをデオキシコール酸ナトリウム(DOC、)1%水溶液30mlに超音波分散させる(ブランソンソニファイアー、レベル2、17時間)。1時間遠心(20万G)をかけ、上澄みを取り出し、CNT分散水溶液を得る。得られたCNT分散水溶液2mlに、ドデシル硫酸ナトリウム(SDS、シグマアルドリッチより購入:製品コード L6026)20mg、コール酸ナトリウム(SC、シグマアルドリッチより購入:製品コード C6445)20mg、およびiodixanol含有水溶液(第一化学薬品より購入:製品名 Optiprep、iodixanol60%水溶液)2mlを混合させCNT混合液を作製する。
得られたCNT混合液を遠心チューブ内の遠心分離混合溶液(iodixanol濃度20%〜40%にて濃度勾配を形成、SDS1.5%、SC1.5%)に挿入し、遠心分離(20万G、18時間、遠心分離機:ベックマン社製:ローターSW41)を行った。
その結果、遠心チューブ内にいくつかの層が形成された。各々の層を丁寧に分取することにより、金属性CNT分散水溶液(1)、半導体性CNT分散水溶液を分離することができた。金属性CNT分散水溶液(1)は吸収スペクトルや写真で見られるように(図1)シアン色を呈している。
[Purification of cyan carbon nanotubes]
6 mg of carbon nanotubes (average diameter of about 1.4 nm) prepared using the laser evaporation method are ultrasonically dispersed in 30 ml of a 1% aqueous solution of sodium deoxycholate (DOC) (Branson sonifier, level 2, 17 hours). Centrifugation (200,000 G) for 1 hour, the supernatant is taken out, and a CNT-dispersed aqueous solution is obtained. To 2 ml of the obtained CNT-dispersed aqueous solution, 20 mg of sodium dodecyl sulfate (SDS, purchased from Sigma-Aldrich: product code L6026), 20 mg of sodium cholate (SC, purchased from Sigma-Aldrich: product code C6445), and iodixanol-containing aqueous solution (first Purchase from chemicals: Product name Optiprep, iodixanol 60% aqueous solution) 2 ml are mixed to prepare a CNT mixture.
The obtained CNT mixed solution was inserted into a centrifuge mixed solution in a centrifuge tube (a concentration gradient was formed at an iodixanol concentration of 20% to 40%, SDS 1.5%, SC 1.5%), and centrifuged (200,000 G). 18 hours, centrifuge: manufactured by Beckman Co., Ltd .: rotor SW41).
As a result, several layers were formed in the centrifuge tube. By carefully separating each layer, the metallic CNT dispersed aqueous solution (1) and the semiconducting CNT dispersed aqueous solution could be separated. The metallic CNT-dispersed aqueous solution (1) has a cyan color as shown in the absorption spectrum and photographs (FIG. 1).

[金属性の評価]
上記金属性CNT分散水溶液(1)に等量のメタノール(和光純薬:特級)を加え、孤立分散した金属性CNTを凝集させた後、ポアサイズ10ミクロンのフィルター(ミリポア オムニポアメンブレン)により吸引濾過し、金属性CNT分散水溶液(1)に含まれるiodixanol分子、ドデシル硫酸ナトリウム、コール酸ナトリウムを除去した。フィルター上に残された金属性CNTを再度メタノールに分散し、バス型超音波槽(シャープ製 UT−205H 200W型超音波洗浄機)にて分散後、ポアサイズ1ミクロンのフィルター(ミリポア オムニポアメンブレン)により吸引濾過した。フィルター上に残された金属性CNTをTriton X−100(関東化学より購入)1%水溶液に入れ、バス型超音波槽(シャープ製 UT−205H 200W型超音波洗浄機)にて1時間分散し、金属性CNT分散水溶液(2)を作製した。この金属性CNT分散水溶液(2)をポアサイズ0.22ミクロンのセルロース混合エステル製のメンブレンフィルター(ミリポア GSWP02400)にて吸引濾過し、フィルター表面に金属性CNT薄膜を形成した。さらに純水(ミリポア ミリQ Gradient)を薄膜上から注ぎながら吸引濾過を継続し、Triton X―100を洗い流した後、室温にて乾燥させた。セルロース混合エステル製のメンブレンフィルターに付着した金属性CNT薄膜をアセトン(和光純薬製:特級)中に石英板と共に入れ、セルロース混合エステル製のメンブレンフィルターをアセトンに溶解させて除去することにより、石英基板上に金属性CNT薄膜を形成した。金属性CNT薄膜を形成した石英基板をさらに新しいアセトンに2度含浸させ、セルロース混合エステル製のメンブレンフィルターの残存物を完全に溶解除去し、石英基板上に金属性CNT薄膜を得た。金属性CNT薄膜を1×10―6Torrに真空排気した石英管に入れ、250℃に加熱して1時間保持して乾燥し、金属性CNT薄膜試料を準備した。その結果得られた金属性CNT薄膜の面抵抗は55−100Ω/□であり、金属性に由来する導電性の高い薄膜が得られた。
[Evaluation of metallic properties]
After adding an equal amount of methanol (Wako Pure Chemicals: Special Grade) to the metallic CNT-dispersed aqueous solution (1) to agglomerate isolated and dispersed metallic CNTs, suction filtration is performed with a filter (Millipore Omnipore Membrane) having a pore size of 10 microns. Then, the iodixanol molecules, sodium dodecyl sulfate, and sodium cholate contained in the metallic CNT dispersion aqueous solution (1) were removed. Metallic CNT left on the filter is dispersed again in methanol, dispersed in a bath-type ultrasonic bath (Sharp UT-205H 200W ultrasonic cleaner), and a filter with a pore size of 1 micron (Millipore Omnipore Membrane) And filtered with suction. The metallic CNT left on the filter is placed in a 1% aqueous solution of Triton X-100 (purchased from Kanto Chemical), and dispersed for 1 hour in a bath-type ultrasonic bath (Sharp UT-205H 200W ultrasonic cleaner). Then, a metallic CNT dispersion aqueous solution (2) was prepared. This aqueous metallic CNT dispersion (2) was suction filtered with a cellulose mixed ester membrane filter (Millipore GSWP02400) having a pore size of 0.22 microns to form a metallic CNT thin film on the filter surface. Further, suction filtration was continued while pouring pure water (Millipore Milli Q Gradient) over the thin film, and Triton X-100 was washed away, followed by drying at room temperature. By putting the metallic CNT thin film attached to the cellulose mixed ester membrane filter into acetone (made by Wako Pure Chemicals: special grade) together with the quartz plate and dissolving the cellulose mixed ester membrane filter in acetone and removing it, A metallic CNT thin film was formed on the substrate. The quartz substrate on which the metallic CNT thin film was formed was further impregnated twice with fresh acetone, and the residue of the membrane filter made of cellulose mixed ester was completely dissolved and removed to obtain a metallic CNT thin film on the quartz substrate. The metallic CNT thin film was put into a quartz tube evacuated to 1 × 10 −6 Torr, heated to 250 ° C., held for 1 hour and dried to prepare a metallic CNT thin film sample. As a result, the sheet resistance of the obtained metallic CNT thin film was 55-100Ω / □, and a highly conductive thin film derived from metallicity was obtained.

[マゼンタ色カーボンナノチューブの精製]
HiPCO法によって作製されたカーボンナノチューブ(平均直径約1.0nm,CNI社より購入:Rφ500)30mgをデオキシコール酸ナトリウム(DOC、)1%水溶液30mlに超音波分散させる(ブランソンソニファイアー、レベル2、17時間)。1時間遠心(20万G)をかけ、上澄みを取り出し、CNT分散水溶液を得る。得られたCNT分散水溶液2mlに、ドデシル硫酸ナトリウム(SDS、シグマアルドリッチより購入:製品コード L6026)20mg、コール酸ナトリウム(SC、シグマアルドリッチより購入:製品コード C6445)20mg、およびiodixanol含有水溶液(第一化学薬品より購入:製品名 Optiprep、iodixanol60%水溶液)2mlを混合させCNT混合液を作製する。
得られたCNT混合液を遠心チューブ内の遠心分離混合溶液(iodixanol濃度20%〜40%にて濃度勾配を形成、SDS1.5%、SC1.5%)に挿入し、遠心分離(20万G、18時間、遠心分離機:ベックマン社製:ローターSW41)を行った。
その結果、遠心チューブ内にいくつかの層が形成された。各々の層を丁寧に分取することにより、金属性CNT分散水溶液、半導体性CNT分散水溶液を分離することができた。金属性CNT分散水溶液は吸収スペクトルや写真で見られるように(図2)マゼンタ色を呈している。
[Purification of magenta carbon nanotubes]
30 mg of carbon nanotubes (average diameter of about 1.0 nm, purchased from CNI: Rφ500) produced by HiPCO method are ultrasonically dispersed in 30 ml of 1% aqueous solution of sodium deoxycholate (DOC,) (Branson Sonifier, Level 2, 17 hours). Centrifugation (200,000 G) for 1 hour, the supernatant is taken out, and a CNT-dispersed aqueous solution is obtained. To 2 ml of the obtained CNT-dispersed aqueous solution, 20 mg of sodium dodecyl sulfate (SDS, purchased from Sigma-Aldrich: product code L6026), 20 mg of sodium cholate (SC, purchased from Sigma-Aldrich: product code C6445), and iodixanol-containing aqueous solution (first Purchase from chemicals: Product name Optiprep, iodixanol 60% aqueous solution) 2 ml are mixed to prepare a CNT mixture.
The obtained CNT mixed solution was inserted into a centrifuge mixed solution in a centrifuge tube (a concentration gradient was formed at an iodixanol concentration of 20% to 40%, SDS 1.5%, SC 1.5%), and centrifuged (200,000 G). 18 hours, centrifuge: manufactured by Beckman Co., Ltd .: rotor SW41).
As a result, several layers were formed in the centrifuge tube. By carefully separating each layer, a metallic CNT dispersed aqueous solution and a semiconducting CNT dispersed aqueous solution could be separated. The metallic CNT-dispersed aqueous solution has a magenta color as shown in the absorption spectrum and photographs (FIG. 2).

[イエロー色カーボンナノチューブの精製]
CoMoCAT法によって作製されたカーボンナノチューブ(平均直径約0.8nm、SouthWestNanotechnologies inc.より購入:S−P95−03:ASE−A002)30mgをデオキシコール酸ナトリウム(DOC、)1%水溶液30mlに超音波分散させる(ブランソンソニファイアー、レベル2、17時間)。1時間遠心(20万G)をかけ、上澄みを取り出し、CNT分散水溶液を得る。得られたCNT分散水溶液2mlに、ドデシル硫酸ナトリウム(SDS、シグマアルドリッチより購入:製品コード L6026)20mg、コール酸ナトリウム(SC、シグマアルドリッチより購入:製品コード C6445)20mg、およびiodixanol含有水溶液(第一化学薬品より購入:製品名 Optiprep、iodixanol60%水溶液)2mlを混合させCNT混合液を作製する。
得られたCNT混合液を遠心チューブ内の遠心分離混合溶液(iodixanol濃度20%〜40%にて濃度勾配を形成、SDS1.5%、SC1.5%)に挿入し、遠心分離(20万G、18時間、遠心分離機:ベックマン社製:ローターSW41)を行った。
その結果、遠心チューブ内にいくつかの層が形成された。各々の層を丁寧に分取することにより、金属性CNT分散水溶液、半導体性CNT分散水溶液を分離することができた。金属性CNT分散水溶液は吸収スペクトルや写真で見られるように(図3)イエロー色を呈している。
[Purification of yellow carbon nanotubes]
30 mg of carbon nanotubes produced by CoMoCAT method (average diameter of about 0.8 nm, purchased from Southwest Nanotechnologies Inc .: S-P95-03: ASE-A002) are ultrasonically dispersed in 30 ml of 1% aqueous solution of sodium deoxycholate (DOC) (Branson Sonifier, Level 2, 17 hours) Centrifugation (200,000 G) for 1 hour, the supernatant is taken out, and a CNT-dispersed aqueous solution is obtained. To 2 ml of the obtained CNT-dispersed aqueous solution, 20 mg of sodium dodecyl sulfate (SDS, purchased from Sigma-Aldrich: product code L6026), 20 mg of sodium cholate (SC, purchased from Sigma-Aldrich: product code C6445), and iodixanol-containing aqueous solution (first Purchase from chemicals: Product name Optiprep, iodixanol 60% aqueous solution) 2 ml are mixed to prepare a CNT mixture.
The obtained CNT mixed solution was inserted into a centrifuge mixed solution in a centrifuge tube (a concentration gradient was formed at an iodixanol concentration of 20% to 40%, SDS 1.5%, SC 1.5%), and centrifuged (200,000 G). 18 hours, centrifuge: manufactured by Beckman Co., Ltd .: rotor SW41).
As a result, several layers were formed in the centrifuge tube. By carefully separating each layer, a metallic CNT dispersed aqueous solution and a semiconducting CNT dispersed aqueous solution could be separated. The metallic CNT-dispersed aqueous solution has a yellow color as shown in the absorption spectrum and photographs (FIG. 3).

[シアン色カーボンナノチューブの精製]
レーザー蒸発法を用いて作成されたカーボンナノチューブ(平均直径約1.4nm)6mgをデオキシコール酸ナトリウム(DOC、関東化学より購入)1%水溶液30mlに超音波分散させる(ブランソンソニファイアー、レベル2、17時間)。1時間遠心(20万G)をかけ、上澄みを取り出し、CNT分散水溶液を得る。得られたCNT分散水溶液2mlに、ドデシル硫酸ナトリウム(SDS、シグマアルドリッチより購入:製品コード L6026)20mg、コール酸ナトリウム(SC、シグマアルドリッチより購入:製品コード C6445)20mg、およびiodixanol含有水溶液(第一化学薬品より購入:製品名 Optiprep、iodixanol60%水溶液)2mlを混合させCNT混合液を作製する。
得られたCNT混合液を遠心チューブ内の遠心分離混合溶液(iodixanol濃度20%〜40%にて濃度勾配を形成、SDS1.5%、SC1.5%)に挿入し、遠心分離(20万G、18時間、遠心分離機:ベックマン社製:ローターSW41)を行った。
その結果、遠心チューブ内にいくつかの層が形成された。各々の層を丁寧に分取することにより、金属性CNT分散水溶液(1)、半導体性CNT分散水溶液を分離することができた。金属性CNT分散水溶液(1)は吸収スペクトルや写真で見られるように(図1)シアン色を呈している。
上記金属性CNT分散水溶液(1)に等量のメタノール(和光純薬:特級)を加え、孤立分散した金属性CNTを凝集させた後、ポアサイズ10ミクロンのフィルター(ミリポア オムニポアメンブレン)により吸引濾過し、金属性CNT分散水溶液(1)に含まれるiodixanol分子、ドデシル硫酸ナトリウム、コール酸ナトリウムを除去した。フィルター上に残された金属性CNTを再度メタノールに分散し、バス型超音波槽(シャープ製 UT−205H 200W型超音波洗浄機)にて分散後、ポアサイズ1ミクロンのフィルター(ミリポア オムニポアメンブレン)により吸引濾過した。フィルター上に残された金属性CNTをTriton X−100(関東化学より購入)1%水溶液に入れ、バス型超音波槽(シャープ製 UT−205H 200W型超音波洗浄機)にて1時間分散し、金属性CNT分散水溶液(2)を作製した。この金属性CNT分散水溶液(2)をポアサイズ0.22ミクロンのセルロース混合エステル製のメンブレンフィルター(ミリポア GSWP02400)にて吸引濾過し、フィルター表面に金属性CNT薄膜を形成した。さらに純水(ミリポア ミリQ Gradient)を薄膜上から注ぎながら吸引濾過を継続し、Triton X―100を洗い流した後、室温にて乾燥させた。セルロース混合エステル製のメンブレンフィルターに付着した金属性CNT薄膜をアセトン(和光純薬製:特級)中に石英板と共に入れ、セルロース混合エステル製のメンブレンフィルターをアセトンに溶解させて除去することにより、石英基板上に金属性CNT薄膜を形成した。金属性CNT薄膜を形成した石英基板をさらに新しいアセトンに2度含浸させ、セルロース混合エステル製のメンブレンフィルターの残存物を完全に溶解除去し、石英基板上に金属性CNT薄膜を得た。金属性CNT薄膜を1×10―6Torrに真空排気した石英管に入れ、250℃に加熱して1時間保持して乾燥し、金属性CNT薄膜試料を準備した。その結果得られた金属性CNT薄膜の面抵抗は55−100Ω/□であり、金属性に由来する導電性の高い薄膜が得られた。
また、図1に示すようにシアン色カーボンナノチューブをセルロース膜上に薄膜を形成させた場合は青色を示すことから青色インクとして利用可能であることがわかる。
[Purification of cyan carbon nanotubes]
Ultrasonically disperse 6 mg of carbon nanotubes (average diameter of about 1.4 nm) prepared by laser evaporation in 30 ml of 1% aqueous solution of sodium deoxycholate (DOC, purchased from Kanto Chemical) (Branson Sonifier, Level 2, 17 time). Centrifugation (200,000 G) for 1 hour, the supernatant is taken out, and a CNT-dispersed aqueous solution is obtained. To 2 ml of the obtained CNT-dispersed aqueous solution, 20 mg of sodium dodecyl sulfate (SDS, purchased from Sigma-Aldrich: product code L6026), 20 mg of sodium cholate (SC, purchased from Sigma-Aldrich: product code C6445), and iodixanol-containing aqueous solution (first Purchase from chemicals: Product name Optiprep, iodixanol 60% aqueous solution) 2 ml are mixed to prepare a CNT mixture.
The obtained CNT mixed solution was inserted into a centrifuge mixed solution in a centrifuge tube (a concentration gradient was formed at an iodixanol concentration of 20% to 40%, SDS 1.5%, SC 1.5%), and centrifuged (200,000 G). 18 hours, centrifuge: manufactured by Beckman Co., Ltd .: rotor SW41).
As a result, several layers were formed in the centrifuge tube. By carefully separating each layer, the metallic CNT dispersed aqueous solution (1) and the semiconducting CNT dispersed aqueous solution could be separated. The metallic CNT-dispersed aqueous solution (1) has a cyan color as shown in the absorption spectrum and photographs (FIG. 1).
After adding an equal amount of methanol (Wako Pure Chemicals: Special Grade) to the metallic CNT-dispersed aqueous solution (1) to agglomerate isolated and dispersed metallic CNTs, suction filtration is performed with a filter (Millipore Omnipore Membrane) having a pore size of 10 microns. Then, the iodixanol molecules, sodium dodecyl sulfate, and sodium cholate contained in the metallic CNT dispersion aqueous solution (1) were removed. Metallic CNT left on the filter is dispersed again in methanol, dispersed in a bath-type ultrasonic bath (Sharp UT-205H 200W ultrasonic cleaner), and a filter with a pore size of 1 micron (Millipore Omnipore Membrane) And filtered with suction. The metallic CNT left on the filter is placed in a 1% aqueous solution of Triton X-100 (purchased from Kanto Chemical), and dispersed for 1 hour in a bath-type ultrasonic bath (Sharp UT-205H 200W ultrasonic cleaner). Then, a metallic CNT dispersion aqueous solution (2) was prepared. This aqueous metallic CNT dispersion (2) was suction filtered with a cellulose mixed ester membrane filter (Millipore GSWP02400) having a pore size of 0.22 microns to form a metallic CNT thin film on the filter surface. Further, suction filtration was continued while pouring pure water (Millipore Milli Q Gradient) over the thin film, and Triton X-100 was washed away, followed by drying at room temperature. By putting the metallic CNT thin film attached to the cellulose mixed ester membrane filter into acetone (made by Wako Pure Chemicals: special grade) together with the quartz plate and dissolving the cellulose mixed ester membrane filter in acetone and removing it, A metallic CNT thin film was formed on the substrate. The quartz substrate on which the metallic CNT thin film was formed was further impregnated twice with fresh acetone, and the residue of the membrane filter made of cellulose mixed ester was completely dissolved and removed to obtain a metallic CNT thin film on the quartz substrate. The metallic CNT thin film was put into a quartz tube evacuated to 1 × 10 −6 Torr, heated to 250 ° C., held for 1 hour and dried to prepare a metallic CNT thin film sample. As a result, the sheet resistance of the obtained metallic CNT thin film was 55-100Ω / □, and a highly conductive thin film derived from metallicity was obtained.
In addition, as shown in FIG. 1, when a thin film of cyan carbon nanotubes is formed on a cellulose film, it shows blue, indicating that it can be used as blue ink.

[マゼンタ色カーボンナノチューブの精製]
HiPCO法によって作製されたカーボンナノチューブ(平均直径約1.0nm,CNI社より購入:Rφ500)30mgをデオキシコール酸ナトリウム(DOC、)1%水溶液30mlに超音波分散させる(ブランソンソニファイアー、レベル2、17時間)。1時間遠心(20万G)をかけ、上澄みを取り出し、CNT分散水溶液を得る。得られたCNT分散水溶液2mlに、ドデシル硫酸ナトリウム(SDS、シグマアルドリッチより購入:製品コード L6026)20mg、コール酸ナトリウム(SC、シグマアルドリッチより購入:製品コード C6445)20mg、およびiodixanol含有水溶液(第一化学薬品より購入:製品名 Optiprep、iodixanol60%水溶液)2mlを混合させCNT混合液を作製する。
得られたCNT混合液を遠心チューブ内の遠心分離混合溶液(iodixanol濃度20%〜40%にて濃度勾配を形成、SDS1.5%、SC1.5%)に挿入し、遠心分離(20万G、18時間、遠心分離機:ベックマン社製:ローターSW41)を行った。
その結果、遠心チューブ内にいくつかの層が形成された。各々の層を丁寧に分取することにより、金属性CNT分散水溶液、半導体性CNT分散水溶液を分離することができた。金属性CNT分散水溶液は吸収スペクトルや写真で見られるように(図2)マゼンタ色を呈している。
[Purification of magenta carbon nanotubes]
30 mg of carbon nanotubes (average diameter of about 1.0 nm, purchased from CNI: Rφ500) produced by HiPCO method are ultrasonically dispersed in 30 ml of 1% aqueous solution of sodium deoxycholate (DOC,) (Branson Sonifier, Level 2, 17 hours). Centrifugation (200,000 G) for 1 hour, the supernatant is taken out, and a CNT-dispersed aqueous solution is obtained. To 2 ml of the obtained CNT-dispersed aqueous solution, 20 mg of sodium dodecyl sulfate (SDS, purchased from Sigma-Aldrich: product code L6026), 20 mg of sodium cholate (SC, purchased from Sigma-Aldrich: product code C6445), and iodixanol-containing aqueous solution (first Purchase from chemicals: Product name Optiprep, iodixanol 60% aqueous solution) 2 ml are mixed to prepare a CNT mixture.
The obtained CNT mixed solution was inserted into a centrifuge mixed solution in a centrifuge tube (a concentration gradient was formed at an iodixanol concentration of 20% to 40%, SDS 1.5%, SC 1.5%), and centrifuged (200,000 G). 18 hours, centrifuge: manufactured by Beckman Co., Ltd .: rotor SW41).
As a result, several layers were formed in the centrifuge tube. By carefully separating each layer, a metallic CNT dispersed aqueous solution and a semiconducting CNT dispersed aqueous solution could be separated. The metallic CNT-dispersed aqueous solution has a magenta color as shown in the absorption spectrum and photographs (FIG. 2).

[イエロー色カーボンナノチューブの精製]
CoMoCAT法によって作製されたカーボンナノチューブ(平均直径約0.8nm、SouthWestNanotechnologies inc.より購入:S−P95−03:ASE−A002)30mgをデオキシコール酸ナトリウム(DOC、)1%水溶液30mlに超音波分散させる(ブランソンソニファイアー、レベル2、17時間)。1時間遠心(20万G)をかけ、上澄みを取り出し、CNT分散水溶液を得る。得られたCNT分散水溶液2mlに、ドデシル硫酸ナトリウム(SDS、シグマアルドリッチより購入:製品コード L6026)20mg、コール酸ナトリウム(SC、シグマアルドリッチより購入:製品コード C6445)20mg、およびiodixanol含有水溶液(第一化学薬品より購入:製品名 Optiprep、iodixanol60%水溶液)2mlを混合させCNT混合液を作製する。
得られたCNT混合液を遠心チューブ内の遠心分離混合溶液(iodixanol濃度20%〜40%にて濃度勾配を形成、SDS1.5%、SC1.5%)に挿入し、遠心分離(20万G、18時間、遠心分離機:ベックマン社製:ローターSW41)を行った。
その結果、遠心チューブ内にいくつかの層が形成された。各々の層を丁寧に分取することにより、金属性CNT分散水溶液、半導体性CNT分散水溶液を分離することができた。金属性CNT分散水溶液は吸収スペクトルや写真で見られるように(図3)イエロー色を呈している。
以上の過程により、シアン色、マゼンタ色、イエロー色のカーボンナノチューブを得ることに成功した。
[Purification of yellow carbon nanotubes]
30 mg of carbon nanotubes produced by CoMoCAT method (average diameter of about 0.8 nm, purchased from Southwest Nanotechnologies Inc .: S-P95-03: ASE-A002) are ultrasonically dispersed in 30 ml of 1% aqueous solution of sodium deoxycholate (DOC) (Branson Sonifier, Level 2, 17 hours) Centrifugation (200,000 G) for 1 hour, the supernatant is taken out, and a CNT-dispersed aqueous solution is obtained. To 2 ml of the obtained CNT-dispersed aqueous solution, 20 mg of sodium dodecyl sulfate (SDS, purchased from Sigma-Aldrich: product code L6026), 20 mg of sodium cholate (SC, purchased from Sigma-Aldrich: product code C6445), and iodixanol-containing aqueous solution (first Purchase from chemicals: Product name Optiprep, iodixanol 60% aqueous solution) 2 ml are mixed to prepare a CNT mixture.
The obtained CNT mixed solution was inserted into a centrifuge mixed solution in a centrifuge tube (a concentration gradient was formed at an iodixanol concentration of 20% to 40%, SDS 1.5%, SC 1.5%), and centrifuged (200,000 G). 18 hours, centrifuge: manufactured by Beckman Co., Ltd .: rotor SW41).
As a result, several layers were formed in the centrifuge tube. By carefully separating each layer, a metallic CNT dispersed aqueous solution and a semiconducting CNT dispersed aqueous solution could be separated. The metallic CNT-dispersed aqueous solution has a yellow color as shown in the absorption spectrum and photographs (FIG. 3).
Through the above process, we succeeded in obtaining cyan, magenta and yellow carbon nanotubes.

シアン色カーボンナノチューブの吸収スペクトル及び溶液・およびセルロースフィルター上のシアン色カーボンナノチューブの色Absorption spectrum of cyan carbon nanotubes and the color of cyan carbon nanotubes on solution and cellulose filters マゼンタ色カーボンナノチューブの吸収スペクトル及び溶液の写真Absorption spectrum and solution photo of magenta carbon nanotubes イエロー色カーボンナノチューブの吸収スペクトル及び溶液の写真Absorption spectrum and solution photo of yellow carbon nanotube

Claims (1)

カーボンナノチューブ分散水溶液にドデシル硫酸ナトリウム、コール酸ナトリウムおよびiodixanol含有水溶液を混合させて得られたカーボンナノチューブ混合液を遠心分離混合溶液に入れて遠心分離して金属性カーボンナノチューブ分散水溶液と半導体性カーボンナノチューブ分散水溶液とを分離して得られた金属性カーボンナノチューブ分散水溶液がシアン色、マゼンタ色、イエロー色を呈することを特徴とする金属性カーボンナノチューブ分散水溶液。   A mixed solution of carbon nanotubes obtained by mixing an aqueous solution containing sodium dodecyl sulfate, sodium cholate and iodixanol into an aqueous solution of dispersed carbon nanotubes is placed in a centrifugally mixed solution and centrifuged to obtain metallic carbon nanotubes dispersed aqueous solution and semiconducting carbon nanotubes A metallic carbon nanotube-dispersed aqueous solution, wherein the metallic carbon nanotube-dispersed aqueous solution obtained by separating the dispersed aqueous solution exhibits a cyan color, a magenta color, and a yellow color.
JP2007180698A 2007-07-10 2007-07-10 Carbon nanotube thin film Pending JP2009018948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180698A JP2009018948A (en) 2007-07-10 2007-07-10 Carbon nanotube thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180698A JP2009018948A (en) 2007-07-10 2007-07-10 Carbon nanotube thin film

Publications (1)

Publication Number Publication Date
JP2009018948A true JP2009018948A (en) 2009-01-29

Family

ID=40358919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180698A Pending JP2009018948A (en) 2007-07-10 2007-07-10 Carbon nanotube thin film

Country Status (1)

Country Link
JP (1) JP2009018948A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128763A2 (en) * 2009-05-08 2010-11-11 (주)탑나노시스 Led backlight unit
JP2011162410A (en) * 2010-02-12 2011-08-25 Tokyo Metropolitan Univ Method for separating metal type and semiconductor type single wall carbon nanotubes
JP2012051742A (en) * 2010-08-31 2012-03-15 Tokyo Metropolitan Univ Color control method of carbon nanotube, display cell, and display device
JP2017112319A (en) * 2015-12-18 2017-06-22 富士フイルム株式会社 Production method of dispersion composition, and production method of thermoelectric conversion layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069789A2 (en) * 2003-12-18 2005-08-04 Clemson University Process for separating metallic from semiconducting single-walled carbon nanotubes
JP2005324999A (en) * 2004-05-17 2005-11-24 Shimizu Corp Method of improving dispersibility of carbon nanotube
WO2006096613A2 (en) * 2005-03-04 2006-09-14 Northwestern University Separation of carbon nanotubes in density gradients
JP2008266112A (en) * 2007-03-27 2008-11-06 National Institute Of Advanced Industrial & Technology Method for directly separating metallic cnt and semiconductor cnt using centrifuge
JP2008266111A (en) * 2007-03-27 2008-11-06 National Institute Of Advanced Industrial & Technology Method for separating metallic carbon nanotube containing organic molecule and semiconductor carbon nanotube containing organic molecule from carbon nanotube containing organic molecule

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069789A2 (en) * 2003-12-18 2005-08-04 Clemson University Process for separating metallic from semiconducting single-walled carbon nanotubes
JP2005324999A (en) * 2004-05-17 2005-11-24 Shimizu Corp Method of improving dispersibility of carbon nanotube
WO2006096613A2 (en) * 2005-03-04 2006-09-14 Northwestern University Separation of carbon nanotubes in density gradients
JP2008266112A (en) * 2007-03-27 2008-11-06 National Institute Of Advanced Industrial & Technology Method for directly separating metallic cnt and semiconductor cnt using centrifuge
JP2008266111A (en) * 2007-03-27 2008-11-06 National Institute Of Advanced Industrial & Technology Method for separating metallic carbon nanotube containing organic molecule and semiconductor carbon nanotube containing organic molecule from carbon nanotube containing organic molecule

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128763A2 (en) * 2009-05-08 2010-11-11 (주)탑나노시스 Led backlight unit
WO2010128763A3 (en) * 2009-05-08 2011-02-17 (주)탑나노시스 Led backlight unit
JP2011162410A (en) * 2010-02-12 2011-08-25 Tokyo Metropolitan Univ Method for separating metal type and semiconductor type single wall carbon nanotubes
JP2012051742A (en) * 2010-08-31 2012-03-15 Tokyo Metropolitan Univ Color control method of carbon nanotube, display cell, and display device
JP2017112319A (en) * 2015-12-18 2017-06-22 富士フイルム株式会社 Production method of dispersion composition, and production method of thermoelectric conversion layer

Similar Documents

Publication Publication Date Title
JP5943000B2 (en) Functionalized carbon nanotubes exhibiting high solubility and methods for making the same
Green et al. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes
Yang et al. Functionalization of multiwalled carbon nanotubes by mild aqueous sonication
JP5454970B2 (en) Direct separation method of metallic CNT semiconducting CNTs using a centrifuge
Tian et al. Graphene oxides for homogeneous dispersion of carbon nanotubes
JP4182215B2 (en) Carbon nanotube-dispersed polar organic solvent and method for producing the same
Liang et al. Highly exfoliated water-soluble single-walled carbon nanotubes
Soares et al. Surface modification of carbon black nanoparticles by dodecylamine: thermal stability and phase transfer in brine medium
US8323784B2 (en) Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
Liu et al. Additive‐free dispersion of single‐walled carbon nanotubes and its application for transparent conductive films
Yi et al. Catalytic polymerization and facile grafting of poly (furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon
JP2010506824A (en) Transparent conductive single-walled carbon nanotube film
JP3837557B2 (en) Carbon nanotube dispersion solution and method for producing the same
JP2009018948A (en) Carbon nanotube thin film
JP2009013054A (en) Separation method and dispersion method of carbon nanotube and composition used for these methods
JP5800678B2 (en) Nanocarbon aqueous dispersion, method for producing the same, and nanocarbon-containing structure
JP4953444B2 (en) Carbon nanotube thin film
JP4182214B2 (en) Carbon nanotube dispersed polar organic solvent
JP5967886B2 (en) Method for producing carbon nanotube dispersion
JP2012131655A (en) Composition and film containing carbon nanotube
JP5158757B2 (en) Separation of carbon nanotubes containing organic molecules from metallic carbon nanotubes containing organic molecules and semiconducting carbon nanotubes containing organic molecules
KR20170107230A (en) Manufacturing Method for Graphene Ink by Non-oxidation/reduction Method
US20120177560A1 (en) Purification of carbon nanotubes using agarose column and density gradient ultracentrifugation
JP5588276B2 (en) Carbon nanotube color control method
KR101775782B1 (en) Method for removing covalent functional groups attached on single-walled carbon nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120806

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121204