JP2008309345A - 冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置 - Google Patents

冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置 Download PDF

Info

Publication number
JP2008309345A
JP2008309345A JP2007154729A JP2007154729A JP2008309345A JP 2008309345 A JP2008309345 A JP 2008309345A JP 2007154729 A JP2007154729 A JP 2007154729A JP 2007154729 A JP2007154729 A JP 2007154729A JP 2008309345 A JP2008309345 A JP 2008309345A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant flow
expansion valve
chamber
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007154729A
Other languages
English (en)
Inventor
Toru Yukimoto
徹 雪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007154729A priority Critical patent/JP2008309345A/ja
Publication of JP2008309345A publication Critical patent/JP2008309345A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】本発明は、正方向冷媒流れ(膨張弁機能を行う部分から冷媒分流機能を行う部分への冷媒流れ)又はこの流れとは逆の逆方向冷媒流れの何れにおいても、膨張弁における不連続な冷媒流動音を低減するとともに、良好な冷媒分流特性が得られるようにした冷媒分流器一体化構造の膨張弁、及びこの膨張弁を用いた冷凍装置を提供することを目的とする。
【解決手段】本発明に係る冷媒分流器一体化構造の膨張弁は、絞り作用を行う第1絞り部10と、第1絞り部10通過後の冷媒を分流管12に分流する、略円筒状の冷媒分流室6と、冷媒分流室6に接続された複数の分流管12とを備える。複数の分流管12は、略円筒状の冷媒分流室6の側壁に対し、それぞれ略一定の接線方向に開口するように接続されている。
【選択図】図1

Description

本発明は、冷媒分流器と膨張弁とを一体化した冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置に関する。
空気調和装置、冷蔵庫、製造工程用冷却装置などの冷凍装置において、蒸発器が複数のパス(熱交換器における冷媒流通路)で構成される場合がある。この場合の冷媒回路は、例えば、図16に示すように構成されている。圧縮機101によって加圧された冷媒は、凝縮器(この場合室外側熱交換器)102で凝縮され、受液器103を経て膨張弁104に送られる。膨張弁104で減圧された冷媒は、冷媒配管105を介して冷媒分流器106に送られ、冷媒分流器106で分流されて蒸発器(この場合室内側熱交換器)107の複数のパスに送られる。蒸発器107に送られた低圧冷媒は、蒸発器107で蒸発気化し、アキュムレータ108を介して圧縮機101に還流される。このように蒸発器107が複数のパスに構成される場合には、膨張弁104の下流側の冷媒配管105に、膨張弁104で減圧された冷媒を蒸発器107の複数のパスに均等に分流するための冷媒分流器106が取り付けられている。なお、冷媒分流器106は、例えば特許文献1に記載されているように、所定容積の冷媒分配空間(以下冷媒分流室という)を備えた容器であって、この容器に、この冷媒分流室と蒸発器107の各パスとを接続するための分流管取付孔が形成されたものである。したがって、冷媒分流器106に流入する冷媒は、所定の流通方向においては膨張弁104で減圧された冷媒であるため、低圧の気液二相流冷媒となっている。そして、この気液二相流冷媒は、膨張弁104と冷媒分流器106とを接続する冷媒配管105を流れる間に大きな気泡が存在するプラグ流やスラグ流になりやすい。また、冷媒分流器106に流入する冷媒がプラグ流やスラグ流になった場合は、重力の影響等により、各分流管に気泡が均等に流入しないことがあり、均等な分流が行われ難いという問題があった。
そこで、最近の冷媒分流器においては、例えば、特許文献1に記載のように、分流管取付穴の上流側に開度一定の絞り部(特許文献1では経路縮小部材)を配置し、この絞り部下流側の冷媒を噴霧状態とすることにより、均等な分流を実現しようとする提案がなされている。
一方、上記の冷媒分流器の問題とは別に、膨張弁においては次のように不連続な冷媒流動音が問題となっている。
膨張弁は、一般に、流入する冷媒が高圧液冷媒であることを基本としている。ところが、冷凍装置の運転条件の変動などにより、膨張弁の上流側、すなわち受液器の出口(受液器がない場合は凝縮器の出口)側の冷媒に気泡が含まれる場合がある。そして、この気泡を含む高圧液冷媒は、膨張弁に至る冷媒配管を流通する間に配管外部から加熱されて気泡が増加したり、冷媒流中の気泡が合体したりすることがある。その結果、大きな気泡が断続的に存在するプラグ流やスラグ流に成長して膨張弁に流入することがある。また、プラグ流やスラグ流が膨張弁に送られてくると、絞り部に対し液冷媒とガス冷媒とが交互に流れる不連続状態となり、膨張弁の冷媒流に速度変動及び圧力変動が生ずる。このため、絞り部では気液が交互に流れることにより「チュルチュル」という音を発したり、絞り部から冷媒配管系へ流出する霧状冷媒の噴出速度及び圧力が変動して膨張弁出口側で「シャーシャー」という音を発したりというように不連続な冷媒流動音が発生するという問題があった。さらには、冷媒配管内の速度変動及び圧力変動により膨張弁や接続配管などの膨張弁周りの機器が振動して膨張弁周りに振動音を発生するという問題があった。なお、このような不連続な冷媒流動音及び振動音を総称して、以下の説明では膨張弁における不連続な冷媒流動音という。
このように膨張弁の上流側の冷媒流が冷凍装置の運転条件の変動などによりプラグ流やスラグ流に成長することは、冷媒回路を可逆に切り換えて冷暖房を行う装置の場合には、冷房運転、暖房運転何れにおいてもその可能性がある。また、プラグ流やスラグ流が膨張弁の入口に流れ込むことによる膨張弁における不連続な冷媒流動音は、冷暖房兼用の膨張弁については冷暖房何れの運転においても、暖房運転時のみに使用される暖房用膨張弁については暖房運転時に、冷房運転時のみに使用される冷房用膨張弁については冷房運転時に、それぞれ発生する可能性がある。
例えば、セパレート型の冷暖房機の場合においては、室外ユニット内には暖房時の室外側熱交換器の入口側に暖房用膨張弁が設置され、室内ユニットには冷房時の室内側熱交換器用の入口側に冷房用膨張弁が設置されることが多くなっている。そして、この場合、室外ユニットに設置される暖房用膨張弁については暖房運転時に上記の問題点が生じ、室内ユニットに設置される冷房用膨張弁について上記の問題点が生じることは言うまでもない。さらに、室内ユニットに設置される冷房用膨張弁については、暖房時において室内側熱交換器出口の過冷却度の調整に使用される場合がある。この場合、冷房用膨張弁は、室内側熱交換器のすぐ近くに設置されているので、暖房運転開始の過渡期を経過した後に、膨張弁にプラグ流やスラグ流が流れ込むことは殆どない。しかしながら、室内側熱交換器は暖房運転停止期間中には気液二相の状態で冷媒が貯留されているので、運転開始直後においては、上記と同様に、プラグ流やスラグ流が膨張弁の入口に流れ込むことがあり、上記と同様の冷媒流動音を発生する可能性がある。
このような膨張弁における不連続な冷媒流動音を低減する方法として、従来は、膨張弁における冷媒流の速度変動及び圧力変動を緩和する手段が、膨張弁内に設けられていた。例えば、特許文献2においては、閉鎖可能な絞り部の上流側に冷媒流を減圧する他の絞り部が設けられていた。また、特許文献3においては、閉鎖可能な絞り部の上流側に、冷媒流に乱れを生起する乱れ生起部が設けられていた。また、特許文献4においては、閉鎖可能な絞り部の下流側に冷媒流を減圧する他の絞り部が設けられていた。
特開2002−188869号公報 特開2005−69644号公報 特開2005−351605号公報 特開2005−226846号公報
上述のように、従来の冷媒分流器では、分流を均等に行う手段として分流管取付孔の上流側に絞り部が設けられていた。しかし、絞り部は、冷媒分流器の上流側に設置される膨張弁における基本的な構成要素であり、このように同一構成要素を隣接する機器に重複して配置することに無駄があった。一方、従来の膨張弁では、膨張弁における不連続な冷媒流動音を低減するために、冷媒流の速度変動及び圧力変動を緩和する手段が上述のように設けられていた。しかし、このような手段を膨張弁単独の構成要素として設けることは、膨張弁が大型化しコストの上昇を招くという問題があった。
本発明は、従来技術におけるこのような問題点を解決するものであって、膨張弁における絞りと冷媒分流器における絞りとを共通化して、膨張弁から冷媒分流器に至る冷媒回路を一体化し、簡素化した冷媒分流器一体化構造の膨張弁を提供することを目的とする。また、このような冷媒分流器一体化構造の膨張弁において、膨張弁機能を行う部分から冷媒分流機能を行う部分への冷媒流れのときの冷媒流動音を低減するのみならず、この流れ方向とは逆の方向の冷媒流れの場合においても、同様の冷媒流動音の発生を抑制することをも目的とする。また、本発明は、このような冷媒分流器一体化構造の膨張弁を用いた冷凍装置を提供することを目的とする。
上記課題を解決するために、本発明に係る冷媒分流器一体化構造の膨張弁は、第1弁体と第1弁孔との間に形成された、絞り作用を行う第1絞り部と、第1絞り部通過後の冷媒を分流管に分流する、略円筒状の冷媒分流室と、冷媒分流室に接続された複数の分流管とを備え、前記複数の分流管は、略円筒状の冷媒分流室の側壁に対し、それぞれ略一定の接線方向に開口するように接続されていることを特徴とする。
このように構成された冷媒分流器一体化構造の膨張弁によれば、膨張弁と冷媒分流器とを一体化することにより、膨張弁から冷媒分流器に至る回路部分を簡素化して、その占有スペースを小さくするとともにコストを軽減することができる。
また、このように構成された冷媒分流器一体化構造の膨張弁によれば、膨張弁機能を行う部分から冷媒分流機能を行う部分への冷媒流れ(正方向冷媒流れ)において、第1絞り部通過後の噴霧状態の冷媒が冷媒配管を経ることなく直接冷媒分流室に導かれる。したがって、絞り部通過後に気液二相流がプラグ流やスラグ流に発展することがなくなり、分流特性が向上する。また、第1絞り部から流出する冷媒流の噴出エネルギは、冷媒分流室が拡大空間部として作用することにより噴霧エネルギが拡散されるので、第1絞り部上流側の冷媒流がプラグ流あるいはスラグ流となった場合に、膨張弁における冷媒流の圧力変動を緩和することができる。この結果、正方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音を軽減することができる。なお、本明細書においては、膨張弁機能を行う部分から冷媒分流機能を行う部分への冷媒流れを「正方向冷媒流れ」と称し、この正方向とは逆の方向の冷媒流れを「逆方向冷媒流れ」と称するものとする。
また、このように構成された冷媒分流器一体化構造の膨張弁によれば、逆方向冷媒流れにおいて、複数の分流管から冷媒が冷媒分流室に流れ込んで合流するときに、円筒状の冷媒分流室内の内周面に略沿うように流れ込むので、旋回流が生成される。これにより、各分流管から流入する冷媒が合流により効率よく掻き乱される。この結果、プラグ流やスラグ流が膨張弁に流れ込んできても、第1絞り部通過前に冷媒流中の気泡が細分化され、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音が効果的に低減される。
また、上記のように構成された冷媒分流器一体化構造の膨張弁において、前記分流管の冷媒分流室側の端部は、冷媒分流室の内周面に略沿うように斜め方向に切断されていることが好ましい。ここで、「斜め方向に切断されている」とは、略冷媒分流室の内周面に略沿うように直線状に切断されている場合や、冷媒分流室の内周面に略沿うように円弧状に斜めに切断されている場合をいう。このように構成すれば、分流管の先端部が前記旋回流生成の妨げになることが回避されるので、各分流管から流入する冷媒を効率よく合流して掻き乱すことができる。これにより、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。
また、上記の構成の膨張弁において、第1絞り部の一方の側に第1弁体を収納するとともに、液管を接続する入口ポートを備えた弁室が形成され、第1絞り部の他方の側に冷媒分流室が形成されているように構成することができる。このように構成すれば、従来の膨張弁における弁室の構成のままで冷媒分流室等を設計することができるので、冷媒分流室の設計に対する制約も少なくなる。
また、このような構成の膨張弁において、前記分流管は、冷媒分流室の側壁における第1絞り部を形成する壁体に近い位置に接続されていることが好ましい。このように構成すれば、正方向冷媒流れにおいて、第1絞り部から噴出された冷媒流は、第1絞り部に対向する壁体に衝突して流れ方向を反転迂回し、その後に冷媒分流管に流れ込む迂回回路が形成される。これにより第1絞り部から噴出された冷媒流が直接分流管に流れ込むことが防止される。
さらにこの場合において、前記第1絞り部の冷媒分流室側に、分流管から冷媒が導入された場合に、冷媒の旋回を促すための円筒部材が設けられていることが好ましい。このようにすれば、逆方向冷媒流れにおいて、各分流管から冷媒分流室に流れ込む冷媒流による旋回流の生成が助長されるので、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。したがって、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。また、正方向冷媒流れにおいて、第1絞り部から噴出された冷媒流は、円筒部材に案内されて第1絞り部に対向する壁体の方向に向かって噴出されるため、第1絞り部から噴出された冷媒流が直接分流管に流れ込むことがより確実に防止される。仮に、第1絞り部から噴出された噴流が、直接分流管の入口を成す微小面積部に衝突すると、分流管に流入できずに周辺面で衝突して跳ね返ってくる成分の影響や、分流管に流入した成分でも流入直後の剥離流れの影響などが入り乱れて大きな不安定現象が生じる。しかしながら、本発明では、前述のように第1絞り部からの噴流を迂回させて分流管の入口に到達するようにしているので、上記のような問題を発生させないで済む。また、第1絞り部から噴出される噴流が有する間欠的な変動の影響も軽減できる。
また、前記円筒部材は、前記分流管の入口に対向する壁を形成する程度の軸方向長さを有するとともに、その先端部に外周方向へ突出する鍔部を備えているものとしてもよい。このようにすれば、複数の分流管から冷媒分流室に流れ込む冷媒流により生成される旋回流が円筒部材の先端の鍔部により保持されるので、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。これにより、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。
また、前記冷媒分流室は、分流管を接続する軸方向位置の側壁の内周面が窪んで環状溝に形成されているものとしてもよい。このようにすれば、逆方向冷媒流れにおいて、複数の分流管から冷媒分流室に流れ込む冷媒流により生成される旋回流が環状溝により保持されるので、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。これにより、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。
また、前記弁室における入口ポートと第1絞り部との間に気泡細分化手段を配置してもよい。このように構成すると、正方向冷媒流れにおいて、第1絞り部の上流側の冷媒流がプラグ流あるいはスラグ流となった場合に、気泡細分化手段により第1絞り部の上流側の冷媒流中の気泡が細分化されて、第1絞り部への冷媒の流れが連続化され、膨張弁における冷媒流の速度変動及び圧力変動が緩和される。したがって、膨張弁における不連続な冷媒流動音が低減される。また、正方向冷媒流れにおいて、第1絞り部下流側の噴霧状態が安定化され、冷媒分流室における冷媒の分流が安定化される。
また、前記冷媒分流室における分流管と第1絞り部との間に多孔質透過材層を配置してもよい。このように構成すれば、正方向冷媒流れにおいて、第1絞り部から噴出される冷媒流の速度変動、圧力変動を緩和するので、膨張弁における不連続な冷媒流動音が低減される。また、逆方向冷媒流れにおいて、多孔質透過材層は、第1絞り部に流入する冷媒中の気泡が細分化されることにより、膨張弁における不連続な冷媒流動音が低減されるとともに、第1絞り部に対するフィルター機能を発揮することができる。
次に、前述のように、第1絞り部と、冷媒分流室と、複数の分流管とを備えた冷媒分流器一体化構造の膨張弁において、前記冷媒分流室は、第1絞り部の第1弁体を収納する弁室に兼用された弁室兼冷媒分流室として、第1絞り部の一方の側に形成されるとともに、第1絞り部の他方の側に液管が接続される入口ポートが形成されているように構成してもよい。このように構成すると、膨張弁から冷媒分流器に至る回路部分がより一層簡素化される。
また、前記分流管は、弁室兼冷媒分流室の側壁における第1絞り部を形成する壁体に近い位置に接続されていることが好ましい。このように構成すれば、正方向冷媒流れにおいて、第1絞り部から噴出された冷媒流は、第1絞り部に対向する壁体に衝突して流れ方向を反転し、迂回してから冷媒分流管に流れ込む迂回回路に形成される。これにより第1絞り部から噴出された冷媒流が直接分流管に流れ込むことが防止される。
また、前記第1絞り部の弁室兼冷媒分流室側に、分流管から冷媒が導入された場合に、冷媒の旋回を促すための円筒部材が設けられていることが好ましい。このようにすれば、逆方向冷媒流れにおいて、各分流管から弁室兼冷媒分流室に流れ込む冷媒流による旋回流の生成が助長されるので、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。したがって、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。また、正方向冷媒流れにおいては、第1絞り部から噴出された冷媒流は、円筒部材に案内されて第1絞り部に対向する壁体の方向に向かって噴出されるため、第1絞り部から噴出された冷媒流が直接分流管に流れ込むことがより確実に防止される。仮に、第1絞り部から噴出された噴流が、直接分流管の入口を成す微小面積部に衝突すると、分流管に流入できずに周辺面で衝突して跳ね返ってくる成分の影響や、分流管に流入した成分でも流入直後の剥離流れの影響などが入り乱れて大きな不安定現象が生じる。しかしながら、本発明では、前述のように第1絞り部からの噴流を迂回させて分流管の入口に到達するようにしているので、上記のような問題を発生させないで済む。また、第1絞り部から噴出される噴流が有する間欠的な変動の影響も軽減できる。
また、この円筒部材は、前記分流管の入口に対向する壁を形成する程度の軸方向長さを有するとともに、その先端部に外周方向へ突出する鍔部を備えているものとしてもよい。このようにすれば、各分流管から冷媒分流室に流れ込む冷媒流により生成される旋回流が円筒部材の先端の鍔部により保持されるので、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。これにより、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。
また、前記弁室兼冷媒分流室は、分流管を接続する軸方向位置の側壁の内周面が窪んで環状溝に形成されているものとしてもよい。このようにすれば、各分流管から冷媒分流室に流れ込む冷媒流により生成される旋回流が環状溝により保持されるので、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。これにより、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。
また、前記第1絞り部の他方の側に別室が形成され、この別室に前記入口ポートが形成されるとともに、この別室における入口ポートと第1絞り部との間に気泡細分化手段を配置するようにしてもよい。このように構成すると、正方向冷媒流れにおいて、第1絞り部上流側の冷媒流がプラグ流あるいはスラグ流となった場合に、気泡細分化手段により第1絞り部の上流側の冷媒流中の気泡が細分化されて、第1絞り部への冷媒の流れが連続化され、膨張弁における冷媒流の速度変動及び圧力変動が緩和される。したがって、膨張弁における不連続な冷媒流動音が低減される。また、第1絞り部下流側の噴霧状態が安定化され、冷媒分流室における冷媒の分流が安定化される。
また、前記弁室兼冷媒分流室における分流管と第1絞り部との間に多孔質透過材層が配置されているようにしてもよい。このように構成すれば、正方向冷媒流れにおいて、第1絞り部から噴出される冷媒流の速度変動、圧力変動を緩和するので、膨張弁における不連続な冷媒流動音が低減される。また、逆方向冷媒流れにおいて、多孔質透過材層は、第1絞り部に流入する冷媒中の気泡が細分化されることにより、膨張弁における不連続な冷媒流動音が低減されるとともに、第1絞り部に対するフィルター機能を発揮することができる。
また、前記弁室又は別室に設置される気泡細分化手段は、第2絞り部を形成するものであってもよい。このように構成すると、正方向冷媒流れにおいて、第1絞り部上流側の冷媒流がプラグ流あるいはスラグ流となった場合に、第2絞り部において気泡が細分化されて、第1絞り部への冷媒の流れが連続化され、膨張弁における冷媒流の速度変動及び圧力変動が緩和される。また、第2絞り部と第1絞り部との多段絞りの構成となり、絞り部における噴出エネルギが分散される。この結果、膨張弁における冷媒流の速度変動及び圧力変動がより緩和され、膨張弁における不連続な冷媒流動音が低減される。また、第1絞り部下流側の噴霧状態が安定化され、冷媒分流室又は弁室兼冷媒分流室における冷媒の分流が安定化される。
また、前記気泡細分化手段は、第2絞り部と第1絞り部との間に拡大空間部を設けるようにしたものでもよい。このように構成すると、正方向冷媒流れにおいて、第2絞り部で気泡が細分化された冷媒は、拡大空間部において噴出エネルギが分散されるとともに、第1絞り部に流入する冷媒中の気泡がさらに細分化される。これにより、膨張弁における冷媒流の速度変動及び圧力変動がより緩和されるので、冷媒流動音がより低減されるとともに、冷媒分流室又は弁室兼冷媒分流室における冷媒の分流がより安定化される。
また、前記気泡細分化手段は、多孔質透過材層としたものでもよい。このように構成すれば、正方向冷媒流れにおいて、第1絞り部へ流れる冷媒流中の気泡が多孔質透過材層において細分化される。これにより、膨張弁における冷媒流の速度変動及び圧力変動がより緩和されるので、冷媒流動音が低減されるとともに、冷媒分流室における冷媒の分流が安定化される。また、多孔質透過材層を設けることにより、第1絞り部のごみ詰まりを低減することができる。
また、本発明に係る冷凍装置は、上記冷媒分流器一体化構造の膨張弁を用いたものである。したがって、膨張弁における不連続な冷媒流動音を低減するとともに、分流特性の向上により能力を向上させることができ、さらに、簡素な冷凍装置を構成することができる。
本発明に係る冷媒分流器一体化構造の膨張弁によれば、膨張弁と冷媒分流器とを一体化することにより、膨張弁から冷媒分流器に至る回路部分を簡素化して、その占有スペースを小さくするとともにコストを軽減することができる。また、この冷媒分流器一体化構造の膨張弁においては、正方向冷媒流れの場合に、第1絞り部通過後の噴霧状態の冷媒が冷媒配管を経ることなく直接冷媒分流室(ここでは弁室兼冷媒分流室を含む)に導かれるので、分流特性が向上する。また、冷媒分流室(ここでは弁室兼冷媒分流室を含む)が拡大空間部として作用することにより噴霧エネルギが拡散されるので、第1絞り部上流側の冷媒流がプラグ流あるいはスラグ流となった場合における不連続な冷媒流動音が軽減される。また、逆方向冷媒流れの場合には、複数の分流管から冷媒が冷媒分流室に流れ込んで合流するときに旋回流が生成されるので、膨張弁入口側の冷媒流がプラグ流やスラグ流になった場合の膨張弁における不連続な冷媒流動音が低減される。
以下、本発明の各実施の形態に係る膨張弁について、図面に基づき説明する。なお、各実施の形態に共通する要素には同一の符号を付し、説明を簡略化する。また、以下の説明において上下左右方向をいうときは、各図における上下左右方向をいうものとする。また、各図における2点鎖線は正方向冷媒流れを示し、実線矢印は逆方向冷媒流れを示す。例えば、先の従来例に係る冷媒サイクル(図16参照)に本実施の形態の冷媒分流器一体化構造の膨張弁が使用される場合は、正方向冷媒流れで使用される。また、このような冷媒回路において、圧縮機の出入口に四路切換弁を接続し、この冷媒回路が四路切換弁の切換により可逆サイクルに形成される場合は、前記膨張弁は冷房運転時が正方向冷媒流れであり、暖房運転時が逆方向冷媒流れとなる。ただし、逆方向冷媒流れにおいては、冷媒分流室は冷媒分流機能を発揮しない。
(実施の形態1)
以下、本発明の実施の形態1に係る冷媒分流器一体化構造の膨張弁について、図1に基づき説明する。図1は実施の形態1に係る冷媒分流器一体化構造の膨張弁の概略構成を示す図面で、(a)は要部縦断面図であり、(b)は(a)におけるA−A断面図である。同図(a)は、弁室の上部の弁駆動装置を省略して示している。実施の形態1に係る冷媒分流器一体化構造の膨張弁は、通常の冷媒回路において、膨張弁から冷媒分流器に至る回路部分に代わり使用されるものである。
この冷媒分流器一体化構造の膨張弁は、中心軸を上下方向とする略円筒状に形成された弁本体1を有し、その側面には入口ポート2が形成されている。この入口ポート2には液管3が接続されている。また、弁本体1は、内部が仕切壁4により上下に仕切られ、上部(上流側)に弁室5が形成され、下部(下流側)に冷媒分流室6が形成されている。前述の入口ポート2は弁室5の側面に形成されている。
仕切壁4は、弁座を成し、その中心部には、弁室5と冷媒分流室6との間に絞り部を形成する第1弁孔7が形成されている。弁室5内には弁棒8が収納されている。弁棒8は、上方の弁駆動装置(図示省略)から下方に延びるものであって、弁本体1及び弁室5と同心に配置されている。また、弁棒8の先端には、第1弁体(この場合ニードル弁)9が形成されている。そして、第1弁体9は、不図示の弁駆動装置の駆動により弁棒8を介して第1弁孔7に対し進退自在に移動するように構成されている。このようにして、第1弁体9と第1弁孔7とにより、冷凍負荷に対応して開度可変、かつ全閉可能とした第1絞り部10が形成されている。
冷媒分流室6は、所定容積の円筒状に形成され、外周壁の下方部に均等ピッチで、かつ、蒸発器のパス数に見合う複数個(この場合は4個)の分流管取付孔11が形成されている。そして、この分流管取付孔11には冷媒分流室6と不図示の蒸発器の各パスの入口とを接続する分流管12が接続されている。
また、分流管取付孔11は、逆方向冷媒流れの場合(図示実線の場合)において、この分流管取付孔11に取り付けられる分流管12から流出される冷媒流が、円筒状内周面の接線方向となるように形成されている(図1(b)参照)。また、分流管12の先端部は、略円筒状内周面に略沿うように、冷媒分流室6の内周面と略同一の円弧又は、この円弧からあまり飛び出さないようない直線状に切断されている。
実施の形態1の冷媒分流器一体化構造の膨張弁は、上記のように構成されたものであって、正方向冷媒流れにおいて、次のように作用する。
この冷媒分流器一体化構造の膨張弁に対して、不図示の凝縮器で凝縮した液冷媒が入口ポート2から流入する。入口ポート2から入ってきた冷媒は、第1絞り部10で減圧されて噴霧される。そして、噴霧状態のままで冷媒分流室6に流入する。このため、噴霧状態の冷媒が分流管12に流れるようになっているので、冷媒分流室6においては重力の影響を受けることなく、各分流管12に均等に分流される。
また、この冷媒分流器一体化構造の膨張弁は、入口ポート2から大きな気泡が存在するスラグ流あるいはプラグ流となった気液二相流冷媒が入ってきた場合、第1絞り部10に対する冷媒流は、液冷媒とガス冷媒(気泡)とが交互に流れる不連続状態となる。このため、膨張弁における冷媒流の速度変動及び圧力変動が生じやすくなっている。また、このような冷媒流の速度変動及び圧力変動により膨張弁における不連続な冷媒流動音が発生しやすくなっている。しかし、本実施の形態によれば、第1絞り部10の下流側に冷媒流路を拡大する冷媒分流室6が形成されているため、冷媒分流室6内において噴出エネルギが拡散される。この結果、膨張弁における冷媒流の速度変動及び圧力変動が緩和され、膨張弁における不連続な冷媒流動音が低減される。
次に、この冷媒分流器一体化構造の膨張弁は、例えば、可逆に冷媒を循環させて冷暖房する冷媒回路に使用され、冷媒回路が冷房回路から暖房回路に切り換えられて、逆方向冷媒流れで使用される場合において、次のように作用する。スラグ流あるいはプラグ流となった気液二相流の冷媒が分流管12から流入してきた場合、この冷媒は複数の分流管12から冷媒分流室6に流入され、合流されて掻き乱される。また、各分流管12から流入する冷媒は、冷媒分流室6の内周面に略沿うように導入されるため旋回流を発生する。これにより、合流した冷媒がさらに掻き乱される。この結果、気液二相流冷媒中の気泡が細分化されるので、本実施の形態に係る冷媒分流器一体化構造の膨張弁は、逆方向冷媒流れにおいても、膨張弁における不連続な冷媒流動音を効果的に低減することができる。
本実施の形態に係る冷媒分流器一体化構造の膨張弁は、以上のように構成されているので、次のような効果を奏することができる。
(1)膨張弁と冷媒分流器とが一体化されているので、膨張弁から冷媒分流器に至る回路部分が簡素化され、占有スペースが省スペース化される。
(2)正方向冷媒流れに使用される場合において、冷媒分流室6には噴霧状態の冷媒が流れ込むので、重力の影響を受けることなく、各分流管12に均等に分流される。
(3)正方向冷媒流れにおいて、冷媒分流室6の上流側に設置される第1絞り部10は、冷凍負荷に対応して開度可変に絞られるので、従来の冷媒分流器に取り付けられているような開度一定の絞り部と異なり、流量及び乾き度などの運転状況に応じて適切な絞り度に変化し、これにより冷媒分流特性をより一層向上させることができる。
(4)正方向冷媒流れにおいて、第1絞り部10の下流側に冷媒流路を拡大する冷媒分流室6が形成されているため、噴出エネルギが拡散される。これにより、冷媒流の速度変動及び圧力変動が緩和され、膨張弁における不連続な冷媒流動音が低減される。
(5)逆方向冷媒流れにおいて、分流管12から冷媒分流室6に流入する冷媒は、複数の分流管12から冷媒が合流することにより掻き乱されるとともに、冷媒分流室6の内周面に対し略接線方向に冷媒が導入されることにより、旋回流が生起されて冷媒流がより掻き乱される。これにより、気液二相流冷媒中の気泡が細分化されるので、膨張弁における不連続な冷媒流動音が効果的に低減される。
(6)第1絞り部10の一方側に弁室5が形成され、第1絞り部10の他方側に冷媒分流室6が形成されている。したがって、従来の膨張弁における弁室の構成のままで冷媒分流室6等を設計することができるので、冷媒分流室6の設計上の制約が少なくなる。
(実施の形態2)
次に、実施の形態2について図2に基づき説明する。図2は、実施の形態2に係る冷媒分流器一体化構造の膨張弁の概略構成を示す図面で、(a)は要部縦断面図であり、(b)は(a)におけるB−B断面図である。実施の形態2に係る冷媒分流器一体化構造の膨張弁も、実施の形態1のものと同様に、通常の冷媒回路において、膨張弁から冷媒分流器に至る回路部分に代わり使用されるものである。
この冷媒分流器一体化構造の膨張弁は、中心軸を上下方向とする略円筒状に形成された略円筒状の弁本体21を有し、その下壁22には入口ポート23が形成されている。この入口ポート23には液管24が接続されている。また、弁本体21の内部には、略円筒状の弁室兼冷媒分流室25が形成されている。なお、弁室兼冷媒分流室25の上方は、弁駆動装置(図示せず)を収納する駆動部26であり、駆動部26と弁室兼冷媒分流室25との間に隔壁27が形成されている。
下壁22は、弁座を成し、その中心部には、前述のように入口ポート23が形成されるとともに、弁室兼冷媒分流室25との間に絞り部を形成する第1弁孔28が形成されている。弁室兼冷媒分流室25内には、弁棒29が収納されている。弁棒29は、上方の弁駆動装置(不図示)から下方に延びるものであって、弁本体21及び弁室兼冷媒分流室25と同心に配置されている。また、弁棒29の先端には、第1弁体(この場合ニードル弁)30が形成されている。そして、第1弁体30は、弁駆動装置の駆動により弁棒29を介して第1弁孔28に対し進退自在に移動するように構成されている。このようにして、第1弁体30と第1弁孔28とにより冷凍負荷に対応して開度可変、かつ全閉可能とした第1絞り部31が形成されている。
弁室兼冷媒分流室25は、所定容積の円筒状に形成されている。そして、弁室兼冷媒分流室25の側壁における上方の隔壁27に近い側に、均等ピッチで、かつ、蒸発器のパス数に見合う複数個(この場合は4個)の分流管取付孔32が形成されている。そして、この分流管取付孔32には、弁室兼冷媒分流室25と不図示の蒸発器の各パスの入口とを接続する分流管33が接続されている。
また、分流管取付孔32は、逆方向冷媒流れの場合(図示実線の場合)において、この分流管取付孔32に取り付けられる分流管33から流出される冷媒流が、円筒状内周面の略接線方向となるように形成されている(図2(b)参照)。また、分流管33の先端部は、略円筒状内周面に略沿うように、弁室兼冷媒分流室25の内周面と略同一の円弧又は、この円弧から大きく飛び出さないようない直線状に切断されている。
実施の形態2の冷媒分流器一体化構造の膨張弁は、上記のように構成されたものであって、次のように作用する。
この冷媒分流器一体化構造の膨張弁は、正方向冷媒流れで使用される場合において、不図示の凝縮器で凝縮した液冷媒が入口ポート23から流入する。入口ポート23から入ってきた冷媒は、第1絞り部31で減圧されて噴霧される。そして、噴霧状態のままで弁室兼冷媒分流室25に流入する。このため、噴霧状態の冷媒が分流管33に流れるようになっているので、弁室兼冷媒分流室25においては重力の影響を受けることなく、各分流管33に均等に分流される。
また、この冷媒分流器一体化構造の膨張弁は、正方向に冷媒を流すように使用される場合において、凝縮器で凝縮した液冷媒が入口ポート23から大きな気泡が存在するスラグ流あるいはプラグ流となった気液二相流冷媒が入ってきた場合、第1絞り部31に対する冷媒流は、液冷媒とガス冷媒(気泡)とが交互に流れる不連続状態となる。このため、膨張弁における冷媒流の速度変動及び圧力変動が生じやすくなっている。また、このような冷媒流の速度変動及び圧力変動により膨張弁における不連続な冷媒流動音が発生しやすくなっている。しかし、本実施の形態によれば、第1絞り部31の下流側に冷媒流路を拡大する弁室兼冷媒分流室25が形成されているため、弁室兼冷媒分流室25内において噴出エネルギが拡散される。この結果、膨張弁における冷媒流の速度変動及び圧力変動が緩和され、膨張弁における不連続な冷媒流動音が低減される。
また、この冷媒分流器一体化構造の膨張弁は、例えば、可逆に冷媒を循環させて冷暖房する冷媒回路に使用され、冷媒回路が冷房回路から暖房回路に切り換えられて、逆方向冷媒流れで使用される場合において、次のように作用する。スラグ流あるいはプラグ流となった気液二相流の冷媒が分流管33から流入してきた場合、この冷媒は複数の分流管33から弁室兼冷媒分流室25に流入され、合流されて掻き乱される。また、各分流管33から流入する冷媒は、弁室兼冷媒分流室25の内周面に略沿うように導入されるため旋回流を発生する。これにより、合流した冷媒がさらに掻き乱される。この結果、気液二相流冷媒中の気泡が細分化されるので、本実施の形態に係る冷媒分流器一体化構造の膨張弁は、逆方向冷媒流れにおいても、膨張弁における不連続な冷媒流動音を効果的に低減することができる。
本実施の形態に係る冷媒分流器一体化構造の膨張弁は、以上のように構成されているので、次のような効果を奏することができる。
(1)膨張弁と冷媒分流器とが一体化されるとともに、弁室と冷媒分流室とが兼用に形成されるので、膨張弁から冷媒分流器に至る回路部分が実施の形態1の場合よりさらに簡素化され、占有スペースが省スペース化される。
(2)正方向冷媒流れに使用される場合において、弁室兼冷媒分流室25には噴霧状態の冷媒が流れ込むので、重力の影響を受けることなく、各分流管33に均等に分流される。
(3)正方向冷媒流れに使用される場合において、弁室兼冷媒分流室25の上流側に設置される第1絞り部31は、冷凍負荷に対応して開度可変に絞られる。したがって、弁室兼冷媒分流室25の上流側に設置される第1絞り部31は、従来の冷媒分流器に取り付けられているような開度一定の絞り部と異なり、流量及び乾き度などの運転状況に応じて適切な絞り度に変化し、これにより冷媒分流特性をより一層向上させることができる。
(4)正方向冷媒流れにおいて、第1絞り部31の下流側に冷媒流路を拡大する弁室兼冷媒分流室25が形成されているため、噴出エネルギが拡散される。これにより、冷媒流の速度変動及び圧力変動が緩和され、膨張弁における不連続な冷媒流動音が低減される。
(5)逆方向冷媒流れにおいて、分流管33から弁室兼冷媒分流室25に流入する冷媒は、複数の分流管33からの冷媒が合流することにより掻き乱されるとともに、弁室兼冷媒分流室25の内周面に対し略接線方向に冷媒が導入されることにより、旋回流が生起されて冷媒流がより掻き乱される。これにより、気液二相流冷媒中の気泡が細分化されるので、膨張弁における不連続な冷媒流動音が効果的に低減される。
(6)逆方向冷媒流れにおいて、第1絞り部31の上流側に冷媒流路を拡大する弁室兼冷媒分流室25が形成されているため、噴出エネルギが拡散される。これにより、冷媒流の速度変動及び圧力変動が緩和され、膨張弁における不連続な冷媒流動音がより一層低減される。
(実施の形態3)
次に、実施の形態3について図3に基づき説明する。図3は、実施の形態3に係る冷媒分流器一体化構造の膨張弁の概略構成を示す図面で、(a)は要部縦断面図であり、(b)は(a)におけるC−C断面図である。この図に示すように、同膨張弁は、実施の形態1における正方向冷媒流における冷媒分流効果の向上及び逆方向冷媒流における気泡細分化効果の向上を目指したものである。以下実施の形態1との相違点を中心に説明する。
この実施の形態に係る冷媒分流器一体化構造の膨張弁は、実施の形態1と比較すると、まず分流管12の取付位置が異なる。この実施の形態においては、分流管12は冷媒分流室6の側壁の上方位置、すなわち、冷媒分流室6の側壁における第1絞り部10を形成する仕切壁4に近い位置に複数の分流管取付孔11が形成され、この複数の分流管取付孔11に対し、複数の分流管12が冷媒分流室6の内周面の接線方向に向けて取り付けられている。また、実施の形態1と比較すると、第1絞り部10を形成する仕切壁4の冷媒分流室側に対し、第1弁孔7を取り囲むように円筒部材13が垂設されている。円筒部材13の軸方向長さは、分流管12の入口に対向する壁を形成する程度とされている。この円筒部材13は、正方向冷媒流れにおいては、第1絞り部10から噴出される冷媒流を、第1絞り部10に対向する壁体、すなわち、冷媒分流室6の下壁に吹き付け、冷媒流を方向転換させて分流管12の入口へ迂回させる役割を行う。また、この円筒部材13は、逆方向冷媒流れにおいて、複数の分流管12から冷媒分流室6の内周面の接線方向に流入される冷媒流を効率よく旋回させる軸心部材を成す。
実施の形態3は、以上のように構成されているので、正方向冷媒流れにおいて、第1絞り部10から噴出される冷媒流は、円筒部材13にガイドされて冷媒分流室6の底壁、すなわち、第1絞り部10に対向する壁体(冷媒分流室6の底壁)に衝突し、方向を上方に転換して分流管12の入口に向かうように迂回して流れる。このため、第1絞り部10から噴出される冷媒流が直接分流管12の入口に流れることがないので、第1絞り部10から噴出される冷媒流における圧力変動及び速度変動が直接分流管12内の冷媒流通に影響しないように構成されている。
また、逆方向冷媒流れにおいて、入口ポート2から大きな気泡が存在するスラグ流あるいはプラグ流となって気液二相流冷媒が入ってきた場合、第1絞り部10に対する冷媒流は、冷媒分流室6の内周面に対し接線方向に導入されて旋回流が形成される。そして、この場合、円筒部材13が中心部にあって旋回流の軸心部材として機能するため、旋回流の生成が助長され、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。したがって、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。
(実施の形態4)
次に、実施の形態4について図4に基づき説明する。図4は、実施の形態4に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態3において、第1絞り部10に対向する壁体(冷媒分流室6の下壁)に、吹き付けられた冷媒流を円滑に周辺に広げて反転させるように作用するガイド部を設けたものである。より具体的には、ガイド部として、第1絞り部10に対向する部分に円錐状の突出部15を形成するとともに、底壁面と側壁とのコーナ部を円弧面16に形成している。
実施の形態4は、このように構成されているので、正方向冷媒流れにおいて、第1絞り部10からの噴流が方向転換する際の乱れを抑制することができる。すなわち、入口ポート2から気液二相流が入ってきた場合において、このガイド部が冷媒流の流れ方向変更作用を助長して冷媒流の噴出エネルギを低減するとともに、冷媒流中の気泡の細分化を行い、膨張弁における不連続な冷媒流動音を低減することができる。
(実施の形態5)
次に、実施の形態5について図5に基づき説明する。図5は、実施の形態5に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態3において、分流管12から導入される冷媒流により生成される旋回流を強くするために、冷媒分流室6の側壁に旋回流を保護する環状溝17を形成したものである。
すなわち、この実施の形態においては、冷媒分流室6は、分流管12を接続する軸方向位置の側壁が他の軸方向位置の側壁部分に比し大径に形成されており、これにより側壁の内周面を窪ませた環状溝17が形成されている。
したがって、逆方向冷媒流れにおいて、複数の分流管12から冷媒分流室6に流れ込む冷媒流により生成される旋回流が環状溝17により保持され易くなるので、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。これにより、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音がより一層低減される。
(実施の形態6)
次に、実施の形態6について図6に基づき説明する。図6は、実施の形態6に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態3において、分流管12から導入される冷媒流により生成される旋回流を強くするために、円筒部材13の先端部に外周方向へ突出する鍔部13aを形成したものである。また、第1絞り部10に対向する壁体(冷媒分流室6の下壁)に実施の形態4の場合と同様のガイド部を形成したものである。
本実施の形態はこのように構成されているので、逆方向の冷媒流れにおいて、複数の分流管12から冷媒分流室6に流れ込む冷媒流により生成される旋回流が円筒部材13の先端の鍔部13aにより保持される。したがって、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。これにより、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。
また、正方向冷媒流れにおいて、第1絞り部10からの噴流が方向転換する際の乱れを抑制することができる。すなわち、入口ポート2から気液二相流が入ってきた場合において、このガイド部が冷媒流の流れ方向変更作用を助長して冷媒流の噴出エネルギを低減するとともに、冷媒流中の気泡の細分化が行われる。これにより、正方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音を低減することができる。
(実施の形態7)
次に、実施の形態7について図7に基づき説明する。図7は、実施の形態7に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態6において、弁室5に気泡細分化手段として第2絞り部35を設けるとともに、第2絞り部35と第1絞り部10との間に拡大空間部36を設けたものである。以下、実施の形態6との相違点を中心に説明する。
実施の形態7に係る冷媒分流器一体化構造の膨張弁は、図7に示すように、弁室5の中央部に高さ寸法の大きい第2仕切壁37を設け、第2仕切壁37の下方、すなわち、第2仕切壁37と第1絞り部10との間に拡大空間部36を形成している。そして、この第2仕切壁37の中央部には、下方に向かって孔径が小さくなるテーパ孔が第2弁孔38として形成されている。また、弁棒8は、実施の形態6の場合と同様に弁本体1と同心に配置されており、第1弁体9の上方に、つまり弁棒8の中間部に拡径部を形成し、これを第2弁体39としている。第2弁体39は、外周面を下方に向かって外径が小さくなるテーパ面として形成されるとともに、このテーパ面に螺旋溝が形成されている。これにより、第2弁孔38と第2弁体39との間に略螺旋状の螺旋状通路が形成される。この螺旋状通路が第2絞り部35を形成する。第2絞り部35は、弁棒8が上下方向に駆動されることにより螺旋状通路の断面積および長さが変化する。例えば、冷凍負荷の小さいときは弁棒8が下方に移動して、螺旋状通路の断面積を小さくするとともに、螺旋状通路の長さを長くして冷媒流通抵抗が大きくなるように(開度が小さくなるように)している。第2絞り部35は、このように開度可変に形成されている。なお、第1絞り部10は、前述のように第1弁孔7と第1弁体9との間に形成されるものであって、弁棒8の上下方向の駆動により、開度可変、かつ全閉可能に形成されている。
実施の形態7に係る冷媒分流器一体化構造の膨張弁は、以上のように実施の形態6の場合と同様に仕切壁4の下部(下流側)に冷媒分流室6が形成されているので、実施の形態6のものと同様の作用効果を奏することができる。また、これに加え、上述のように仕切壁4の上部(上流側)の弁室5内に、第2絞り部35及び拡大空間部36が形成されているので、次のような作用効果を奏することができる。
前述の実施の形態6の場合には(実施の形態1、3,4,5の場合も同様であるが)、正方向冷媒流れにおいて、入口ポート2からスラグ流あるいはプラグ流となって気液二相流冷媒が入ってきた場合、このスラグ流あるいはプラグ流が第1絞り部10を通過する前に冷媒流中の気泡が細分化されていなかった。しかし、この実施の形態7においては、入口ポート2から入ってくるスラグ流あるいはプラグ流などの気液二相流冷媒は、第2絞り部35を通過することにより気泡が細分化される。これにより、第1絞り部10への冷媒流れが連続化され、膨張弁における不連続な冷媒流動音が効果的に低減される。特に、第2絞り部35は、螺旋状通路により構成されているので、絞り通路を長くすることができ、気泡細分化効果を向上させることができる。
また、この実施の形態7の場合は、第2絞り部35と第1絞り部10とにより2段絞り部が形成されるので、それぞれの絞り部における噴出エネルギ自体が小さくなる。したがって、この観点からも膨張弁を通過する冷媒流の速度変動及び圧力変動が緩和される。さらに、この実施の形態においては、第2絞り部35以外に拡大空間部36が設けられており、第2絞り部35通過後の冷媒流が、拡大空間部36において流路拡大により噴出エネルギが拡散され、冷媒中の気泡がこの拡大空間部36においてさらに細分化される。したがって、第2絞り部35のみの場合に比し、気泡細分化効果がさらに向上し、膨張弁を流通する冷媒流の速度変動及び圧力変動をさらに緩和することができる。この結果、前記実施の形態6の場合に比し、膨張弁における不連続な冷媒流動音をさらに低減することができる。
また、この実施の形態7に係る冷媒分流器一体化構造の膨張弁は、逆方向冷媒流れにおいて、第1絞り部10から流出する冷媒流は、拡大空間部36における流路拡大により噴出エネルギが拡散され、第1絞り部10と第3絞り部との2段絞りにより各絞り部における噴出エネルギが小さくなる。したがって、逆方向冷媒流れにおいても、膨張弁を流通する冷媒流の速度変動及び圧力変動がさらに緩和され、実施の形態6の場合に比し、膨張弁における不連続な冷媒流動音をさらに低減することができる。
(実施の形態8)
次に、実施の形態8について図8に基づき説明する。図8は、実施の形態8に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、実施の形態8に係る膨張弁は、正方向冷媒流れにおいて、第1絞り部10に流入する冷媒流中の気泡細分化手段として多孔質透過材層18を備えたものである。また、実施の形態8は、実施の形態7と比較すると、弁室5内に気泡細分化手段を設ける点については同一であるが、気泡細分化手段を多孔質透過材層18とした点において相違する。
実施の形態8に係る冷媒分流器一体化構造の膨張弁は、図8に示すように、弁室5内に多孔質透過材層18が設けられている。多孔質透過材層18は、仕切壁4の上面から入口ポート2の上部にかけて、弁棒8を取り囲む円筒状に形成されたものであって、上下部には弁室5の内面に支持される支持板18a,18bが形成されている。多孔質透過材層18の素材としては、発泡金属、セラミック、発泡性樹脂、メッシュ状のもの、多孔板などを用いることができる。
実施の形態8に係る冷媒分流器一体化構造の膨張弁は、以上のように構成されているので、正方向冷媒流れにおいて、入口ポート2から冷媒流がスラグ流あるいはプラグ流となって入ってきた場合、この冷媒流が多孔質透過材層18を通過することにより、第1絞り部10へ流れる冷媒流中の気泡が多孔質透過材層18において細分化される。これにより、膨張弁における不連続な冷媒流動音を低減することができる。また、多孔質透過材層18は、通過する冷媒中のごみを除去することができるので、第1絞り部10に対するフィルターを兼用することができる。
また、このように構成された冷媒分流器一体化構造の膨張弁は、逆方向冷媒流れにおいて、第1絞り部10から流出する冷媒流は、弁室5における流路拡大作用により噴出エネルギが拡散されるととともに、多孔質透過材層18を通過することにより噴出エネルギが消費される。これにより膨張弁を通過する冷媒流の速度変動及び圧力変動が緩和され、膨張弁における不連続な冷媒流動音が低減される。
(実施の形態9)
次に、実施の形態9について図9に基づき説明する。図9は、実施の形態9に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態3において、逆方向冷媒流れにおける第1絞り部10の上流側、すなわち、冷媒分流室6に、多孔質透過材層19を設けたものである。以下実施の形態3との相違点を中心に説明する。
実施の形態9の冷媒分流器一体化構造の膨張弁は、円筒部材13の下端部に、円筒状の多孔質透過材層19の内部に嵌合挿入される段部13bが形成されている。また、第1絞り部10に対向する壁体に、円筒状の多孔質透過材層19の下端を嵌入する円環状溝6aが形成されている。そして、円筒状の多孔質透過材層19の上端部に段部13bが挿入され、円筒状の多孔質透過材層19の下端部が円環状溝6aに挿入されることにより、円筒部材13と第1絞り部10に対向する壁体との間に円筒状の多孔質透過材層19が設けられたものである。なお、その他の点は実施の形態3と同一である。この多孔質透過材層19は、前述の実施の形態8における多孔質透過材層18と同様に、発泡金属、セラミック、発泡性樹脂、メッシュ状のもの、多孔板などを用いることができる。
実施の形態9は、以上のように構成されているので、正方向冷媒流れにおいて、第1絞り部10から噴出される冷媒流の速度変動、圧力変動が緩和され、膨張弁における不連続な冷媒流動音が低減される。また、逆方向冷媒流れにおいて、多孔質透過材層19は、第1絞り部10に流入する冷媒中の気泡が細分化されることにより、膨張弁における不連続な冷媒流動音が低減される。また、逆方向冷媒流れにおいて、多孔質透過材層19は、第1絞り部10に対するフィルター機能を発揮することができる。
(実施の形態10)
次に、実施の形態10について図10に基づき説明する。図10は、実施の形態10に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態9と同様に、実施の形態3において、逆方向冷媒流れにおける第1絞り部10の上流側、すなわち、冷媒分流室6に、多孔質透過材層20を設けたものである。以下実施の形態3との相違点を中心に説明する。なお、実施の形態9とは、多孔質透過材層の形状が相違する。
実施の形態10の冷媒分流器一体化構造の膨張弁は、円筒部材13の下端部に、カップ状の多孔質透過材層20の内部に嵌合挿入される段部13bが形成されている。カップ状の多孔質透過材層20は、円筒部材13と第1絞り部10に対向する壁体との間に収まる程度の大きさに形成されており、上端部の内周側に段部13bが嵌合挿入されることにより、冷媒分流室6にカップ状の多孔質透過材層20が取り付けられたものである。なお、その他の点は実施の形態3と同一であり、また、実施の形態9に比し多孔質透過材層20の形状が相違するものである。なお、この多孔質透過材層20は、前述の実施の形態8における多孔質透過材層18と同様に、発泡金属、セラミック、発泡性樹脂、メッシュ状のもの、多孔板などを用いることができる。
実施の形態10は、以上のように構成されているので、正方向冷媒流れにおいて、第1絞り部10から噴出される冷媒流の速度変動、圧力変動が緩和されるので、膨張弁における不連続な冷媒流動音が低減される。また、逆方向冷媒流れにおいて、多孔質透過材層20は、第1絞り部10に流入する冷媒中の気泡が細分化されることにより、膨張弁における不連続な冷媒流動音が低減される。また、逆方向冷媒流れにおいて、多孔質透過材層20は、第1絞り部10に対するフィルター機能を発揮することができる。
(実施の形態11)
次に、実施の形態11について図11に基づき説明する。図11は、実施の形態11に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態2における正方向冷媒流における冷媒分流効果の向上及び逆方向冷媒流における気泡細分化効果の向上を目指したものである。以下実施の形態2との相違点を中心に説明する。
この実施の形態に係る冷媒分流器一体化構造の膨張弁は、実施の形態2と比較すると、まず分流管33の取付位置が異なる。この実施の形態においては、分流管33は弁室兼冷媒分流室25の側壁の下方位置、すなわち、弁室兼冷媒分流室25の側壁における第1絞り部31を形成する下壁22に近い位置に複数(この場合4個)の分流管取付孔32が形成されている。そして、この複数の分流管取付孔32に対し、複数の分流管33が冷媒分流室6の内周面の接線方向に向けて取り付けられている。また、実施の形態2と比較すると、第1絞り部31を形成する下壁22の冷媒分流室側に対し、第1弁孔28を取り囲むように円筒部材34が垂設されている。円筒部材34の軸方向長さは、分流管33の入口に対向する壁を形成する程度とされている。この円筒部材34は、正方向冷媒流れにおいては、第1絞り部31から噴出される冷媒流を、第1絞り部31に対向する壁体、すなわち、弁室兼冷媒分流室25の上壁、この場合は、駆動部26との隔壁27に吹き付け、冷媒流を方向転換させて分流管33の入口へ迂回させる役割を行う。また、この円筒部材34は、逆方向冷媒流れにおいて、複数の分流管33から冷媒分流室6の内周面の接線方向に導入される冷媒流を効率よく旋回させる軸心部材を成す。
実施の形態11は以上のように構成されているので、正方向冷媒流において、第1絞り部31から噴出された冷媒流は、円筒部材34にガイドされて第1絞り部31に対向する壁体(この場合隔壁27)に衝突し、方向を下方に転換して分流管33の入口に向かうように迂回して流れる。このため、噴流が直接分流管33の入口に流れることがないので、第1絞り部31からの噴流における圧力変動、速度変動が直接分流管33内の冷媒流通に影響しないように構成されている。
また、逆方向冷媒流れにおいて、入口ポート23から大きな気泡が存在するスラグ流あるいはプラグ流となって気液二相流冷媒が入ってきた場合、第1絞り部31に対する冷媒流は、弁室兼冷媒分流室25の内周面に対し接線方向に導入されて旋回流が形成される。そして、この場合、円筒部材34が中心部にあって旋回流の軸心部材として機能するため、旋回流の生成が助長され、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。したがって、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。
(実施の形態12)
次に、実施の形態12について図12に基づき説明する。図12は、実施の形態12に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態11において、分流管33から導入される冷媒流により生成される旋回流をより強くするために、弁室兼冷媒分流室25の側壁に旋回流を保護する環状溝45を形成したものである。
すなわち、この実施の形態においては、弁室兼冷媒分流室25は、分流管33を接続する軸方向位置の側壁が他の軸方向位置の側壁部分に比し大径に形成されており、これにより側壁の内周面を窪ませた環状溝45が形成されている。
したがって、逆方向冷媒流れにおいて、複数の分流管33から弁室兼冷媒分流室25に流れ込む冷媒流により生成される旋回流が環状溝45により保持され易くなるので、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。これにより、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音がより一層低減される。
(実施の形態13)
次に、実施の形態13について図13に基づき説明する。図13は、実施の形態13に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態11において、分流管33から導入される冷媒流により生成される旋回流をより強くするために、円筒部材34の先端部に外周方向へ突出する鍔部34aを形成したものである。
本実施の形態はこのように構成されているので、逆方向の冷媒流れにおいて、複数の分流管33から弁室兼冷媒分流室25に流れ込む冷媒流により生成される旋回流が円筒部材34の先端の鍔部34aにより保持される。したがって、旋回流による冷媒流の掻き乱し作用がより一層効率よく行われる。これにより、逆方向冷媒流れにおいて、膨張弁における不連続な冷媒流動音をより一層低減することができる。
(実施の形態14)
次に、実施の形態14について図14に基づき説明する。図14は、実施の形態14に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。同膨張弁は、実施の形態13において、正方向冷媒流れにおいて、第1絞り部31の上流側に気泡細分化手段を設けるようにするとともに、第1絞り部31からの噴出流をより円滑に方向変換させるガイド部27aを設けたものである。以下、実施の形態13との相違点を中心に説明する。
この実施の形態に係る冷媒分流器一体化構造の膨張弁においては、実施の形態13の場合と異なり、第1絞り部31の弁室兼冷媒分流室25の反対側に別室47が形成され、この別室47の下壁47aに入口ポート23が設けられ、この入口ポート23に液管24が接続されている。なお、弁本体21の下壁22は弁室兼冷媒分流室25と別室47との仕切壁として機能し、この下壁22には第1絞り部31を構成する第1弁孔28が形成されている。また、別室47における入口ポート23と第1絞り部31との間に気泡細分化手段が設置されている。この気泡細分化手段は、別室47の中間位置を横断するように別室47内に配置された円盤状の多孔質透過材層48である。多孔質透過材層48の素材は、実施の形態8における多孔質透過材層18と同様のものでよく、発泡金属、セラミック、発泡性樹脂、メッシュ状のもの、多孔板などが用いられている。
また、弁室兼冷媒分流室25の上壁をなす隔壁27には、第1絞り部31からの吹き出された噴流を弁室兼冷媒分流室25の下壁をなす弁本体21の下壁22の近くに形成されている分流管33の方へ反転させるガイド部27aが形成されている。このガイド部27aは、隔壁27の弁室兼冷媒分流室25側の壁面を冷媒流の流れに沿う形状にしたものである。
実施の形態14に係る冷媒分流器一体化構造の膨張弁は、以上のように構成されているので、正方向冷媒流れにおいて、入口ポート23から冷媒流がスラグ流あるいはプラグ流となって入ってきた場合、この冷媒流が多孔質透過材層48を通過することにより、第1絞り部31へ流れる冷媒流中の気泡が多孔質透過材層48において細分化される。これにより、膨張弁における不連続な冷媒流動音を低減することができる。また、多孔質透過材層48は、通過する冷媒中のごみを除去することができるので、第1絞り部31に対するフィルターを兼用することができる。
また、第1絞り部31から弁室兼冷媒分流室25の上壁を成す隔壁27に向けて、円筒部材34に案内されて吹き出された冷媒流は、隔壁27に形成されたガイド部27aのガイド機能により、円滑に冷媒流の流れ方向変更が行われる。このようなガイド部27aの流れ方向変更に関する助長作用により冷媒流の噴出エネルギが低減されるとともに、冷媒流中の気泡の細分化が行われ、膨張弁における不連続な冷媒流動音が低減される。
また、このようの構成された冷媒分流器一体化構造の膨張弁は、逆方向冷媒流れにおいて、第1絞り部31から流出する冷媒流は、別室47における流路拡大作用により噴出エネルギが拡散されるととともに、多孔質透過材層48を通過することにより噴出エネルギが消費される。これにより膨張弁を通過する冷媒流の速度変動及び圧力変動が緩和され、膨張弁における不連続な冷媒流動音が低減される。
(実施の形態15)
次に、実施の形態15について図15に基づき説明する。図15は、実施の形態15に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。この図に示すように、同膨張弁は、実施の形態11において、逆方向冷媒流れにおける第1絞り部31の上流側、すなわち、弁室兼冷媒分流室25に、多孔質透過材層51を設けたものである。以下実施の形態11との相違点を中心に説明する。
実施の形態15の冷媒分流器一体化構造の膨張弁は、円筒部材13の上端部と第1絞り部31に対向する壁体、すなわち隔壁27、との間に、弁室兼冷媒分流室25と略同心状に円筒状の多孔質透過材層51が適宜の手段により取り付けられたものである。なお、その他の点は実施の形態11と同一である。また、この多孔質透過材層51は、前述の実施の形態8における多孔質透過材層18と同様に、発泡金属、セラミック、発泡性樹脂、メッシュ状のもの、多孔板などが用いられている。
実施の形態15は、以上のように構成されているので、正方向冷媒流れにおいて、第1絞り部31から噴出される冷媒流の速度変動、圧力変動が緩和され、膨張弁における不連続な冷媒流動音が低減される。また、逆方向冷媒流れにおいて、多孔質透過材層51は、第1絞り部31に流入する冷媒中の気泡が細分化されることにより、膨張弁における不連続な冷媒流動音が低減される。また、逆方向冷媒流れにおいて、多孔質透過材層51は、第1絞り部31に対するフィルター機能を発揮することができる。
(変形例)
(1)上記各実施の形態において、冷媒分流室6或いは弁室兼冷媒分流室25は、図示された形状のように軸方向に長い形状に限られたものではなく、横方向に大きく形成されたものでもよい。
(2)分流管12,33は、各実施の形態において4本のものを示しているが、これに限られたものではなく2本以上のもの全てに適用される。
(3)実施の形態1及び2において、分流管12,33の取付位置を実施の形態3又は実施の形態11のように第1絞り部10,31が形成されている仕切壁4又は下壁22に近い位置に変更してもよい。このようにすれば、第1絞り部10,31から噴出された冷媒流は、第1絞り部10,31に対向する壁体に衝突し、反転迂回して分流管12,33に流入するようになるので、実施の形態1,2に比し冷媒分流効果が向上する。しかし、この場合は、実施の形態3又は実施の形態11のように円筒部材13,34が形成されていないので、第1絞り部10,31からの噴流が直接分流管12,33に到達することを防止する点において実施の形態3,11に比し劣る。
(4)実施の形態14において、気泡細分化手段として円盤状の多孔質透過部材層に代えて、実施の形態7のように第2絞り部35と拡大空間部36とを組み合わせたものとしてもよい。また、実施の形態14において、円盤状の多孔質透過材層48を円筒状の多孔質透過材層に変更することもできる。なお、このようにするには、例えば、液管24を取り付ける入口ポート23を別室47の側壁に設ければよい。
(5)実施の形態7において、テーパ状の第2弁体39及び第2弁孔38を中心線に平行な形状にしてもよい。また、この第2弁体39に設けられている螺旋溝を複数条の螺旋溝で形成し、複数の絞り通路となるようにしてもよい。また、螺旋溝に代えて上下方向に直線状に延びる複数条の凹溝で形成してもよい。また、このような溝を第2弁体39の外周面ではなく第2弁孔38の内周面に形成してもよい。また、これらの溝を第2弁体39あるいは第2弁孔38の何れにも形成しない絞り部としてもよい。さらには、これら溝の段面形状を半円形、3角形、4角形など種々の形状にすることも可能である。なお、このような変形は、前記変形例4に記した実施の形態14の変形例に対しても同様に行いうる。
(6)また、気泡細分化手段としては、前記のような第2絞り部35と拡大空間部36とを組み合わせたもの、円筒状又は円盤状の多孔質透過材層18に限られたものではなく、他の気泡細分化手段を弁室5や別室47に設けるようにしてもよい。例えば、第2絞り部35と拡大空間部36の何れかのみを設けるようにしてもよい。また、冷媒流に乱れを与えるような他の手段、例えば、冷媒流に旋回流を与えたり、冷媒流を蛇行させたりするような手段に置き換えてもよい。
(7)実施の形態9及び10において冷媒分流室6に多孔質透過材層19,20を設けているが、これら実施の形態と同様に、実施の形態4,5においても多孔質透過材層を取り付けてもよい。また、実施の形態1,6及び7においても適宜の手段により円筒状やカップ状の多孔質透過材層を取り付けてもよい。
(8)実施の形態15において弁室兼冷媒分流室25に多孔質透過材層51を設けているが、この実施の形態と同様に、実施の形態12においても多孔質透過材層を取り付けてもよい。また、実施の形態13及び14においても適宜の手段により円筒部材34の上部に円筒状の多孔質透過材層を取り付けてもよい。
実施の形態1に係る冷媒分流器一体化構造の膨張弁の概略構成を示す図面で、(a)は要部縦断面図であり、(b)は(a)におけるA−A断面図である。 実施の形態2に係る冷媒分流器一体化構造の膨張弁の概略構成を示す図面で、(a)は要部縦断面図であり、(b)は(a)におけるB−B断面図である。 実施の形態3に係る冷媒分流器一体化構造の膨張弁の概略構成を示す図面で、(a)は要部縦断面図であり、(b)は(a)におけるC−C断面図である。 本発明の実施の形態4に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態5に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態6に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態7に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態8に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態9に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態10に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態11に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態12に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態13に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態14に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 本発明の実施の形態15に係る冷媒分流器一体化構造の膨張弁の要部縦断面図である。 従来の冷凍装置における一般的な冷媒回路図である。
符号の説明
2,23…入口ポート、3,24…液管、5…弁室、6…冷媒分流室、7,28…第1弁孔、9,30…第1弁体、10,31…第1絞り部、12,33…分流管、13,34…円筒部材、13a,34a…鍔部、17,45…環状溝、18,19.20,48,51…多孔質透過材層、25…弁室兼冷媒分流室、35…第2絞り部、36…拡大空間部、47…別室。

Claims (20)

  1. 第1弁体と第1弁孔との間に形成された、絞り作用を行う第1絞り部と、第1絞り部通過後の冷媒を分流管に分流する、略円筒状の冷媒分流室と、冷媒分流室に接続された複数の分流管とを備え、
    前記複数の分流管は、略円筒状の冷媒分流室の側壁に対し、それぞれ略略一定の接線方向に開口するように接続されている
    ことを特徴とする冷媒分流器一体化構造の膨張弁。
  2. 前記分流管の冷媒分流室側の端部は、冷媒分流室の内周面に略沿うように斜め方向に切断されていることを特徴とする請求項1記載の冷媒分流器一体化構造の膨張弁。
  3. 請求項1又は2に記載の冷媒分流器一体化構造の膨張弁において、
    第1絞り部の一方の側に第1弁体を収納するとともに、液管を接続する入口ポートを備えた弁室が形成され、第1絞り部の他方の側に冷媒分流室が形成されていることを特徴とする冷媒分流器一体化構造の膨張弁。
  4. 前記分流管は、冷媒分流室の側壁における第1絞り部を形成する壁体に近い位置に接続されていることを特徴とする請求項3記載の冷媒分流器一体化構造の膨張弁。
  5. 前記第1絞り部の冷媒分流室側に、分流管から冷媒が導入された場合に、冷媒の旋回を促すための円筒部材が設けられていることを特徴とする請求項4記載の冷媒分流器一体化構造の膨張弁。
  6. 前記円筒部材は、前記分流管の入口に対向する壁を形成する程度の軸方向長さを有するとともに、その先端部に外周方向へ突出する鍔部を備えていることを特徴とする請求項5記載の冷媒分流器一体化構造の膨張弁。
  7. 前記冷媒分流室は、分流管を接続する軸方向位置の側壁の内周面が窪んで環状溝に形成されていることを特徴とする請求項3〜6の何れか1項に記載の冷媒分流器一体化構造の膨張弁。
  8. 前記弁室における入口ポートと第1絞り部との間に気泡細分化手段が配置されていることを特徴とする請求項3〜7の何れか1項に記載の冷媒分流器一体化構造の膨張弁。
  9. 前記冷媒分流室における分流管と第1絞り部との間に多孔質透過材層が配置されていることを特徴とする請求項3〜8の何れか1項に記載の冷媒分流器一体化構造の膨張弁。
  10. 請求項1又は2に記載の冷媒分流器一体化構造の膨張弁において、
    前記冷媒分流室は、第1絞り部の第1弁体を収納する弁室に兼用された弁室兼冷媒分流室として、第1絞り部の一方の側に形成されるとともに、第1絞り部の他方の側に液管が接続される入口ポートが形成されていることを特徴とする冷媒分流器一体化構造の膨張弁。
  11. 前記分流管は、弁室兼冷媒分流室の側壁における第1絞り部を形成する壁体に近い位置に接続されていることを特徴とする請求項10記載の冷媒分流器一体化構造の膨張弁。
  12. 前記第1絞り部の弁室兼冷媒分流室側に、分流管から冷媒が導入された場合に、冷媒の旋回を促すための円筒部材が設けられていることを特徴とする請求項11記載の冷媒分流器一体化構造の膨張弁。
  13. 前記円筒部材は、前記分流管の入口に対向する壁を形成する程度の軸方向長さを有するとともに、その先端部に外周方向へ突出する鍔部を備えていることを特徴とする請求項12記載の冷媒分流器一体化構造の膨張弁。
  14. 前記弁室兼冷媒分流室は、分流管を接続する軸方向位置の側壁の内周面が窪んで環状溝に形成されていることを特徴とする請求項10〜13の何れか1項に記載の冷媒分流器一体化構造の膨張弁。
  15. 前記第1絞り部の他方の側に別室が形成され、この別室に前記入口ポートが形成されるとともに、この別室における入口ポートと第1絞り部との間に気泡細分化手段が配置されていることを特徴とする請求項10〜14の何れか1項に記載の冷媒分流器一体化構造の膨張弁。
  16. 前記弁室兼冷媒分流室における分流管と第1絞り部との間に多孔質透過材層が配置されていることを特徴とする請求項10〜15の何れか1項に記載の冷媒分流器一体化構造の膨張弁。
  17. 前記気泡細分化手段は、第2絞り部であることを特徴とする請求項8,9,15又は16に記載の冷媒分流器一体化構造の膨張弁。
  18. 前記気泡細分化手段は、第2絞り部と第1絞り部との間に拡大空間部を備えていることを特徴とする請求項17記載の冷媒分流器一体化構造の膨張弁。
  19. 前記気泡細分化手段は、多孔質透過材層であることを特徴とする請求項8,9,15又は16に記載の冷媒分流器一体化構造の膨張弁。
  20. 請求項1〜19の何れか1項に記載の冷媒分流器一体化構造の膨張弁を用いたことを特徴とする冷凍装置。
JP2007154729A 2007-06-12 2007-06-12 冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置 Pending JP2008309345A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154729A JP2008309345A (ja) 2007-06-12 2007-06-12 冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154729A JP2008309345A (ja) 2007-06-12 2007-06-12 冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置

Publications (1)

Publication Number Publication Date
JP2008309345A true JP2008309345A (ja) 2008-12-25

Family

ID=40237109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154729A Pending JP2008309345A (ja) 2007-06-12 2007-06-12 冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置

Country Status (1)

Country Link
JP (1) JP2008309345A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037081A (ja) * 2010-08-04 2012-02-23 Fuji Koki Corp 冷媒タンク及びそのヘッダ
WO2013190768A1 (ja) * 2012-06-22 2013-12-27 株式会社デンソー 減圧装置
JP2015034672A (ja) * 2013-08-09 2015-02-19 株式会社デンソー エジェクタ
CN106705510A (zh) * 2015-07-17 2017-05-24 浙江三花智能控制股份有限公司 电子膨胀阀及其阀座组件

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037081A (ja) * 2010-08-04 2012-02-23 Fuji Koki Corp 冷媒タンク及びそのヘッダ
WO2013190768A1 (ja) * 2012-06-22 2013-12-27 株式会社デンソー 減圧装置
JP2014005968A (ja) * 2012-06-22 2014-01-16 Denso Corp 減圧装置
CN104380012A (zh) * 2012-06-22 2015-02-25 株式会社电装 减压装置
CN104380012B (zh) * 2012-06-22 2016-06-08 株式会社电装 减压装置
US10047986B2 (en) 2012-06-22 2018-08-14 Denso Corporation Decompression device
JP2015034672A (ja) * 2013-08-09 2015-02-19 株式会社デンソー エジェクタ
CN106705510A (zh) * 2015-07-17 2017-05-24 浙江三花智能控制股份有限公司 电子膨胀阀及其阀座组件
CN106705510B (zh) * 2015-07-17 2019-11-15 浙江三花智能控制股份有限公司 电子膨胀阀及其阀座组件

Similar Documents

Publication Publication Date Title
JP4193910B2 (ja) 冷媒分流器一体化構造の膨張弁
JP2008298343A (ja) 冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置
JP2009024937A (ja) 冷媒分流室結合型膨張弁及びこれを用いた冷凍装置
JP2006266667A (ja) 膨張弁及び冷凍装置
JP2006275452A (ja) 膨張弁
JP2011094946A (ja) ガス冷媒分離器、ガス冷媒分離兼冷媒分流器、膨張弁及び冷凍装置
CN103477160A (zh) 减压装置和制冷循环装置
CN101466986A (zh) 具备制冷剂分流结构的膨胀阀和使用该膨胀阀的冷冻装置
JPH0861809A (ja) 冷媒分配器,冷媒分配機構,および空気調和機
JP5083390B2 (ja) 冷媒分流器、冷媒分流器一体型の膨張装置及び冷凍装置
JP2006349229A (ja) 冷媒分流器
JP2008309345A (ja) 冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置
JP2006284088A (ja) 膨張弁及び冷凍装置
JP3824019B1 (ja) 膨張弁及び冷凍装置
CN107084557A (zh) 分液器及具有其的制冷***
JP2005351605A (ja) 膨張弁及び冷凍装置
JP4560939B2 (ja) 冷媒分流器およびそれを用いた空気調和機
JP2009019783A (ja) 冷媒分流室一体化構造の膨張弁及びこれを用いた冷凍装置
JP7429707B2 (ja) 弁消音器及びその電子膨張弁
JP2014055765A (ja) 蒸発器ユニット
JP4894942B2 (ja) 分流器及びこの分流器を備えた膨張弁並びにこの膨張弁を備えた冷凍装置
JP6650335B2 (ja) 冷媒分流器結合型膨張弁及びこれを用いた冷凍サイクル装置及び空気調和装置
JP5360095B2 (ja) ガス冷媒分離兼冷媒分流器
CN109974379A (zh) 冰箱
JP2009002557A (ja) 冷媒分流器及び冷凍装置