NO322348B1 - High strength titanium silicon alloys, oxidation and abrasion resistance - Google Patents

High strength titanium silicon alloys, oxidation and abrasion resistance Download PDF

Info

Publication number
NO322348B1
NO322348B1 NO20045664A NO20045664A NO322348B1 NO 322348 B1 NO322348 B1 NO 322348B1 NO 20045664 A NO20045664 A NO 20045664A NO 20045664 A NO20045664 A NO 20045664A NO 322348 B1 NO322348 B1 NO 322348B1
Authority
NO
Norway
Prior art keywords
alloy
oxidation
alloys
weight
high strength
Prior art date
Application number
NO20045664A
Other languages
Norwegian (no)
Other versions
NO20045664D0 (en
NO20045664L (en
Inventor
Karl Forwald
Kai Johansen
Georg Frommemeyer
Original Assignee
Elkem As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO20042959A external-priority patent/NO20042959D0/en
Application filed by Elkem As filed Critical Elkem As
Priority to NO20045664A priority Critical patent/NO322348B1/en
Publication of NO20045664D0 publication Critical patent/NO20045664D0/en
Priority to UAA200701475A priority patent/UA82165C2/en
Priority to EP05767947.4A priority patent/EP1778885B1/en
Priority to CA2571761A priority patent/CA2571761C/en
Priority to BRPI0513282-7A priority patent/BRPI0513282B1/en
Priority to ES05767947T priority patent/ES2530635T3/en
Priority to PCT/NO2005/000246 priority patent/WO2006006869A1/en
Priority to JP2007521423A priority patent/JP4599402B2/en
Priority to KR1020077002855A priority patent/KR20070049157A/en
Priority to AU2005263030A priority patent/AU2005263030B2/en
Priority to EA200700126A priority patent/EA010770B1/en
Priority to DK05767947.4T priority patent/DK1778885T3/en
Publication of NO20045664L publication Critical patent/NO20045664L/en
Publication of NO322348B1 publication Critical patent/NO322348B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Oppfinnelsen vedrører høystyrke, oksidasjons- og slitemotstandsdyktige titansilisium basert legering inneholdende: 2,5-12 vekt % Si 0,001-1 vekt % sjeldne jordartsmetaller og/eller yttrium og/eller scandium 0-5 vekt % Cr 0-5 vekt % Al 0-0,5 vekt % BThe invention relates to high strength, oxidation and abrasion resistant titanium silicon based alloy containing: 2.5-12 wt% Si 0.001-1 wt% rare earth metals and / or yttrium and / or scandium 0-5 wt% Cr 0-5 wt% Al 0- 0.5% by weight B

Description

Teknisk område Technical area

Den foreliggende oppfinnelse vedrører silisium-inneholdende titanbaserte legeringer inneholdende sjeldne jordartsmetaller (Er, Ce og La inneholdende mischmetall) og/eller yttrium og/eller scandium samt aluminium og eventuelt krom og bor. The present invention relates to silicon-containing titanium-based alloys containing rare earth metals (Er, Ce and La containing mischmetall) and/or yttrium and/or scandium as well as aluminum and possibly chromium and boron.

Teknikkens stilting The stilting of the technique

Et stort antall tofase a/p-titan og nær a-titanlegeringer slik som Ti-6A!-4V, IMI 834 (Ti-5,8AI-4Sn-3Zr-0,7Nb-0,5Mo-0,35Si-0,06C) og TIMET 1100 (Ti-6AI-2,7Sn-42r-0,4Mo-0,45Si) viser generelt stort potensiale i fly- og romfartsindustrien. A large number of two-phase a/p titanium and near a-titanium alloys such as Ti-6A!-4V, IMI 834 (Ti-5.8AI-4Sn-3Zr-0.7Nb-0.5Mo-0.35Si-0, 06C) and TIMET 1100 (Ti-6AI-2.7Sn-42r-0.4Mo-0.45Si) generally show great potential in the aerospace industry.

Blant disse legeringene har Ti-6AI-4V den bredeste anvendelse på grunn av en optimal kombinasjon av høy styrke og bruddseighet og utmerkede utmatingsegenskaper ved romtemperatur og ved forhøyet temperatur. Disse legeringene har imidlertid noen ulemper så som dårlig oksidasjonsmotstandsdyktighet ved temperaturer over 475°C (dannelse av a-fase) og utilstrekkelig sigegrense ved 600°C og ved høyere temperaturer og en dårlig slitasjemotstandsdyktighet ved romtemperatur og ved høyere temperaturer, a-fasen forårsaker spaltedannelse på den oksiderte overflaten og har en ødeleggende virkning på utmatningsegenskapene. Lysbuesmeltemetoden som anvendes for å fremstille disse legeringene som har et relativt høyt smelte-punkt på ca. 1660°C og den nødvendige overoppvarmingen av smeiten til ca. 1750°C til 1770°C er meget energikrevende for å fremstille støpestykker ved investmentstøping for fly- og bilindustrien og for engineeringformål generelt. Among these alloys, Ti-6AI-4V has the widest application due to an optimal combination of high strength and fracture toughness and excellent fatigue properties at room temperature and at elevated temperature. However, these alloys have some disadvantages such as poor oxidation resistance at temperatures above 475°C (formation of a-phase) and insufficient yield strength at 600°C and at higher temperatures and a poor wear resistance at room temperature and at higher temperatures, the a-phase causes cracking on the oxidized surface and has a destructive effect on the fatigue properties. The arc melting method used to produce these alloys, which have a relatively high melting point of approx. 1660°C and the necessary superheating of the forge to approx. 1750°C to 1770°C is very energy-intensive to produce castings by investment casting for the aircraft and automotive industry and for engineering purposes in general.

Lavsilisiuminneholdende titanbaserte legeringer er velkjent. Således beskriver JP 2002060871A en titanlegering inneholdende 0,2-2,3 vekt % Si, 0,1-0,7 vekt % O (totalt oksygeninnhold) og 0,16-1.12 vekt % N og 0,001-0,3 vekt % B hvor resten er titan inkludert uunngåelige forurensninger hvilken legering anvendes for støpte produkter. Disse er for eksempel hoder for golfkøller, fiskekroker, og medisinske komponenter så som tannkremer, implementater, beinplater, ledd og kroner. Titanlegeringen med lavt silisiuminnhold har imidlertid den ulempe at små nåleformede Ti3Si-korn utfelles langs komgrensene, hvilket minsker bruddseigheten og duktiliteten av dette materialet. Low-silicon titanium-based alloys are well known. Thus, JP 2002060871A describes a titanium alloy containing 0.2-2.3 wt% Si, 0.1-0.7 wt% O (total oxygen content) and 0.16-1.12 wt% N and 0.001-0.3 wt% B where the rest is titanium including unavoidable impurities which alloy is used for cast products. These are, for example, golf club heads, fishing hooks, and medical components such as toothpastes, implants, bone plates, joints and crowns. However, the titanium alloy with a low silicon content has the disadvantage that small needle-shaped Ti3Si grains are precipitated along the grain boundaries, which reduces the fracture toughness and ductility of this material.

Fra JP 04-345913 er det videre kjent en lavlegert titanlegering for substrat for magnetskiver inneholdende mindre enn 0.015% totalt av sjeldne jordartsmetaller, Si, B og W for å unngå inklusjoner som kan gi magnetiske feil. From JP 04-345913 it is further known a low-alloy titanium alloy for substrate for magnetic discs containing less than 0.015% in total of rare earth metals, Si, B and W to avoid inclusions that can cause magnetic defects.

Det er derfor et behov for en legering som har en høy styrke ved høye temperaturer, har et lavere smeltepunkt enn Ti-AI-V legeringer og har gode støpeegenskaper. There is therefore a need for an alloy that has a high strength at high temperatures, has a lower melting point than Ti-AI-V alloys and has good casting properties.

Fra artikkelen "Structures and properties of the refractory silicides, Ti5Si3 and TiS2 and Ti-Si-(AI) eutectic alloys", av Frommeyer et. al. publisert mai 2004 er det på side 301 beskrevet en hypoeutektisk legering Ti-Si7,5-AI1 legering. Det er beskrevet i artikkelen at med økende silisiuminnhold opp til ca. 9 vekt %, består mikrostrukturen av støpte prøver av en fin dispersjon av Ti5Si3 silisidpartikler i en oc-Tt(Si) fastoppløsningsstruktur. From the article "Structures and properties of the refractory silicides, Ti5Si3 and TiS2 and Ti-Si-(AI) eutectic alloys", by Frommeyer et. eel. published May 2004, on page 301 a hypoeutectic alloy Ti-Si7,5-AI1 alloy is described. It is described in the article that with increasing silicon content up to approx. 9 wt%, the microstructure of cast samples consists of a fine dispersion of Ti5Si3 silicide particles in an oc-Tt(Si) phase solution structure.

Legeringen beskrevet av Frommeyer et. al. har utmerket hardhet og flytestyrke. Varmstyrken av disse Ti-Si-AI legeringene er imidlertid moderate og det er ingen indikasjon på oksidasjonsmotstandsdyktighet ved høy temperatur. The alloy described by Frommeyer et. eel. has excellent hardness and flow strength. However, the heat strength of these Ti-Si-AI alloys is moderate and there is no indication of oxidation resistance at high temperature.

WO 95/09932 vedrører en titanlegering med forbedrede friksjonsegenskaper bestående av 2-15 vekt % Si eller 5 til 15 vekt % Ni, 0 til 7 vekt % av minst ett av elementene valgt blant aluminium, titan, zirkonium, vanadium, krom, mangan, jern, molybden og niob og 0 til 2 vekt % av minst ett overflateforbedrende element valgt blant bor, karbon, nitrogen, oksygen og zirkonium hvor resten utgjøres av titan. Hoveddelen av legeringen består hovedsakelig av a-fase og har et overflatebelegg inneholdende finkornet Ti-Si eller Ti-Ni entektikum. Overflatebelegget dannes ved at produkter av legeringen smeltes på overflaten og deretter bråkjøles. Dette er nødvendig for å oppnå en tilstrekkelig overflatehardhet. Hardhet og oksidasjons-motstand ved forhøyede termperaturer er ikke angitt i WO 95/09932. WO 95/09932 relates to a titanium alloy with improved friction properties consisting of 2-15 wt% Si or 5 to 15 wt% Ni, 0 to 7 wt% of at least one of the elements selected from aluminum, titanium, zirconium, vanadium, chromium, manganese, iron, molybdenum and niobium and 0 to 2% by weight of at least one surface-improving element selected from boron, carbon, nitrogen, oxygen and zirconium, the remainder being titanium. The main part of the alloy consists mainly of a-phase and has a surface coating containing fine-grained Ti-Si or Ti-Ni entecticum. The surface coating is formed when products of the alloy are melted on the surface and then quenched. This is necessary to achieve a sufficient surface hardness. Hardness and oxidation resistance at elevated temperatures are not stated in WO 95/09932.

Det er derfor behov for Ti-Si-legeringer med en meget høy varmstyrke og høy oksidasjonsmotstandsdyktighet ved høye temperaturer. There is therefore a need for Ti-Si alloys with a very high hot strength and high oxidation resistance at high temperatures.

Beskrivelse av oppfinnelsen Description of the invention

Ved den foreliggende oppfinnelse er det fremskaffet Ti-Si-legeringer med relativt høyt silisiuminnhold og som har et relativt lavt smeltepunkt på grunn av den eutektiske sammensetning, gode støpeegenskaper så vel som en meget høy oksidasjonsmotstandsdyktighet og sigedeformasjon ved høye temperaturer. The present invention has provided Ti-Si alloys with a relatively high silicon content and which have a relatively low melting point due to the eutectic composition, good casting properties as well as a very high resistance to oxidation and deformation at high temperatures.

Den foreliggende oppfinnelse vedrører således en Ti-Si-legering omfattende 2,5-12 vekt % Si, 0,3-5 vekt % Al, 0-5 vekt % Cr, 0,001-1 vekt % sjeldne jordartsmetaller og/eller yttrium og/eller Sc, 0-0,5 vekt % B, hvor resten bortsett fra forurensninger er Ti. The present invention thus relates to a Ti-Si alloy comprising 2.5-12 wt% Si, 0.3-5 wt% Al, 0-5 wt% Cr, 0.001-1 wt% rare earth metals and/or yttrium and/ or Sc, 0-0.5 wt% B, where the remainder apart from impurities is Ti.

I henhold til en foretrukket utførelsesform inneholder legeringen 0,3-3 vekt % Al. According to a preferred embodiment, the alloy contains 0.3-3% by weight of Al.

I henhold til en annen utførelsesform inneholder Ti-Si-legeringen 3-6 vekt % Si og 1,2-2,5 vekt % Al. According to another embodiment, the Ti-Si alloy contains 3-6 wt% Si and 1.2-2.5 wt% Al.

I henhold til en ytterligere foretrukket utførelsesform inneholder legeringen 0,001 til 0,15 vekt % sjeldne jordartsmetaller og/eller yttrium og/eller scandium. According to a further preferred embodiment, the alloy contains 0.001 to 0.15% by weight of rare earth metals and/or yttrium and/or scandium.

Det er blitt funnet at tilsetning av sjeldne jordartsmetaller eller scandium forbedrer varmstyrken og sigegrensen av Ti-Si-legeringene opp til minst 675°C. The addition of rare earth metals or scandium has been found to improve the hot strength and yield strength of the Ti-Si alloys up to at least 675°C.

De sjeldne jordartsmetallene, yttrium og scandiumtilsetningene danner en fin dispersjon av termodynamisk stabile oksider så som E^Os, Y2O3, Ce2C>3 etc. i Ti-Si-legeringene. The rare earth metals, yttrium and scandium additions form a fine dispersion of thermodynamically stable oxides such as E^Os, Y2O3, Ce2C>3 etc. in the Ti-Si alloys.

Legeringen inneholder fortrinnsvis 0,1 til 1,5 vekt % Cr. Tilsetningen av Cr forbedrer fastfaseherding og øker derfor styrken og oksidasjonsmotstands-dyktigheten av legeringen. The alloy preferably contains 0.1 to 1.5 wt% Cr. The addition of Cr improves solid phase hardening and therefore increases the strength and oxidation resistance of the alloy.

I støpt form har legeringene ifølge oppfinnelsen finkornet, hypoeutetisk, eutetisk eller litt hypereutektiske mikrostrukturer avhengig av silisiuminnholdet. Mikrostrukturen av de eutetiske Ti-Si-legeringene består av fint dispergerte diskontinuerlige, stavformede TisSi3 silisidpartikler i en heksagonal tettpakket a-Ti(Si) fastoppløsningsmatriks. De hypoeutektiske strukturene består av primært størknede a-Ti(Si) krystaller og omgivende eutektikum. In cast form, the alloys according to the invention have fine-grained, hypoeutectic, eutectic or slightly hypereutectic microstructures, depending on the silicon content. The microstructure of the eutectic Ti-Si alloys consists of finely dispersed discontinuous, rod-shaped TisSi3 silicide particles in a hexagonal close-packed a-Ti(Si) phase solution matrix. The hypoeutectic structures consist of primarily solidified a-Ti(Si) crystals and surrounding eutectic.

Ti-Si-legeringene i henhold til oppfinnelsen har en flytegrense på minst 800 MPa, en Brinell hardhet av 350-400 HB og tilstrekkelig duktilitet og bruddseighet, en spenningsintensitet KIC på mer enn 23 MPaVm ved romtemperatur og opp til 500°C. The Ti-Si alloys according to the invention have a yield strength of at least 800 MPa, a Brinell hardness of 350-400 HB and sufficient ductility and fracture toughness, a stress intensity KIC of more than 23 MPaVm at room temperature and up to 500°C.

Ti-Si-legeringene i henhold til oppfinnelsen har videre utmerket oksidasjonsmotstandsdyktighet opp til 650°C og over avhengig av Si-innholdet samt en forbedret slitasjemotstandsdyktighet både ved romtemperatur og ved forhøyet temperatur. Flytegrensen ved 650°C er minst RPo; >250 MPa og strekkstyrken overstiger Rm = 450 MPa. The Ti-Si alloys according to the invention also have excellent oxidation resistance up to 650°C and above depending on the Si content as well as an improved wear resistance both at room temperature and at elevated temperature. The yield strength at 650°C is at least RPo; >250 MPa and the tensile strength exceeds Rm = 450 MPa.

Oksidasjonstester ved eksponering for luft ved 600°C har resultert i en vekt-økning på mindre enn 10 mg/cm<3> etter 500 timer. Til sammenligning oppviser den konvensjonelle Ti-AI6-V4-legeringen alfafasedannelse ved 475°C ved langtidseksponering i luft. Oxidation tests by exposure to air at 600°C have resulted in a weight increase of less than 10 mg/cm<3> after 500 hours. In comparison, the conventional Ti-AI6-V4 alloy exhibits alpha phase formation at 475°C upon long-term exposure in air.

Sigegrensen (pålagt kraft ved en gitt temperatur hvor tøyningshastigheten er é =10*V<1>) av Ti-Si-legeringene i henhold til oppfinnelsen er høyere enn 220 MPa ved 600°C. Til sammenligning har Ti-AI6-V4 legeringen for potensiell anvendelse i fly- og romfartsindustrien en sigegrense av ca. 150 MPa ved 450°C. The yield strength (imposed force at a given temperature where the strain rate is é =10*V<1>) of the Ti-Si alloys according to the invention is higher than 220 MPa at 600°C. In comparison, the Ti-AI6-V4 alloy for potential use in the aviation and space industry has a yield strength of approx. 150 MPa at 450°C.

Ti-Si-legeringene i henhold til oppfinnelsen har et lavt smeltepunkt av mellom ca. 1330°C og 1380°C. Legeringene i henhold til oppfinnelsen har videre utmerkede støpeegenskaper som muliggjør støping av praktisk talt alle størrelser og former. The Ti-Si alloys according to the invention have a low melting point of between approx. 1330°C and 1380°C. The alloys according to the invention also have excellent casting properties which enable the casting of practically all sizes and shapes.

Som et resultat av det brede spektrum av egenskaper som er beskrevet ovenfor, kan Ti-Si-legeringene i henhold til oppfinnelsen med fordel anvendes for fremstilling av en rekke komponenter som utsettes for høye temperaturer så som: forbindelsesstaver, stempler, stempelkroner, innløps- og utløpsventiler og manifolder for eksosgass i forbrenningsmotorer og dieselmotorer; As a result of the wide spectrum of properties described above, the Ti-Si alloys according to the invention can be advantageously used for the production of a number of components which are exposed to high temperatures such as: connecting rods, pistons, piston crowns, inlet and discharge valves and manifolds for exhaust gas in internal combustion engines and diesel engines;

statiske blad i aksialstrømmingskompressorer og vifteblad i jetmotorer; static blades in axial flow compressors and fan blades in jet engines;

komponenter for varmevekslere og varmt media transportrør for kraftstasjoner; components for heat exchangers and hot media transport pipes for power stations;

slitasjemotstandsdyktige deler i tekstilmaskiner og vevestoler så som skytler og forbindelseselementer; wear-resistant parts in textile machines and looms such as shuttles and connecting elements;

medisinske implementater, beinplater, ledd; medical implants, bone plates, joints;

hardbelegg og overflatelegering anvendt som betegning av overflater for engineeringformål for å forbedre slitasjemotstandsdyktighet og for å unngå tæring; hard coating and surface alloy used as designation of surfaces for engineering purposes to improve wear resistance and to avoid corrosion;

klokkehus; clock house;

pumpehus og impellere for bruk i kjemisk industri og i oljeindustri. pump housings and impellers for use in the chemical industry and in the oil industry.

Ti-Si-legeringene i henhold til oppfinnelsen er spesielt anvendbare for støpte komponenter på grunn av deres relativt lave smeltepunkt på ca. 1330°C til 1380°C og deres utmerkede støpbarhet. The Ti-Si alloys according to the invention are particularly applicable for cast components due to their relatively low melting point of approx. 1330°C to 1380°C and their excellent castability.

Ti-Si-legeringene i henhold til oppfinnelsen kan fremstilles på konvensjonell måte stik som ved lysbuesmelting i vannkjølte kobberdigler. The Ti-Si alloys according to the invention can be produced in a conventional manner directly such as by arc melting in water-cooled copper crucibles.

Detaljert beskrivelse av oppfinnelsen Detailed description of the invention

Eksempel 1 Example 1

En hypoeutektisk (nær eutektisk) oksidasjonsforsterket Ti-7Si-2AI legering tilsatt 0,07 vekt % Y ble fremstilt ved lysbuesmelting. Titansvamp med en renhet av mer enn 99,8 vekt %, metallurgisk kvalitet silisium og aluminiums-granuler med en renhet på mer enn 99,8 vekt % ble benyttet som utgangs-materialer. Legeringen ble holdt i en vannkjølt kobberdigel under lysbuesmelting ved dannelse av en tynn, fast skorpe i kobberdigelen og ble så støpt i kobberformer for å fremstille stavformede ingoter. Disse ble maskineri ved dreiing og sliping til sylindriske prøvestaver med en fin overflate for kompresjons- og strekktester. Metallisk yttrium ble tilsatt til smeiten og dannet Y203 med den oppløste oksygenmengde på ca. 1200 ppm. A hypoeutectic (near eutectic) oxidation-strengthened Ti-7Si-2AI alloy with 0.07 wt% Y added was produced by arc melting. Titanium sponge with a purity of more than 99.8% by weight, metallurgical grade silicon and aluminum granules with a purity of more than 99.8% by weight were used as starting materials. The alloy was held in a water-cooled copper crucible under arc melting by forming a thin, solid crust in the copper crucible and was then cast into copper molds to produce rod-shaped ingots. These were machined by turning and grinding into cylindrical test rods with a fine surface for compression and tension tests. Metallic yttrium was added to the melt and formed Y 2 O 3 with the dissolved oxygen amount of approx. 1200 ppm.

Brinellhardheten ble bestemt til 347 ± 2 HB ved en last på 187,5 Kp. Den målte flytegrensen var ca. 960 til 990 MPa. Sigeforsøk ved 600°C med en tøyningshastighet av éa10'V1 viste en sigestyrke mellom 235 og 255 MPa. The Brinell hardness was determined to be 347 ± 2 HB at a load of 187.5 Kp. The measured yield strength was approx. 960 to 990 MPa. Strain tests at 600°C with a strain rate of éa10'V1 showed a yield strength between 235 and 255 MPa.

Eksempel 2 Example 2

En hypoeutetisk oksiddispersasjonsforsterket Ti-5,5Si-3,5Ai-1,5Cr-0,1Y ble fremstilt ved smeltemetoden beskrevet i eksempel 1. Metallisk yttrium ble tilsatt smeiten og dannet Y203 med oppløst oksygen i smeiten. A hypoeutectic oxide dispersion reinforced Ti-5.5Si-3.5Ai-1.5Cr-0.1Y was produced by the melting method described in example 1. Metallic yttrium was added to the melt and formed Y 2 O 3 with dissolved oxygen in the melt.

Brinellhardheten ble målt til 373 ± 2HB ved en last på 187,5 Kp ved romtemperatur og bruddseighets spenningsintensiviteten ble målt til K|C = 21 MPaVm. Ved 650°C ble strekkstyrken målt til ca. Rm = 360 MPa, The Brinell hardness was measured at 373 ± 2HB at a load of 187.5 Kp at room temperature and the fracture toughness stress intensity was measured at K|C = 21 MPaVm. At 650°C, the tensile strength was measured at approx. Rm = 360 MPa,

bruddseigheten var mellom 35 og 40 MPa Æ og sigestyrken ved en tøyningshastighet av s=10"V<1> oversteg 270 MPa. the fracture toughness was between 35 and 40 MPa Æ and the yield strength at a strain rate of s=10"V<1> exceeded 270 MPa.

Oksidasjonsforsøk ved 600°C i luft førte til en vektøkning på mindre enn 8 mg/cm<3> etter en eksponeringstid på 500 timer. Til sammenligning viser oksidasjonsforsøk med den kommersielle Ti-6AI-4V-legeringen en vektøkning på mer enn 20 mg/cm<3> etter 500 timers eksponering i luft ved 600°C. Oxidation tests at 600°C in air led to a weight increase of less than 8 mg/cm<3> after an exposure time of 500 hours. In comparison, oxidation tests with the commercial Ti-6AI-4V alloy show a weight increase of more than 20 mg/cm<3> after 500 hours of exposure in air at 600°C.

Disse eksemplene viser at Ti-Si-legeringene i forhold til oppfinnelsen har en overraskende høy varmestyrke og meget god oksidasjonsmotstandsdyktighet ved høye temperaturer. These examples show that the Ti-Si alloys in relation to the invention have a surprisingly high heat strength and very good oxidation resistance at high temperatures.

Claims (6)

1. Høystyrke, oksidasjons- og slitemotstandsdyktig titan-silisium basert legering, karakterisert ved at legeringen inneholder: 2,5-12 vekt % Si 0,001-1 vekt % sjeldne jordartsmetaller og/eller yttrium og/eller scandium 0,3-5 vekt % Al 0-5 vekt % Cr 0-0,5 vekt % B hvor resten bortsett fra uunngåelige forurensninger utgjøres av Ti.1. High-strength, oxidation- and wear-resistant titanium-silicon based alloy, characterized in that the alloy contains: 2.5-12 weight % Si 0.001-1 weight % rare earth metals and/or yttrium and/or scandium 0.3-5 weight % Al 0-5 wt % Cr 0-0.5 wt % B where the remainder apart from unavoidable impurities is made up of Ti. 2. Legering ifølge krav 1, karakterisert ved at legeringen inneholder 0,3-3 vekt % Al.2. Alloy according to claim 1, characterized in that the alloy contains 0.3-3% by weight of Al. 3. Legering ifølge krav 1, karakterisert ved at legeringen inneholder 0,001 til 0,15 vekt % sjeldne jordartsmetaller og/eller yttrium og/eller scandium.3. Alloy according to claim 1, characterized in that the alloy contains 0.001 to 0.15% by weight of rare earth metals and/or yttrium and/or scandium. 4. Legering ifølge krav 1-3, karakterisert ved at legeringen inneholder 0,1 til 1,5 vekt % Cr.4. Alloy according to claims 1-3, characterized in that the alloy contains 0.1 to 1.5% by weight Cr. 5. Legering ifølge krav 1-4, karakterisert ved at legeringen inneholder 0,01 til 0,03 vekt % B.5. Alloy according to claims 1-4, characterized in that the alloy contains 0.01 to 0.03 wt% B. 6. Legering ifølge krav 1, karakterisert ved at legeringen inneholder 3-6 vekt % Si og 1,2-2,5 vekt % Al.6. Alloy according to claim 1, characterized in that the alloy contains 3-6% by weight Si and 1.2-2.5% by weight Al.
NO20045664A 2004-07-13 2004-12-27 High strength titanium silicon alloys, oxidation and abrasion resistance NO322348B1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
NO20045664A NO322348B1 (en) 2004-07-13 2004-12-27 High strength titanium silicon alloys, oxidation and abrasion resistance
UAA200701475A UA82165C2 (en) 2004-07-13 2005-01-07 High strength, oxidation and wear resistant titanium-silicon based alloy
DK05767947.4T DK1778885T3 (en) 2004-07-13 2005-07-01 Oxidation and wear resistance of titanium-silicon-based alloy of high strength
EA200700126A EA010770B1 (en) 2004-07-13 2005-07-01 High strength, oxidation and wear resistant titanium-silicon based alloy
ES05767947T ES2530635T3 (en) 2004-07-13 2005-07-01 Alloy based on titanium-silicon, high strength and resistant to wear and oxidation
CA2571761A CA2571761C (en) 2004-07-13 2005-07-01 High strength, oxidation and wear resistant titanium-silicon alloy
BRPI0513282-7A BRPI0513282B1 (en) 2004-07-13 2005-07-01 CONNECTS HIGH MECHANICAL RESISTANCE TITANIUM SILICON BASIS RESISTANT TO WEAR AND WEAR
EP05767947.4A EP1778885B1 (en) 2004-07-13 2005-07-01 High strength, oxidation and wear resistant titanium-silicon based alloy
PCT/NO2005/000246 WO2006006869A1 (en) 2004-07-13 2005-07-01 High strength, oxidation and wear resistant titanium-silicon based alloy
JP2007521423A JP4599402B2 (en) 2004-07-13 2005-07-01 High strength, oxidation resistance, wear resistance titanium-silicon substrate alloy
KR1020077002855A KR20070049157A (en) 2004-07-13 2005-07-01 High strength, oxidation and wear resistant titanium-silicon based alloy
AU2005263030A AU2005263030B2 (en) 2004-07-13 2005-07-01 High strength, oxidation and wear resistant titanium-silicon based alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20042959A NO20042959D0 (en) 2004-07-13 2004-07-13 High strength, oxidation and wear resistant titanium-silicon base alloys and the use thereof
NO20045664A NO322348B1 (en) 2004-07-13 2004-12-27 High strength titanium silicon alloys, oxidation and abrasion resistance

Publications (3)

Publication Number Publication Date
NO20045664D0 NO20045664D0 (en) 2004-12-27
NO20045664L NO20045664L (en) 2006-01-16
NO322348B1 true NO322348B1 (en) 2006-09-18

Family

ID=35209717

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20045664A NO322348B1 (en) 2004-07-13 2004-12-27 High strength titanium silicon alloys, oxidation and abrasion resistance

Country Status (12)

Country Link
EP (1) EP1778885B1 (en)
JP (1) JP4599402B2 (en)
KR (1) KR20070049157A (en)
AU (1) AU2005263030B2 (en)
BR (1) BRPI0513282B1 (en)
CA (1) CA2571761C (en)
DK (1) DK1778885T3 (en)
EA (1) EA010770B1 (en)
ES (1) ES2530635T3 (en)
NO (1) NO322348B1 (en)
UA (1) UA82165C2 (en)
WO (1) WO2006006869A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555999A (en) * 2013-11-06 2014-02-05 北京科技大学 High-strength cast Ti-Si-Al-B-Zr base alloy
CN103556000A (en) * 2013-11-11 2014-02-05 北京科技大学 Ti-Si-Al-based alloy containing RE (rare earth) and intermetallic compound reinforcing phase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043459A (en) * 1990-04-19 1992-01-08 Mitsubishi Electric Corp Manufacture of laminated semiconductor device
WO1995009932A1 (en) * 1993-10-06 1995-04-13 The University Of Birmingham Titanium alloy products and methods for their production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105659A (en) * 1990-08-27 1992-04-07 Shinya Iwamoto Biological titanium alloy and manufacture thereof
US5366570A (en) * 1993-03-02 1994-11-22 Cermics Venture International Titanium matrix composites
JP2001089821A (en) * 1999-09-22 2001-04-03 Sumitomo Metal Ind Ltd Titanium alloy having high strength and high ductility and excellent in high temperature atmospheric oxidation resistance
JP2002088407A (en) * 2000-09-12 2002-03-27 Matsumoto Shika Univ Particle mainly consisting of metal, elecrode member and method for producing the elecrode member
JP3765475B2 (en) * 2000-11-16 2006-04-12 日立金属株式会社 Ti-Si alloy-based target material, method for producing the same, and film coating method
JP3793813B2 (en) * 2002-09-13 2006-07-05 独立行政法人産業技術総合研究所 High strength titanium alloy and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043459A (en) * 1990-04-19 1992-01-08 Mitsubishi Electric Corp Manufacture of laminated semiconductor device
WO1995009932A1 (en) * 1993-10-06 1995-04-13 The University Of Birmingham Titanium alloy products and methods for their production

Also Published As

Publication number Publication date
EP1778885A4 (en) 2012-12-26
CA2571761A1 (en) 2006-01-19
ES2530635T3 (en) 2015-03-04
NO20045664D0 (en) 2004-12-27
BRPI0513282B1 (en) 2014-09-16
EP1778885A1 (en) 2007-05-02
DK1778885T3 (en) 2015-02-23
EA200700126A1 (en) 2007-04-27
NO20045664L (en) 2006-01-16
EA010770B1 (en) 2008-10-30
WO2006006869A1 (en) 2006-01-19
EP1778885B1 (en) 2014-12-10
KR20070049157A (en) 2007-05-10
BRPI0513282A (en) 2008-05-06
UA82165C2 (en) 2008-03-11
JP4599402B2 (en) 2010-12-15
CA2571761C (en) 2010-06-01
JP2008506838A (en) 2008-03-06
AU2005263030B2 (en) 2009-07-02
AU2005263030A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
CN110551920B (en) High-performance easy-processing nickel-based wrought superalloy and preparation method thereof
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
US9388481B2 (en) High strength, oxidation and wear resistant titanium-silicon based alloy
EP2532761B1 (en) Cobalt-nickel base alloy and method of making an article therefrom
US20110194971A1 (en) Heat-resistant superalloy
EP1524324B1 (en) Aluminum alloys for casting, aluminum alloy castings and manufacturing method thereof
EP1512767A1 (en) Age-hardenable, corrosion resistant Ni-Cr-Mo alloys
JP4800864B2 (en) compressor
US8858874B2 (en) Ternary nickel eutectic alloy
CA2586974A1 (en) Nickel-base superalloy
MX2012014123A (en) Castable heat resistant aluminium alloy.
JP5047456B2 (en) Precipitation strengthened nickel-iron-chromium alloy and method of processing the same
JP5063550B2 (en) Nickel-based alloy and gas turbine blade using the same
JP5558050B2 (en) Nickel-base superalloy for unidirectional solidification with excellent strength and oxidation resistance
JP2013199680A (en) Nickel-based alloy, cast article, gas turbine blade and gas turbine
JP5595495B2 (en) Nickel-base superalloy
NO322348B1 (en) High strength titanium silicon alloys, oxidation and abrasion resistance
JPH0610082A (en) High-corrosion resistant and high-strength sintered hard alloy, high-corrosion resistant and high-strength single crystal casting, gas turbine and combined cycle power generating system
JP2018076571A (en) Fe-Ni-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
CN103556000A (en) Ti-Si-Al-based alloy containing RE (rare earth) and intermetallic compound reinforcing phase
US5358584A (en) High intermetallic Ti-Al-V-Cr alloys combining high temperature strength with excellent room temperature ductility
JP5396445B2 (en) gas turbine
Verin et al. Intermetallids Ni3Al and Fe3Al with directional structure as future materials
JP2013185210A (en) Nickel-based alloy and gas turbine blade using the same

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: ELKEM ASA, NO

CREP Change of representative

Representative=s name: ROBERTHA NATALIA HOEGLUND, C/O ELKEM ASA