JP2008309117A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2008309117A
JP2008309117A JP2007159548A JP2007159548A JP2008309117A JP 2008309117 A JP2008309117 A JP 2008309117A JP 2007159548 A JP2007159548 A JP 2007159548A JP 2007159548 A JP2007159548 A JP 2007159548A JP 2008309117 A JP2008309117 A JP 2008309117A
Authority
JP
Japan
Prior art keywords
fuel
cylinder
air
engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007159548A
Other languages
Japanese (ja)
Other versions
JP4835520B2 (en
Inventor
Shozo Yoshida
庄三 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007159548A priority Critical patent/JP4835520B2/en
Publication of JP2008309117A publication Critical patent/JP2008309117A/en
Application granted granted Critical
Publication of JP4835520B2 publication Critical patent/JP4835520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a combustion state of each of cylinders at the time of start of an engine even when fuel leaks from fuel injection valves at the time of stop of the engine and there are individual differences in fuel leak amount among the fuel injection valves. <P>SOLUTION: An ECU 1A executes control in the internal combustion engine 50 having the plurality of cylinders and the fuel injection valve 57 provided for each cylinder. The ECU 1A includes a first leak amount calculation means for calculating an accumulated amount M<SB>f</SB>of the fuel leaking from the fuel injection valve 57 for each cylinder after the stop of the engine, at least based on an opening gap area A<SB>inj</SB>of the fuel injection valve 57, a start time cylinder fuel amount calculation means, a start time fuel injection amount calculation means, a start time air/fuel ratio calculation means for calculating an air/fuel ratio AFR for every cylinder at the time of start of the engine, a second leak amount calculation means for calculating an actual leak amount M<SB>fco</SB>for every cylinder, and an opening gap area updating means for calculating a new opening gap area A<SB>injco</SB>for every cylinder and updating the opening gap area. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は内燃機関の制御装置に関し、特に機関始動時の燃焼状態を改善するための内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine for improving a combustion state at the time of starting the engine.

従来、内燃機関にあっては、機関停止時に燃料が燃料噴射弁から漏れ出すといった現象が発生することが知られている。燃料噴射弁からの燃料漏れは、具体的には例えば機関停止時に燃料を供給するフューエルデリバリパイプに高圧の燃料が残留することで発生することが知られている。係る燃料漏れが発生すると、機関始動時に漏れ出した燃料が混合気に含まれてしまう結果、空燃比がリッチになってしまい、始動性の悪化や排気エミッションの増大を招くことになる。これに対して、燃料噴射弁からの燃料漏れに対処するための技術が例えば特許文献1または2で提案されている。   Conventionally, in an internal combustion engine, it is known that a phenomenon occurs in which fuel leaks from a fuel injection valve when the engine is stopped. Specifically, it is known that fuel leakage from the fuel injection valve is caused by, for example, high-pressure fuel remaining in a fuel delivery pipe that supplies fuel when the engine is stopped. When such a fuel leak occurs, the fuel leaked at the time of starting the engine is included in the air-fuel mixture, so that the air-fuel ratio becomes rich, leading to deterioration of startability and increase of exhaust emission. On the other hand, for example, Patent Document 1 or 2 proposes a technique for dealing with fuel leakage from the fuel injection valve.

一方、燃料には揮発性の高い軽質燃料と揮発性の低い重質燃料とがあり、燃料の性状が異なると内燃機関の燃焼状態も異なってくる。このため良好な燃焼状態を得るためには燃料の性状を判定し、燃料の性状に応じて内燃機関を運転する必要がある。これに対して、筒内圧等に基づき燃料性状を判定する技術が例えば特許文献3で開示されている。またこのほか本発明と関連性があると考えられる技術として、燃料噴射量を気筒毎に補正する技術が例えば特許文献4で、空燃比を気筒毎にする技術が例えば特許文献5で夫々提案されている。   On the other hand, there are light fuels with high volatility and heavy fuels with low volatility, and the combustion state of the internal combustion engine differs depending on the fuel properties. For this reason, in order to obtain a good combustion state, it is necessary to determine the properties of the fuel and operate the internal combustion engine in accordance with the properties of the fuel. On the other hand, for example, Patent Document 3 discloses a technique for determining fuel properties based on in-cylinder pressure or the like. In addition, as a technique considered to be related to the present invention, a technique for correcting the fuel injection amount for each cylinder is proposed in, for example, Patent Document 4, and a technique for setting the air-fuel ratio for each cylinder is proposed in, for example, Patent Document 5. ing.

特開2005−188419号公報JP 2005-188419 A 特開2005−133650号公報JP 2005-133650 A 特開2000−257467号公報JP 2000-257467 A 特開2005−30332号公報JP 2005-30332 A 特開平6−280669号公報JP-A-6-280669

ところで燃料噴射弁には個体差があり、これに起因して機関停止時の燃料の漏れ量は燃料噴射弁毎に異なってくる。このため機関始動時の燃焼状態を改善するためには、燃料の漏れ量を燃料噴射弁毎、換言すれば気筒毎に把握した上で燃料噴射量を決定する必要がある。この点、例えば特許文献4または5が提案する技術によれば、気筒毎に燃焼状態を改善することも可能になると考えられる。しかしながら、これらの提案技術は筒内圧等に基づき補正或いは検出を行うことから、まず前提として内燃機関で燃焼が行われる必要がある。このためこれらの提案技術では、機関停止時の燃料噴射弁からの燃料漏れを原因として、機関始動時に悪化する燃焼状態を改善することは困難だと考えられる。また燃料噴射弁からの燃料の漏れ量は劣化等の経時的な変化によっても異なってくることから、機関始動時の燃焼状態を改善するためには、燃料の漏れ量を経時的に把握した上で燃料噴射量を決定する必要もある。   By the way, there are individual differences in the fuel injection valves, and due to this, the amount of fuel leakage when the engine is stopped differs for each fuel injection valve. Therefore, in order to improve the combustion state at the time of starting the engine, it is necessary to determine the fuel injection amount after grasping the fuel leakage amount for each fuel injection valve, in other words, for each cylinder. In this regard, for example, according to the technique proposed in Patent Document 4 or 5, it is considered possible to improve the combustion state for each cylinder. However, since these proposed techniques perform correction or detection based on the in-cylinder pressure or the like, it is necessary to first perform combustion in the internal combustion engine. Therefore, with these proposed technologies, it is considered difficult to improve the combustion state that deteriorates when the engine is started due to fuel leakage from the fuel injection valve when the engine is stopped. In addition, the amount of fuel leakage from the fuel injector varies depending on changes over time, such as deterioration. Therefore, in order to improve the combustion state at the start of the engine, the amount of fuel leakage must be grasped over time. It is also necessary to determine the fuel injection amount.

一方、機関始動時に燃料性状を判定すれば、燃料の性状に応じて内燃機関を運転できるようになることから、良好な燃焼状態を得ることが可能になる。具体的には例えば燃料の性状に応じて内燃機関の運転モードを予め設定しておくとともに、燃料性状の判定結果に基づいて内燃機関の運転モードを決定するようにすれば、機関始動時に良好な燃焼状態を得ることが可能になる。ところが、燃料性状の判定に時間がかかってしまうと、その間、運転モードを決定できないことから、燃料の性状に応じて内燃機関を運転できないことになる。すなわち、燃料性状が判定されるまでの間は良好な燃焼状態を得ることができなくなってしまうことになる。また機関始動時の燃料噴射量を決定するにあたって、機関停止時の燃料の漏れ量を特段把握しない場合においては、燃料噴射弁からの燃料漏れが空燃比や筒内圧等に影響を及ぼすことになる。このため燃料性状の判定方法次第では、燃料性状の判定精度自体が低下してしまう虞があった。   On the other hand, if the fuel property is determined when the engine is started, the internal combustion engine can be operated according to the fuel property, so that a good combustion state can be obtained. Specifically, for example, if the operation mode of the internal combustion engine is set in advance according to the property of the fuel, and the operation mode of the internal combustion engine is determined based on the determination result of the fuel property, it is favorable at the time of engine start. It becomes possible to obtain a combustion state. However, if it takes time to determine the fuel properties, the operation mode cannot be determined during that time, and the internal combustion engine cannot be operated according to the fuel properties. That is, a good combustion state cannot be obtained until the fuel property is determined. In addition, when determining the fuel injection amount at the time of starting the engine, if the amount of fuel leakage when the engine is stopped is not particularly grasped, the fuel leakage from the fuel injection valve will affect the air-fuel ratio, in-cylinder pressure, etc. . For this reason, depending on the determination method of the fuel property, there is a possibility that the accuracy of determination of the fuel property itself is lowered.

そこで本発明は上記の課題に鑑みてなされたものであり、機関停止時に燃料噴射弁からの燃料漏れがあり、且つ燃料の漏れ量に燃料噴射弁の個体差及び経時的な変化があっても、機関始動時の燃焼状態を気筒毎に改善できる内燃機関の制御装置、及び機関停止時に燃料噴射弁からの燃料漏れがあっても、機関始動時に燃料の性状を燃料噴射弁の油密保持状態とともに速やかに、且つ精度良く気筒毎に判定できる内燃機関の制御装置を提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and there is fuel leakage from the fuel injection valve when the engine is stopped, and even if there are individual differences in the fuel injection valve and changes over time in the amount of fuel leakage. , A control device for an internal combustion engine that can improve the combustion state for each cylinder at the start of the engine, and the fuel injection valve in a state where the fuel injection valve keeps the fuel property at the start of the engine even if the fuel leaks from the fuel injection valve when the engine is stopped Another object of the present invention is to provide a control device for an internal combustion engine that can determine each cylinder quickly and accurately.

上記課題を解決するために、本発明は燃料噴射弁を気筒毎に複数備える内燃機関で制御を行うための内燃機関の制御装置であって、少なくとも前記燃料噴射弁の開口隙間面積に基づき、機関停止後に機関停止時間の長さに応じて前記燃料噴射弁から漏れ出す第1の燃料漏れ量を気筒毎に算出する第1の漏れ量算出手段と、機関始動時の筒内燃料量を気筒毎に算出する始動時筒内燃料量算出手段と、少なくとも前記筒内燃料量を反映させて、機関始動時の燃料噴射量を気筒毎に算出する始動時燃料噴射量算出手段と、所定の演算のもと、機関始動時の空燃比を気筒毎に算出する始動時空燃比算出手段と、少なくとも前記始動時空燃比算出手段が算出した空燃比に基づき、前記第1の燃料漏れ量に対応する実際の燃料漏れ量として、第2の燃料漏れ量を気筒毎に算出する第2の漏れ量算出手段と、前記第1及び第2の燃料漏れ量に基づき、前記開口隙間面積から実際の開口隙間面積として、新たな開口隙間面積を気筒毎に算出するとともに、前記開口隙間面積を前記新たな開口隙間面積に気筒毎に更新する開口隙間面積更新手段とを備えることを特徴とする。   In order to solve the above problems, the present invention provides a control device for an internal combustion engine for controlling an internal combustion engine having a plurality of fuel injection valves for each cylinder, based on at least an opening clearance area of the fuel injection valve. First leakage amount calculating means for calculating for each cylinder a first fuel leakage amount that leaks from the fuel injection valve according to the length of the engine stop time after the stop, and the in-cylinder fuel amount at the time of engine start for each cylinder A start-time in-cylinder fuel amount calculating means, a start-time fuel injection amount calculating means for calculating the fuel injection amount at the time of starting the engine for each cylinder, reflecting at least the in-cylinder fuel amount, and a predetermined calculation Originally, the starting air-fuel ratio calculating means for calculating the air-fuel ratio at the time of starting the engine for each cylinder, and the actual fuel corresponding to the first fuel leakage amount based on at least the air-fuel ratio calculated by the starting air-fuel ratio calculating means As the amount of leakage, the second fuel leakage Based on the second leak amount calculation means for calculating the amount for each cylinder and the first and second fuel leak amounts, a new opening gap area is set for each cylinder from the opening gap area as an actual opening gap area. And calculating an opening gap area for each cylinder to update the opening gap area to the new opening gap area.

ここで、機関停止後に燃料噴射弁の噴射孔から漏れ出す第1の燃料漏れ量は、燃料噴射弁の開口隙間面積と相関関係があるといえる。また第1の燃料漏れ量は機関停止時間とも相関関係があり、さらに機関始動時の筒内燃料量には、第1の燃料漏れ量のうち、燃料噴射弁の具体的な配置などによって異なってくる所定量の燃料が含まれることになる。このため係る点に着目し、上記第1の漏れ量算出手段、始動時筒内燃料量算出手段及び始動時燃料噴射量算出手段を備えた本発明によれば、機関停止時に燃料噴射弁からの燃料漏れがあり、且つ燃料の漏れ量に燃料噴射弁の個体差があっても、機関始動時の燃焼状態を気筒毎に改善できる。   Here, it can be said that the first fuel leakage amount that leaks from the injection hole of the fuel injection valve after the engine stops correlates with the opening clearance area of the fuel injection valve. Further, the first fuel leakage amount has a correlation with the engine stop time, and the in-cylinder fuel amount at the time of starting the engine differs depending on the specific arrangement of the fuel injection valve among the first fuel leakage amount. A certain amount of fuel will be included. Therefore, paying attention to this point, according to the present invention including the first leakage amount calculating means, the in-cylinder fuel amount calculating means, and the starting fuel injection amount calculating means, the fuel injection valve outputs from the fuel injection valve when the engine is stopped. Even if there is a fuel leak and there is an individual difference of the fuel injection valve in the amount of fuel leak, the combustion state at the time of starting the engine can be improved for each cylinder.

一方、実際の燃料漏れ量に相当する第2の燃料漏れ量と筒内燃料量との間には相関関係があり、さらに筒内燃料量と機関始動時の空燃比との間にも相関関係があることから、所定の演算のもと、実際の内燃機関の運転状態から機関始動時の空燃比を気筒毎に算出するとともに、所定の演算のもと、算出した空燃比から第2の燃料漏れ量を気筒毎に算出することができる。また燃料漏れ量と開口隙間面積との間には相関関係があることから、第2の燃料漏れ量を算出すれば実際の開口隙間面積に相当する新たな開口隙間面積も算出できるようになるとともに、現在の開口隙間面積を新たな開口隙間面積に更新できるようになる。   On the other hand, there is a correlation between the second fuel leakage amount corresponding to the actual fuel leakage amount and the in-cylinder fuel amount, and there is also a correlation between the in-cylinder fuel amount and the air-fuel ratio at the time of engine start. Therefore, the air-fuel ratio at the time of starting the engine is calculated for each cylinder from the actual operating state of the internal combustion engine based on a predetermined calculation, and the second fuel is calculated from the calculated air-fuel ratio based on the predetermined calculation. The amount of leakage can be calculated for each cylinder. In addition, since there is a correlation between the fuel leakage amount and the opening gap area, a new opening gap area corresponding to the actual opening gap area can be calculated by calculating the second fuel leakage amount. Thus, the current opening gap area can be updated to a new opening gap area.

係る点に着目して上記始動時空燃比算出手段、第2の燃料漏れ量算出手段及び開口隙間面積更新手段を備えた本発明によれば、機関始動時毎に第1の燃料漏れ量を精度良く算出できるようになるため、機関停止時に燃料噴射弁からの燃料漏れがあり、且つ燃料の漏れ量に経時的な変化があっても、機関始動時の燃焼状態を気筒毎に改善できる。また始動時空燃比算出手段に係る所定の演算では、活性温度に達していなければ利用できないA/Fセンサ等の出力を利用しないため、本発明によれば、機関冷間始動時であっても燃焼状態を気筒毎に改善できる。なお、本発明記載の「少なくとも」とは特に相関関係に関連すると考えられる要素を特定したものである。   In view of this point, according to the present invention comprising the above-mentioned starting air-fuel ratio calculating means, second fuel leakage amount calculating means, and opening gap area updating means, the first fuel leakage amount can be accurately determined at every engine start. Since the calculation can be performed, the combustion state at the time of starting the engine can be improved for each cylinder even if there is fuel leakage from the fuel injection valve when the engine is stopped and the amount of fuel leakage changes with time. In addition, in the predetermined calculation related to the starting air-fuel ratio calculating means, the output of the A / F sensor or the like that cannot be used unless the activation temperature is reached is not used. Therefore, according to the present invention, the combustion is performed even during engine cold start. The state can be improved for each cylinder. It should be noted that “at least” in the description of the present invention specifies an element considered to be particularly related to the correlation.

また本発明は前記燃料噴射弁が前記内燃機関の吸気ポートに燃料を噴射するように気筒毎に配置されているとともに、前記始動時筒内燃料量算出手段が、前記第1の燃料漏れ量の吸気ポートへの付着と、始動時基本燃料噴射量の吸気ポートでの残留とを考慮して、前記筒内燃料量を気筒毎に算出してもよい。内燃機関が所謂ポート噴射を行う内燃機関である場合には、始動時筒内燃料量算出手段は具体的には本発明のように算出を行うことが好適である。   According to the present invention, the fuel injection valve is arranged for each cylinder so as to inject fuel into the intake port of the internal combustion engine, and the in-cylinder fuel amount calculating means at the start time is configured to reduce the first fuel leakage amount. The in-cylinder fuel amount may be calculated for each cylinder in consideration of adhesion to the intake port and a residual basic fuel injection amount at start-up at the intake port. When the internal combustion engine is an internal combustion engine that performs so-called port injection, it is preferable that the in-cylinder fuel amount calculation means at the time of starting is specifically calculated as in the present invention.

また本発明は燃料噴射弁を気筒毎に複数備える内燃機関で制御を行うための内燃機関の制御装置であって、所定の演算のもと、機関始動時の空燃比を気筒毎に算出する始動時空燃比算出手段と、前記始動時空燃比算出手段が機関始動時に算出した第1の燃焼サイクルに対応する第1の空燃比が、理論空燃比近傍よりもリーンであるか否かを気筒毎に判定する第1の燃料性状判定手段と、前記第1の空燃比判定手段が否定判定した場合に、前記始動時空燃比算出手段が算出した前記第1の燃焼サイクルに続く第2の燃焼サイクルに対応する前記第2の空燃比が、理論空燃比近傍であるか否かを気筒毎に判定する第2の燃料性状判定手段と、前記第2の空燃比判定手段が否定判定した場合に、前記第2の空燃比が理論空燃比近傍よりもリーンであるか否かを気筒毎に判定する第3の燃料性状判定手段とを備えることを特徴とする。   The present invention is also a control device for an internal combustion engine for performing control with an internal combustion engine having a plurality of fuel injection valves for each cylinder, and starting the engine for calculating an air-fuel ratio for each cylinder based on a predetermined calculation. It is determined for each cylinder whether the first air-fuel ratio corresponding to the first combustion cycle calculated by the start-time air-fuel ratio calculating means and the start-time air-fuel ratio calculating means when the engine is started is leaner than the vicinity of the theoretical air-fuel ratio. When the first fuel property determining means and the first air-fuel ratio determining means make a negative determination, the second combustion cycle following the first combustion cycle calculated by the starting air-fuel ratio calculating means corresponds to When the second fuel property determining means for determining whether or not the second air-fuel ratio is close to the theoretical air-fuel ratio for each cylinder, and the second air-fuel ratio determining means make a negative determination, The air / fuel ratio is leaner than the stoichiometric air / fuel ratio. Characterized in that it comprises either a whether third fuel property determination means for determining for each cylinder a.

本発明は燃料噴射弁からの燃料漏れがあった場合の機関始動時の空燃比の挙動に着目し、第1から第3までの燃料性状判定手段夫々で、始動時空燃比算出手段が算出した機関始動時の空燃比に基づき、燃料噴射弁の油密保持状態も考慮した上で燃料性状の判定を行う点に特徴を有するものである。この点、第1の燃料性状判定手段は具体的には肯定判定であった場合に、燃料性状は重質であり、且つ燃料噴射弁の油密保持状態が良好である、と判定する。また第2の燃料性状判定手段は具体的には肯定判定であった場合に、燃料性状は軽質であり、且つ燃料噴射弁の油密保持状態が良好である、と判定する。また第3の燃料性状判定手段は具体的には、肯定判定であった場合には、燃料性状は重質であり、且つ燃料噴射弁の油密保持状態が悪化している、と判定し、否定判定であった場合には、燃料性状は軽質であり、且つ燃料噴射弁の油密保持状態が悪化している、と判定する。   The present invention pays attention to the behavior of the air-fuel ratio at the time of engine start when there is a fuel leak from the fuel injection valve, and the engine calculated by the start-time air-fuel ratio calculation means in each of the first to third fuel property determination means. This is characterized in that the fuel property is determined on the basis of the air-fuel ratio at the time of start-up and taking into account the oil-tight state of the fuel injection valve. In this regard, when the first fuel property determination means specifically makes an affirmative determination, it determines that the fuel property is heavy and that the oil-tight holding state of the fuel injection valve is good. Further, when the second fuel property determination means specifically makes an affirmative determination, it determines that the fuel property is light and that the oil-tight holding state of the fuel injection valve is good. Further, the third fuel property determining means specifically determines that the fuel property is heavy and the oil tightness holding state of the fuel injection valve is deteriorated when the determination is affirmative, If the determination is negative, it is determined that the fuel property is light and the oil tightness holding state of the fuel injection valve has deteriorated.

係る第1から第3までの燃料性状判定手段を備えた本発明によれば、機関停止時に燃料噴射弁からの燃料漏れがあっても、機関始動時に燃料の性状を燃料噴射弁の油密保持状態とともに判定できることから、燃料性状を精度良く判定できる。また本発明によれば燃料の性状を2サイクル以内に、すなわち速やかに判定できる。さらに始動時空燃比算出手段に係る所定の演算では、活性温度に達していなければ利用できないA/Fセンサ等の出力を利用しないため、本発明によれば、機関冷間始動時であっても燃焼状態を気筒毎に改善できる。   According to the present invention provided with the first to third fuel property determining means, even if there is a fuel leak from the fuel injection valve when the engine is stopped, the fuel property is kept in the oil-tight state of the fuel injection valve when the engine is started. Since it can be determined together with the state, the fuel property can be accurately determined. Further, according to the present invention, the property of the fuel can be determined within two cycles, that is, promptly. Further, in the predetermined calculation related to the start time air-fuel ratio calculating means, the output of the A / F sensor or the like that cannot be used unless the activation temperature is reached is not used. Therefore, according to the present invention, combustion is performed even when the engine is cold start. The state can be improved for each cylinder.

また本発明はさらに前記第1の燃料性状判定手段が肯定判定した場合、または前記第3の燃料性状判定手段が肯定判定した場合に、対応する気筒の運転モードを第1の運転モードに決定するとともに、前記第2の燃料性状判定手段が肯定判定した場合、または前記第3の燃料性状判定手段が否定判定した場合に、対応する気筒の運転モードを第2の運転モードに決定する運転モード決定手段を備えていてもよい。燃料の性状に応じて運転モードを決定するにあたっては、具体的には本発明のように運転モードを決定することが好ましい。本発明によれば、燃料噴射弁からの燃料漏れがあったときでも、速やかに、且つ精度良く気筒毎に判定された燃料の性状に応じて第1のまたは第2の運転モードが決定されることから、燃料の性状に応じて内燃機関を好適に運転できる。   The present invention further determines the operation mode of the corresponding cylinder as the first operation mode when the first fuel property determination means makes an affirmative determination or when the third fuel property determination means makes an affirmative determination. In addition, when the second fuel property determining means makes an affirmative determination or when the third fuel property determining means makes a negative determination, the operation mode determination for determining the corresponding operation mode of the cylinder as the second operation mode is made. Means may be provided. In determining the operation mode according to the properties of the fuel, it is preferable to determine the operation mode specifically as in the present invention. According to the present invention, even when there is fuel leakage from the fuel injection valve, the first or second operation mode is determined promptly and accurately according to the fuel properties determined for each cylinder. Therefore, the internal combustion engine can be suitably operated according to the properties of the fuel.

また本発明は前記第1の運転モードがドライバビリティを重視した運転モードであり、且つ前記第2の運転モードがエミッションの低減を重視した運転モードであるとともに、前記燃料噴射弁が前記内燃機関の吸気ポートに燃料を噴射するように気筒毎に配置されていてもよい。ここで燃料性状に応じた運転モードが設定されることは、内燃機関が所謂ポート噴射式の内燃機関である場合に多いところ、本発明によれば、係るポート噴射式の内燃機関の機関始動時にドライバビリティとエミッション性能との両立を図ることができる。   Further, in the present invention, the first operation mode is an operation mode in which drivability is emphasized, the second operation mode is an operation mode in which reduction of emission is emphasized, and the fuel injection valve is disposed in the internal combustion engine. You may arrange | position for every cylinder so that a fuel may be injected into an intake port. Here, the operation mode according to the fuel property is often set when the internal combustion engine is a so-called port injection type internal combustion engine. According to the present invention, when the engine of the port injection type internal combustion engine is started, It is possible to achieve both drivability and emission performance.

本発明によれば、機関停止時に燃料噴射弁からの燃料漏れがあり、且つ燃料の漏れ量に燃料噴射弁の個体差及び経時的な変化があっても、機関始動時の燃焼状態を気筒毎に改善できる内燃機関の制御装置、及び機関停止時に燃料噴射弁からの燃料漏れがあっても、機関始動時に燃料の性状を燃料噴射弁の油密保持状態とともに速やかに、且つ精度良く気筒毎に判定できる内燃機関の制御装置を提供できる。   According to the present invention, even if there is a fuel leak from the fuel injection valve when the engine is stopped and there is an individual difference of the fuel injection valve and a change with time in the amount of fuel leakage, the combustion state at the time of starting the engine is different for each cylinder. The control system of the internal combustion engine that can be improved to the same level, and even if there is fuel leakage from the fuel injection valve when the engine is stopped, the properties of the fuel can be quickly and accurately adjusted for each cylinder together with the oil-tight state of the fuel injection valve when starting the engine. A control device for an internal combustion engine that can be determined can be provided.

以下、本発明を実施するための最良の形態を図面と共に詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1はECU(Electronic Control Unit:電子制御装置)1Aで実現されている本実施例に係る内燃機関の制御装置を内燃機関50の要部とともに模式的に示す図である。内燃機関50は吸気ポート52aに燃料を噴射するように配置された燃料噴射弁57を備える所謂ポート噴射式の内燃機関となっている。なお、内燃機関50は適宜の気筒数及び気筒配列構造を有していてよい。また内燃機関50は一気筒につき吸気弁55及び排気弁56を2つずつ備えているが、これに限られず一気筒につき適宜の数量の吸排気弁55、56を備えていてよい。   FIG. 1 is a view schematically showing a control device for an internal combustion engine according to the present embodiment, which is realized by an ECU (Electronic Control Unit) 1A, together with a main part of the internal combustion engine 50. The internal combustion engine 50 is a so-called port injection type internal combustion engine including a fuel injection valve 57 arranged to inject fuel into the intake port 52a. The internal combustion engine 50 may have an appropriate number of cylinders and a cylinder arrangement structure. The internal combustion engine 50 includes two intake valves 55 and two exhaust valves 56 per cylinder, but is not limited thereto, and may include an appropriate number of intake and exhaust valves 55 and 56 per cylinder.

内燃機関50はシリンダブロック51、シリンダヘッド52及びピストン53などを有して構成されている。シリンダブロック51には略円筒状のシリンダ51aが形成されている。シリンダ51a内にはピストン53が収容されており、ピストン53の頂面にはタンブル流Tを案内するためのキャビティが形成されている。シリンダブロック51にはシリンダヘッド52が固定されている。燃焼室54はシリンダブロック51、シリンダヘッド52及びピストン53によって囲われた空間として形成されている。シリンダヘッド52には吸気を筒内に導入するための吸気ポート52aと、燃焼したガスを燃焼室54から排気するための排気ポート52bとが夫々形成されており、さらに吸気ポート52aを開閉するための吸気弁55と、排気ポート52bを開閉するための排気弁56とが夫々配設されている。燃料噴射弁57は吸気ポート52aに燃料を噴射できるようにシリンダヘッド52に配設されており、点火プラグ58は筒内に電極を突出させた状態でシリンダヘッド52のうち、燃焼室54上方、且つ中央の部分に配設されている。   The internal combustion engine 50 includes a cylinder block 51, a cylinder head 52, a piston 53, and the like. The cylinder block 51 is formed with a substantially cylindrical cylinder 51a. A piston 53 is accommodated in the cylinder 51 a, and a cavity for guiding the tumble flow T is formed on the top surface of the piston 53. A cylinder head 52 is fixed to the cylinder block 51. The combustion chamber 54 is formed as a space surrounded by the cylinder block 51, the cylinder head 52, and the piston 53. The cylinder head 52 is formed with an intake port 52a for introducing intake air into the cylinder and an exhaust port 52b for exhausting the burned gas from the combustion chamber 54, and for opening and closing the intake port 52a. The intake valve 55 and the exhaust valve 56 for opening and closing the exhaust port 52b are respectively provided. The fuel injection valve 57 is disposed in the cylinder head 52 so that fuel can be injected into the intake port 52a. The spark plug 58 has an electrode projecting into the cylinder, and the combustion head 54 above the cylinder head 52. And it is arrange | positioned in the center part.

ECU1Aは図示しないCPU(Central Processing Unit:中央演算処理装置)と、ROM(Read Only Memory)と、RAM(Random Access Memory)とを有して構成されるマイクロコンピュータ(以下、単にマイコンと称す)と、入出力回路などを有して構成されている。ECU1Aは主として内燃機関50を制御するための構成であり、ECU1Aには例えば燃料噴射弁57が制御対象として電気的に接続されている。またECU1Aには、内燃機関50の状態を検出するためのセンサとして、内燃機関50の回転数NEを検出するためのクランク角センサ71や、内燃機関50の冷却水温Twを検出するための水温センサ72や、igsw(イグニッションスイッチ)73や、燃料噴射弁57の配置に対応する吸気管内圧Pmを検出するための吸気管内圧センサ74や、燃料噴射弁57に燃料を供給する図示しないフューエルデリバリパイプ内の燃料圧力Pを検出するための燃料圧力センサ75や、各気筒の上死点を検出するためのカム角センサ76や、筒内圧力Pcylを検出するための筒内圧センサ77のほか、図示しないエアフロメータやスロットル開度センサやアクセル開度センサなどが電気的に接続されている。なお、ECU1Aにはこのほか各種の制御対象やセンサ、スイッチ類が電気的に接続されていてよい。 The ECU 1A includes a microcomputer (hereinafter simply referred to as a microcomputer) having a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory) (not shown). And an input / output circuit. The ECU 1A mainly has a configuration for controlling the internal combustion engine 50. For example, a fuel injection valve 57 is electrically connected to the ECU 1A as a control target. The ECU 1A also includes a crank angle sensor 71 for detecting the rotational speed NE of the internal combustion engine 50 as a sensor for detecting the state of the internal combustion engine 50, and a water temperature sensor for detecting the cooling water temperature Tw of the internal combustion engine 50. 72, an ignition switch (ignsw) 73, an intake pipe internal pressure sensor 74 for detecting an intake pipe internal pressure Pm corresponding to the arrangement of the fuel injection valve 57, and a fuel delivery pipe (not shown) for supplying fuel to the fuel injection valve 57 In addition to the fuel pressure sensor 75 for detecting the internal fuel pressure P f , the cam angle sensor 76 for detecting the top dead center of each cylinder, the in-cylinder pressure sensor 77 for detecting the in-cylinder pressure P cyl , etc. An air flow meter, a throttle opening sensor, an accelerator opening sensor, and the like (not shown) are electrically connected. In addition, various control objects, sensors, and switches may be electrically connected to the ECU 1A.

ROMはCPUが実行する種々の処理が記述されたプログラムやマップデータなどを格納するための構成であり、本実施例では以下に示す第1の漏れ量算出用プログラムや、始動時筒内燃料量算出用プログラムや、始動時燃料噴射量算出用プログラムや、始動時空燃比算出用プログラムや、第2の漏れ量算出用プログラムや、開口隙間面積算出用プログラム(以下、これらのプログラムを総称するときには特定プログラムと称す)なども格納している。   The ROM is configured to store a program in which various processes executed by the CPU, map data, and the like are stored. In this embodiment, the first leakage amount calculation program shown below and the in-cylinder fuel amount at start-up are used. A calculation program, a startup fuel injection amount calculation program, a startup air-fuel ratio calculation program, a second leakage amount calculation program, an opening clearance area calculation program (hereinafter, these programs are specified collectively) It also stores programs).

第1の漏れ量算出用プログラムは少なくとも燃料噴射弁57の開口隙間面積Ainjに基づき、機関停止後に機関停止時間の長さに応じて燃料噴射弁57から漏れ出す累積燃料漏れ量M(請求項記載の第1の燃料漏れ量に相当)を気筒毎に算出するように作成されている。第1の漏れ量算出用プログラムは具体的には後述する数1に示す式に基づき、累積燃料漏れ量Mを算出するように作成されている。始動時筒内燃料量算出用プログラムは機関始動時の筒内燃料量mcylを気筒毎に算出するように作成されている。この始動時筒内燃料量算出用プログラムは具体的には累積燃料漏れ量Mの吸気ポート52aへの付着を考慮して、累積燃料漏れ量Mに応じた所定量の燃料(本実施例では式:(1−P)Mで表される燃料量。Pは付着率)と、後述する始動時基本燃料噴射量mstbの吸気ポート52aでの残留とを考慮して、始動時基本燃料噴射量mstbに応じた所定量の燃料(本実施例では式:(1−R)mstbで表される燃料量。Rは残留率)とを気筒毎に算出するとともに、後述する数2に示す式に基づき、筒内燃料量mcylを算出するように作成されている。 The first leakage amount calculation program is based on at least the opening gap area A inj of the fuel injection valve 57, and the accumulated fuel leakage amount M f that leaks from the fuel injection valve 57 according to the length of the engine stop time after the engine is stopped. (Corresponding to the first fuel leakage amount described in the section)). Specifically, the first leakage amount calculation program is created so as to calculate the cumulative fuel leakage amount Mf based on an equation shown in Equation 1 described later. The in-cylinder fuel amount calculation program at the time of starting is created so as to calculate the in-cylinder fuel amount m cyl at the time of starting the engine for each cylinder. This program for calculating the in-cylinder fuel amount at start-up specifically takes into account the attachment of the cumulative fuel leakage amount Mf to the intake port 52a, and a predetermined amount of fuel corresponding to the cumulative fuel leakage amount Mf (this embodiment) Then, taking into account the fuel amount represented by the formula: (1-P) M f, where P is the adhesion rate), and the basic fuel injection amount m stb to be described later at the intake port 52a, the basic engine at the start A predetermined amount of fuel corresponding to the fuel injection amount m stb (in this embodiment, a fuel amount represented by an expression: (1-R) m stb, where R is a residual rate) is calculated for each cylinder, and a number to be described later Based on the equation shown in FIG. 2, the in-cylinder fuel amount m cyl is calculated.

始動時燃料噴射量算出用プログラムは筒内燃料量mcylを反映させて、機関始動時の燃料噴射量である始動時燃料噴射量mstを気筒毎に算出するように作成されている。この始動時燃料噴射量算出用プログラムは具体的には後述する数3及び数4に示す式に基づき、始動時燃料噴射量mstを気筒毎に算出するように作成されている。始動時空燃比算出用プログラムは所定の演算のもと、機関始動時の空燃比AFRを気筒毎に算出するように作成されている。この始動時空燃比算出用プログラムは具体的には後述する図2に示すフローチャートのステップSa14からSa18までに示す処理を実現するためのプログラムとして作成されており、これら一連の処理で行われる演算が上記所定の演算となっている。 The start-time fuel injection amount calculation program is created so as to calculate the start-time fuel injection amount mst , which is the fuel injection amount at the time of engine start, for each cylinder, reflecting the in-cylinder fuel amount mcyl . Specifically, the start-time fuel injection amount calculation program is created so as to calculate the start-time fuel injection amount m st for each cylinder based on the equations shown in the following equations (3) and (4). The start-time air-fuel ratio calculation program is created so as to calculate the air-fuel ratio AFR at engine start for each cylinder based on a predetermined calculation. Specifically, this starting air-fuel ratio calculation program is created as a program for realizing the processing shown in steps Sa14 to Sa18 in the flowchart shown in FIG. 2 to be described later, and the operations performed in these series of processing are described above. It is a predetermined calculation.

第2の漏れ量算出用プログラムは少なくとも空燃比AFRに基づき、累積燃料漏れ量Mに対応する実際の漏れ量として、真の漏れ量Mfco(請求項記載の第2の燃料漏れ量に相当)を気筒毎に算出するよう作成されている。この第2の漏れ量算出用プログラムは具体的には後述する数6に示す式に基づき、真の漏れ量Mfcoを気筒毎に算出するように作成されている。開口隙間面積更新用プログラムは累積燃料漏れ量M及び真の漏れ量Mfcoに基づき、開口隙間面積Ainjから実際の開口隙間面積として、新たな開口隙間面積Ainjcoを気筒毎に算出するとともに、開口隙間面積Ainjを新たな開口隙間面積Ainjcoに気筒毎に更新するように作成されている。この開口隙間面積更新用プログラムは具体的には後述する数7に示す式に基づき、新たな開口隙間面積Ainjcoを気筒毎に算出するとともに、開口隙間面積Ainjを新たな開口隙間面積Ainjcoに気筒毎に更新するように作成されている。 The second leakage amount calculation program is based on at least the air-fuel ratio AFR, and the actual leakage amount corresponding to the cumulative fuel leakage amount M f is a true leakage amount M fco (corresponding to the second fuel leakage amount described in claims). ) Is calculated for each cylinder. Specifically, the second leakage amount calculation program is created so as to calculate the true leakage amount M fco for each cylinder based on an expression shown in Equation 6 described later. Opening clearance area updating program is based on the cumulative fuel leakage amount M f and the true amount of leakage M fco, as actual opening clearance area from the opening clearance area A inj, to calculate a new opening clearance area A Injco for each cylinder The opening gap area A inj is updated to a new opening gap area A injco for each cylinder. Specifically, the opening gap area update program calculates a new opening gap area A injco for each cylinder based on the equation shown in Equation 7 described later, and sets the opening gap area A inj to the new opening gap area A injco. It is created to update every cylinder.

またROMはこのほか内燃機関制御用プログラムや、内燃機関50の状態を検出するためのプログラムとして、具体的には例えばクランク角センサ71の出力に基づき回転数NEを検出するための回転数検出用プログラムや、水温センサ72の出力に基づき冷却水温Twを検出するための水温検出用プログラムや、吸気管内圧センサ74の出力に基づき吸気管内圧Pmを検出するための吸気管内圧検出用プログラムや、燃料圧力センサ75の出力に基づき燃料圧力Pを検出するための燃料圧力検出用プログラムや、エアフロメータの出力に基づき吸入空気量を検出するための吸入空気量検出用プログラムや、クランク角センサ71及びカム角センサ76の出力に基づきクランク角度及び各気筒の行程を検出するための行程検出用プログラムや、筒内圧センサ77の出力に基づき筒内圧力Pcylを検出するための筒内圧検出用プログラムなども格納している。なお、上述してきた各種のプログラムは一体として構成されていてもよい。 The ROM is a program for controlling the internal combustion engine and a program for detecting the state of the internal combustion engine 50, specifically, for example, for detecting the rotational speed based on the output of the crank angle sensor 71 for detecting the rotational speed NE. A water temperature detection program for detecting the coolant temperature Tw based on the output of the program, the water temperature sensor 72, an intake pipe internal pressure detection program for detecting the intake pipe internal pressure Pm based on the output of the intake pipe internal pressure sensor 74, A fuel pressure detection program for detecting the fuel pressure P f based on the output of the fuel pressure sensor 75, an intake air amount detection program for detecting the intake air amount based on the output of the air flow meter, and the crank angle sensor 71 And a stroke detection program for detecting the crank angle and the stroke of each cylinder based on the output of the cam angle sensor 76 In addition, an in-cylinder pressure detection program for detecting the in-cylinder pressure P cyl based on the output of the in-cylinder pressure sensor 77 is also stored. Note that the various programs described above may be integrated.

本実施例ではマイコンとROMに格納されたプログラムとで各種の制御手段や判定手段や検出手段や算出手段などが実現されており、特にマイコンと第1の漏れ量算出用プログラムとで第1の漏れ量算出手段が、マイコンと始動時筒内燃料量算出用プログラムとで始動時筒内燃料量算出手段が、マイコンと始動時燃料噴射量算出用プログラムとで始動時燃料噴射量算出手段が、マイコンと始動時空燃比算出用プログラムとで始動時空燃比算出手段が、マイコンと第2の漏れ量算出用プログラムとで第2の漏れ量算出手段が、マイコンと開口隙間面積算出用プログラムとで開口隙間面積算出手段が夫々実現されている。   In this embodiment, various control means, determination means, detection means, calculation means, and the like are realized by the microcomputer and the program stored in the ROM. In particular, the microcomputer and the first leakage amount calculation program are the first. The leakage amount calculating means is a microcomputer and a start time in-cylinder fuel amount calculation program, and a start time in-cylinder fuel amount calculation means is a microcomputer and a start time fuel injection amount calculation program. The microcomputer and the starting air-fuel ratio calculating program are the starting air-fuel ratio calculating means. The microcomputer and the second leakage amount calculating program are the second leakage amount calculating means. The microcomputer and the opening gap area calculating program are the opening gap. Area calculation means are realized.

次にECU1Aで行われる処理を図2に示すフローチャートを用いて詳述する。なお、本フローチャートに示す処理の中には周知技術であることなどから、これまでの記載で特段明示しなかったプログラムに基づいて行われる処理もあるが、本フローチャートに示す処理はすべてROMに格納されたプログラムに基づきCPUが実行するものとなっている。また本フローチャートはECU1Aで行われる処理を一気筒に着目して示したものとなっている。CPUはigsw73がoffになったか否かを判定する処理を実行する(ステップSa1)。すなわち本ステップで内燃機関50が停止したか否かが判定される。否定判定であれば、ステップSa11に戻る。一方、肯定判定であれば、CPUはigsw73off後の経過時間をカウントする処理を実行する(ステップSa2)。本ステップで、CPUは具体的にはigsw73off後、再び始動条件が整うまでの経過時間をカウントする。   Next, processing performed by the ECU 1A will be described in detail with reference to the flowchart shown in FIG. Note that some of the processes shown in this flowchart are based on programs that have not been explicitly stated in the above description because they are well-known techniques, but all the processes shown in this flowchart are stored in ROM. The CPU is executed based on the programmed program. Further, this flowchart shows the processing performed by the ECU 1A focusing on one cylinder. The CPU executes a process of determining whether or not igsw73 is turned off (step Sa1). That is, it is determined in this step whether or not the internal combustion engine 50 has stopped. If a negative determination is made, the process returns to step Sa11. On the other hand, if it is affirmation determination, CPU will perform the process which counts the elapsed time after igsw73off (step Sa2). In this step, the CPU specifically counts the elapsed time until the starting condition is again established after igsw73off.

続いてCPUは吸気管内圧Pm及びフューエルデリバリパイプ内の燃料圧力Pを取得(検出)する処理を実行する(ステップSa3及びSa4)。さらにCPUは開口隙間面積Ainjを取得する処理を実行する(ステップSa5)。本ステップで、CPUは具体的にはメモリ(ROMまたはRAM)に格納された値を取得する。なお、開口隙間面積Ainjの初期値には、油密性能がばらつきの中央にある燃料噴射弁57の開口隙間面積Ainjの値が予め設定されている。この点、開口隙間面積Ainjの初期値は基本的に特に制限されないが、このように初期値を設定しておくことにより開口隙間面積Ainjの更新による学習が早くなる。 Then the CPU executes the process of acquiring the fuel pressure P f of the intake pipe internal pressure Pm and the fuel delivery pipe (detection) (step Sa3 and Sa4). Further, the CPU executes a process for obtaining the opening gap area A inj (step Sa5). In this step, the CPU specifically acquires the value stored in the memory (ROM or RAM). Note that the initial value of the opening clearance area A inj, the value of the opening clearance area A inj of the fuel injection valve 57 oil-tight performance is in the middle of the variation is set in advance. In this regard, the initial value of the opening gap area A inj is basically not particularly limited, but learning by updating the opening gap area A inj is accelerated by setting the initial value in this way.

続いてCPUは累積燃料漏れ量Mを算出する処理を実行する(ステップSa6)。本ステップで、CPUは具体的には次の数1に示す式に基づき、累積燃料漏れ量Mを算出する処理を実行する。
(数1)
=Ainj√{2ρ(P−Pair)+ρ gz}+M(前回の値)
ここで、Pairは大気圧(101.3kPa)、ρは燃料(液体)密度、gは重力加速度、zは諸元により一意に決まる定数であり、このzは具体的にはフューエルデリバリパイプと燃料噴射弁57先端との鉛直方向距離である。数1に示す式から、累積燃料漏れ量Mは少なくとも開口隙間面積Ainjに基づき算出されていることがわかる。なお、この累積燃料漏れ量Mの機関停止時の初期値は0(ゼロ)に設定される。
Then the CPU executes the process of calculating the cumulative fuel leakage amount M f (step Sa6). In this step, specifically, the CPU executes a process of calculating the cumulative fuel leakage amount Mf based on the following equation (1).
(Equation 1)
M f = A inj √ {2ρ g (P f −P air ) + ρ g 2 gz} + M f (previous value)
Here, P air is an atmospheric pressure (101.3 kPa), ρ g is a fuel (liquid) density, g is a gravitational acceleration, z is a constant uniquely determined by specifications, and this z is specifically a fuel delivery pipe. And the vertical distance between the front end of the fuel injection valve 57. From the equation shown in Equation 1, it can be seen that the cumulative fuel leakage amount M f is calculated based on at least the opening gap area A inj . The initial value of the accumulated fuel leakage amount Mf when the engine is stopped is set to 0 (zero).

続いてCPUはigsw73がonになったか否かを判定する処理を実行する(ステップSa7)。否定判定であればステップSa2に戻る。これにより、再びステップSa6に進んだときに累積燃料漏れ量Mが更新されるため、機関停止後に機関停止時間の長さに応じて累積燃料漏れ量Mを算出できる。一方、肯定判定であれば、CPUは内燃機関50が始動したか否かを判定する処理を実行する(ステップSa8)。否定判定であればステップSa2に戻る。一方、肯定判定であれば、CPUは冷却水温Twを取得する処理を実行する(ステップSa9)。この冷却水温Twは具体的にはシリンダヘッド52部の冷却水温Twであることが望ましい。続いてCPUは始動時基本燃料噴射量mstbを算出する処理を実行する(ステップSa10)。 Subsequently, the CPU executes a process of determining whether or not igsw 73 is turned on (step Sa7). If a negative determination is made, the process returns to step Sa2. As a result, the accumulated fuel leakage amount Mf is updated when the process proceeds to step Sa6 again, and therefore the accumulated fuel leakage amount Mf can be calculated according to the length of the engine stop time after the engine is stopped. On the other hand, if the determination is affirmative, the CPU executes a process of determining whether or not the internal combustion engine 50 has started (step Sa8). If a negative determination is made, the process returns to step Sa2. On the other hand, if it is affirmation determination, CPU will perform the process which acquires the cooling water temperature Tw (step Sa9). Specifically, the cooling water temperature Tw is desirably the cooling water temperature Tw of the cylinder head 52 part. Subsequently, the CPU executes a process of calculating the starting basic fuel injection amount m stb (step Sa10).

ステップSa10で、CPUは具体的には冷却水温Twを引数として、予めROMに格納されたマップデータから始動時基本燃料噴射量mstbを算出する処理を実行する。また始動時基本燃料噴射量mstbをそのまま噴射した場合、筒内に流入する筒内燃料量mcylは次の数2に示す式で推定できる。
(数2)
cyl=(1−P)M+(1−R)mstb
ここで、Pは付着率、Rは残留率であり、夫々回転数NE及び充填効率KLの関数として予め求めておいたものを適用している。続いてCPUは回転数NE及び吸気充填効率KLを取得する処理を実行する(ステップSa11及びSa12)。
In step Sa10, specifically, the CPU executes a process of calculating the starting basic fuel injection amount m stb from map data stored in advance in the ROM using the coolant temperature Tw as an argument. Further, when the starting basic fuel injection amount m stb is injected as it is, the in-cylinder fuel amount m cyl flowing into the cylinder can be estimated by the following equation (2).
(Equation 2)
m cyl = (1−P) M f + (1−R) m stb
Here, P is the adhesion rate, and R is the residual rate, and those obtained in advance as a function of the rotational speed NE and the charging efficiency KL are applied. Subsequently, the CPU executes a process for acquiring the rotational speed NE and the intake charging efficiency KL (steps Sa11 and Sa12).

さらにCPUは始動時燃料噴射量mstを算出するとともに、算出した始動時燃料噴射量mstで燃料を噴射するための処理を実行する(ステップSa13)。本ステップで始動時燃料噴射量mstを算出するにあたって、CPUは具体的にはまず次の数3に示す式に基づき、筒内吸入燃料量目標値mcyltを算出する。
(数3)
cylt=AFR×KL×(P/R
ここで、AFRは目標空燃比、Pは標準状態圧力(101.3kPa)、Tは標準状態温度(298K)、Rは気体定数、Vはシリンダ行程容積である。
続いてCPUは次の数4に示す式に基づいて、始動時燃料噴射量mstを算出する処理を実行する。
(数4)
st=mstb+(mcylt−mcyl)/(1−R)
数4に示す式から、始動時燃料噴射量mstには筒内燃料量mcylが反映されていることがわかる。
Further the CPU calculates the starting time fuel injection quantity m st, executes a process for injecting fuel in the calculated start timing fuel injection amount m st (step Sa13). In calculating the starting fuel injection amount m st in this step, the CPU first calculates the in-cylinder intake fuel amount target value m cylt based on the following equation (3).
(Equation 3)
m cylt = AFR t × KL × (P 0 V C / R 0 T 0 )
Here, AFR t is the target air-fuel ratio, P 0 is the standard state pressure (101.3kPa), T 0 is the standard state temperature (298K), R 0 is the gas constant, V C is the cylinder stroke volume.
Subsequently, the CPU executes a process for calculating the starting fuel injection amount m st based on the following equation (4).
(Equation 4)
m st = m stb + (m cylt −m cyl ) / (1−R)
From the equation shown in Equation 4, it can be seen that the in-cylinder fuel amount m cyl is reflected in the starting fuel injection amount m st .

CPUはクランク角度θを取得する処理を実行するとともに、筒内圧力Pcylを取得する処理を実行する(ステップSa14及びSa15)。さらにCPUはクランク角度θが90[deg.btdc]であるか否かを判定する処理を実行する(ステップSa16)。本ステップに示す処理は圧縮工程を判定するための処理となっており、本ステップでCPUは具体的には位相が圧縮上死点前90[deg]であるか否かを判定している。否定判定であれば、ステップSa14に戻る。 The CPU executes a process of acquiring the crank angle θ and also executes a process of acquiring the in-cylinder pressure P cyl (steps Sa14 and Sa15). Further, the CPU has a crank angle θ of 90 [deg. btdc] is executed (step Sa16). The process shown in this step is a process for determining the compression process. In this step, the CPU specifically determines whether the phase is 90 [deg] before the compression top dead center. If a negative determination is made, the process returns to step Sa14.

一方、肯定判定であれば、CPUは熱損失Q及び比熱比κを算出する処理を実行する(ステップSa17)。本ステップで熱損失Qを算出するにあたって、CPUは具体的には図3に示すマップデータから、回転数NE、充填効率KL及び冷却水温Twを引数として熱損失Qを算出する処理を実行する。また本ステップで比熱比κを算出するにあたって、CPUは具体的には次の数5に示す式に基づいて比熱比κを算出する処理を実行する。
(数5)
κ={Q−Pcyl(Vcyl−Vcylold)}/{Q+Vcyl(Pcyl−Pcylold)}
ここでPcylはクランク角度θが90[deg.btdc]であるときの筒内圧、Pcyloldは1ステップ前のPcyl、Vcylはクランク角度θが90[deg.btdc]であるときの筒内容積、Vcyloldは1ステップ前のVcylである。
On the other hand, if a positive determination, CPU executes a process for calculating the heat loss Q w and the specific heat ratio kappa (step Sa17). When calculating a heat loss Q w in this step, CPU execution from the map data specifically shown in FIG. 3, the rotational speed NE, the process of calculating the heat loss Q w charging efficiency KL and cooling water temperature Tw as an argument To do. Further, in calculating the specific heat ratio κ in this step, the CPU specifically executes processing for calculating the specific heat ratio κ based on the following equation (5).
(Equation 5)
κ = {Q w −P cyl (V cyl −V cylold )} / {Q w + V cyl (P cyl −P cylold )}
Here, P cyl has a crank angle θ of 90 [deg. in-cylinder pressure, P cylold is one step before P cyl , and V cyl has a crank angle θ of 90 [deg. In-cylinder volume when Vtdc], V cylold is V cyl one step before.

さらにCPUは空燃比AFRを算出する処理を実行する(ステップSa18)。本ステップで、CPUは具体的には図4に示すマップデータ(ステップSa17で得た比熱比κ及び空燃比AFRが14.5のときの比熱比κ1の比率と、当量比との相関関係を規定したマップデータ)をもとに、空燃比AFRを算出する処理を実行する。なお、比熱比κ1は充填効率KLを引数にもつ図5に示すマップデータから算出される。続いてCPUは新たな開口隙間面積Ainjcoを算出するとともに、開口隙間面積Ainjを新たな開口隙間面積Ainjcoに更新する処理を実行する(ステップSa19)。 Further, the CPU executes a process for calculating the air-fuel ratio AFR (step Sa18). In this step, the CPU specifically shows the correlation between the map data shown in FIG. 4 (the ratio of the specific heat ratio κ1 obtained in step Sa17 and the specific heat ratio κ1 when the air-fuel ratio AFR is 14.5 and the equivalent ratio). Based on the defined map data), a process for calculating the air-fuel ratio AFR is executed. The specific heat ratio κ1 is calculated from the map data shown in FIG. 5 having the charging efficiency KL as an argument. Then with the CPU calculates the new opening clearance area A injco, executes processes for updating the opening clearance area A inj the new opening clearance area A injco (step Sa19).

ステップSa19で開口隙間面積Ainjを更新するにあたって、CPUは具体的にはまずステップSa18で得た空燃比AFRをもとに、次の数6に示す式に基づいて真の漏れ量Mfcoを算出する処理を実行する(ステップSa20)。
(数6)
fco={AFR×KL×(P/R)−(1−R)mst}/(1−P)
数6から、真の漏れ量Mfcoが少なくとも空燃比AFRに基づき算出されていることがわかる。続いてCPUは、次の数7に示す式に基づいて、真の漏れ量Mfcoと累積燃料漏れ量Mとに基づき開口隙間面積Ainjから新たな開口隙間面積Ainjcoを算出する処理を実行する。
(数7)
injco=Ainj×Mfco/M
なお、この新たな開口隙間面積Ainjcoは、次回の機関停止時にはさらに開口隙間面積Ainjに置き換えられる。
When updating the opening clearance area A inj in step Sa19, CPU is based on the air to fuel ratio AFR obtained specifically First, in step Sa18, the true amount of leakage M fco based on the formula shown in the following Equation 6 The calculation process is executed (step Sa20).
(Equation 6)
M fco = {AFR × KL × (P 0 V C / R 0 T 0 ) − (1-R) m st } / (1-P)
From Equation 6, it can be seen that the true leakage amount M fco is calculated based on at least the air-fuel ratio AFR. Then the CPU, based on the formula shown in the following Equation 7, the process of calculating the new opening clearance area A Injco from the opening clearance area A inj based on the true amount of leakage M fco and the accumulated fuel leakage amount M f Execute.
(Equation 7)
A injco = A inj × M fco / M f
Note that this new opening clearance area A Injco, the next time the engine is stopped is replaced with a more open clearance area A inj.

これにより、機関始動毎に現在の開口隙間面積Ainjが新たな開口隙間面積Ainjcoで更新されるので、機関始動毎に累積燃料漏れ量Mを精度良く算出できる。このため燃料噴射弁57に劣化など経時的な変化があっても、適切な始動時燃料噴射量mstを気筒毎に決定及び噴射できる。また気筒毎に累積燃料漏れ量Mが算出されるので、燃料噴射弁57に固体差があっても、適切な始動時燃料噴射量mstを気筒毎に算出及び噴射できる。さらに始動時空燃比算出手段に係る所定の演算によれば、機関冷間始動時であっても空燃比を算出できることから、機関冷間始動時であっても適切な始動時燃料噴射量mstを気筒毎に算出及び噴射できる。さらに以上により、機関停止時に燃料噴射弁57からの燃料漏れがあり、且つ累積燃料漏れ量Mに燃料噴射弁57の個体差及び経時的な変化があっても、機関冷間始動時の燃焼状態を気筒毎に改善できるECU1Aを実現できる。 As a result, the current opening gap area A inj is updated with a new opening gap area A injco each time the engine is started, so that the accumulated fuel leakage amount M f can be accurately calculated every time the engine is started. For this reason, even if the fuel injection valve 57 changes with time such as deterioration, an appropriate starting fuel injection amount m st can be determined and injected for each cylinder. Further, since the cumulative fuel leakage amount Mf is calculated for each cylinder, an appropriate start-up fuel injection amount mst can be calculated and injected for each cylinder even if the fuel injection valve 57 has a solid difference. Further, according to the predetermined calculation related to the start-time air-fuel ratio calculation means, the air-fuel ratio can be calculated even when the engine is cold started. Therefore, an appropriate start-time fuel injection amount m st is set even when the engine is cold start. Calculation and injection can be performed for each cylinder. Further, even when there is a fuel leak from the fuel injection valve 57 when the engine is stopped and the accumulated fuel leakage amount Mf has an individual difference of the fuel injection valve 57 and a change with time, the combustion at the cold start of the engine ECU1A which can improve a state for every cylinder is realizable.

本実施例に係るECU1Bは、特定プログラムの代わりに、以下に示す始動時空燃比算出用プログラムと、燃料性状判定用プログラムと、運転モード決定用プログラムとをROMに格納している以外、実施例1に係るECU1Aと実質的に同一のものとなっている。なお、本実施例ではこのECU1Bは実施例1で示した内燃機関50で用いられる。始動時空燃比算出用プログラムは本実施例では具体的には後述する図6に示すフローチャートのステップSb4からSb10までに示す処理を実現するためのプログラムとして作成されている。この始動時空燃比算出用プログラムは実施例1で示した始動時空燃比算出用プログラムと実質的に同一のものとなっており、これら一連の処理で行われる演算が始動時空燃比算出手段に係る所定の演算となっている。燃料性状判定用プログラムは、第1の燃料性状判定用プログラムと、第2の燃料性状判定用プログラムと、第3の燃料性状判定用プログラムとで構成されている。   The ECU 1B according to the present embodiment is the same as the first embodiment except that the starting air-fuel ratio calculation program, the fuel property determination program, and the operation mode determination program described below are stored in the ROM instead of the specific program. This is substantially the same as the ECU 1A. In this embodiment, the ECU 1B is used in the internal combustion engine 50 shown in the first embodiment. In the present embodiment, the start-time air-fuel ratio calculation program is specifically created as a program for realizing the processing shown in steps Sb4 to Sb10 in the flowchart shown in FIG. This starting air-fuel ratio calculating program is substantially the same as the starting air-fuel ratio calculating program shown in the first embodiment, and the calculation performed in these series of processes is a predetermined amount related to the starting air-fuel ratio calculating means. It is a calculation. The fuel property determination program includes a first fuel property determination program, a second fuel property determination program, and a third fuel property determination program.

第1の燃料性状判定用プログラムは、始動時空燃比算出用プログラムに基づき機関始動時に算出された第1の燃料サイクルに対応する第1サイクル空燃比AFR(請求項記載の第1の空燃比に相当)が、理論空燃比近傍よりもリーンであるか否かを気筒毎に判定するように作成されている。第2の燃料性状判定用プログラムは、第1の燃料性状判定用プログラムに係る判定が否定判定であった場合に、始動時空燃比算出用プログラムに基づき算出された第2の燃焼サイクルに対応する第2サイクル空燃比AFR(請求項記載の第2の空燃比に相当)が、理論空燃比近傍であるか否かを気筒毎に判定するように作成されている。第3の燃料性状判定用プログラムは、第2の燃料性状判定用プログラムに係る判定が否定判定であった場合に、第2の空燃比AFRが理論空燃比近傍よりもリーンであるか否かを気筒毎に判定するように作成されている。なお、第1の燃焼サイクルは機関始動時の1サイクル目の燃焼サイクルとなっており、第2の燃焼サイクルは第1の燃焼サイクルに続く2サイクル目の燃焼サイクルとなっている。 The first fuel property determination program is a first cycle air-fuel ratio AFR 1 corresponding to the first fuel cycle calculated at engine startup based on the start-up air-fuel ratio calculation program. Is equivalent to that of the stoichiometric air-fuel ratio, so that it is determined for each cylinder. The second fuel property determination program corresponds to the second combustion cycle calculated based on the start time air-fuel ratio calculation program when the determination related to the first fuel property determination program is negative. The two-cycle air-fuel ratio AFR 2 (corresponding to the second air-fuel ratio recited in the claims) is created so as to determine for each cylinder whether or not it is close to the theoretical air-fuel ratio. The third fuel property determination program determines whether or not the second air-fuel ratio AFR 2 is leaner than the vicinity of the theoretical air-fuel ratio when the determination related to the second fuel property determination program is a negative determination. Is determined so as to be determined for each cylinder. The first combustion cycle is the first combustion cycle at the start of the engine, and the second combustion cycle is the second combustion cycle following the first combustion cycle.

さらに第1の燃料性状判定用プログラムは肯定判定であった場合に、燃料性状は重質であり、且つ燃料噴射弁57の油密保持状態が良好である、と判定するように作成されている。また第2の燃料性状判定用プログラムは肯定判定であった場合に、燃料性状は軽質であり、且つ燃料噴射弁57の油密保持状態が良好である、と判定するように作成されている。また第3の燃料性状判定用プログラムは、肯定判定であった場合には、燃料性状は重質であり、且つ燃料噴射弁57の油密保持状態が悪化している、と判定し、否定判定であった場合には、燃料性状は軽質であり、且つ燃料噴射弁57の油密保持状態が悪化している、と判定するように作成されている。   Further, when the first fuel property determination program is affirmative, the fuel property is heavy and the fuel injection valve 57 is determined to be in a good oil-tight state. . Further, when the second fuel property determination program is affirmative, the fuel property is light and the fuel injection valve 57 is determined to be in a good oil-tight state. The third fuel property determination program determines that the fuel property is heavy and the oil tightness holding state of the fuel injection valve 57 has deteriorated if the determination is affirmative, and a negative determination is made. In this case, the fuel property is light and the oil tightness holding state of the fuel injection valve 57 is determined to be deteriorated.

運転モード決定用プログラムは、第1の燃料性状判定用プログラムに係る判定が肯定判定であった場合、または第3の燃料性状判定用プログラムに係る判定が肯定判定であった場合に、対応する気筒の運転モードを第1の運転モードに決定するとともに、第2の燃料性状判定用プログラムに係る判定が肯定判定であった場合、または第3の燃料性状判定用プログラムに係る判定が否定判定であった場合に、対応する気筒の運転モードを第2の運転モードに決定するように作成されている。本実施例では第1の運転モードはドライバビリティを重視した運転モード(以下、単にドラビリ重視モードと称す)に、第2の運転モードはエミッションの低減を重視した運転モード(以下、単にエミッション重視モードと称す)に夫々設定されており、これらの運転モードを実現する各種パラメータの値などはROMに予め設定されている。   The operation mode determination program corresponds to a cylinder corresponding to a case where the determination related to the first fuel property determination program is an affirmative determination or a determination related to the third fuel property determination program is an affirmative determination. Is determined to be the first operation mode, and the determination relating to the second fuel property determination program is affirmative, or the determination relating to the third fuel property determination program is a negative determination. In this case, the operation mode of the corresponding cylinder is determined to be the second operation mode. In the present embodiment, the first operation mode is an operation mode that emphasizes drivability (hereinafter simply referred to as “driability importance mode”), and the second operation mode is an operation mode that emphasizes emission reduction (hereinafter simply referred to as “emission importance mode”). The values of various parameters for realizing these operation modes are preset in the ROM.

本実施例ではマイコンとROMに格納されたプログラムとで各種の制御手段や判定手段や検出手段や算出手段などが実現されており、特にマイコンと始動時空燃比算出用プログラムとで始動時空燃比算出手段が、マイコンと第1の燃料性状判定用プログラムとで第1の燃料性状判定手段が、マイコンと第2の燃料性状判定用プログラムとで第2の燃料性状判定手段が、マイコンと第3の燃料性状判定用プログラムとで第3の燃料性状判定手段が、マイコンと運転モード決定用プログラムとで運転モード決定手段が夫々実現されている。   In this embodiment, various control means, determination means, detection means, calculation means, and the like are realized by the microcomputer and the program stored in the ROM. In particular, the start time air-fuel ratio calculation means is realized by the microcomputer and the start time air-fuel ratio calculation program. In the microcomputer and the first fuel property determination program, the first fuel property determination means is used. In the microcomputer and the second fuel property determination program, the second fuel property determination means is used as the microcomputer and the third fuel. A third fuel property determination unit is realized by the property determination program, and an operation mode determination unit is realized by the microcomputer and the operation mode determination program.

次にECU1Bで行われる処理を図6及び図7に示すフローチャートを用いて詳述する。なお、本フローチャートに示す処理の中にはこれまでの記載で特段明示しなかったプログラムに基づいて行われる処理もあるが、本フローチャートに示す処理はすべてROMに格納されたプログラムに基づきCPUが実行するものとなっている。また本フローチャートはECU1Bで行われる処理を一気筒に着目して示したものとなっている。CPUはigsw73がonになったか否かを判定する処理を実行する(ステップSb1)。続いてCPUは内燃機関50が始動したか否かを判定する処理を実行する(ステップSb2)。否定判定であればステップSb1に戻る。一方、肯定判定であれば、CPUは冷間時であるか否かを判定する処理を実行する(ステップSb3)。本ステップで、CPUは具体的には冷却水温Twが所定値(例えば25℃)よりも小さいか否かを判定する。否定判定であれば、ステップSb1に戻る。   Next, processing performed by the ECU 1B will be described in detail with reference to flowcharts shown in FIGS. Note that some of the processing shown in this flowchart is performed based on a program that has not been specified in the above description, but all processing shown in this flowchart is executed by the CPU based on a program stored in the ROM. It is supposed to be. Further, this flowchart shows the processing performed by the ECU 1B focusing on one cylinder. The CPU executes a process of determining whether or not igsw 73 is turned on (step Sb1). Subsequently, the CPU executes a process for determining whether or not the internal combustion engine 50 has been started (step Sb2). If a negative determination is made, the process returns to step Sb1. On the other hand, if it is affirmation determination, CPU will perform the process which determines whether it is cold time (step Sb3). In this step, the CPU specifically determines whether or not the cooling water temperature Tw is lower than a predetermined value (for example, 25 ° C.). If a negative determination is made, the process returns to step Sb1.

一方、肯定判定であれば、CPUはクランク角度θを取得する処理を実行する(ステップSb4)。さらにCPUは筒内圧力Pcylを取得する処理を実行する(ステップSb5)。続いてCPUは、クランク角度θが90[deg.btdc]であるか否かを判定する処理を実行する(ステップSb6)。本ステップでCPUは具体的には位相が1サイクル目の圧縮上死点前90[deg]であるか否かを判定している。否定判定であればステップSb4に戻る。 On the other hand, if it is affirmation determination, CPU will perform the process which acquires crank angle (theta) (step Sb4). Further, the CPU executes a process for acquiring the in-cylinder pressure P cyl (step Sb5). Subsequently, the CPU determines that the crank angle θ is 90 [deg. btdc] is executed (step Sb6). In this step, the CPU specifically determines whether or not the phase is 90 [deg] before the compression top dead center in the first cycle. If a negative determination is made, the process returns to step Sb4.

一方、肯定判定であれば、CPUは回転数NE及び充填効率KLを取得する処理を実行する(ステップSb7及びSb8)。続いてCPUは比熱比κを算出する処理を実行する(ステップSb9)。本ステップでは、実施例1で示したステップSa17と同様に比熱比κが算出される。さらにCPUは、第1サイクル空燃比AFRを算出する処理を実行する(ステップSb10)。続いてCPUはAFR1が15.5よりも大きいか否かを判定する処理を実行する(ステップSb11)。肯定判定であれば、CPUは対応する気筒の運転モードをドラビリ重視モードにする処理を実行する(ステップSb12)。一方、否定判定であれば、CPUはクランク角度θを取得する処理を実行する(ステップSb13)。続いてCPUは筒内圧力Pcylを取得する処理を実行する(ステップSb14)。さらにCPUはクランク角度θが90[deg.btdc]であるか否かを判定する処理を実行する(ステップSb15)。否定判定であれば、ステップSb13に戻る。 On the other hand, if it is affirmation determination, CPU will perform the process which acquires rotation speed NE and filling efficiency KL (step Sb7 and Sb8). Subsequently, the CPU executes a process for calculating the specific heat ratio κ (step Sb9). In this step, the specific heat ratio κ is calculated in the same manner as in step Sa17 shown in the first embodiment. Further, the CPU executes a process for calculating the first cycle air-fuel ratio AFR 1 (step Sb10). Subsequently, the CPU executes processing for determining whether or not AFR1 is larger than 15.5 (step Sb11). If the determination is affirmative, the CPU executes processing for setting the operation mode of the corresponding cylinder to the drivability priority mode (step Sb12). On the other hand, if it is negative determination, CPU will perform the process which acquires crank angle (theta) (step Sb13). Subsequently, the CPU executes a process for acquiring the in-cylinder pressure P cyl (step Sb14). Further, the CPU has a crank angle θ of 90 [deg. btdc] is executed (step Sb15). If a negative determination is made, the process returns to step Sb13.

一方、肯定判定であれば、CPUは内燃機関50の運転状態として、回転数NE及び充填効率KLを取得する処理を実行する(ステップSb16及びSb17)。続いてCPUは、比熱比κを算出する処理を実行する(ステップSb18)。さらにCPUは、第2サイクル空燃比AFRを算出する処理を実行する(ステップSb19)。続いてCPUはAFRが13.5よりも大きく、且つ15.5よりも小さいか否か、すなわちAFRが理論空燃比近傍にあるか否かを判定する処理を実行する(ステップSb20)。肯定判定であれば、CPUは対応する気筒の運転モードをエミッション重視モードにする処理を実行する(ステップSb21)。一方、否定判定であれば、CPUはAFR2が15.5よりも大きいか否かを判定する処理を実行する(ステップSb22)。肯定判定であれば、CPUは対応する気筒の運転モードをドラビリ重視モードにする処理を実行する(ステップSb23)。一方、否定判定であれば、CPUは対応する気筒の運転モードをエミッション重視モードにする処理を実行する(ステップSb24)。 On the other hand, if it is affirmation determination, CPU will perform the process which acquires rotation speed NE and charging efficiency KL as an operating state of the internal combustion engine 50 (step Sb16 and Sb17). Subsequently, the CPU executes a process for calculating the specific heat ratio κ (step Sb18). Further, the CPU executes a process for calculating the second cycle air-fuel ratio AFR 2 (step Sb19). Then the CPU AFR 2 is greater than 13.5, whether and less than 15.5, i.e. AFR 2 executes a process of determining whether or not the vicinity stoichiometric air-fuel ratio (step Sb20). If the determination is affirmative, the CPU executes processing for setting the operation mode of the corresponding cylinder to the emission priority mode (step Sb21). On the other hand, if it is negative determination, CPU will perform the process which determines whether AFR2 is larger than 15.5 (step Sb22). If the determination is affirmative, the CPU executes processing for setting the operation mode of the corresponding cylinder to the drivability priority mode (step Sb23). On the other hand, if a negative determination is made, the CPU executes processing for setting the operation mode of the corresponding cylinder to the emission priority mode (step Sb24).

ステップSb11、Sb20及びSb22では、具体的には図8に示すように燃料の性状が燃料噴射弁57の油密保持状態とともに判定される。すなわち、ステップSb11で肯定判定であった場合には、燃料性状は重質であり、且つ燃料噴射弁の油密保持状態が良好である、と判定され、この結果、運転モードがドラビリ重視モードに決定されることになる。またステップSb20で肯定判定であった場合には、燃料性状は軽質であり、且つ燃料噴射弁の油密保持状態が良好である、と判定され、この結果、運転モードがエミッション重視モードに決定されることになる。またステップSb22で肯定判定であった場合には、燃料性状は重質であり、且つ燃料噴射弁の油密保持状態が悪化している、と判定され、この結果、ドラビリ運転モードに決定されることになり、一方、否定判定であった場合には、燃料性状は軽質であり、且つ燃料噴射弁の油密保持状態が悪化している、と判定され、この結果運転モードがエミッション運転モードに決定されることになる。   In steps Sb11, Sb20, and Sb22, specifically, the fuel properties are determined together with the oil-tight holding state of the fuel injection valve 57 as shown in FIG. That is, if the determination in step Sb11 is affirmative, it is determined that the fuel property is heavy and the fuel-tight state of the fuel injection valve is good. As a result, the operation mode is changed to the drivability-oriented mode. Will be decided. If the determination in step Sb20 is affirmative, it is determined that the fuel property is light and that the fuel injection valve is in a good oil tight state, and as a result, the operation mode is determined to be the emission priority mode. Will be. If the determination in step Sb22 is affirmative, it is determined that the fuel property is heavy and the oil tightness holding state of the fuel injection valve is deteriorated, and as a result, the dribbling operation mode is determined. On the other hand, if the determination is negative, it is determined that the fuel property is light and the oil tightness holding state of the fuel injection valve is deteriorated. As a result, the operation mode is changed to the emission operation mode. Will be decided.

これにより、機関停止時に燃料噴射弁57からの燃料漏れがあっても、機関始動時に燃料の性状を燃料噴射弁57の油密保持状態とともに判定できることから、燃料性状を精度良く判定できる。また燃料の性状に応じて速やかに運転モードも決定されることから、燃料の性状に応じて内燃機関を好適に運転でき、この結果、機関始動時にドライバビリティとエミッション性能との両立を図ることができる。さらに始動時空燃比算出手段に係る所定の演算によれば、機関冷間始動時であっても空燃比を算出できることから、機関冷間始動時であっても適切な始動時燃料噴射量mstを気筒毎に算出及び噴射できる。以上により、機関停止時に燃料噴射弁57からの燃料漏れがあっても、機関冷間始動時に燃料の性状を燃料噴射弁57の油密保持状態とともに速やかに、且つ精度良く気筒毎に判定できるとともに、燃料の性状に応じて内燃機関50を好適に運転できるECU1Bを実現できる。 Thus, even if there is a fuel leak from the fuel injection valve 57 when the engine is stopped, the fuel property can be determined together with the oil tightness holding state of the fuel injection valve 57 when the engine is started, so that the fuel property can be accurately determined. In addition, since the operation mode is also determined promptly according to the properties of the fuel, the internal combustion engine can be suitably operated according to the properties of the fuel, and as a result, both drivability and emission performance can be achieved when the engine is started. it can. Further, according to the predetermined calculation related to the start-time air-fuel ratio calculation means, the air-fuel ratio can be calculated even when the engine is cold started. Therefore, an appropriate start-time fuel injection amount m st is set even when the engine is cold start. Calculation and injection can be performed for each cylinder. As described above, even if there is a fuel leak from the fuel injection valve 57 when the engine is stopped, the property of the fuel can be determined quickly and accurately for each cylinder together with the oil tightness holding state of the fuel injection valve 57 when the engine is cold started. Thus, the ECU 1B capable of suitably operating the internal combustion engine 50 according to the properties of the fuel can be realized.

上述した実施例は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。   The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

ECU1Aを内燃機関50Aの要部と共に模式的に示す図である。It is a figure which shows ECU1A typically with the principal part of 50 A of internal combustion engines. ECU1Aで行われる処理をフローチャートで示す図である。It is a figure which shows the process performed by ECU1A with a flowchart. 熱損失Qのマップデータを模式的に示す図である。The map data of the heat loss Q w is a diagram schematically illustrating. 比熱比κ及び空燃比AFRが14.5のときの比熱比κ1の比率と、当量比との相関関係を規定したマップデータを模式的に示す図である。It is a figure which shows typically the map data which prescribed | regulated the correlation of the ratio of specific heat ratio (kappa) 1 in case specific heat ratio (kappa) and air-fuel ratio AFR are 14.5, and an equivalence ratio. 比熱比κ1のマップデータを模式的に図である。It is a figure typically showing the map data of specific heat ratio (kappa) 1. ECU1Bで行われる処理をフローチャートで示す図である。It is a figure which shows the process performed by ECU1B with a flowchart. ECU1Bで行われる処理をフローチャートで示す図である。It is a figure which shows the process performed by ECU1B with a flowchart. 燃料の性状が燃料噴射弁57の油密保持状態とともに判定されるときの判定パターンを表で示す図である。It is a figure which shows the determination pattern in case the characteristic of a fuel is determined with the oil-tight holding state of the fuel injection valve 57 by a table | surface.

符号の説明Explanation of symbols

1 ECU
50 内燃機関
51 シリンダブロック
52 シリンダヘッド
53 ピストン
54 燃焼室
55 吸気弁
56 排気弁
57 燃料噴射弁
58 点火プラグ
1 ECU
DESCRIPTION OF SYMBOLS 50 Internal combustion engine 51 Cylinder block 52 Cylinder head 53 Piston 54 Combustion chamber 55 Intake valve 56 Exhaust valve 57 Fuel injection valve 58 Spark plug

Claims (5)

燃料噴射弁を気筒毎に複数備える内燃機関で制御を行うための内燃機関の制御装置であって、
少なくとも前記燃料噴射弁の開口隙間面積に基づき、機関停止後に機関停止時間の長さに応じて前記燃料噴射弁から漏れ出す第1の燃料漏れ量を気筒毎に算出する第1の漏れ量算出手段と、
機関始動時の筒内燃料量を気筒毎に算出する始動時筒内燃料量算出手段と、
少なくとも前記筒内燃料量を反映させて、機関始動時の燃料噴射量を気筒毎に算出する始動時燃料噴射量算出手段と、
所定の演算のもと、機関始動時の空燃比を気筒毎に算出する始動時空燃比算出手段と、
少なくとも前記始動時空燃比算出手段が算出した空燃比に基づき、前記第1の燃料漏れ量に対応する実際の燃料漏れ量として、第2の燃料漏れ量を気筒毎に算出する第2の漏れ量算出手段と、
前記第1及び第2の燃料漏れ量に基づき、前記開口隙間面積から実際の開口隙間面積として、新たな開口隙間面積を気筒毎に算出するとともに、前記開口隙間面積を前記新たな開口隙間面積に気筒毎に更新する開口隙間面積更新手段とを備えることを特徴とする内燃機関の制御装置。
A control device for an internal combustion engine for performing control with an internal combustion engine having a plurality of fuel injection valves for each cylinder,
First leakage amount calculation means for calculating, for each cylinder, a first fuel leakage amount that leaks from the fuel injection valve in accordance with the length of the engine stop time after the engine is stopped based on at least the opening clearance area of the fuel injection valve. When,
In-cylinder fuel amount calculating means for calculating the in-cylinder fuel amount at the time of engine starting for each cylinder;
A starting fuel injection amount calculating means for calculating a fuel injection amount at the time of starting the engine for each cylinder, reflecting at least the in-cylinder fuel amount;
A starting air-fuel ratio calculating means for calculating the air-fuel ratio at the time of engine starting for each cylinder under a predetermined calculation;
Based on at least the air-fuel ratio calculated by the starting air-fuel ratio calculating means, a second fuel leakage amount calculation for calculating the second fuel leakage amount for each cylinder as the actual fuel leakage amount corresponding to the first fuel leakage amount. Means,
Based on the first and second fuel leakage amounts, a new opening gap area is calculated for each cylinder as the actual opening gap area from the opening gap area, and the opening gap area is set to the new opening gap area. A control apparatus for an internal combustion engine, comprising: an opening gap area updating means for updating each cylinder.
前記燃料噴射弁が前記内燃機関の吸気ポートに燃料を噴射するように気筒毎に配置されているとともに、前記始動時筒内燃料量算出手段が、前記第1の燃料漏れ量の吸気ポートへの付着と、始動時基本燃料噴射量の吸気ポートでの残留とを考慮して、前記筒内燃料量を気筒毎に算出することを特徴とする請求項1記載の内燃機関の制御装置。 The fuel injection valve is arranged for each cylinder so as to inject fuel into the intake port of the internal combustion engine, and the start-time in-cylinder fuel amount calculating means supplies the first fuel leakage amount to the intake port. 2. The control device for an internal combustion engine according to claim 1, wherein the in-cylinder fuel amount is calculated for each cylinder in consideration of the adhesion and the residual of the basic fuel injection amount at start-up at the intake port. 燃料噴射弁を気筒毎に複数備える内燃機関で制御を行うための内燃機関の制御装置であって、
所定の演算のもと、機関始動時の空燃比を気筒毎に算出する始動時空燃比算出手段と、
前記始動時空燃比算出手段が機関始動時に算出した第1の燃焼サイクルに対応する第1の空燃比が、理論空燃比近傍よりもリーンであるか否かを気筒毎に判定する第1の燃料性状判定手段と、
前記第1の空燃比判定手段が否定判定した場合に、前記始動時空燃比算出手段が算出した前記第1の燃焼サイクルに続く第2の燃焼サイクルに対応する前記第2の空燃比が、理論空燃比近傍であるか否かを気筒毎に判定する第2の燃料性状判定手段と、
前記第2の空燃比判定手段が否定判定した場合に、前記第2の空燃比が理論空燃比近傍よりもリーンであるか否かを気筒毎に判定する第3の燃料性状判定手段とを備えることを特徴とする内燃機関の制御装置。
A control device for an internal combustion engine for performing control with an internal combustion engine having a plurality of fuel injection valves for each cylinder,
A starting air-fuel ratio calculating means for calculating the air-fuel ratio at the time of engine starting for each cylinder under a predetermined calculation;
A first fuel property for determining for each cylinder whether or not the first air-fuel ratio corresponding to the first combustion cycle calculated by the start-up air-fuel ratio calculating means at the time of engine start is leaner than the vicinity of the theoretical air-fuel ratio. A determination means;
When the first air-fuel ratio determining means makes a negative determination, the second air-fuel ratio corresponding to the second combustion cycle following the first combustion cycle calculated by the start-time air-fuel ratio calculating means is the theoretical air-fuel ratio. A second fuel property determination means for determining whether or not the fuel ratio is close to each cylinder;
And third fuel property determining means for determining, for each cylinder, whether or not the second air-fuel ratio is leaner than the vicinity of the theoretical air-fuel ratio when the second air-fuel ratio determining means makes a negative determination. A control device for an internal combustion engine.
さらに前記第1の燃料性状判定手段が肯定判定した場合、または前記第3の燃料性状判定手段が肯定判定した場合に、対応する気筒の運転モードを第1の運転モードに決定するとともに、前記第2の燃料性状判定手段が肯定判定した場合、または前記第3の燃料性状判定手段が否定判定した場合に、対応する気筒の運転モードを第2の運転モードに決定する運転モード決定手段を備えることを特徴とする請求項3記載の内燃機関の制御装置。 Further, when the first fuel property determining means makes an affirmative determination or when the third fuel property determining means makes an affirmative determination, the operation mode of the corresponding cylinder is determined as the first operation mode, and the first When the second fuel property determining means makes an affirmative determination, or when the third fuel property determining means makes a negative determination, an operation mode determining means for determining the operation mode of the corresponding cylinder as the second operation mode is provided. The control apparatus for an internal combustion engine according to claim 3. 前記第1の運転モードがドライバビリティを重視した運転モードであり、且つ前記第2の運転モードがエミッションの低減を重視した運転モードであるとともに、前記燃料噴射弁が前記内燃機関の吸気ポートに燃料を噴射するように気筒毎に配置されていることを特徴とする請求項4記載の内燃機関の制御装置。 The first operation mode is an operation mode in which drivability is emphasized, the second operation mode is an operation mode in which emission reduction is emphasized, and the fuel injection valve is connected to an intake port of the internal combustion engine. The internal combustion engine control device according to claim 4, wherein the control device is arranged for each cylinder so as to inject fuel.
JP2007159548A 2007-06-15 2007-06-15 Control device for internal combustion engine Expired - Fee Related JP4835520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159548A JP4835520B2 (en) 2007-06-15 2007-06-15 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159548A JP4835520B2 (en) 2007-06-15 2007-06-15 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008309117A true JP2008309117A (en) 2008-12-25
JP4835520B2 JP4835520B2 (en) 2011-12-14

Family

ID=40236927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159548A Expired - Fee Related JP4835520B2 (en) 2007-06-15 2007-06-15 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4835520B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228894A (en) * 2010-11-30 2013-07-31 大陆汽车有限公司 Estimating a fuel leakage quantity of an injection valve during a shut-down time of a motor vehicle
JPWO2013099029A1 (en) * 2011-12-28 2015-04-30 トヨタ自動車株式会社 Hybrid vehicle
CN106499524A (en) * 2015-09-03 2017-03-15 福特环球技术公司 It is used for the bursting device alleviating measures of vehicle during idle stop
CN113250838A (en) * 2021-06-28 2021-08-13 潍柴动力股份有限公司 Injection valve fault diagnosis method, system, equipment and storage medium
CN113847154A (en) * 2021-11-02 2021-12-28 潍柴动力股份有限公司 Injection valve fault detection method and device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272935A (en) * 1987-04-30 1988-11-10 Nissan Motor Co Ltd Control device for internal combustion engine
JPH04159432A (en) * 1990-10-19 1992-06-02 Hitachi Ltd Electronic control fuel injection system
JPH06280669A (en) * 1993-03-24 1994-10-04 Nissan Motor Co Ltd Air fuel ratio detector for internal combustion engine
JPH0777096A (en) * 1993-09-03 1995-03-20 Nippondenso Co Ltd Fuel control device for internal combustion engine
JPH07166922A (en) * 1993-12-13 1995-06-27 Nippon Soken Inc Fuel injection controller of internal combustion engine
JPH07286548A (en) * 1994-04-15 1995-10-31 Unisia Jecs Corp Fuel property detecting device of internal combustion engine
JPH0828319A (en) * 1994-05-10 1996-01-30 Nippondenso Co Ltd Fuel injection control device for internal combustion engine
JPH0886237A (en) * 1994-09-19 1996-04-02 Nissan Motor Co Ltd Controller of internal combustion engine
JPH08177586A (en) * 1994-10-26 1996-07-09 Toyota Motor Corp Control device for internal combustion engine
JPH11182292A (en) * 1997-12-17 1999-07-06 Denso Corp Fuel injection control device for internal combustion engine
JPH11223145A (en) * 1998-02-06 1999-08-17 Matsushita Electric Ind Co Ltd Air-fuel ratio control device
JP2000257467A (en) * 1999-03-09 2000-09-19 Nissan Motor Co Ltd Combustion controller of internal combustion engine
JP2004183502A (en) * 2002-11-29 2004-07-02 Fuji Heavy Ind Ltd Fuel injection controller of engine
JP2005030332A (en) * 2003-07-08 2005-02-03 Toyota Motor Corp Device and method for controlling internal combustion engine
JP2005120886A (en) * 2003-10-16 2005-05-12 Denso Corp Control device for internal combustion engine
JP2005133650A (en) * 2003-10-30 2005-05-26 Toyota Motor Corp Fuel supply system for internal combustion engine
JP2005188419A (en) * 2003-12-26 2005-07-14 Mazda Motor Corp Engine starter

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272935A (en) * 1987-04-30 1988-11-10 Nissan Motor Co Ltd Control device for internal combustion engine
JPH04159432A (en) * 1990-10-19 1992-06-02 Hitachi Ltd Electronic control fuel injection system
JPH06280669A (en) * 1993-03-24 1994-10-04 Nissan Motor Co Ltd Air fuel ratio detector for internal combustion engine
JPH0777096A (en) * 1993-09-03 1995-03-20 Nippondenso Co Ltd Fuel control device for internal combustion engine
JPH07166922A (en) * 1993-12-13 1995-06-27 Nippon Soken Inc Fuel injection controller of internal combustion engine
JPH07286548A (en) * 1994-04-15 1995-10-31 Unisia Jecs Corp Fuel property detecting device of internal combustion engine
JPH0828319A (en) * 1994-05-10 1996-01-30 Nippondenso Co Ltd Fuel injection control device for internal combustion engine
JPH0886237A (en) * 1994-09-19 1996-04-02 Nissan Motor Co Ltd Controller of internal combustion engine
JPH08177586A (en) * 1994-10-26 1996-07-09 Toyota Motor Corp Control device for internal combustion engine
JPH11182292A (en) * 1997-12-17 1999-07-06 Denso Corp Fuel injection control device for internal combustion engine
JPH11223145A (en) * 1998-02-06 1999-08-17 Matsushita Electric Ind Co Ltd Air-fuel ratio control device
JP2000257467A (en) * 1999-03-09 2000-09-19 Nissan Motor Co Ltd Combustion controller of internal combustion engine
JP2004183502A (en) * 2002-11-29 2004-07-02 Fuji Heavy Ind Ltd Fuel injection controller of engine
JP2005030332A (en) * 2003-07-08 2005-02-03 Toyota Motor Corp Device and method for controlling internal combustion engine
JP2005120886A (en) * 2003-10-16 2005-05-12 Denso Corp Control device for internal combustion engine
JP2005133650A (en) * 2003-10-30 2005-05-26 Toyota Motor Corp Fuel supply system for internal combustion engine
JP2005188419A (en) * 2003-12-26 2005-07-14 Mazda Motor Corp Engine starter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228894A (en) * 2010-11-30 2013-07-31 大陆汽车有限公司 Estimating a fuel leakage quantity of an injection valve during a shut-down time of a motor vehicle
US20130253804A1 (en) * 2010-11-30 2013-09-26 Gerd Rösel Estimating a Fuel Leakage Quantity of an Injection Valve During a Shut-Down Time of a Motor Vehicle
US9222431B2 (en) * 2010-11-30 2015-12-29 Continental Automotive Gmbh Estimating a fuel leakage quantity of an injection valve during a shut-down time of a motor vehicle
CN103228894B (en) * 2010-11-30 2016-01-27 大陆汽车有限公司 To the estimation of the leakage amount of fuel of injection valve during parking of automobile
JPWO2013099029A1 (en) * 2011-12-28 2015-04-30 トヨタ自動車株式会社 Hybrid vehicle
CN106499524A (en) * 2015-09-03 2017-03-15 福特环球技术公司 It is used for the bursting device alleviating measures of vehicle during idle stop
CN106499524B (en) * 2015-09-03 2021-04-30 福特环球技术公司 Leak injector mitigation for vehicles during idle stop
CN113250838A (en) * 2021-06-28 2021-08-13 潍柴动力股份有限公司 Injection valve fault diagnosis method, system, equipment and storage medium
CN113847154A (en) * 2021-11-02 2021-12-28 潍柴动力股份有限公司 Injection valve fault detection method and device
CN113847154B (en) * 2021-11-02 2023-08-18 潍柴动力股份有限公司 Method and device for detecting faults of injection valve

Also Published As

Publication number Publication date
JP4835520B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4405826B2 (en) Fuel control method based on cylinder events
JP2009013921A (en) Stoppage-starting control device of internal combustion engine
JP4835520B2 (en) Control device for internal combustion engine
JP3856100B2 (en) Fuel injection control device for internal combustion engine
JP2010048166A (en) Fuel injection control device for internal combustion engine
EP2405118A1 (en) Control device for internal combustion engine
JP4259109B2 (en) Engine fuel injection control device
JP4309079B2 (en) Fuel injection control device for internal combustion engine
EP1284363A2 (en) Ignition timing control device for internal combustion engine
US9890722B2 (en) Fuel injection control method for internal combustion engine
JP4560782B2 (en) Engine gasoline alternative fuel injection control device
EP1496229B1 (en) Direct injection engine and a start-up control method thereof
JP2006322339A (en) Internal combustion engine
JP2010164007A (en) Internal combustion engine control device
JP4937287B2 (en) Control device for internal combustion engine
JP6740588B2 (en) Fuel injection control device
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
JP2008297922A (en) Internal combustion engine controlling device
JP2003056381A (en) Fuel injection controller
JPH11270386A (en) Fuel injection control device of internal combustion engine
JP2003155945A (en) Control device of fuel injection on starting internal combustion engine
JP5341680B2 (en) Control device for internal combustion engine
JP2007063994A (en) Valve temperature estimating device of internal combustion engine and valve clearance quantity estimating device using this device
JP2009257290A (en) Injection control device of internal combustion engine
JP2007239637A (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees