JP2008506838A - High strength, oxidation resistance, wear resistance titanium-silicon substrate alloy - Google Patents

High strength, oxidation resistance, wear resistance titanium-silicon substrate alloy Download PDF

Info

Publication number
JP2008506838A
JP2008506838A JP2007521423A JP2007521423A JP2008506838A JP 2008506838 A JP2008506838 A JP 2008506838A JP 2007521423 A JP2007521423 A JP 2007521423A JP 2007521423 A JP2007521423 A JP 2007521423A JP 2008506838 A JP2008506838 A JP 2008506838A
Authority
JP
Japan
Prior art keywords
alloy
weight
mpa
silicon substrate
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007521423A
Other languages
Japanese (ja)
Other versions
JP4599402B2 (en
Inventor
フオルヴァルト,カルル
フロメイアー,ゲオルク
ハルフオルセン,グナル
ヨハンセン,カイ
ミケルセン,オイヴイン
シュースラー,グナル
Original Assignee
エルケム アクシエセルスカプ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO20042959A external-priority patent/NO20042959D0/en
Application filed by エルケム アクシエセルスカプ filed Critical エルケム アクシエセルスカプ
Publication of JP2008506838A publication Critical patent/JP2008506838A/en
Application granted granted Critical
Publication of JP4599402B2 publication Critical patent/JP4599402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

本発明は、2.5〜12重量%のSiと0〜5重量%のAlと0〜0.5%のBと0〜5%のCrと0〜1重量%の希土類金属及び/又はイットリウム及び/又はスカンジウムと残余として不可避不純物入りのTiとを含有する、高強度で耐酸化性、耐摩耗性の珪素基質合金に関する。The present invention relates to 2.5-12% by weight Si, 0-5% by weight Al, 0-0.5% B, 0-5% Cr, 0-1% by weight rare earth metal and / or yttrium and / or scandium. Further, the present invention relates to a high-strength, oxidation-resistant, wear-resistant silicon substrate alloy containing the remainder of Ti containing inevitable impurities.

Description

本発明は、アルミニウム、ホウ素、クロム、スカンジウム及び希土類金属(Y、Er、及びCe及びLa含有ミッシュメタル)の添加剤を場合によっては含有する、高強度の珪素(シリコン)含有チタン基質合金に関する。   The present invention relates to a high strength silicon-containing titanium substrate alloy optionally containing additives of aluminum, boron, chromium, scandium and rare earth metals (Y, Er, and Ce and La containing misch metals).

種々の2相α/βチタン合金及び近α−チタン合金例えばTi−6Al−4V、1M1834(Ti−5.8−Al−4 Sn−3 Zr−0.7 Nb−0.5 Mo−0.35 Si−0.06C)及びTIMET 1100(Ti−6 Al−2.7 Sn−4 Zr−0.4 Mo−0.45Si)は航空機及び宇宙産業で多大の潜在的な応用を示す。   Various two-phase α / β titanium alloys and near α-titanium alloys such as Ti-6Al-4V, 1M1834 (Ti-5.8-Al-4 Sn-3 Zr-0.7 Nb-0.5 Mo-0.35 Si-0.06C) and TIMET 1100 (Ti-6 Al-2.7 Sn-4 Zr-0.4 Mo-0.45Si) represents a great potential application in the aircraft and space industries.

これらの合金のうちで、Ti−6Al−4Vは室温及び高温で高強度と破砕靭性と優秀な疲労特性との最適な組合せに因り最も広範な用途を示す。然しながら、これらの合金は若干の欠点があり、例えば475℃以上で不十分な耐酸化性(α−位相の形成)、600℃及びより高い温度で不十分なクリープ強さ及び室温及び高温での不十分な耐摩耗性がある。α−位相(case)は酸化された表面に亀裂を形成させ、疲労特性に悪影響がある。約1660℃の比較的高融点の合金のアーク溶融(arc melting)プロセス及び約1750〜1770℃への必要な溶融過熱は、航空機及び自動車産業に且つ一般に工学目的に投資注型品(investment castings)を製造するにはきわめてエネルギーを消耗する方法である。   Of these alloys, Ti-6Al-4V exhibits the widest range of applications due to the optimal combination of high strength, fracture toughness and excellent fatigue properties at room and high temperatures. However, these alloys have some drawbacks such as insufficient oxidation resistance (formation of α-phase) above 475 ° C., insufficient creep strength at 600 ° C. and higher temperatures, and at room and high temperatures. Insufficient wear resistance. The α-phase (case) causes cracks on the oxidized surface and has an adverse effect on fatigue properties. The arc melting process of relatively high melting point alloys of about 1660 ° C and the necessary melt superheating to about 1750-1770 ° C are investment castings in the aircraft and automotive industries and generally for engineering purposes. Is a very energy consuming method.

珪素低含量のチタン基質合金は周知である。即ち、特開2002060871A号は、注型品として用いた、0.2〜2.3重量%のSiと0.1〜0.7重量%のO(全含量の酸素)と0.16〜1.12重量%のNと0.001〜0.3重量%のBと残余としての不可避不純物含有チタンとを含有するチタン合金を記載している。これらの注型品は例えばゴルフクラブのヘッド、釣り道具及び医療部品例えば歯根、インプラント、骨板、接ぎ手及びクラウンである。然しながら、珪素低含量のチタン基質合金は列理境界に沿ってTi3Si沈澱物の様な小さな針晶を形成することにより、この材料の破砕靭性及び延性を低減させる欠点を受ける。 Titanium substrate alloys with low silicon content are well known. That is, Japanese Patent Laid-Open No. 2002060871A uses 0.2 to 2.3 wt% Si, 0.1 to 0.7 wt% O (total oxygen), 0.16 to 1.12 wt% N, and 0.001 to 0.3 wt% used as cast products. The titanium alloy containing B and the inevitable impurity-containing titanium as the balance is described. These castings are, for example, golf club heads, fishing equipment and medical parts such as roots, implants, bone plates, joints and crowns. However, titanium substrates with low silicon content suffer from the disadvantage of reducing the fracture toughness and ductility of this material by forming small needles such as Ti 3 Si precipitates along the line boundaries.

2004年5月に発表されたFrommeyer等による論文「耐火性珪化物、Ti5Sn3及びTiS2及びTi−Si−(Al)共融合金の構造及び特性」からは301頁に超共融(hypereutectic)Ti−Si7.5−Al1合金が記載されている。約9重量%にまで珪素含量を増大させると、注型試料の微細構造はα−Ti(Si)固溶体母材内にTi5Si3珪化物粒子が微細に分散された状態よりなることが更に記載されている。 From the paper “From refractory silicides, Ti 5 Sn 3 and TiS 2 and Ti-Si- (Al) eutectic structure and properties” published by Frommeyer et al. hypereutectic) Ti-Si7.5-Al1 alloy is described. When the silicon content is increased to about 9% by weight, the microstructure of the cast sample further comprises a state in which Ti 5 Si 3 silicide particles are finely dispersed in the α-Ti (Si) solid solution matrix. Are listed.

Frommeyer等によって記載された合金は優秀な硬度と流れ強さとを有する。然しながら、Ti−Si−Al合金の中温強度は中程度であり、高温時の耐酸化性については示されていない。   The alloy described by Frommeyer et al. Has excellent hardness and flow strength. However, the medium temperature strength of the Ti—Si—Al alloy is moderate, and no oxidation resistance at high temperature is shown.

かくして、高温時に高い強度を有し、Ti−Al−V合金よりも低い融点を有し且つ良好な注型特性を有する合金を求める必要性がある。   Thus, there is a need for an alloy that has high strength at high temperatures, a lower melting point than Ti-Al-V alloys, and good casting properties.

本発明によると、比較的高い珪素含量を有するTi−Si合金であって、それらの共融構成に因り比較的低い融点を示し、良好な注型特性と高温時の高い強度を示し並びに高温時にきわめて高い耐酸化性と耐クリープ変形性とを示すTi−Si合金を提供するものである。   According to the present invention, Ti-Si alloys having a relatively high silicon content exhibit a relatively low melting point due to their eutectic composition, exhibit good casting properties and high strength at high temperatures, and at high temperatures. The present invention provides a Ti-Si alloy exhibiting extremely high oxidation resistance and creep deformation resistance.

かくして本発明は2.5〜12重量%のSiと0〜5重量%のAlと0〜5重量%のCrと0〜0.5重量%のBと0〜1重量%の希土類金属及び/又はイットリウム及び/又はスカンジウムと含有し、不純物を除いた残余がTiであるTi−Si合金に関する。   Thus, the present invention relates to 2.5 to 12 wt% Si, 0 to 5 wt% Al, 0 to 5 wt% Cr, 0 to 0.5 wt% B, 0 to 1 wt% rare earth metal and / or yttrium and / or Alternatively, the present invention relates to a Ti—Si alloy that contains scandium and that has Ti remaining after removing impurities.

好ましい具体例によると、該合金は0.3〜3重量%のAlを含有する。   According to a preferred embodiment, the alloy contains 0.3 to 3% by weight of Al.

別の好ましい具体例によると、Ti−Si合金は3〜6重量%のSiと1.2〜2.5重量%のAlとを含有する。   According to another preferred embodiment, the Ti-Si alloy contains 3-6% by weight Si and 1.2-2.5% by weight Al.

尚別の好ましい具体例によると、該合金は0.001〜0.15重量%の希土類金属及び/又はスカンジウムを含有する。   According to yet another preferred embodiment, the alloy contains 0.001 to 0.15% by weight of a rare earth metal and / or scandium.

希土類金属及び/又はイットリウム及び/又はスカンジウムを添加すると、少なくとも675℃までTi−Si合金の中温強度及びクリープ強度を向上させることが見出された。   It has been found that the addition of rare earth metals and / or yttrium and / or scandium improves the medium temperature strength and creep strength of Ti-Si alloys up to at least 675 ° C.

希土類のイットリウム及びスカンジウムを添加するとTi−Si合金中に熱力学的に安定な酸化物例えばEr2O3、Y2O3等の微細な分散物が形成される。 When the rare earth yttrium and scandium are added, a fine dispersion of a thermodynamically stable oxide such as Er 2 O 3 or Y 2 O 3 is formed in the Ti-Si alloy.

Ti−Si合金は0.1〜1.5重量%のCrを含有するのが好ましい。Crを添加すると固溶体の硬化を促進させ、それ故合金の強度及び耐酸化性を増大させる。   The Ti-Si alloy preferably contains 0.1 to 1.5% by weight of Cr. The addition of Cr promotes solid solution hardening and therefore increases the strength and oxidation resistance of the alloy.

注型仕立ての状態では、Ti−Si合金は珪素含量に応じて微細列理のハイポ共融(hypoeutectic)、共融又はわずかに超共融(hypereutectic)の微細構造を有する。共融Ti−Si合金の微細構造は、六方晶の緻密充填α−Ti(Si)固溶体母材内に断続的なロッド様形状の微細に分散したTi5Si3珪化物粒子よりなる。ハイポ共融微細構造は主要な凝固α−Ti(Si)結晶と包囲する共融とよりなる。 In the state of casting, the Ti-Si alloy has a microstructure of hypoeutectic, eutectic or slightly hypereutectic depending on the silicon content. The microstructure of the eutectic Ti-Si alloy is composed of intermittently rod-like finely dispersed Ti 5 Si 3 silicide particles in a hexagonal close-packed α-Ti (Si) solid solution matrix. The hypoeutectic microstructure consists of the primary solidified α-Ti (Si) crystal and the surrounding eutectic.

本発明のTi−Si合金は、少なくとも800MPaの降伏応力と共に350〜400HBのブリネル硬度と十分な延性と室温で及び500℃までで23MPa√m以上の破砕靭性−応力強度因子KICを有する。 The Ti-Si alloy of the present invention has a Brinell hardness of 350-400 HB with sufficient yield stress of at least 800 MPa, sufficient ductility, and a fracture toughness-stress strength factor K IC of 23 MPa√m or more at room temperature and up to 500 ° C.

本発明のTi−Si合金は更にSi含量に応じて650℃まで及びそれ以上で優秀な耐酸化性と室温及び高温で向上した耐摩耗性とを示す。650℃の降伏強度は少なくともRp0.2≧250MPaを有し、引張強度はRm=450MPaを超える。 The Ti-Si alloy of the present invention further exhibits excellent oxidation resistance up to 650 ° C. and above depending on the Si content and improved wear resistance at room and high temperatures. The yield strength at 650 ° C. has at least Rp 0.2 ≧ 250 MPa, and the tensile strength exceeds Rm = 450 MPa.

超共融微細構造は微細列理の共融微細構造内に分散した六方晶形の主要な凝固Ti5Si3結晶よりなる。 The super-eutectic microstructure consists of the main solidified Ti 5 Si 3 crystals in hexagonal form dispersed within the eutectic microstructure of the fine lineage.

注型したての状態ではハイポ共融Ti−Si合金は室温で2.3MPa√m以上の破砕靭性−KIC値と1.5〜3%以上の塑性歪みで500MPa以上の降伏応力とを示す。 In the as-cast state, the hypoeutectic Ti-Si alloy exhibits a fracture toughness of 2.3 MPa√m or more at room temperature-K IC value and a yield stress of 500 MPa or more with a plastic strain of 1.5 to 3% or more.

共融合金は15〜18MPa√mのKICの破砕靭性を示し、降伏応力は室温で850MPaを越える。600℃及びそれ以上では破砕靭性は30MPa√mに増大し、引張強度は少なくともRm=450MPaの程度を有する。 The eutectic gold exhibits K IC fracture toughness of 15-18MPa√m, and the yield stress exceeds 850MPa at room temperature. At 600 ° C. and above, the fracture toughness increases to 30 MPa√m and the tensile strength has a degree of at least Rm = 450 MPa.

600℃で空気中に暴露した際の酸化試験では500時間後には5mg/cm2以下の質量増大が得られる。比較として、慣用のTi−Al6−V4 合金は空気中に長期間暴露する間に475℃でα位相の形成を示す。 In the oxidation test when exposed to air at 600 ° C., a mass increase of 5 mg / cm 2 or less is obtained after 500 hours. As a comparison, conventional Ti-Al6-V4 alloys show alpha phase formation at 475 [deg.] C. during long-term exposure to air.

本発明の共融Ti−Si合金のクリープ応力(クリープ速度がε=10−7s−1である際の所与の温度で印加した応力)は600℃で2000 MPaより高い。対照的に、航空機及び宇宙産業で潜在的に応用を有するTi−Al6−V4 合金は450℃で約150 MPaのクリープ応力を示す。 The creep stress (stress applied at a given temperature when the creep rate is ε = 10 −7 s −1 ) of the eutectic Ti—Si alloy of the present invention is higher than 2000 MPa at 600 ° C. In contrast, Ti-Al6-V4 alloys with potential application in the aircraft and space industries exhibit a creep stress of about 150 MPa at 450 ° C.

本発明のTi−Si合金は約1330〜約1380℃の低融点を示す。本発明のTi−Si合金は更に実質上何れかの寸法及び形状に注型させ得る優秀な注型特性を有する。   The Ti—Si alloy of the present invention exhibits a low melting point of about 1330 to about 1380 ° C. The Ti-Si alloy of the present invention further has excellent casting properties that can be cast into virtually any size and shape.

前述した範囲の特有の特性の結果として、本発明のTi−Si合金は、高温を受ける種々の部品の製造に有利には適当であり、例えば;接続用ロッド、ピストンのクラウン、ピストン ピン、入口弁及び出口弁及び内燃機関及びディーゼルエンジンでの排ガス幹線のマニホールド;
軸流コンプレッサーにおける固定ブレード及びジェットエンジンにおけるファンブレード;
シャトル及び接続用シャフトの如き繊維機械−製織機−における耐摩耗性の部分;
外科用インプラント、骨板、ジョイント;
耐摩耗性を改良し且つ擦過を回避するために表面機関における被覆層として用いた硬質表面仕上げ及び表面合金;
時計のケース;
化学工業及び石油工業用のポンプケース及び羽根車に適当である。
As a result of the unique properties within the aforementioned ranges, the Ti-Si alloy of the present invention is advantageously suitable for the manufacture of various parts subjected to high temperatures, for example; connecting rods, piston crowns, piston pins, inlets Exhaust and main exhaust manifolds for internal combustion engines and diesel engines;
Fixed blades in axial compressors and fan blades in jet engines;
Wear resistant parts in textile machines such as shuttles and connecting shafts-weaving machines;
Surgical implants, bone plates, joints;
Hard surface finishes and surface alloys used as coatings in surface engines to improve wear resistance and avoid fretting;
Watch case;
Suitable for pump cases and impellers for chemical and petroleum industries.

本発明のTi−Si合金は、約1330〜1380℃の比較的低い溶融温度及び優秀な注型適性の故に注型成分として特に適当である。   The Ti-Si alloy of the present invention is particularly suitable as a casting component because of its relatively low melting temperature of about 1330-1380 ° C and excellent castability.

本発明のTi−Si合金は、水冷式の銅製炉床におけるアーク溶融による如き慣用の仕方で製造できる。   The Ti-Si alloy of the present invention can be produced in a conventional manner such as by arc melting in a water-cooled copper hearth.

本発明を次の実施例により例示するが、これに限定されるものではない。   The present invention is illustrated by the following examples without however being limited thereto.

実施例1
本発明によるハイポ共融Ti−6Si−2Al合金を、非消耗型のタングステン電極を用いてアーク溶融により製造した。99.8重量%より高い純度をもつチタンスポンジと、冶金品位の珪素と99.8重量%より高い純度のアルミニウム顆粒とを原料として用いた。合金は水冷式の銅製炉床上で薄い固体のスカル(skull)を形成することにより銅製炉床でのアーク溶融中は保持され、次いで銅製の型に注型してロッド様のインゴットを得た。これらのインゴットを回避及び研削により機械加工して平滑な表面仕上げを示す円筒状の圧縮及び引張り試験試料とした。
Example 1
A hypoeutectic Ti-6Si-2Al alloy according to the present invention was produced by arc melting using a non-consumable tungsten electrode. A titanium sponge having a purity higher than 99.8% by weight, metallurgical grade silicon and aluminum granules having a purity higher than 99.8% by weight were used as raw materials. The alloy was retained during arc melting in the copper hearth by forming a thin solid skull on a water-cooled copper hearth and then cast into a copper mold to obtain a rod-like ingot. These ingots were machined by avoidance and grinding to provide cylindrical compression and tension test samples exhibiting a smooth surface finish.

Figure 2008506838
実施例2
0.2重量%のAlを含有する超共融Ti−10Si合金を実施例1で前記したアーク溶融技術により製造した。
Figure 2008506838
Example 2
A super-eutectic Ti-10Si alloy containing 0.2 wt% Al was produced by the arc melting technique described in Example 1.

この合金のブリネルマクロ硬度は約365 HB 187.5/2.5であると測定され、室温での降伏応力は合金の粒度に応じて930≦Rp0.2≦965 MPaで変動する。圧縮中の塑性応力は約6〜8%であり、破砕靭性はKIC=16〜19 MPa MPa√mである。 The Brinell macrohardness of this alloy is measured to be about 365 HB 187.5 / 2.5, and the yield stress at room temperature varies from 930 ≦ Rp 0.2 ≦ 965 MPa depending on the alloy grain size. The plastic stress during compression is about 6-8% and the fracture toughness is K IC = 16-19 MPa MPa√m.

650℃のより高い温度では降伏応力は約330〜360 MPaである。破砕靭性は25〜28 MPaである。クリープ強度を600℃で測定し、粗い列理状態で215〜230 MPaの値を示す。   At higher temperatures of 650 ° C, the yield stress is about 330-360 MPa. The fracture toughness is 25-28 MPa. The creep strength is measured at 600 ° C., and shows a value of 215 to 230 MPa in a rough preparation state.

650℃で空気中での酸化は500時間の暴露期間後には約3.8mg/cm3の重量増大をもたらす。 Oxidation in air at 650 ° C results in a weight gain of about 3.8 mg / cm 3 after a 500 hour exposure period.

実施例3
0.07重量%のYを添加しながらハイポ共融(近共融:near eutectic)の酸化物分散物で強化したTi−7Si−2Al合金を、実施例1に記載したアーク溶融技術により製造した。金属イットリウムを溶融物に添加し、約1200ppmの溶存酸素でY2O3を形成した。ブリネル硬度は347±2 HB 187.5/2.5であると測定した。測定した降伏強度は約960〜990 MPaである。ε=10−7s−1のクリープ速度で600℃での第1のクリープ実験では235〜255 MPaのクリープ強度を示した。
Example 3
A Ti-7Si-2Al alloy reinforced with a hypoeutectic (near eutectic) oxide dispersion while adding 0.07 wt% Y was produced by the arc melting technique described in Example 1. Metal yttrium was added to the melt to form Y 2 O 3 with about 1200 ppm dissolved oxygen. The Brinell hardness was measured to be 347 ± 2 HB 187.5 / 2.5. The measured yield strength is about 960-990 MPa. The first creep experiment at 600 ° C. with a creep rate of ε = 10 −7 s −1 showed a creep strength of 235 to 255 MPa.

実施例4
ハイポ共融の酸化物分散物で強化したTi−5.5 Si−3.5 Al−1.5 Cr−0.1Y合金を実施例1に記載した溶融方法の技術により製造した。金属イットリウムを溶融物に添加し、溶融物に溶存した酸素でY2O3を形成した。
Example 4
A Ti-5.5 Si-3.5 Al-1.5 Cr-0.1Y alloy reinforced with a hypoeutectic oxide dispersion was prepared by the technique of the melting method described in Example 1. Metal yttrium was added to the melt and Y 2 O 3 was formed with oxygen dissolved in the melt.

ブリネル硬度は室温で187.5Kpの荷重で373±2 HBであると測定し、破砕靭性の応力強度はKIC=21 MPa√mであると測定した。650℃では引張り強度は約Rm=360MPaであると測定し、破砕靭性は35〜40 MPa√mであり、ε=10−7s−1の歪み速度でクリープ強度は270 MPaを示した。 The Brinell hardness was measured to be 373 ± 2 HB at a load of 187.5 Kp at room temperature, and the stress strength of fracture toughness was measured to be K IC = 21 MPa√m. At 650 ° C., the tensile strength was measured to be about Rm = 360 MPa, the fracture toughness was 35-40 MPa√m, and the creep strength was 270 MPa at a strain rate of ε = 10 −7 s −1 .

空気中で600℃での酸化試験は500時間の暴露期間後に8mg/cm3より小さい質量増大を示す。比較のため、工業用Ti−6Al−4V合金の酸化試験は600℃で空気中での500時間の暴露期間後には20mg/cm3より大きい質量増大を示す。 Oxidation tests at 600 ° C. in air show a mass increase of less than 8 mg / cm 3 after a 500 hour exposure period. For comparison, an oxidation test of an industrial Ti-6Al-4V alloy shows a mass increase greater than 20 mg / cm 3 after a 500 hour exposure period in air at 600 ° C.

これらの実施例は本発明のTi−Si合金が驚くべき程に高い中温強度と高温時にきわめて良好な耐酸化性とを有することを示している。   These examples show that the Ti-Si alloys of the present invention have a surprisingly high medium temperature strength and very good oxidation resistance at high temperatures.

Claims (8)

高強度で耐酸化性、耐摩耗性チタン−珪素基質合金であって、2.5〜12重量%のSiと0〜5重量%のAlと0〜0.5%のBと0〜5%のCrと0〜1重量%の希土類金属及び/又はイットリウム及び/又はスカンジウムと残余として不可避不純物入りのTiとを含有することを特徴とするチタン−珪素基質合金。   High strength, oxidation and wear resistant titanium-silicon substrate alloy with 2.5-12 wt% Si, 0-5 wt% Al, 0-0.5% B, 0-5% Cr and 0 A titanium-silicon substrate alloy comprising ˜1% by weight of rare earth metal and / or yttrium and / or scandium and the balance of Ti containing inevitable impurities. 該合金は0.001〜1重量%の希土類金属及び/又はイットリウム及び/又はスカンジウムを含有することを特徴とする請求項1記載の合金。   The alloy according to claim 1, characterized in that it contains 0.001 to 1% by weight of rare earth metal and / or yttrium and / or scandium. 該合金は0.3〜3重量%のAlを含有することを特徴とする請求項1又は2記載の合金。   3. The alloy according to claim 1, wherein the alloy contains 0.3 to 3% by weight of Al. 該合金は0.001〜0.15重量%の希土類金属及び/又はスカンジウムを含有することを特徴とする請求項2記載の合金。   The alloy according to claim 2, characterized in that it contains 0.001 to 0.15% by weight of rare earth metal and / or scandium. 該合金は0.1〜1.5重量%のCrを含有することを特徴とする請求項1〜4の何れかに記載の合金。   5. The alloy according to claim 1, wherein the alloy contains 0.1 to 1.5% by weight of Cr. 該合金は0.01〜0.03重量%のBを含有することを特徴とする請求項1〜5の何れかに記載の合金。   6. The alloy according to claim 1, wherein the alloy contains 0.01 to 0.03% by weight of B. 該合金は3〜6重量%のSiと1.2〜2.5重量%のAlとを含有することを特徴とする請求項1〜6の何れかに記載の合金。   7. The alloy according to claim 1, wherein the alloy contains 3 to 6% by weight of Si and 1.2 to 2.5% by weight of Al. 該合金は6〜9重量%のSiと1.2〜2.5重量%のAlと0.001〜0.15重量%の希土類金属を含有すると共に、室温で700MPaより大きい降伏強さと、KIC=15MPa√mより大きい破砕靭性と、向上した耐摩耗性及び耐酸化性とを有することを特徴とする、近共融組成と関連微細構造とを有する請求項1記載の合金。 The alloy contains 6-9 wt% Si, 1.2-2.5 wt% Al, 0.001-0.15 wt% rare earth metal, yield strength greater than 700 MPa at room temperature, and fracture greater than K IC = 15 MPa√m The alloy of claim 1 having a near-eutectic composition and an associated microstructure characterized by having toughness and improved wear and oxidation resistance.
JP2007521423A 2004-07-13 2005-07-01 High strength, oxidation resistance, wear resistance titanium-silicon substrate alloy Active JP4599402B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20042959A NO20042959D0 (en) 2004-07-13 2004-07-13 High strength, oxidation and wear resistant titanium-silicon base alloys and the use thereof
NO20045664A NO322348B1 (en) 2004-07-13 2004-12-27 High strength titanium silicon alloys, oxidation and abrasion resistance
PCT/NO2005/000246 WO2006006869A1 (en) 2004-07-13 2005-07-01 High strength, oxidation and wear resistant titanium-silicon based alloy

Publications (2)

Publication Number Publication Date
JP2008506838A true JP2008506838A (en) 2008-03-06
JP4599402B2 JP4599402B2 (en) 2010-12-15

Family

ID=35209717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007521423A Active JP4599402B2 (en) 2004-07-13 2005-07-01 High strength, oxidation resistance, wear resistance titanium-silicon substrate alloy

Country Status (12)

Country Link
EP (1) EP1778885B1 (en)
JP (1) JP4599402B2 (en)
KR (1) KR20070049157A (en)
AU (1) AU2005263030B2 (en)
BR (1) BRPI0513282B1 (en)
CA (1) CA2571761C (en)
DK (1) DK1778885T3 (en)
EA (1) EA010770B1 (en)
ES (1) ES2530635T3 (en)
NO (1) NO322348B1 (en)
UA (1) UA82165C2 (en)
WO (1) WO2006006869A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555999A (en) * 2013-11-06 2014-02-05 北京科技大学 High-strength cast Ti-Si-Al-B-Zr base alloy
CN103556000A (en) * 2013-11-11 2014-02-05 北京科技大学 Ti-Si-Al-based alloy containing RE (rare earth) and intermetallic compound reinforcing phase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105659A (en) * 1990-08-27 1992-04-07 Shinya Iwamoto Biological titanium alloy and manufacture thereof
JPH06256872A (en) * 1993-03-02 1994-09-13 In Frantsevich Inst For Problems Of Material Sci Titanium based composite and production thereof
JP2002212708A (en) * 2000-11-16 2002-07-31 Hitachi Metals Ltd Ti-Si ALLOY BASED TARGET MATERIAL, PRODUCTION METHOD THEREFOR AND FILM COATING METHOD

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043459A (en) * 1990-04-19 1992-01-08 Mitsubishi Electric Corp Manufacture of laminated semiconductor device
CA2173593A1 (en) * 1993-10-06 1995-04-13 Peter Harlow Morton Titanium alloy products and methods for their production
JP2001089821A (en) * 1999-09-22 2001-04-03 Sumitomo Metal Ind Ltd Titanium alloy having high strength and high ductility and excellent in high temperature atmospheric oxidation resistance
JP2002088407A (en) * 2000-09-12 2002-03-27 Matsumoto Shika Univ Particle mainly consisting of metal, elecrode member and method for producing the elecrode member
JP3793813B2 (en) * 2002-09-13 2006-07-05 独立行政法人産業技術総合研究所 High strength titanium alloy and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105659A (en) * 1990-08-27 1992-04-07 Shinya Iwamoto Biological titanium alloy and manufacture thereof
JPH06256872A (en) * 1993-03-02 1994-09-13 In Frantsevich Inst For Problems Of Material Sci Titanium based composite and production thereof
JP2002212708A (en) * 2000-11-16 2002-07-31 Hitachi Metals Ltd Ti-Si ALLOY BASED TARGET MATERIAL, PRODUCTION METHOD THEREFOR AND FILM COATING METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555999A (en) * 2013-11-06 2014-02-05 北京科技大学 High-strength cast Ti-Si-Al-B-Zr base alloy
CN103556000A (en) * 2013-11-11 2014-02-05 北京科技大学 Ti-Si-Al-based alloy containing RE (rare earth) and intermetallic compound reinforcing phase

Also Published As

Publication number Publication date
BRPI0513282A (en) 2008-05-06
NO20045664L (en) 2006-01-16
CA2571761C (en) 2010-06-01
EP1778885A4 (en) 2012-12-26
AU2005263030B2 (en) 2009-07-02
WO2006006869A1 (en) 2006-01-19
EA010770B1 (en) 2008-10-30
JP4599402B2 (en) 2010-12-15
BRPI0513282B1 (en) 2014-09-16
CA2571761A1 (en) 2006-01-19
KR20070049157A (en) 2007-05-10
EP1778885A1 (en) 2007-05-02
UA82165C2 (en) 2008-03-11
EP1778885B1 (en) 2014-12-10
EA200700126A1 (en) 2007-04-27
DK1778885T3 (en) 2015-02-23
NO20045664D0 (en) 2004-12-27
ES2530635T3 (en) 2015-03-04
NO322348B1 (en) 2006-09-18
AU2005263030A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP5582532B2 (en) Co-based alloy
US9388481B2 (en) High strength, oxidation and wear resistant titanium-silicon based alloy
US11780003B2 (en) Titanium alloys
EP1512767A1 (en) Age-hardenable, corrosion resistant Ni-Cr-Mo alloys
JPS61147839A (en) Fatique resistant nickel base hard alloy forged body
JP5758402B2 (en) Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
JPS63286557A (en) Production of article from al base alloy
JPH0730419B2 (en) Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JP3873313B2 (en) Method for producing high-strength titanium alloy
JPH0776398B2 (en) Method for producing titanium aluminide containing niobium and boron
JP4599402B2 (en) High strength, oxidation resistance, wear resistance titanium-silicon substrate alloy
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
JP2000345259A (en) CREEP RESISTANT gamma TYPE TITANIUM ALUMINIDE
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
US20120175027A1 (en) Heat Treatment of Alloys Having Elements for Improving Grain Boundary Strength
KR100209305B1 (en) Manufacturing method of gamma titanium aluminaid alloy
JP2022024243A (en) β TITANIUM ALLOY
JP2022178435A (en) titanium alloy
JP3331625B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
CN118241090A (en) Aluminum alloy, preparation method thereof, aluminum alloy product and application thereof
WO2023162540A1 (en) Aluminum alloy material and method for producing same
KR100497053B1 (en) High strength aluminum casting alloy with improved age-hardenability
JPH06220560A (en) Titanium aluminum based alloy material excellent in balance of strength and ductility and its production
Moller et al. Optimisation of the T6 heat treatment of rheocast alloy A356

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Ref document number: 4599402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250