JP2009010268A - Planal coil and manufacturing method therefor - Google Patents

Planal coil and manufacturing method therefor Download PDF

Info

Publication number
JP2009010268A
JP2009010268A JP2007171977A JP2007171977A JP2009010268A JP 2009010268 A JP2009010268 A JP 2009010268A JP 2007171977 A JP2007171977 A JP 2007171977A JP 2007171977 A JP2007171977 A JP 2007171977A JP 2009010268 A JP2009010268 A JP 2009010268A
Authority
JP
Japan
Prior art keywords
forming
electrolytic
plating layer
copper plating
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007171977A
Other languages
Japanese (ja)
Inventor
Kazunori Ono
和則 小野
Yukio Yamashita
幸雄 山下
Katsu Takenaka
克 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2007171977A priority Critical patent/JP2009010268A/en
Publication of JP2009010268A publication Critical patent/JP2009010268A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar coil having in resistance for coil conductors and a high inductance value. <P>SOLUTION: The inductance value of the coil is improved, by applying magnetic plating to surfaces of the conductors formed by an electrolytic plating method. The pattern conductors with magnetic plating applied are bonded, holding an insulating material therebetween, and plating is reapplied from the backside, and the cross-sectional areas of the conductors can be enlarged. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、絶縁体に埋め込まれた導体からなる平面コイルに係り、特に高インダクタンスの実現を図り得る平面コイルおよびその製造方法に関する。   The present invention relates to a planar coil made of a conductor embedded in an insulator, and more particularly to a planar coil that can achieve high inductance and a method for manufacturing the same.

近年、携帯機器の小型化および薄型化要求に伴って、その電源回路に用いられているコイルの小型化および薄型化がますます強く求められている。
携帯機器の電源回路に用いられているコイルは、出力電圧を安定させるためにはインダクタンスを大きくする必要があり、また同時に高電流対応のために直流抵抗を低減する必要がある。
従来は、絶縁体に埋め込まれたコイルを多層磁性体で挟み込むことにより高インダクタンスと低抵抗を実現しようと図っている(特許文献1参照)。あるいは、スルーホールの内壁に形成した多層磁性層の少なくとも縦方向の一部とコイル上面と下面に配置する多層磁性層の面内方向の両方にスリットを構成して、高インダクタンスの実現を図っている(特許文献2参照)。
特開平9−223636号公報 特開2005−317604号公報
In recent years, with the demand for miniaturization and thinning of portable devices, there has been an increasing demand for miniaturization and thinning of coils used in power supply circuits.
The coil used in the power supply circuit of the portable device needs to have a large inductance in order to stabilize the output voltage, and at the same time, it is necessary to reduce the DC resistance in order to cope with a high current.
Conventionally, attempts have been made to achieve high inductance and low resistance by sandwiching a coil embedded in an insulator between multilayer magnetic materials (see Patent Document 1). Alternatively, high inductance can be realized by configuring slits in both the longitudinal direction of the multilayer magnetic layer formed on the inner wall of the through hole and in the in-plane direction of the multilayer magnetic layer disposed on the upper and lower surfaces of the coil. (See Patent Document 2).
JP-A-9-223636 JP 2005-317604 A

しかしながら、前者ではコイルの面方向とスルーホールの円周方向に渦電流が発生するため、スルーホールを垂直に貫く磁束をうち消してしまい、インダクタンスを十分に大きくできないという問題があった。
また、後者では、渦電流発生防止のためにスリットを設けたが、電解磁性めっきでスリットを形成するためには、例えばフォトリソグラフィ工程等を経る必要があるため製造工程が長くなり、したがって製造コストが高くなるという問題があった。また、コイル導体と磁性体とが絶縁体を介しているため距離が離れてしまい、その集磁効果も十分でないという問題もあった。
本発明は、上記のような問題を解決し、コイルの直流抵抗値を上げることなく、インダクタンスを高めた平面コイルを提供することを課題とする。
However, in the former, eddy currents are generated in the surface direction of the coil and in the circumferential direction of the through hole. Therefore, there is a problem that the magnetic flux penetrating the through hole vertically is erased and the inductance cannot be increased sufficiently.
In the latter case, slits are provided to prevent eddy currents from being generated. However, in order to form slits by electrolytic magnetic plating, it is necessary to go through a photolithography process, for example. There was a problem that became high. Further, since the coil conductor and the magnetic material are interposed via an insulator, the distance is increased, and the magnetic flux collecting effect is not sufficient.
An object of the present invention is to solve the above problems and to provide a planar coil having an increased inductance without increasing the DC resistance value of the coil.

上記課題を解決するために、請求項1に係る平面コイルは、絶縁体に埋め込まれた導体からなる平面コイルにおいて、前記導体は電解銅めっき層と、前記電解銅めっき層の表面に形成された電解磁性めっき層とを含むことを特徴とする。
また、請求項2に係る平面コイルは、請求項1に記載の平面コイルにおいて、前記電解磁性めっき層が、前記電解銅めっき層の両面に形成されていることを特徴とする。
また、請求項3に係る平面コイルは、請求項1または2に記載の平面コイルの表面に絶縁体を介して電子部品実装用の端子が形成されており、さらに前記端子と前記導体が電気的に接続されていることを特徴とする。
In order to solve the above problems, a planar coil according to claim 1 is a planar coil made of a conductor embedded in an insulator, wherein the conductor is formed on the surface of the electrolytic copper plating layer and the electrolytic copper plating layer. And an electrolytic magnetic plating layer.
The planar coil according to claim 2 is the planar coil according to claim 1, wherein the electrolytic magnetic plating layer is formed on both surfaces of the electrolytic copper plating layer.
According to a third aspect of the present invention, in the planar coil according to the first or second aspect, a terminal for mounting an electronic component is formed on the surface of the planar coil via an insulator, and the terminal and the conductor are electrically connected. It is characterized by being connected to.

このような平面コイルを製造するために、請求項4に係る平面コイルの製造方法は、金属下地層上にレジストを形成するレジスト形成工程と、フォトリソグラフィー法により前記レジストから導体形成部分を現像してパターンを形成するリソグラフィー工程と、前記導体パターンに電解銅めっきにより電解銅めっき層を形成する電解銅めっき工程と、前記電解銅めっき層の表面に電解めっきにより磁性体めっき層を形成する電解磁性めっき工程と、前記電解銅めっき層と前記電解磁性体めっき層からなる複数の導体を絶縁体を介して接着させる積層工程と、前記金属下地層を除去するエッチング工程と、を有することを特徴とする。   In order to manufacture such a planar coil, a planar coil manufacturing method according to claim 4 includes a resist forming step of forming a resist on a metal underlayer, and a conductor forming portion is developed from the resist by a photolithography method. A lithography process for forming a pattern, an electrolytic copper plating process for forming an electrolytic copper plating layer on the conductor pattern by electrolytic copper plating, and an electromagnetism for forming a magnetic plating layer on the surface of the electrolytic copper plating layer by electrolytic plating A plating step, a laminating step for bonding a plurality of conductors made of the electrolytic copper plating layer and the electrolytic magnetic plating layer via an insulator, and an etching step for removing the metal base layer. To do.

また、請求項5に係る平面コイルの製造方法は、金属下地層上にレジストを形成するレジスト形成工程と、フォトリソグラフィー法により前記レジストから導体形成部分を現像してパターンを形成するリソグラフィー工程と、前記導体パターンに電解銅めっきにより電解銅めっき層を形成する電解銅めっき工程と、前記電解銅めっき層の表面に電解めっきにより磁性体めっき層を形成する電解磁性めっき工程と、前記電解銅めっき層と前記電解磁性めっき層からなる導体を絶縁体を介して接着させる積層工程と、前記複数の導体間にスルーホールを形成するスルーホール形成工程と、前記スルーホール内壁に金属触媒処理を施して導電化させる導電化工程と、前記金属下地層を除去するエッチング工程と、前記エッチング工程の後に前記電解めっき層の反対側と前記スルーホールに銅めっき層を同時に形成する第2の電解銅めっき工程と、を有することを特徴とする。   The planar coil manufacturing method according to claim 5 includes a resist forming step of forming a resist on a metal underlayer, and a lithography step of developing a conductor forming portion from the resist by a photolithography method to form a pattern, An electrolytic copper plating step of forming an electrolytic copper plating layer on the conductive pattern by electrolytic copper plating; an electrolytic magnetic plating step of forming a magnetic plating layer on the surface of the electrolytic copper plating layer by electrolytic plating; and the electrolytic copper plating layer. And a step of laminating the conductor made of the electrolytic magnetic plating layer through an insulator, a through hole forming step of forming a through hole between the plurality of conductors, and conducting metal catalyst treatment on the inner wall of the through hole to conduct electricity A conductive step, an etching step for removing the metal underlayer, and the electrolysis after the etching step. A second electrolytic copper plating step of forming copper plating layer at the same time on the opposite side of the through hole of the Ki Tsu layer and having a.

請求項6にかかる平面コイルの製造方法は、金属下地層上にレジストを形成するレジスト形成工程と、フォトリソグラフィー法により前記レジストから導体形成部分を現像してパターンを形成するリソグラフィー工程と、前記導体パターンに電解銅めっきにより電解銅めっき層を形成する電解銅めっき工程と、前記電解銅めっき層の表面に電解めっきにより磁性体めっき層を形成する電解磁性めっき工程と、前記電解銅めっき層と前記電解磁性体めっき層からなる導体表面に絶縁体を介して銅箔層を接着させる銅箔積層工程と、前記銅箔層と前記導体とを貫通するスルーホールを形成するスルーホール形成工程と、前記スルーホール内壁に金属触媒処理を施して導電化させる導電化工程と、前記銅箔層の表面とスルーホール内壁部に同時に銅めっき層を形成するパネルメッキ工程と、前記銅めっき層表面にレジストを設ける第2のレジスト形成工程と、フォトリソグラフィー法により配線パターンを形成するリソグラフィー工程と、エッチングにより前記配線パターンに基づいて前記銅箔層に配線パターンを形成する配線形成工程と、前記レジストを剥離する剥離工程と、を有することを特徴とする。   The planar coil manufacturing method according to claim 6 includes a resist forming step of forming a resist on a metal underlayer, a lithography step of developing a conductor forming portion from the resist by a photolithography method, and the conductor An electrolytic copper plating step for forming an electrolytic copper plating layer on the pattern by electrolytic copper plating, an electrolytic magnetic plating step for forming a magnetic plating layer on the surface of the electrolytic copper plating layer by electrolytic plating, the electrolytic copper plating layer and the A copper foil laminating step in which a copper foil layer is bonded to a conductor surface made of an electrolytic magnetic plating layer via an insulator; a through hole forming step of forming a through hole penetrating the copper foil layer and the conductor; and Conductive process of conducting metal catalyst treatment on the inner wall of the through-hole and making it conductive on the surface of the copper foil layer and the inner wall of the through-hole at the same time A panel plating step for forming a plating layer, a second resist forming step for providing a resist on the surface of the copper plating layer, a lithography step for forming a wiring pattern by photolithography, and the etching based on the wiring pattern It has the wiring formation process which forms a wiring pattern in a copper foil layer, and the peeling process which peels the said resist.

請求項7にかかる平面コイルの製造方法は、金属下地層上にレジストを形成するレジスト形成工程と、フォトリソグラフィー法により前記レジストから導体形成部分を現像してパターンを形成するリソグラフィー工程と、前記導体パターンに電解銅めっきにより電解銅めっき層を形成する電解銅めっき工程と、前記電解銅めっき層の表面に電解めっきにより磁性体めっき層を形成する電解磁性めっき工程と、前記電解銅めっき層と前記電解磁性体めっき層からなる導体を絶縁体を介して接着させる積層工程と、前記複数の導体間にスルーホールを形成するスルーホール形成工程と、前記スルーホール内壁に金属触媒処理を施して導電化させる導電化工程と、前記金属下地層を除去するエッチング工程と、前記エッチング工程の後に前記電解めっき層の反対側と前記スルーホールに銅めっき層を同時に形成する第2の電解銅めっき工程と、前記第2の電解銅めっき工程で形成された銅めっき層の表面に絶縁体を介して銅箔層を接着させる銅箔積層工程と、前記銅箔層と前記複数の導体とを貫通するスルーホールを形成するスルーホール形成工程と、前記スルーホール内壁に金属触媒処理を施して導電化させる導電化工程と、前記銅箔層の表面とスルーホール内壁部に同時に第3の銅めっき層を形成するパネルメッキ工程と、前記第3の銅めっき層の表面にレジストを設けるレジスト形成工程と、フォトリソグラフィー法により配線パターンを形成するリソグラフィー工程と、エッチングにより前記配線パターンに基づいて前記銅箔層に配線パターンを形成する配線形成工程と、前記レジストを剥離する剥離工程と、を有することを特徴とする。   The method for manufacturing a planar coil according to claim 7 includes a resist forming step of forming a resist on a metal underlayer, a lithography step of developing a conductor forming portion from the resist by a photolithography method, and the conductor An electrolytic copper plating step for forming an electrolytic copper plating layer on the pattern by electrolytic copper plating, an electrolytic magnetic plating step for forming a magnetic plating layer on the surface of the electrolytic copper plating layer by electrolytic plating, the electrolytic copper plating layer and the A lamination process in which a conductor made of an electrolytic magnetic plating layer is bonded via an insulator, a through hole formation process in which a through hole is formed between the plurality of conductors, and a metal catalyst treatment is applied to the inner wall of the through hole to make it conductive. A conductive process, an etching process for removing the metal underlayer, and the electrolytic process after the etching process. A second electrolytic copper plating step in which a copper plating layer is simultaneously formed on the opposite side of the layer and the through hole, and copper is provided on the surface of the copper plating layer formed in the second electrolytic copper plating step with an insulator interposed therebetween. A copper foil laminating step for bonding the foil layer, a through hole forming step for forming a through hole penetrating the copper foil layer and the plurality of conductors, and a conductive process for conducting the metal catalyst treatment on the inner wall of the through hole A panel plating step of simultaneously forming a third copper plating layer on the surface of the copper foil layer and the inner wall of the through hole, a resist forming step of providing a resist on the surface of the third copper plating layer, A lithography process for forming a wiring pattern by a lithography method; a wiring forming process for forming a wiring pattern on the copper foil layer based on the wiring pattern by etching; And having a peeling step of peeling the strike, the.

本発明によれば、コイルのターン数を増やすことなくインダクタンスを高めることができるため、コイルの直流抵抗値を上げることなくインダクタンスのみを向上させることができる。従って、携帯機器の小型化、薄型化、大電流化に対応できる平面コイルを提供することができる。また前記平面コイルの表面に絶縁体を介して電子部品実装端子を形成することで平面コイル上への実装が可能となり、基板の省スペース化にも対応することができる。
また、絶縁体に埋め込まれた導体からなる平面コイルにおいて、その導体を電解銅めっきパターンに直接電解磁性めっきを施して形成することにより、電解磁性めっきのためのフォトリソグラフィー工程を必要とせず、また電解銅めっき層の表面に直接電解磁性めっき層を形成することでコイル導体と磁性体の距離を無くし、集磁効果を最大限に高めることができる。
また、コイル導体に直接磁性めっきを施すため、コイル面内での渦電流の発生が抑制され、従ってインダクタンス低下が起こらないという効果も有する。
According to the present invention, since the inductance can be increased without increasing the number of turns of the coil, only the inductance can be improved without increasing the DC resistance value of the coil. Therefore, it is possible to provide a planar coil that can cope with downsizing, thinning, and large current of portable devices. Further, by forming electronic component mounting terminals on the surface of the planar coil via an insulator, mounting on the planar coil is possible, and it is possible to cope with space saving of the substrate.
Moreover, in a planar coil made of a conductor embedded in an insulator, the conductor is formed by subjecting an electrolytic copper plating pattern to electrolytic magnetic plating directly, so that a photolithography process for electrolytic magnetic plating is not required. By forming the electrolytic magnetic plating layer directly on the surface of the electrolytic copper plating layer, the distance between the coil conductor and the magnetic body can be eliminated, and the magnetic flux collecting effect can be maximized.
Further, since the magnetic plating is directly applied to the coil conductor, the generation of eddy currents in the coil surface is suppressed, and therefore there is an effect that the inductance is not reduced.

以下、図面を参照して本発明の実施の形態について説明する。
<実施形態1>
図1および図2は、本発明に係る平面コイルおよびその製造方法の実施形態を示す図である。
図中符号1は基板、2は平面コイルのレジストパターン、3は電解銅めっき層、4は電解磁性体めっき層、5は絶縁体、6はスルーホール、7は金属触媒、8は銅めっき層、9はレジストパターン、13は絶縁体である。
図1(a)において、金属下地層として例えば銅やアルミ等を有する基板1の表面に感光性フォトレジストをコーティングする。基板1は周辺部を超音波で溶着するか、接着剤で貼り合わせることにより両面のパターンを同時に形成することが可能となる。
Embodiments of the present invention will be described below with reference to the drawings.
<Embodiment 1>
1 and 2 are diagrams showing an embodiment of a planar coil and a method for manufacturing the same according to the present invention.
In the figure, reference numeral 1 is a substrate, 2 is a resist pattern of a planar coil, 3 is an electrolytic copper plating layer, 4 is an electrolytic magnetic plating layer, 5 is an insulator, 6 is a through hole, 7 is a metal catalyst, and 8 is a copper plating layer. , 9 is a resist pattern, and 13 is an insulator.
In FIG. 1A, a photosensitive photoresist is coated on the surface of a substrate 1 having, for example, copper or aluminum as a metal underlayer. The substrate 1 can be simultaneously formed with a double-sided pattern by welding the peripheral portion with ultrasonic waves or bonding them together with an adhesive.

感光性フォトレジストとしては、例えばネガ型の液状レジストやポジ型の液状レジストを用いることができ、液状レジストに基板1を浸漬したり、基板1の表面に液状レジストをスピンコートして塗布される。或いは感光性フォトレジストがフィルム表面に塗布されたドライフィルムレジストを基板にラミネートして、表面に塗工する。
続いてフォトマスクを通して紫外線を照射してレジストを露光する。この時フォトマスクとしては、ガラス、またはPETフィルムを基材としてCrやAg塩をパターンとし、表面に乳剤を塗布したものが一般的に用いられる。また、レーザー描画装置で直接レジストに紫外線を照射して微細なパターンを描く方式も可能である。
露光された基板は現像して平面コイルの導体形成部分がパターン状に開口したレジストパターン2を形成する。現像液は弱アルカリ性の水溶液、例えば1〜5%炭酸ソーダ溶液や3〜15%トリエタノールアミン水溶液を用いて行うが、有機溶剤を用いることもできる。現像は基板を浸漬揺動したり、シャワー装置を通すことで実施される。
As the photosensitive photoresist, for example, a negative liquid resist or a positive liquid resist can be used. The substrate 1 is immersed in the liquid resist, or the liquid resist is spin coated on the surface of the substrate 1 and applied. . Alternatively, a dry film resist in which a photosensitive photoresist is applied to the film surface is laminated on the substrate and applied to the surface.
Subsequently, the resist is exposed by irradiating ultraviolet rays through a photomask. At this time, as a photomask, a glass or PET film as a base material with Cr or Ag salt as a pattern and an emulsion coated on the surface is generally used. Further, it is possible to draw a fine pattern by directly irradiating the resist with ultraviolet rays using a laser drawing apparatus.
The exposed substrate is developed to form a resist pattern 2 in which a conductor forming portion of the planar coil is opened in a pattern. The developing solution is a weakly alkaline aqueous solution such as a 1-5% sodium carbonate solution or a 3-15% triethanolamine aqueous solution, but an organic solvent can also be used. The development is carried out by immersing and swinging the substrate or passing through a shower device.

続いて図1(b)に示すように、電解銅めっき法によりレジストパターン2の開口部に電解銅めっき層3(一次メッキ)を析出させて、平面コイル配線を形成する。電解銅めっき液として一般的な硫酸銅を含む薬液やピロ燐酸銅を含む薬液を用いて処理される。例えば硫酸銅めっき薬液の組成として、CuSO・5HO 30〜200g/L、HSO100〜200g/L、Cl-30〜80mg/L、0〜10ppm程度の微量な有機硫黄化合物(例えばビス(3−プロパンスルホンサン)ジスルフィド)や有機窒素化合物(例えば分子量千程度の四級ポリアミン)、界面活性剤(例えばポリプロピレングリコールやポリエチレングリコールを含む混合物)から成る。好ましくは、CuSO・5HOは100〜180g/L、HSOは120〜200g/L、Cl-は40〜70mg/Lの範囲内で使用されると良い。 Subsequently, as shown in FIG. 1B, an electrolytic copper plating layer 3 (primary plating) is deposited on the opening of the resist pattern 2 by an electrolytic copper plating method to form a planar coil wiring. The electrolytic copper plating solution is processed using a chemical solution containing general copper sulfate or a chemical solution containing copper pyrophosphate. For example, as a composition of a copper sulfate plating chemical solution, CuSO 4 .5H 2 O 30 to 200 g / L, H 2 SO 4 100 to 200 g / L, Cl 30 to 80 mg / L, and a trace amount of organic sulfur compound of about 0 to 10 ppm ( For example, bis (3-propanesulfonesan) disulfide), an organic nitrogen compound (for example, a quaternary polyamine having a molecular weight of about 1,000), and a surfactant (for example, a mixture containing polypropylene glycol or polyethylene glycol). Preferably, CuSO 4 .5H 2 O may be used in the range of 100 to 180 g / L, H 2 SO 4 in the range of 120 to 200 g / L, and Cl in the range of 40 to 70 mg / L.

次いで図1(c)に示すように、電解銅めっき層3の表面にFe、Ni、又はCoの内少なくとも1種以上を含む磁性を有する金属材料の電解磁性体めっき層4を形成する。
例えば、磁性めっき液として硫酸第一鉄、塩化ニッケル、硫酸ニッケル、ホウ酸、塩化ナトリウム、サッカッリンナトリウムからなる磁性材料のめっき液を用い、硫酸第一鉄7水和物1〜10g/L、塩化ニッケル6水和物30〜100g/L、硫酸ニッケル6水和物10〜50g/L、ホウ酸10〜50g/L、塩化トリウム10〜50g/L、サッカリンナトリウム0.5〜5g/Lの範囲内で処理する。
なお、電解磁性めっき層4の形成後、レジストパターン2を剥離してもよい。剥離は1〜10%NaOH水溶液等のアルカリ水溶液やセロソルブ等を含む有機溶剤剥離液が用いられる。
Next, as shown in FIG. 1 (c), an electrolytic magnetic plating layer 4 of a metal material having magnetism containing at least one of Fe, Ni, or Co is formed on the surface of the electrolytic copper plating layer 3.
For example, a magnetic material plating solution made of ferrous sulfate, nickel chloride, nickel sulfate, boric acid, sodium chloride, sodium saccharin is used as the magnetic plating solution, and ferrous sulfate heptahydrate 1-10 g / L Nickel chloride hexahydrate 30-100 g / L, nickel sulfate hexahydrate 10-50 g / L, boric acid 10-50 g / L, thorium chloride 10-50 g / L, saccharin sodium 0.5-5 g / L Process within range.
The resist pattern 2 may be peeled off after the formation of the electrolytic magnetic plating layer 4. For the peeling, an organic solvent stripping solution containing an alkaline aqueous solution such as 1 to 10% NaOH aqueous solution or cellosolve is used.

次に、図1(d)に示すように、基板を分離して、複数のコイルパターン基板同士で絶縁体5を挟み込むようにして接着する。絶縁体5として、ガラスクロスにエポキシやアクリレート、フェノール等の官能基を持つ接着樹脂を塗工したものやこれらの接着剤をアラミドフィルム表面の塗布したもの、或いはイミドフィルム表面にこれらの接着剤やイミドワニス等を塗工したものが用いられる。また、これらの絶縁体は高温高圧下、例えば150℃以上、5kgf/cm以上の環境下で接着される。
次に、図1(e)に示すように、金属下地層をエッチングして除去し、更に上下層に絶縁体を介して金属下地層を接着(積層)する。
Next, as shown in FIG.1 (d), a board | substrate is isolate | separated and it adhere | attaches so that the insulator 5 may be inserted | pinched between several coil pattern board | substrates. As the insulator 5, a glass cloth coated with an adhesive resin having a functional group such as epoxy, acrylate, phenol or the like, a coating of these adhesives on the surface of an aramid film, or an adhesive film on the surface of an imide film, What coated imide varnish etc. is used. Further, these insulators are bonded under high temperature and high pressure, for example, in an environment of 150 ° C. or higher and 5 kgf / cm 2 or higher.
Next, as shown in FIG. 1E, the metal underlayer is removed by etching, and the metal underlayer is bonded (laminated) to the upper and lower layers via an insulator.

次いで、図1(f)に示すように、パターン上下層の接続部にスルーホール6を形成する。スルーホールは、ドリル、パンチ、レーザー等の機械装置を用いることができるが、積層材に応じて方式を選定することが好ましい。
次に、図1(g)に示すように、パラジウム塩等の金属触媒を含む薬液に基板を浸漬して、スルーホール内壁に金属触媒7を吸着させる。
次に、図1(h)に示すように、電解銅めっき8(パネルメッキ)を施して電解銅めっき層を形成する。銅めっきとして電気を必要としない無電解めっきと組み合わせた電解めっき法を用いることもできる。銅めっきとしては任意に厚みを調整できるが、スルーホールの信頼性を考慮し5μm以上の厚みを形成することが好ましい。
Next, as shown in FIG. 1 (f), through holes 6 are formed in the connection portions of the upper and lower layers of the pattern. A mechanical device such as a drill, a punch, or a laser can be used for the through hole, but it is preferable to select a method according to the laminated material.
Next, as shown in FIG. 1 (g), the substrate is immersed in a chemical solution containing a metal catalyst such as a palladium salt, and the metal catalyst 7 is adsorbed on the inner wall of the through hole.
Next, as shown in FIG. 1 (h), electrolytic copper plating 8 (panel plating) is applied to form an electrolytic copper plating layer. An electrolytic plating method combined with electroless plating that does not require electricity as copper plating can also be used. Although the thickness can be arbitrarily adjusted as copper plating, it is preferable to form a thickness of 5 μm or more in consideration of the reliability of the through hole.

次に、図1(i)に示すように、形成した銅めっき層上にフォトレジストを用いたリソグラフィー法を利用して、例えばスルーホール部等の必要な箇所にレジストパターン9を残して銅めっき層をエッチング除去することにより、複数の導体層間の電気接続を得る(図1(j))。銅めっき層のエッチングは塩化鉄、塩化銅、硫酸/過酸化水素水、過硫酸塩類等を含む水溶液を用いることができ、エッチング速度に合わせて薬液を適宜選定し処理を行う。
次に図1(k)に示すように、電気絶縁のために任意の箇所に絶縁体13を印刷して覆う。絶縁体13として熱により硬化する熱硬化性樹脂や、光硬化性の樹脂、または光でパターン状に硬化するフォトソルダーレジスト等を用いることができる。かかる平面コイル配線の端子部へはSn、Ag、Cu、Ni、Zn、Sb、Inの内Snとその他少なくとも1種以上の金属を含有する半田材料やAu/Ni等の電子部品と接続信頼性の高い材料で処理し、磁性めっき処理コイルを得ることができる。
上記の製造方法により得られた平面コイルは、導体からなる平面コイルが絶縁体に埋め込まれており、この導体は電解銅めっき層と、この電解めっき層の面に形成された電解磁性めっき層とからなり、低抵抗で、高いインダクタンスを実現できる。
Next, as shown in FIG. 1 (i), using the lithography method using a photoresist on the formed copper plating layer, for example, the copper plating is performed while leaving the resist pattern 9 at a necessary place such as a through hole portion. The layer is etched away to obtain an electrical connection between the plurality of conductor layers (FIG. 1 (j)). For etching the copper plating layer, an aqueous solution containing iron chloride, copper chloride, sulfuric acid / hydrogen peroxide solution, persulfates, or the like can be used, and a chemical solution is appropriately selected according to the etching rate.
Next, as shown in FIG. 1 (k), an insulator 13 is printed and covered at an arbitrary position for electrical insulation. As the insulator 13, a thermosetting resin that is cured by heat, a photocurable resin, a photo solder resist that is cured in a pattern by light, or the like can be used. To the terminal portion of the planar coil wiring, there is a connection reliability with a solder material containing Sn and at least one metal among Sn, Ag, Cu, Ni, Zn, Sb, and In, or an electronic component such as Au / Ni. It can process with a high material and can obtain a magnetic plating coil.
In the planar coil obtained by the above manufacturing method, a planar coil made of a conductor is embedded in an insulator, and the conductor includes an electrolytic copper plating layer and an electrolytic magnetic plating layer formed on the surface of the electrolytic plating layer. Therefore, high resistance can be realized with low resistance.

<実施形態2>
図2は、本発明に係る平面コイルおよびその製造方法の他の実施形態を示す図であり、レジストパターンの反対側にも電解めっき層を形成し、導体の断面積を大きくすることができる。この製造方法によれば、導体断面形状に2ヶ所のくびれ部を有する平面コイルとなる。
なお、実施形態2は、実施形態1とは、図1の(a)〜(e)までが共通であるので、省略し、それ以降を図2に示している。
まず、実施形態1と同様にして絶縁体を挟み込む様に複数の平面コイルを接着させ(図1(a)〜(e))、図2(a)に示すように、複数層の間を接続する為のスルーホール6を上述と同様にして形成する。さらに、表面に露出している金属下地層及びスルーホール内壁に金属触媒7を施す。
<Embodiment 2>
FIG. 2 is a view showing another embodiment of the planar coil and the manufacturing method thereof according to the present invention, and an electroplating layer can be formed on the opposite side of the resist pattern to increase the cross-sectional area of the conductor. According to this manufacturing method, a planar coil having two constricted portions in the conductor cross-sectional shape is obtained.
The second embodiment is the same as the first embodiment from (a) to (e) in FIG. 1, and is omitted, and the subsequent steps are shown in FIG.
First, in the same manner as in the first embodiment, a plurality of planar coils are bonded so as to sandwich an insulator (FIGS. 1A to 1E), and a plurality of layers are connected as shown in FIG. A through hole 6 is formed in the same manner as described above. Further, the metal catalyst 7 is applied to the metal underlayer exposed on the surface and the inner wall of the through hole.

次に、図2(b)に示すように、金属下地層を除去することにより配線パターンの裏面を露出させる。この時、金属下地層はその材質により剥離やエッチングによって除去される。例えば、エッチングは3〜15%の塩酸や5〜20%の過硫酸塩水溶液を用いる。
次いで、図2(c)に示すように、表面に露出した配線パターンに2回目の電解銅めっき(二次めっき)を施してレジストパターン2の開口部とスルーホール内壁に電解銅めっき層10を形成する。これにより銅配線の断面積を増やすと共にスルーホール部の電気的接続を行うことができる。めっき液は上述と同様に硫酸銅やピロ燐酸銅を含む薬液を用いる。レジストパターン2を挟んで両側に電解銅めっきを行うことで、導体断面形状に2ヶ所のくびれ部を有する平面コイルを得ることになる。
次に、図2(d)に示すように、平面コイル配線表層部は電気絶縁を取るために、任意の箇所に絶縁体13を印刷して、導体の断面積が大きい平面コイルを製造することができる。
Next, as shown in FIG. 2B, the back surface of the wiring pattern is exposed by removing the metal base layer. At this time, the metal underlayer is removed by peeling or etching depending on the material. For example, the etching uses 3 to 15% hydrochloric acid or 5 to 20% persulfate aqueous solution.
Next, as shown in FIG. 2C, a second electrolytic copper plating (secondary plating) is applied to the wiring pattern exposed on the surface, and the electrolytic copper plating layer 10 is formed on the opening of the resist pattern 2 and the inner wall of the through hole. Form. As a result, the cross-sectional area of the copper wiring can be increased and the through-hole portion can be electrically connected. As the plating solution, a chemical solution containing copper sulfate or copper pyrophosphate is used as described above. By performing electrolytic copper plating on both sides of the resist pattern 2, a planar coil having two constricted portions in the conductor cross-sectional shape is obtained.
Next, as shown in FIG. 2 (d), in order to obtain electrical insulation, the planar coil wiring surface layer portion is printed with an insulator 13 at an arbitrary place to produce a planar coil having a large conductor cross-sectional area. Can do.

ここで、図2(c)の段階で、二次めっき表面或いはスルーホール導体表面に磁性めっき11を施し、銅配線を磁性材料で覆うこともできる。用いる磁性メッキ液は上述と同様である。このようにすれば、図2(f)や図2(g)、図2(h)のような、導体の複数個所に電解磁性めっき層が形成された平面コイルを製造することが可能である。
また、図2(c)の段階で、平面コイル配線の端子部へはSn、Ag、Cu、Ni、Zn、Sb、Inの内Snとその他少なくとも1種以上の金属を含有する半田材料やAu/Ni等の接続信頼性の高い材料で処理すれば、図2(d)のような磁性めっき処理コイルを得ることができる。
Here, at the stage of FIG. 2C, the magnetic plating 11 can be applied to the secondary plating surface or the through-hole conductor surface, and the copper wiring can be covered with a magnetic material. The magnetic plating solution used is the same as described above. By doing so, it is possible to manufacture a planar coil in which electrolytic magnetic plating layers are formed at a plurality of locations of the conductor as shown in FIGS. 2 (f), 2 (g), and 2 (h). .
Further, at the stage of FIG. 2 (c), the terminal portion of the planar coil wiring is provided with a solder material or Au containing Sn, Sn, Ag, Cu, Ni, Zn, Sb, In and at least one other metal. When processed with a material having high connection reliability such as / Ni, a magnetic plating coil as shown in FIG. 2D can be obtained.

なお、図1(c)の段階で磁性めっきを行わず、図2(c)の段階で磁性めっきを行えば、図2(e)のように、平面コイルの二次めっき側のみに磁性めっきを施すことができる。
従って、磁性メッキを施す箇所を任意に設定することにより特性の異なる図(d)〜図(h)に示す平面コイルを形成することができる。
図(d)、(g)、(h)及び磁性めっき無処理品について磁性めっきの厚みと磁性めっき処理部位による磁気的特性(インダクタンス値)の測定結果を表1にまとめて記載する。表1中、「TH」は、スルーホールの内壁や端子部への磁性体めっきをしたものである。
If magnetic plating is not performed at the stage of FIG. 1 (c) but magnetic plating is performed at the stage of FIG. 2 (c), the magnetic plating is applied only to the secondary plating side of the planar coil as shown in FIG. 2 (e). Can be applied.
Accordingly, the planar coils shown in FIGS. (D) to (h) having different characteristics can be formed by arbitrarily setting the locations to be subjected to magnetic plating.
Tables 1 (d), (g), (h) and the magnetic plating untreated product show the magnetic plating thickness and the measurement results of the magnetic characteristics (inductance value) depending on the magnetic plating treatment site. In Table 1, “TH” indicates that the inner wall of the through hole and the terminal portion are plated with magnetic material.

Figure 2009010268
Figure 2009010268

<実施形態3>
図3は、本発明に係る平面コイルおよびその製造方法の他の実施形態を示す図である。実施形態3においては、電解銅めっき層表面に電解磁性めっき層を有する平面コイルを形成し、その表面に電子部品実装用端子を配した平面コイル内蔵プリント配線板としたものである。
実施形態1と同様にしてコイル層の表層に絶縁体を介して金属下地層を接着する(図1(a)〜(e))。
次に、図3(a)に示すように、複数のコイル層の接続を取るスルーホール6の他、コイル層と接続する為のスルーホール14(実装部接続用)を形成し、金属触媒処理と銅めっき処理を行う。
<Embodiment 3>
FIG. 3 is a diagram showing another embodiment of the planar coil and the manufacturing method thereof according to the present invention. In Embodiment 3, a planar coil with a built-in planar coil is formed in which a planar coil having an electrolytic magnetic plating layer is formed on the surface of an electrolytic copper plating layer, and terminals for mounting electronic components are arranged on the surface.
In the same manner as in the first embodiment, a metal base layer is bonded to the surface layer of the coil layer via an insulator (FIGS. 1A to 1E).
Next, as shown in FIG. 3A, in addition to the through-hole 6 for connecting a plurality of coil layers, a through-hole 14 (for mounting portion connection) for connecting to the coil layer is formed, and metal catalyst treatment is performed. And copper plating treatment.

次に、図3(b)に示すように、スルーホール及び絶縁体の表層に銅めっき層を形成する。
次に、図3(c)に示すように、フォトレジストを用いたリソグラフィー法を利用して、スルーホール部及びコイルへの接続配線のレジストパターン15を形成させ、導体をエッチング除去することにより、電子部品実装用の端子をコイルへの配線パターンを同時に形成した。銅エッチングは前述の一般的な薬液を用いる。コイル端子へはSn、Ag、Cu、Ni、Zn、Sb、Inの内Snとその他少なくとも1種以上の金属を含有する半田材料やAu/Ni等の接続信頼性の高い材料で処理を施した。実装用の端子は上述の半田材料やAu/Ni、Ag、Al等のめっき、或いは防錆液等で処理して実装に適した端子を形成し実装端子付き平面コイル内蔵プリント配線板を得た(図3(d))。
Next, as shown in FIG.3 (b), a copper plating layer is formed in the surface layer of a through hole and an insulator.
Next, as shown in FIG. 3C, by using a lithography method using a photoresist, a resist pattern 15 of a connection wiring to the through hole portion and the coil is formed, and the conductor is etched away, A wiring pattern to the coil was formed at the same time as terminals for mounting electronic components. Copper etching uses the above-described general chemical solution. The coil terminal was treated with a solder material containing Sn and at least one metal among Sn, Ag, Cu, Ni, Zn, Sb, and In, or a material having high connection reliability such as Au / Ni. . The mounting terminals were processed with the above-mentioned solder material, Au / Ni, Ag, Al, or the like, or a rust preventive liquid to form terminals suitable for mounting, and a printed wiring board with a flat coil with mounting terminals was obtained. (FIG. 3 (d)).

<実施形態4>
図4は、本発明に係る平面コイルの他の実施形態を示す図であり、電解銅めっき層表面に電解磁性体めっき層を配し、且つ導体断面形状に2ヶ所のくびれ部を有する平面コイルの表層に電子部品実装用端子を配した平面コイル内蔵プリント配線板である。
実施形態2と同様にして、レジストパターン2の両側に電解銅めっき層を形成し、導体断面形状に2ヶ所のくびれを有する平面コイルの表層に絶縁体を挟み込む様にして金属下地層を接着させる。
そして、実施形態3と同様に、コイル層と接続するためのスルーホールを形成し、表面に露出している金属下地層及びスルーホール内壁に金属触媒処理を施した後、電解銅めっきを施してスルーホール及び表層に銅めっき層を形成する(パネルメッキ)。
<Embodiment 4>
FIG. 4 is a view showing another embodiment of the planar coil according to the present invention, in which an electrolytic magnetic plating layer is disposed on the surface of the electrolytic copper plating layer, and the conductor cross-sectional shape has two constricted portions. This is a printed wiring board with a built-in planar coil in which electronic component mounting terminals are arranged on the surface layer.
In the same manner as in the second embodiment, an electrolytic copper plating layer is formed on both sides of the resist pattern 2, and the metal base layer is bonded so that the insulator is sandwiched between the surface layers of the planar coil having two constrictions in the conductor cross-sectional shape. .
Then, as in the third embodiment, a through hole for connecting to the coil layer is formed, a metal catalyst layer is applied to the metal underlayer exposed on the surface and the inner wall of the through hole, and then electrolytic copper plating is applied. A copper plating layer is formed on the through hole and the surface layer (panel plating).

フォトレジストを用いたリソグラフィー法を利用して、コイルへの接続配線のレジストパターンを形成させ、導体をエッチング除去することにより、電子部品実装用の端子をコイルへの配線パターンを同時に形成する。銅エッチングは前述の一般的な薬液を用いて処理することができる。コイル端子へはSn、Ag、Cu、Ni、Zn、Sb、Inの内Snとその他少なくとも1種以上の金属を含有する半田材料やAu/Ni等の接続信頼性の高い材料で処理する。
実装用の端子はSn、Ag、Cu、Ni、Zn、Sb、Inの内Snとその他少なくとも1種以上の金属を含有する半田材料やAu/Ni、Ag、Al等のめっき、或いは防錆液等で処理することで接続信頼性の高い端子を形成し実装端子付き平面コイル内蔵プリント配線板を得ることができる。磁性メッキを施す箇所を任意に設定する事で特性の異なる図5(a)〜(e)のような平面コイル内蔵プリント配線板を得ることができる。
By using a lithography method using a photoresist, a resist pattern for connection wiring to the coil is formed, and the conductor is etched away, thereby simultaneously forming a wiring pattern for terminals for mounting electronic components on the coil. Copper etching can be processed using the aforementioned general chemicals. The coil terminal is treated with a solder material containing Sn and at least one metal among Sn, Ag, Cu, Ni, Zn, Sb, and In or a material with high connection reliability such as Au / Ni.
Terminals for mounting are Sn, Ag, Cu, Ni, Zn, Sb, In soldering material containing Sn and at least one other metal, Au / Ni, Ag, Al, etc. plating or rust prevention liquid By processing with the above, a terminal with high connection reliability can be formed, and a printed wiring board with a built-in planar coil can be obtained. By setting the location to which the magnetic plating is applied arbitrarily, it is possible to obtain a printed wiring board with a planar coil as shown in FIGS. 5 (a) to 5 (e) having different characteristics.

本発明に係る平面コイルの製造方法の実施形態を示す図である。It is a figure which shows embodiment of the manufacturing method of the planar coil which concerns on this invention. 本発明に係る平面コイルおよびその製造方法の実施形態を示す図であり、図1の続きである。It is a figure which shows embodiment of the planar coil which concerns on this invention, and its manufacturing method, and is a continuation of FIG. 本発明に係る平面コイルおよびその製造方法の実施形態2を示す図である。It is a figure which shows Embodiment 2 of the planar coil which concerns on this invention, and its manufacturing method. 本発明に係る平面コイルおよびその製造方法の実施形態3を示す図である。It is a figure which shows Embodiment 3 of the planar coil which concerns on this invention, and its manufacturing method. 本発明に係る平面コイルの他の実施形態を示す図である。It is a figure which shows other embodiment of the planar coil which concerns on this invention.

符号の説明Explanation of symbols

1 基板
2 レジストパターン
3 電解銅めっき層
4 電解磁性体めっき層
5 絶縁体(積層材)
6 スルーホール
7 金属触媒
8 銅めっき層(パネルメッキ)
9 レジストパターン
10 電解銅めっき層(二次めっき)
11 電解磁性体めっき層
12 磁性めっき(TH)
13 絶縁体
14 スルーホール
15 レジストパターン
16 配線パターン
17 磁性体めっき層
1 Substrate 2 Resist Pattern 3 Electrolytic Copper Plating Layer 4 Electromagnetic Magnetic Plating Layer 5 Insulator (Laminated Material)
6 Through hole 7 Metal catalyst 8 Copper plating layer (panel plating)
9 Resist pattern 10 Electrolytic copper plating layer (secondary plating)
11 Electrolytic magnetic plating layer 12 Magnetic plating (TH)
13 Insulator 14 Through-hole 15 Resist pattern 16 Wiring pattern 17 Magnetic plating layer

Claims (7)

絶縁体に埋め込まれた導体からなる平面コイルにおいて、前記導体は電解銅めっき層と、前記電解銅めっき層の表面に形成された電解磁性めっき層とを含むことを特徴とする平面コイル。   A planar coil comprising a conductor embedded in an insulator, wherein the conductor includes an electrolytic copper plating layer and an electrolytic magnetic plating layer formed on a surface of the electrolytic copper plating layer. 前記電解磁性めっき層は、前記電解銅めっき層の両面に形成されていることを特徴とする請求項1に記載の平面コイル。   The planar coil according to claim 1, wherein the electrolytic magnetic plating layer is formed on both surfaces of the electrolytic copper plating layer. 請求項1または2に記載の平面コイルの表面に絶縁体を介して電子部品実装用の端子が形成されており、さらに前記端子と前記導体が電気的に接続されていることを特徴とする平面コイル。   3. A flat surface in which a terminal for mounting an electronic component is formed on the surface of the planar coil according to claim 1 or 2 via an insulator, and the terminal and the conductor are electrically connected. coil. 金属下地層上にレジストを形成するレジスト形成工程と、フォトリソグラフィー法により前記レジストから導体形成部分を現像しパターンを形成するリソグラフィー工程と、前記導体パターンに電解銅めっきにより電解銅めっき層を形成する電解銅めっき工程と、前記電解銅めっき層の表面に電解めっきにより磁性体めっき層を形成する電解磁性めっき工程と、前記電解銅めっき層と前記電解磁性体めっき層からなる複数の導体を絶縁体を介して接着させる積層工程と、前記金属下地層を除去するエッチング工程と、を有することを特徴とする平面コイルの製造方法。   A resist forming step for forming a resist on the metal underlayer, a lithography step for developing a conductor forming portion from the resist by a photolithography method to form a pattern, and forming an electrolytic copper plating layer on the conductor pattern by electrolytic copper plating An electrolytic copper plating step, an electrolytic magnetic plating step of forming a magnetic plating layer on the surface of the electrolytic copper plating layer by electrolytic plating, and a plurality of conductors comprising the electrolytic copper plating layer and the electrolytic magnetic plating layer as insulators A method for producing a planar coil, comprising: a laminating step for bonding via a metal layer; and an etching step for removing the metal base layer. 金属下地層上にレジストを形成するレジスト形成工程と、フォトリソグラフィー法により前記レジストから導体形成部分を現像してパターンを形成するリソグラフィー工程と、前記導体パターンに電解銅めっきにより電解銅めっき層を形成する電解銅めっき工程と、前記電解銅めっき層の表面に電解めっきにより磁性体めっき層を形成する電解磁性めっき工程と、前記複数の導体間にスルーホールを形成するスルーホール形成工程と、前記スルーホール内壁に金属触媒処理を施して導電化させる導電化工程と、前記金属下地層を除去するエッチング工程と、前記エッチング工程の後に前記電解めっき層の反対側と前記スルーホールに銅めっき層を同時に形成する第2の電解銅めっき工程と、を有することを特徴とする平面コイルの製造方法。   A resist forming process for forming a resist on a metal underlayer, a lithography process for developing a conductor formation portion from the resist by photolithography, and forming a pattern, and forming an electrolytic copper plating layer on the conductor pattern by electrolytic copper plating An electrolytic copper plating step, an electrolytic magnetic plating step of forming a magnetic plating layer on the surface of the electrolytic copper plating layer by electrolytic plating, a through hole forming step of forming a through hole between the plurality of conductors, and the through Conductive process of conducting metal catalyst treatment on the inner wall of the hole, etching process of removing the metal underlayer, and a copper plating layer on the opposite side of the electrolytic plating layer and the through hole at the same time after the etching process And a second electrolytic copper plating step to be formed. 金属下地層上にレジスト形成するレジスト形成工程と、フォトリソグラフィー法により前記レジストから導体形成部分を現像してパターンを形成するリソグラフィー工程と、前記導体パターンに電解銅めっきにより電解銅めっき層を形成する電解銅めっき工程と、前記電解銅めっき層の表面に電解めっきにより磁性体めっき層を形成する電解磁性めっき工程と、前記電解銅めっき層と前記電解磁性めっき層からなる導体表面に絶縁体を介して銅箔層を接着させる銅箔積層工程と、前記銅箔層と前記導体とを貫通するスルーホールを形成するスルーホール形成工程と、前記スルーホール内壁に金属触媒処理を施して導電化させる導電化工程と、前記銅箔層の表面とスルーホール内壁に同時に銅めっき層を形成するパネルメッキ工程と、前記銅めっき層表面にレジストを設ける第2のレジスト形成工程と、フォトリソグラフィー法により配線パターンを形成するリソグラフィー工程と、エッチングにより前記配線パターンに基づいて前記銅箔層に配線パターンを形成する配線形成工程と、前記レジストを剥離する剥離工程と、を有することを特徴とする平面コイルの製造方法。   A resist forming step for forming a resist on the metal underlayer, a lithography step for developing a conductor formation portion from the resist by photolithography, and forming a pattern, and forming an electrolytic copper plating layer on the conductor pattern by electrolytic copper plating An electrolytic copper plating step, an electrolytic magnetic plating step of forming a magnetic plating layer on the surface of the electrolytic copper plating layer by electrolytic plating, and an insulator on the conductor surface comprising the electrolytic copper plating layer and the electrolytic magnetic plating layer. A copper foil laminating step for adhering the copper foil layer, a through hole forming step for forming a through hole penetrating the copper foil layer and the conductor, and conducting the metal catalyst treatment on the inner wall of the through hole to make it conductive. A panel plating step of simultaneously forming a copper plating layer on the surface of the copper foil layer and the inner wall of the through hole, and the copper plating A second resist forming step of providing a resist on the surface of the layer, a lithography step of forming a wiring pattern by a photolithography method, and a wiring forming step of forming a wiring pattern on the copper foil layer based on the wiring pattern by etching. And a stripping step for stripping the resist. 金属下地層上にレジストを形成するレジスト形成工程と、フォトリソグラフィー法により前記レジストから導体形成部分を現像してパターンを形成するリソグラフィー工程と、前記導体パターンに電解銅めっきにより電解銅めっき層を形成する電解銅めっき工程と、前記電解銅めっき層の表面に電解めっきにより磁性体めっき層を形成する電解磁性めっき工程と、前記電解銅めっき層と前記電解磁性めっき層からなる複数の導体を絶縁体を介して接着させる積層工程と、前記金属下地層を除去するエッチング工程と、前記エッチング工程の後に前記電解めっき層の反対側と前記スルーホールに第2の銅めっき層を同時に形成する第2の電解銅めっき工程と、前記第2の電解銅めっき工程で形成された銅めっき層の表面に絶縁体を介して銅箔層を接着させる銅箔積層工程と、前記スルーホール内壁に金属触媒処理を施して導電化させる導電化工程と、前記銅箔層の表面とスルーホール内壁部に同時に第3の銅めっき層を形成するパネルメッキ工程と、前記第3の銅めっき層の表面にレジストを設けるレジスト形成工程と、フォトリソグラフィー法により配線パターンを形成するリソグラフィー工程と、エッチングにより前記配線パターンに基づいて前記銅箔層に配線パターンを形成する配線形成工程と、前記レジストを剥離する剥離工程と、を有することを特徴とする、平面コイルの製造方法。   A resist forming process for forming a resist on a metal underlayer, a lithography process for developing a conductor formation portion from the resist by photolithography, and forming a pattern, and forming an electrolytic copper plating layer on the conductor pattern by electrolytic copper plating An electrolytic copper plating step, an electrolytic magnetic plating step of forming a magnetic plating layer on the surface of the electrolytic copper plating layer by electrolytic plating, and a plurality of conductors comprising the electrolytic copper plating layer and the electrolytic magnetic plating layer as insulators A second step of simultaneously forming a second copper plating layer on the opposite side of the electrolytic plating layer and in the through hole after the etching step; A copper foil layer through an insulator on the surface of the copper plating layer formed in the electrolytic copper plating step and the second electrolytic copper plating step A copper foil laminating step for bonding, a conductive step for conducting metal catalyst treatment on the inner wall of the through hole, and a panel for simultaneously forming a third copper plating layer on the surface of the copper foil layer and the inner wall of the through hole A plating process; a resist forming process for providing a resist on the surface of the third copper plating layer; a lithography process for forming a wiring pattern by photolithography; and a wiring pattern on the copper foil layer based on the wiring pattern by etching. A method for manufacturing a planar coil, comprising: a wiring forming step for forming a resist; and a peeling step for peeling the resist.
JP2007171977A 2007-06-29 2007-06-29 Planal coil and manufacturing method therefor Pending JP2009010268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171977A JP2009010268A (en) 2007-06-29 2007-06-29 Planal coil and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171977A JP2009010268A (en) 2007-06-29 2007-06-29 Planal coil and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2009010268A true JP2009010268A (en) 2009-01-15

Family

ID=40325043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171977A Pending JP2009010268A (en) 2007-06-29 2007-06-29 Planal coil and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2009010268A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248630A (en) * 2011-05-26 2012-12-13 Tdk Corp Coil component and manufacturing method of the same
JP2013008859A (en) * 2011-06-24 2013-01-10 Asahi Kasei Electronics Co Ltd Coil for wireless power feeding/receiving and unit using the same
JP2013125818A (en) * 2011-12-14 2013-06-24 Asahi Kasei Electronics Co Ltd Planar coil, and method for manufacturing planar coil
JP2013131642A (en) * 2011-12-21 2013-07-04 Asahi Kasei Electronics Co Ltd Planar coil and planar coil manufacturing method
CN103996515A (en) * 2010-11-25 2014-08-20 乾坤科技股份有限公司 Inductor and method of producing same
US20160005527A1 (en) * 2014-07-02 2016-01-07 Samsung Electro-Mechanics Co., Ltd. Coil unit for thin film inductor, manufacturing method of coil unit for thin film inductor, thin film inductor and manufacturing method of thin film inductor
US9257216B2 (en) 2011-10-14 2016-02-09 Murata Manufacturing Co., Ltd. Metal powder and electronic component
KR101598295B1 (en) * 2014-09-22 2016-02-26 삼성전기주식회사 Multiple layer seed pattern inductor, manufacturing method thereof and board having the same mounted thereon
JP2016515305A (en) * 2013-03-11 2016-05-26 ボーンズ、インコーポレイテッド Apparatus and method for planar magnetic technology using laminated polymer
CN107331491A (en) * 2013-08-02 2017-11-07 乾坤科技股份有限公司 Magnetic device
JP2017204629A (en) * 2016-05-13 2017-11-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and manufacturing method thereof
WO2018097113A1 (en) * 2016-11-28 2018-05-31 株式会社村田製作所 Multilayer substrate, structure for mounting multilayer substrate to circuit board, method for mounting multilayer substrate, and method for producing multilayer substrate
WO2018159457A1 (en) * 2017-03-01 2018-09-07 株式会社村田製作所 Mounting substrate
WO2018159455A1 (en) * 2017-03-01 2018-09-07 株式会社村田製作所 Electric element
JP6486535B1 (en) * 2017-12-11 2019-03-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Inductor and manufacturing method thereof
JP6485984B1 (en) * 2017-12-07 2019-03-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil parts

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS421339Y1 (en) * 1964-10-31 1967-01-26
JPH04196285A (en) * 1990-11-27 1992-07-16 Ibiden Co Ltd Metal layer coating circuit board
JPH07213027A (en) * 1994-01-17 1995-08-11 Fuji Electric Co Ltd Manufacture of thin film coil
JPH1074626A (en) * 1996-06-27 1998-03-17 Kiyoto Yamazawa Thin magnetic element, its manufacture, and transformer
JP2000124031A (en) * 1998-10-12 2000-04-28 S M C:Kk Thick-film printed coil and its manufacture
JP2001203109A (en) * 2000-01-21 2001-07-27 Tdk Corp Flat coil, method of manufacturing the same, and transformer
JP2002353030A (en) * 2001-05-25 2002-12-06 Kawasaki Steel Corp Surface-mounting type planar magnetic element, and integrated-circuit component
JP2003073883A (en) * 2001-09-06 2003-03-12 Totoku Electric Co Ltd Electrodeposited iron film for high-frequency, insulated wire for high-frequency coil, and manufacturing method for these
JP2003124047A (en) * 2001-10-16 2003-04-25 Asahi Kasei Corp Coil and its manufacturing method
JP2004228306A (en) * 2003-01-22 2004-08-12 Asahi Kasei Electronics Co Ltd Method of manufacturing printed coil and method of manufacturing printed wiring board
JP2006313946A (en) * 2006-08-28 2006-11-16 Tdk Corp Thin film type common mode choke coil and common mode choke coil array
JP2006332147A (en) * 2005-05-24 2006-12-07 Matsushita Electric Ind Co Ltd Coil conductive material and manufacturing method thereof, and method of manufacturing coil component using coil conductive material
JP2007053311A (en) * 2005-08-19 2007-03-01 Shinko Electric Ind Co Ltd Coil structure, its manufacturing method, and semiconductor package

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS421339Y1 (en) * 1964-10-31 1967-01-26
JPH04196285A (en) * 1990-11-27 1992-07-16 Ibiden Co Ltd Metal layer coating circuit board
JPH07213027A (en) * 1994-01-17 1995-08-11 Fuji Electric Co Ltd Manufacture of thin film coil
JPH1074626A (en) * 1996-06-27 1998-03-17 Kiyoto Yamazawa Thin magnetic element, its manufacture, and transformer
JP2000124031A (en) * 1998-10-12 2000-04-28 S M C:Kk Thick-film printed coil and its manufacture
JP2001203109A (en) * 2000-01-21 2001-07-27 Tdk Corp Flat coil, method of manufacturing the same, and transformer
JP2002353030A (en) * 2001-05-25 2002-12-06 Kawasaki Steel Corp Surface-mounting type planar magnetic element, and integrated-circuit component
JP2003073883A (en) * 2001-09-06 2003-03-12 Totoku Electric Co Ltd Electrodeposited iron film for high-frequency, insulated wire for high-frequency coil, and manufacturing method for these
JP2003124047A (en) * 2001-10-16 2003-04-25 Asahi Kasei Corp Coil and its manufacturing method
JP2004228306A (en) * 2003-01-22 2004-08-12 Asahi Kasei Electronics Co Ltd Method of manufacturing printed coil and method of manufacturing printed wiring board
JP2006332147A (en) * 2005-05-24 2006-12-07 Matsushita Electric Ind Co Ltd Coil conductive material and manufacturing method thereof, and method of manufacturing coil component using coil conductive material
JP2007053311A (en) * 2005-08-19 2007-03-01 Shinko Electric Ind Co Ltd Coil structure, its manufacturing method, and semiconductor package
JP2006313946A (en) * 2006-08-28 2006-11-16 Tdk Corp Thin film type common mode choke coil and common mode choke coil array

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996515A (en) * 2010-11-25 2014-08-20 乾坤科技股份有限公司 Inductor and method of producing same
JP2012248630A (en) * 2011-05-26 2012-12-13 Tdk Corp Coil component and manufacturing method of the same
JP2013008859A (en) * 2011-06-24 2013-01-10 Asahi Kasei Electronics Co Ltd Coil for wireless power feeding/receiving and unit using the same
US9257216B2 (en) 2011-10-14 2016-02-09 Murata Manufacturing Co., Ltd. Metal powder and electronic component
JP2013125818A (en) * 2011-12-14 2013-06-24 Asahi Kasei Electronics Co Ltd Planar coil, and method for manufacturing planar coil
JP2013131642A (en) * 2011-12-21 2013-07-04 Asahi Kasei Electronics Co Ltd Planar coil and planar coil manufacturing method
JP2016515305A (en) * 2013-03-11 2016-05-26 ボーンズ、インコーポレイテッド Apparatus and method for planar magnetic technology using laminated polymer
CN107331491A (en) * 2013-08-02 2017-11-07 乾坤科技股份有限公司 Magnetic device
US20160005527A1 (en) * 2014-07-02 2016-01-07 Samsung Electro-Mechanics Co., Ltd. Coil unit for thin film inductor, manufacturing method of coil unit for thin film inductor, thin film inductor and manufacturing method of thin film inductor
CN105321676A (en) * 2014-07-02 2016-02-10 三星电机株式会社 Coil unit, manufacturing method of coil unit, thin film inductor and manufacturing method of thin film inductor
US10388447B2 (en) 2014-09-22 2019-08-20 Samsung Electro-Mechanics Co., Ltd. Multilayer seed pattern inductor, manufacturing method thereof, and board having the same
CN105448503A (en) * 2014-09-22 2016-03-30 三星电机株式会社 Multiple layer seed pattern inductor, manufacturing method thereof and board having the same mounted thereon
CN105448503B (en) * 2014-09-22 2018-04-13 三星电机株式会社 Multilayer seed pattern inductor, its manufacture method and there is its plate
KR101598295B1 (en) * 2014-09-22 2016-02-26 삼성전기주식회사 Multiple layer seed pattern inductor, manufacturing method thereof and board having the same mounted thereon
US11276520B2 (en) 2014-09-22 2022-03-15 Samsung Electro-Mechanics Co., Ltd. Multilayer seed pattern inductor, manufacturing method thereof, and board having the same
JP2017204629A (en) * 2016-05-13 2017-11-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and manufacturing method thereof
US9899136B2 (en) 2016-05-13 2018-02-20 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
WO2018097113A1 (en) * 2016-11-28 2018-05-31 株式会社村田製作所 Multilayer substrate, structure for mounting multilayer substrate to circuit board, method for mounting multilayer substrate, and method for producing multilayer substrate
JP6380715B1 (en) * 2016-11-28 2018-08-29 株式会社村田製作所 Multilayer substrate, mounting structure of multilayer substrate on circuit board, mounting method of multilayer substrate, and manufacturing method of multilayer substrate
US11114238B2 (en) 2016-11-28 2021-09-07 Murata Manufacturing Co., Ltd. Multilayer substrate, structure of multilayer substrate mounted on circuit board, method for mounting multilayer substrate, and method for manufacturing multilayer substrate
WO2018159457A1 (en) * 2017-03-01 2018-09-07 株式会社村田製作所 Mounting substrate
US11367555B2 (en) 2017-03-01 2022-06-21 Murata Manufacturing Co., Ltd. Mounting substrate
JP6390825B1 (en) * 2017-03-01 2018-09-19 株式会社村田製作所 Mounting board
US11183915B2 (en) 2017-03-01 2021-11-23 Murata Manufacturing Co., Ltd. Electric element
WO2018159455A1 (en) * 2017-03-01 2018-09-07 株式会社村田製作所 Electric element
JPWO2018159455A1 (en) * 2017-03-01 2019-11-07 株式会社村田製作所 Electrical element
JP6485984B1 (en) * 2017-12-07 2019-03-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil parts
US11037718B2 (en) 2017-12-07 2021-06-15 Samsung Electro-Mechanics Co., Ltd. Coil component
JP2019102783A (en) * 2017-12-07 2019-06-24 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
JP2019106523A (en) * 2017-12-11 2019-06-27 サムソン エレクトロ−メカニックス カンパニーリミテッド. Inductor and method for manufacturing the same
US11205538B2 (en) 2017-12-11 2021-12-21 Samsung Electro-Mechanics Co., Ltd. Inductor and method of manufacturing the same
JP6486535B1 (en) * 2017-12-11 2019-03-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Inductor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2009010268A (en) Planal coil and manufacturing method therefor
JP2009117546A (en) Planar coil, and manufacturing method thereof
US9907164B2 (en) Printed circuit board and method for manufacturing the same
US20160005527A1 (en) Coil unit for thin film inductor, manufacturing method of coil unit for thin film inductor, thin film inductor and manufacturing method of thin film inductor
US20050241954A1 (en) Electrolytic gold plating method of printed circuit board
US11876012B2 (en) Method of manufacturing semiconductor package substrate and semiconductor package substrate manufactured using the same
KR20090079370A (en) Method for manufacturing of Substrate for Semiconductor Package and metal layer fabricated by using thereof
TWI252721B (en) Method of manufacturing double-sided printed circuit board
KR100772432B1 (en) Method of manufacturing printed circuit board
KR101759288B1 (en) Ultra thin film of copper having bump and fabrication method for printed circuit board using the same
TWI312650B (en) Method for producing multilayer printed wiring board, multilayer printed wiring board, and electronic device
KR101039774B1 (en) Method of fabricating a metal bump for printed circuit board
US20120266463A1 (en) Method for manufacturing printed circuit board
JP2017216407A (en) Printed-wiring board and method for manufacturing the same
JP2013131642A (en) Planar coil and planar coil manufacturing method
US9093736B2 (en) Common mode filter and method for manufacturing the same
KR101573913B1 (en) Ultra thin film of copper having bump and fabrication method for printed circuit board using the same
KR101555014B1 (en) Printed circuit board for forming fine wiring and method for manufacturing the same
JP2009272571A (en) Printed circuit board and method of manufacturing the same
KR101741526B1 (en) Manufacturing method of circuit board for wireless antenna using via hole etching skill
JP2009177071A (en) Polyimide film circuit board and method of manufacturing the same
KR20120017530A (en) Circuit board using anodizing and manufacturing method of the same
WO2021071900A1 (en) Integrated transformer module
KR101044117B1 (en) Method of Fabricating Printed Circuit Board
US20230171897A1 (en) Method of Manufacturing a Component Carrier and a Component Carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514