JP2008306826A - 圧電アクチュエータ及びその駆動方法 - Google Patents

圧電アクチュエータ及びその駆動方法 Download PDF

Info

Publication number
JP2008306826A
JP2008306826A JP2007151059A JP2007151059A JP2008306826A JP 2008306826 A JP2008306826 A JP 2008306826A JP 2007151059 A JP2007151059 A JP 2007151059A JP 2007151059 A JP2007151059 A JP 2007151059A JP 2008306826 A JP2008306826 A JP 2008306826A
Authority
JP
Japan
Prior art keywords
piezoelectric element
duty ratio
piezoelectric
driving
driven body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007151059A
Other languages
English (en)
Inventor
Kesatoshi Takeuchi
啓佐敏 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007151059A priority Critical patent/JP2008306826A/ja
Priority to US12/133,609 priority patent/US7994687B2/en
Publication of JP2008306826A publication Critical patent/JP2008306826A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/145Large signal circuits, e.g. final stages
    • H02N2/147Multi-phase circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/062Small signal circuits; Means for controlling position or derived quantities, e.g. for removing hysteresis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/065Large signal circuits, e.g. final stages
    • H02N2/067Large signal circuits, e.g. final stages generating drive pulses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】駆動信号の供給先となる圧電素子を切り替えること無く、被駆動体の駆動方向を変更可能とする技術を提供する。
【解決手段】圧電アクチュエータは、少なくとも1つの圧電素子(120)と、被駆動体(MB)に駆動力を作用させるための作用端(130)とを有し、圧電素子(120)の変形に応じて作用端(130)が振動する圧電素子構造体100を備える。圧電アクチュエータは、さらに、圧電素子(120)に電圧を印加するためのドライバ回路(300)と、ドライバ回路(300)に矩形波状の駆動信号(DV,#DV)を供給することによって、作用端(130)を振動させる駆動制御回路(200)と、を備える。駆動制御回路(300)は、駆動信号(DV,#DV)のデューティ比を変更することによって被駆動体(MB)の駆動方向を反転可能である。
【選択図】図1

Description

この発明は、圧電アクチュエータ及びその駆動方法に関する。
圧電アクチュエータとしては、例えば本出願人により開示された特許文献1のものが知られている。この圧電アクチュエータは、圧電素子(「ピエゾ素子」とも呼ぶ)の伸縮を利用して、被駆動体を駆動することが可能である。
特開2004−266943
しかしながら、従来の圧電アクチュエータでは、被駆動体を反対方向に駆動するためには、駆動信号の供給先となる圧電素子を切り替えなければならないという問題があった。
本発明は、駆動信号の供給先となる圧電素子を切り替えること無く、被駆動体の駆動方向を変更可能とする技術を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1] 被駆動体を駆動するための圧電アクチュエータであって、
少なくとも1つの圧電素子と、前記被駆動体に駆動力を作用させるための作用端とを有し、前記圧電素子の変形に応じて前記作用端が振動する圧電素子構造体と、
前記圧電素子に電圧を印加するためのドライバ回路と、
前記ドライバ回路に矩形波状の駆動信号を供給することによって、前記作用端を振動させる駆動制御回路と、
を備え、
前記駆動制御回路は、前記駆動信号のデューティ比を変更することによって前記被駆動体の駆動方向を反転可能である、圧電アクチュエータ。
この構成によれば、駆動信号のデューティ比を変更することによって被駆動体の駆動方向を反転できるので、駆動信号の供給先となる圧電素子を切り替えること無く、被駆動体の駆動方向を変更することが可能である。
[適用例2] 適用例1記載の圧電アクチュエータであって、
前記駆動制御回路は、
(i)前記駆動信号のデューティ比を50%未満の値に設定することによって前記被駆動体を第1の方向に駆動し、
(ii)前記駆動信号のデューティ比を50%に設定することによって前記被駆動体を停止させ、
(iii)前記駆動信号のデューティ比を50%を超えた値に設定することによって前記被駆動体を前記第1の方向とは逆の第2の方向に駆動する、圧電アクチュエータ。
この構成によれば、50%のデューティ比を境にして、被駆動体を停止状態、第1の方向への被駆動状態、及び、第2の方向への被駆動状態の3つの状態におくことが可能である。
[適用例3] 適用例2記載の圧電アクチュエータであって、
前記駆動信号のデューティ比と前記作用端の駆動力との関係を示す特性は、前記デューティ比が50%の近傍で前記駆動力の変化の傾きが小さく、前記デューティ比が50%から離れた位置で前記駆動力の変化の傾きが大きくなる非線形な特性である、圧電アクチュエータ。
この構成によれば、デューティ比が50%の付近で被駆動体を安定して停止させることができ、かつ、デューティ比を50%から離れた位置に設定することによって大きな駆動力を作用させることができる。
[適用例4] 適用例1ないし3のいずれかに記載の圧電アクチュエータであって、
前記圧電素子構造体は、前記圧電素子構造体の振動を検出するためのセンサを有しており、
前記駆動制御回路は、
前記センサからのセンサ出力に応じて、前記圧電素子構造体が共振する共振周波数を有する共振周波数信号を生成する共振周波数信号生成部と、
前記共振周波数信号と同一の周波数を有するとともに、前記被駆動体の駆動方向に応じたデューティ比を有するように前記駆動信号を生成するデューディ制御部と、
を有する、圧電アクチュエータ。
この構成によれば、被駆動体を共振させつつ、駆動信号のデューティ比を変化させて所望の駆動状態を実現することが可能である。
[適用例5] 適用例1ないし4のいずれかに記載の圧電アクチュエータであって、
前記圧電素子構造体は、
略矩形の板状の2つの前記圧電素子と、
前記2つの圧電素子の間に介挿された共通電極と、
前記2つの圧電素子の外面側の対応する位置に設けられて互いに接続された第1及び第2の電極と、
を含み、
前記第1と第2の電極は、前記圧電素子の表面上の2つの対角線のうちの一方の対角線に沿って偏在した状態で配置されている、圧電アクチュエータ。
この構成によれば、第1と第2の電極と、共通電極との間に電圧を印加することによって、圧電素子構造体を屈曲させることができ、この屈曲の繰り返しによって作用端を振動させることができる。
なお、本発明は、種々の形態で実現することが可能であり、例えば、圧電アクチュエータ、その制御方法及び制御装置、及び、圧電アクチュエータを用いた各種の装置等の形態で実現することができる。
次に、本発明の実施の形態を以下の順序で説明する。
A.第1実施例:
B.他の実施例:
C.変形例
A.第1実施例:
図1(A)は、本発明の第1実施例としての圧電アクチュエータの構成を示す概念図である。この圧電アクチュエータは、被駆動体MBを駆動するための圧電素子構造体100と、圧電素子構造体100の動作を制御する駆動制御回路200と、駆動制御回路200から与えられた駆動信号DV,#DVに応じて圧電素子構造体100に駆動電圧を供給するドライバ回路300とを備えている。なお、符号の先頭に「#」が付されている駆動信号#DVは、駆動信号DVを反転した信号である。駆動制御回路200とドライバ回路300とを含む回路全体は、圧電素子構造体100を駆動する駆動部として機能している。この駆動部は、半導体集積回路(IC)として実装可能である。
圧電素子構造体100は、1つ以上の圧電素子120と、振動検出用の振動センサ110と、作用端130とを有している。なお、図1(A)の例では、圧電素子構造体100が被駆動体MBに対して傾いて配置されているが、正立した状態で配置してもよい。
圧電素子120が駆動信号DV,#DVに応じて伸縮すると、圧電素子構造体100の全体が振動し、これに応じて作用端130も振動する。作用端130は、被駆動体MBに押し当てられており、作用端130が振動すると被駆動体MBに対する駆動力が発生する。振動センサ110は、センサ出力S110を駆動制御回路200に供給する。駆動制御回路200は、この振動センサ出力S110に応じて、圧電素子構造体100が共振周波数で振動することを検出する機能を有している。また、駆動制御回路200は、共振周波数を有する駆動信号DV,#DVを生成することによって、圧電素子構造体100を共振周波数で振動させることが可能である。
駆動制御回路200は、さらに、駆動信号DV、#DVのデューティ比を変更することによって、被駆動体MBの駆動方向を反転することが可能である。例えば、デューティ比を50%未満の値に設定することによって被駆動体MBを左方向に移動させることができ、デューティ比を50%を超えた値に設定することによって被駆動体MBを右方向に移動させることができる。また、デューティ比をちょうど50%に設定することによって被駆動体MBを停止させることが可能である。
図1(B)は、駆動信号のデューティ比と駆動力との関係(駆動特性)を示すグラフである。縦軸は駆動力であり、そのプラス側は左方向の駆動力が発生することを示し、マイナス側は右方向の駆動力が発生することを示している。この特性では、デューティ比が50%の時に駆動力は発生せず、ゼロである。また、デューティ比が50%未満の値を取るときには、左方向に駆動力が発生する。一方、デューティ比が50%を超える値を取るときには、右方向に駆動力が発生する。また、この特性では、デューティ比が50%の近傍で傾きが小さく、デューティ比が50%から離れた位置で傾きが大きくなる非線形な特性となっている。このような特性を利用すれば、デューティ比を50%の近傍に維持することによって、被駆動体MBを停止させておくことが容易である。また、この特性は、デューティ比が50%である位置(中央点)を中心として対称な特性を示している。このような特性を利用すれば、駆動方向と駆動力を容易に制御可能であるという利点がある。
なお、図1(B)の例では、デューティ比が10%〜90%の範囲が有効な駆動範囲として利用可能であり、その外側(デューティ比が10%未満又は90%を超える範囲)は利用されていない。この理由は、デューティ比が0%の近傍又は100%の近傍では、圧電素子120に印加される電圧が直流電圧に近い波形になるので、圧電素子120が十分に伸縮せず、振動が発生しない可能性があるからである。なお、デューティ比と駆動力の関係を示す駆動特性、及び、その有効な駆動範囲は、圧電素子構造体100の具体的な構造に応じてそれぞれ実験的に設定される。
図2は、圧電素子構造体100の具体的な構造例を示す斜視図である。この圧電素子構造体100は、補強板63を、一対の圧電素子62、64で挟み込むように積層した構成を有している。上側の圧電素子62の表面上には、略矩形板状の4つの電極61a〜61dが配置されている。同様に、下側の圧電素子64の表面上にも、電極61a〜61dと対応する位置に、略矩形板の4つの電極65a〜65d(図示省略)が配置されている。なお、圧電素子構造体100の上半分と下半分は互いに鏡面対称な構造を有しているので、以下では主に上半分の構造について説明する。
補強板63は、略長方形の板状構造を有し、その厚みが各圧電素子62、64より薄いことが好ましい。こうすれば、圧電素子構造体100を高い効率で振動させ得る利点がある。また、補強板63は、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタン、チタン合金、銅、銅系合金その他の金属材料で構成することが可能である。補強板63は、圧電素子構造体100全体を補強する機能を有し、過振幅や外力等による圧電素子構造体100の損傷を防止する。また、補強板63は、圧電素子62、64間を導通させる共通の電極としても機能する。
圧電素子構造体100は、また、一方の短辺の中央、すなわち、長手方向の先端部の中央に、作用端66を有する。この作用端66は、図1(A)の作用端130として機能する部材である。圧電素子構造体100は、さらに、一方の長辺の中央、すなわち、長手方向の側部中央に、長辺に対して略垂直に突出する固定部68を有する。この固定部68は、圧電素子構造体100を設置する際に利用される部材である。なお、作用端66及び固定部68は、補強板63と単一部材により一体的に形成することができる。この場合には、作用端66及び固定部68は、その一部又は全部を絶縁層で被覆してもよい。あるいは、作用端66と固定部68を、補強板63(共通電極)と別部材で構成してもよい。
圧電素子62、64は、補強板63と略合同な長方形の板状構造を有する。圧電素子62、64は、補強板63に対して固着されており、一体化されて単一構造物を構成する。これにより、圧電素子構造体100の強度を向上できる利点がある。また、圧電素子62、64は、電圧の印加により伸縮可能な材料から成る。かかる材料としては、例えば、チタン酸ジルコニウム酸鉛、水晶、ニオブ酸リチウム、チタン酸バリウム、チタン酸鉛、メタニオブ酸鉛、ポリフッ化ビニリデン、亜鉛ニオブ酸鉛、スカンジウムニオブ酸鉛等がある。
圧電素子62の外面上に設置された4つの電極61a〜61dは、短冊状の金属部材から成り、圧電素子62上の所定の位置に設置される。図2の例では、これらの電極は、圧電素子62の長辺に対して略半分の長さを有し、各圧電素子62上の長辺側の縁部に沿って、長手方向にそれぞれ2枚ずつ並べて配置される。これにより、電極61a〜61dは、圧電素子62上にそれぞれ4枚ずつ並べられ、圧電素子62の長手方向の中心線および幅方向の中心線に対して相互に対称に位置する。
上面側の電極61a〜61dと、下面側の電極65a〜65dとは、圧電素子構造体100の表裏において相互に対向して配置されている。上面側と下面側の対応する位置にある電極同士(例えば電極61a,65a)は互いに電気的に接続されている。また、圧電素子62上にて対角線上に配置された電極同士(電極61a,61c同士、及び電極61b,61d同士)も互いに電気的に接続されている。また、電極61aと固定部68(共通電極)は、ドライバ回路300に接続されており、これらの電極61a,68にはドライバ回路300から駆動電圧が供給される。また、電極61dからは、圧電素子構造体100の振動を表す出力信号S110が駆動制御回路200に出力される。すなわち、電極61b,61d,65b,65d及び圧電素子62,64の全体は、振動センサ110として機能することが理解できる。
駆動用の電極61a,68に駆動電圧が印加されると、これらの電極61a,61c,65a,65dが設置された部分において、圧電素子62,64が圧電素子構造体100の長手方向に沿って高速かつ反復的に伸縮する。この結果、圧電素子構造体100の作用端66が振動し、図中に示す楕円軌道ECに沿って運動する。但し、この楕円軌道ECに沿った運動方向は、駆動信号DV,#DVのデューティ比に応じて反転する(図1(B))。被駆動体MB(図1(B))は、この作用端66の運動により駆動力を受けて駆動される。なお、圧電素子構造体100の動作については、本出願人により開示された特開2004−266943号公報に詳述されている。
図3は、駆動制御回路200の内部構成を示すブロック図である。駆動制御回路200は、デューティ制御部210と、ループフィルタ(LPF)220と、電圧制御発振器(VCO)230と、分周器240と、位相比較器250と、位相補正部260と、電圧比較器270と、CPU280とを有している。LPF220と、VCO230と、分周器240と、位相比較器250とは、いわゆるPLL回路を構成している。
電圧比較器270は、振動センサ出力S110と、所定の基準電圧Vrefとを比較して、その比較結果を示す信号S270を生成する。この信号S270は、位相補正部260の出力信号S260と共に位相比較器250に入力されている。なお、位相補正部260の出力信号S260は、後述するように、分周器240の出力信号S240の位相を補正したものである。位相比較器250の出力S250はLPF220に入力され、LPF220の出力S220はVCO230に入力される。VCO230の出力S230は、分周器240とデューティ制御部210とに供給されている。分周器240の出力S240は、デューティ制御部210と位相補正部260とに供給されている。デューティ制御部210は、VCO230の出力信号S230と、分周器240の出力信号S240と、CPU280から指示されたデューティ値Nとに基づいて、駆動信号DV,#DVを生成する。これらの駆動信号DV,#DVは、ドライバ回路300に供給される。
図4は、駆動制御回路200の動作を示すタイミングチャートである。VCO出力S230は、矩形波状のクロック信号である。分周器出力S240は、VCO出力S230を1/Mに分周したクロック信号である。振動センサ出力S110は、時系列的に変化する信号であり、例えば略正弦波状の信号である。電圧比較器出力S270は、振動センサ出力S110が基準電圧Vrefよりも小さいときにHレベルとなり、基準電圧Vrefよりも大きいときにLレベルとなる。但し、振動センサ出力S110が基準電圧Vrefよりも大きいときに、電圧比較器出力S270がHレベルとなるように、電圧比較器270と基準電圧Vrefとを設定しても良い。
位相補正部260は、分周器出力S240の位相を遅延させることによって、適正な位相位置において立ち上がりエッジを有する出力S260を生成している。ここで、「適正な位相位置」とは、位相比較器250において、位相補正部出力S260と、電圧比較器出力S270とを比較した結果として圧電素子構造体100の共振状態を検出できるような適切な位置を意味している。位相補正部260で付与される遅延量は、駆動制御回路200内の回路要素の遅れ等に応じて、予め適切な値に設定することが可能である。
位相比較器出力S250は、Hレベルと、ハイインピーダンス状態(図中で「Hi-z」と記した状態)と、Lレベルとを取りうる。位相比較器出力S250がハイインピーダンス状態にあるときに、位相補正部出力S260の立ち上がりエッジが発生すると、位相比較器出力S250がHレベルに立ち上がる。その後、電圧比較器出力S270の立ち上がりエッジが発生するとハイインピーダンス状態に戻る。一方、位相比較器出力S250がハイインピーダンス状態にあるときに、電圧比較器出力S270の立ち上がりエッジが発生するすると、位相比較器出力S250がLレベルに立ち下がり、その後、位相補正部出力S260の立ち上がりエッジが発生すると、位相比較器出力S250がハイインピーダンス状態に戻る。このように、位相比較器出力S250は、2つの信号S260,S270の位相を比較した結果を示す信号となる。位相比較器出力S250がHレベルのときにはLPF出力S220が増大し、LベルのときにはLPF出力S220が減小する。VCO出力S230は、このLPF出力S220に比例した周波数を有するクロック信号である。なお、図4では、VCO出力S230と分周器出力S240は一定の周波数を有するように見えるが、実際には、LPF出力S220の増大に従って、これらの信号S230,S240の周波数も増大する。
圧電素子構造体100が共振すると、振動センサ信号S110の振幅が増大し、これに伴ってVCO出力S230と分周器出力S240の周波数も増大する。そして、振動センサ信号S110と分周器出力S240の周波数及び位相がそれぞれ一致した状態で、VCO出力S230が安定した周波数を有する状態となる。従って、分周器出力S240は、圧電素子構造体100の共振周波数を有する信号として生成されることが理解できる。このように、駆動制御回路200は、圧電素子構造体100の共振を検出するとともに、その共振周波数を有する信号S240を生成する回路としての機能を有している。なお、LPF220は、始動時にもゼロでない所定の初期電圧をVCO230に供給するように構成されていることが好ましい。こうすれば、始動時に、VCO230から所定の初期周波数を有するVCO出力S230を発生させることが可能である。デューティ制御部210は、こうして得られたVCO出力S230と分周器出力S240とに基づいて、以下のようにして駆動信号DV,#DVを生成している。
図5は、デューティ制御部210の動作を示すタイミングチャートである。デューティ制御部210で生成される駆動信号DVは、分周器出力S240の立ち上がりエッジに応じてHレベルに立ち上がり、その後、VCO出力S230がNパルスだけ発生するとLレベルに立ち下がる。従って、駆動信号DVは、分周器出力S240と同じ周波数を有し、デューティ比がN/Mとなる信号である。なお、図6(A)は、デューティ比N/Mが50%未満の場合を示しており、図6(B)は、デューティ比N/Mが50%を超える場合を示している。このような動作を行うデューティ制御部210は、カウンタを用いて構成することが可能である。
図6は、ドライバ回路300の一例を示す回路図である。このドライバ回路300は、4つのスイッチングトランジスタ311〜314で構成されるHブリッジ回路である。上アームのトランジスタ311,313と、下アームのトランジスタ312,314は逆のタイプ(ここではnpn型とpnp型)のトランジスタである。駆動信号DVは、左側の2つのトランジスタ311,312の制御端子に共通に入力されている。また、反転した駆動信号#DVは、右側の2つのトランジスタ313,314の制御端子に共通に入力されている。駆動信号DVがオン状態になると、圧電素子62,64に所定の方向の電流Iaが流れ、一方、駆動信号DVがオフ状態になると、圧電素子62,64に反対向きの電流Ibが流れる。従って、駆動信号DVとして矩形波状の信号が入力されると、矩形状の電圧が印加されて電流Ia,Ibが交互に流れ、これによって圧電素子62,64が伸縮する。
図7は、圧電素子構造体100の振動周波数fcと、振動センサ出力S110の電圧レベルとの関係を示している。共振周波数領域では、振動センサ出力S110の電圧が高い値を示す。電圧比較器270(図3)の基準電圧Vrefは、この共振周波数領域の振動センサ出力S110の電圧レベルの範囲内の値に予め設定されている。従って、駆動制御回路200は、共振周波数を有する信号として、分周器出力S240及び駆動信号DV,#DVを生成することが可能である。
以上のように、本実施例の圧電アクチュエータは、駆動信号DVのデューティ比を変えるだけで、圧電素子構造体100から被駆動体MBに作用する駆動力の方向を逆転することができる。従って、簡単な構成で、被駆動体MBを正方向及び逆方向の両方向に駆動することが可能である。
B.他の実施例:
図8は、第2実施例における圧電素子構造体と被駆動体との関係を示す説明図である。ここでは、円盤状の被駆動体MBの両側に2つの圧電素子構造体101,102が設けられている。圧電素子構造体101,102は同一の構造を有しており、例えば図2に示したものと同じ構造を採用することができる。被駆動体MBは、2つの圧電素子構造体101,102からの駆動力を受けて、右回りと左回りの両方に回転可能である。なお、2つの圧電素子構造体101,102を被駆動体MBの反対側に設けた理由は、被駆動体MBに加えられる駆動力をバランスさせて、より滑らかに回転できるようにするためである。
図9は、第2実施例における駆動部の構成を示すブロック図である。駆動制御回路200aは、図3に示した回路200のデューティ制御部210を、正駆動デューティ制御部211及び逆駆動デューティ制御部212に置き換えたものである。また、これらのデューティ制御部211,212に対応して2つのドライバ回路301,302が設けられている。これらの2つのドライバ回路301,302は、2つの圧電素子構造体101,102を駆動するための回路である。
正駆動デューティ制御部211は、デューティ比がN/Mの駆動信号DV1を生成する。これは、図5で説明した動作と同じである。一方、逆駆動デューティ制御部212は、デューティ比が(M−N)/Mの駆動信号DV2を生成する。2つのデューティ制御部211,212で使用されるデューティ比N/M,(M−N)/Mは、50%から等しい差分を有する値である。すなわち、第1のデューティ比N/Mが(50−α)%の時に、第2のデューティ比(M−N)/Mは(50+α)%となる。図1(B)で説明したように、デューティ比と駆動力との間の関係を示す特性は、デューティ比が50%の位置を中心とした対称な形をしているので、これらのデューティ比N/M,(M−N)/Mを有する駆動信号DV1,DV2によって2つの圧電素子構造体101,102を同時に駆動すれば、被駆動体MBを右回りと左回りのいずれの方向にも選択的に回転させることが可能である。
図10は、圧電素子構造体の他の構造例を示している。この圧電素子構造体100aは、図2に記載した圧電素子構造体100の電極61a,61cを、これらを結合した単一の電極61gに置き換えたものである。裏面側には、この電極61gと同じ形状を有する電極65gが設けられている。また、電極61dは図2よりもやや面積が小さくなっており、図2の電極61bは省略されている。このような構造を有する圧電素子構造体100aを用いた場合にも、図2の示した構造体100を用いた場合と同様に、圧電素子の振動に応じて被駆動体を正方向と逆方向の両方向に駆動することが可能である。これらの2種類の圧電素子構造体は、略矩形の板状の2つの圧電素子62,64と、2つの圧電素子62,64の間に介挿された共通電極68と、2つの圧電素子62,64の外面側の対応する位置に設けられて互いに接続された電極61a,61c,65a,65dとを含んでいる。また、これらの電極61a,61c,65a,65dは、圧電素子62,64の表面上の2つの対角線のうちの一方の対角線に沿って偏在した状態で配置されているものである。なお、圧電素子構造体としては、図2及び図10に示したもの以外の任意の構造を採用することが可能であり、1つ以上の圧電素子を含み圧電素子の変形に応じて作用端が振動する圧電素子構造体を採用することができる。なお、作用端は、振動時に楕円状の軌道に沿って運動するものであることが好ましい。
C.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
C1.変形例1:
上記実施例では、駆動制御回路が圧電素子構造体の共振状態を検出できる構成を有しているものとしたが、この代わりに、共振状態を検出すること無く、予め求めた共振周波数と等しい一定の周波数を有する駆動信号を生成する回路を利用することも可能である。但し、上記実施例では、個々の圧電素子構造体の製造誤差や環境(温度など)に応じて共振周波数が変化しても、圧電素子構造体を常に共振させることができるという利点がある。
C2.変形例2:
駆動信号のデューティ比と駆動力との関係としては、図1(B)に示したもの以外の任意の特性を示すものを使用することができる。例えば、駆動力の反転が生じるデューティ比の値が50%以外の値になる場合も生じ得る。例えば、図1(A)に示したように、圧電素子構造体100を被駆動体MBに対して傾いた状態で配置した場合に、駆動力の反転が生じるデューティ比は50%から多少ずれる可能性がある。また、駆動力の大きさも、左方向と右方向で同じ値が得られる必要は無く、左方向と右方向で多少の差が生じていてもよい。
本発明の第1実施例としての圧電アクチュエータの構成と動作の概要を示す図である。 圧電素子構造体の具体的な構造例を示す斜視図である。 駆動制御回路の内部構成を示すブロック図である。 駆動制御回路の動作を示すタイミングチャートである。 デューティ制御部の動作を示すタイミングチャートである。 ドライバ回路の一例を示す回路図である。 圧電素子構造体の振動の周波数fcと振動センサ出力S110の電圧レベルとの関係を示すグラフである。 第2実施例における圧電素子構造体と被駆動体との関係を示す説明図である。 第2実施例における駆動部の構成を示すブロック図である。 圧電素子構造体の他の構造例を示す斜視図である。
符号の説明
61a〜61d…電極
62,64…圧電素子
63…補強板
65a〜65d,65g…電極
66…作用端
68…固定部(共通電極)
100…圧電素子構造体
110…振動センサ
120…圧電素子
130…作用端
200…駆動制御回路
210…デューティ制御部
220…ループフィルタ(LPF)
230…電圧制御発振器(VCO)
240…分周器
250…位相比較器
260…位相補正部
270…電圧比較器
280…CPU
300…ドライバ回路
311〜314…スイッチングトランジスタ

Claims (10)

  1. 被駆動体を駆動するための圧電アクチュエータであって、
    少なくとも1つの圧電素子と、前記被駆動体に駆動力を作用させるための作用端とを有し、前記圧電素子の変形に応じて前記作用端が振動する圧電素子構造体と、
    前記圧電素子に電圧を印加するためのドライバ回路と、
    前記ドライバ回路に矩形波状の駆動信号を供給することによって、前記作用端を振動させる駆動制御回路と、
    を備え、
    前記駆動制御回路は、前記駆動信号のデューティ比を変更することによって前記被駆動体の駆動方向を反転可能である、圧電アクチュエータ。
  2. 請求項1記載の圧電アクチュエータであって、
    前記駆動制御回路は、
    (i)前記駆動信号のデューティ比を50%未満の値に設定することによって前記被駆動体を第1の方向に駆動し、
    (ii)前記駆動信号のデューティ比を50%に設定することによって前記被駆動体を停止させ、
    (iii)前記駆動信号のデューティ比を50%を超えた値に設定することによって前記被駆動体を前記第1の方向とは逆の第2の方向に駆動する、圧電アクチュエータ。
  3. 請求項2記載の圧電アクチュエータであって、
    前記駆動信号のデューティ比と前記作用端の駆動力との関係を示す特性は、前記デューティ比が50%の近傍で前記駆動力の変化の傾きが小さく、前記デューティ比が50%から離れた位置で前記駆動力の変化の傾きが大きくなる非線形な特性である、圧電アクチュエータ。
  4. 請求項1ないし3のいずれかに記載の圧電アクチュエータであって、
    前記圧電素子構造体は、前記圧電素子構造体の振動を検出するためのセンサを有しており、
    前記駆動制御回路は、
    前記センサからのセンサ出力に応じて、前記圧電素子構造体が共振する共振周波数を有する共振周波数信号を生成する共振周波数信号生成部と、
    前記共振周波数信号と同一の周波数を有するとともに、前記被駆動体の駆動方向に応じたデューティ比を有するように前記駆動信号を生成するデューディ制御部と、
    を有する、圧電アクチュエータ。
  5. 請求項1ないし4のいずれかに記載の圧電アクチュエータであって、
    前記圧電素子構造体は、
    略矩形の板状の2つの前記圧電素子と、
    前記2つの圧電素子の間に介挿された共通電極と、
    前記2つの圧電素子の外面側の対応する位置に設けられて互いに接続された第1及び第2の電極と、
    を含み、
    前記第1と第2の電極は、前記圧電素子の表面上の2つの対角線のうちの一方の対角線に沿って偏在した状態で配置されている、圧電アクチュエータ。
  6. 少なくとも1つの圧電素子と、被駆動体に駆動力を作用させるための作用端とを有し、前記圧電素子の変形に応じて前記作用端が振動する圧電素子構造体を用いて、前記被駆動体を駆動するための圧電アクチュエータの駆動方法であって、
    前記圧電素子を駆動するための駆動信号のデューティ比を変更することによって前記被駆動体の駆動方向を反転する、方法。
  7. 請求項6記載の方法であって、
    (i)前記駆動信号のデューティ比を50%未満の値に設定することによって前記被駆動体を第1の方向に駆動し、
    (ii)前記駆動信号のデューティ比を50%に設定することによって前記被駆動体を停止させ、
    (iii)前記駆動信号のデューティ比を50%を超えた値に設定することによって前記被駆動体を前記第1の方向とは逆の第2の方向に駆動する、方法。
  8. 請求項7記載の方法であって、
    前記駆動信号のデューティ比と前記作用端の駆動力との関係を示す特性は、前記デューティ比が50%の近傍で前記駆動力の変化の傾きが小さく、前記デューティ比が50%から離れた位置で前記駆動力の変化の傾きが大きくなる非線形な特性である、方法。
  9. 請求項6ないし8のいずれかに記載の方法であって、
    前記圧電素子構造体は、前記圧電素子構造体の振動を検出するためのセンサを有しており、
    前記方法は、
    前記センサからのセンサ出力に応じて、前記圧電素子構造体が共振する共振周波数を有する共振周波数信号を生成する工程と、
    前記共振周波数信号と同一の周波数を有するとともに、前記被駆動体の駆動方向に応じたデューティ比を有するように前記駆動信号を生成する工程と、
    を含む、方法。
  10. 請求項6ないし9のいずれかに記載の方法であって、
    前記圧電素子構造体は、
    略矩形の板状の2つの前記圧電素子と、
    前記2つの圧電素子の間に介挿された共通電極と、
    前記2つの圧電素子の外面側の対応する位置に設けられて互いに接続された第1及び第2の電極と、
    を含み、
    前記第1と第2の電極は、前記圧電素子の表面上の2つの対角線のうちの一方の対角線に沿って偏在した状態で配置されている、方法。
JP2007151059A 2007-06-07 2007-06-07 圧電アクチュエータ及びその駆動方法 Pending JP2008306826A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007151059A JP2008306826A (ja) 2007-06-07 2007-06-07 圧電アクチュエータ及びその駆動方法
US12/133,609 US7994687B2 (en) 2007-06-07 2008-06-05 Piezoelectric actuator and method for driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151059A JP2008306826A (ja) 2007-06-07 2007-06-07 圧電アクチュエータ及びその駆動方法

Publications (1)

Publication Number Publication Date
JP2008306826A true JP2008306826A (ja) 2008-12-18

Family

ID=40095217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151059A Pending JP2008306826A (ja) 2007-06-07 2007-06-07 圧電アクチュエータ及びその駆動方法

Country Status (2)

Country Link
US (1) US7994687B2 (ja)
JP (1) JP2008306826A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233443A (ja) * 2009-03-06 2010-10-14 Panasonic Corp 駆動装置、レンズ鏡筒及びカメラ
JP2010259223A (ja) * 2009-04-24 2010-11-11 Fujifilm Corp 駆動装置、光学装置及び駆動信号制御回路
JP2019068587A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 圧電駆動装置の制御装置および圧電駆動装置の制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010997B2 (ja) * 2012-04-18 2016-10-19 セイコーエプソン株式会社 圧電モーター、駆動回路及び駆動方法
JP6439466B2 (ja) * 2015-01-30 2018-12-19 セイコーエプソン株式会社 圧電駆動装置、ロボット及びロボットの駆動方法
EP3537593B1 (fr) * 2018-03-09 2024-04-24 ETA SA Manufacture Horlogère Suisse Dispositif de rotation d'une roue dentée

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211669A (ja) * 2000-01-20 2001-08-03 Minolta Co Ltd 駆動装置
JP2004166324A (ja) * 2002-11-08 2004-06-10 Seiko Epson Corp 超音波モータ駆動回路および電子機器
JP2004222377A (ja) * 2003-01-10 2004-08-05 Seiko Epson Corp 共振制御装置及び共振デバイスの制御方法
JP2004320979A (ja) * 2003-04-03 2004-11-11 Seiko Epson Corp 稼働装置および電気機器
JP2004336906A (ja) * 2003-05-08 2004-11-25 Seiko Epson Corp 駆動制御回路及び駆動制御方法
JP2004336862A (ja) * 2003-05-06 2004-11-25 Seiko Epson Corp 超音波モータの駆動回路およびアクチュエータ
JP2005328698A (ja) * 2005-07-04 2005-11-24 Seiko Epson Corp 超音波モータ駆動回路および電子機器
JP2006353055A (ja) * 2005-06-20 2006-12-28 Seiko Epson Corp 圧電アクチュエータの駆動制御装置、電子機器、および圧電アクチュエータの駆動制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616980A (en) * 1993-07-09 1997-04-01 Nanomotion Ltd. Ceramic motor
WO2000038309A1 (fr) * 1998-12-21 2000-06-29 Seiko Epson Corporation Actionneur piezo-electrique, compteur de temps et dispositif portable
JP2004166479A (ja) * 2002-06-14 2004-06-10 Seiko Epson Corp 回転型駆動装置およびこれを備えた装置
JP2004266943A (ja) * 2003-02-28 2004-09-24 Seiko Epson Corp 超音波モータ、稼働装置、光学系切換機構および電気機器
JP2004320980A (ja) * 2003-04-03 2004-11-11 Seiko Epson Corp 稼働装置および電気機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211669A (ja) * 2000-01-20 2001-08-03 Minolta Co Ltd 駆動装置
JP2004166324A (ja) * 2002-11-08 2004-06-10 Seiko Epson Corp 超音波モータ駆動回路および電子機器
JP2004222377A (ja) * 2003-01-10 2004-08-05 Seiko Epson Corp 共振制御装置及び共振デバイスの制御方法
JP2004320979A (ja) * 2003-04-03 2004-11-11 Seiko Epson Corp 稼働装置および電気機器
JP2004336862A (ja) * 2003-05-06 2004-11-25 Seiko Epson Corp 超音波モータの駆動回路およびアクチュエータ
JP2004336906A (ja) * 2003-05-08 2004-11-25 Seiko Epson Corp 駆動制御回路及び駆動制御方法
JP2006353055A (ja) * 2005-06-20 2006-12-28 Seiko Epson Corp 圧電アクチュエータの駆動制御装置、電子機器、および圧電アクチュエータの駆動制御方法
JP2005328698A (ja) * 2005-07-04 2005-11-24 Seiko Epson Corp 超音波モータ駆動回路および電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233443A (ja) * 2009-03-06 2010-10-14 Panasonic Corp 駆動装置、レンズ鏡筒及びカメラ
JP2010259223A (ja) * 2009-04-24 2010-11-11 Fujifilm Corp 駆動装置、光学装置及び駆動信号制御回路
JP2019068587A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 圧電駆動装置の制御装置および圧電駆動装置の制御方法
JP7102702B2 (ja) 2017-09-29 2022-07-20 セイコーエプソン株式会社 圧電駆動装置の制御装置および圧電駆動装置の制御方法

Also Published As

Publication number Publication date
US7994687B2 (en) 2011-08-09
US20080303380A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP2008306826A (ja) 圧電アクチュエータ及びその駆動方法
JP2012257424A (ja) 圧電アクチュエーター、ロボットハンド、及びロボット
JP2012253989A (ja) 圧電アクチュエーター、ロボットハンド、及びロボット
JP2007267482A (ja) 圧電アクチュエータ
JP5212397B2 (ja) 圧電アクチュエータ
JP5350715B2 (ja) Mems振動子
JP3719249B2 (ja) 圧電アクチュエータ、圧電アクチュエータの駆動制御回路、時計、携帯機器、圧電アクチュエータ駆動回路の制御方法、時計の制御方法および携帯機器の制御方法
JP2000514250A (ja) ピエゾ電気変成器用パルス位置変調駆動
JP2013013218A (ja) 圧電アクチュエーターの駆動方法
US9240746B2 (en) Driving apparatus for vibration-type actuator
JP3718786B2 (ja) 振動ジャイロ
JP2010252471A (ja) 圧電駆動装置、圧電駆動装置の制御方法および電子機器
JP2010252422A (ja) 圧電駆動装置、圧電駆動装置の制御方法および電子機器
US11515812B2 (en) Control method for piezoelectric drive device, piezoelectric drive device, and robot
JP2021100308A (ja) 圧電駆動装置の制御方法、圧電駆動装置、および、ロボット
JP4593266B2 (ja) 振動子
JP4595453B2 (ja) 超音波モータの駆動回路およびアクチュエータ
JP5637195B2 (ja) 圧電アクチュエータ
JP2002233175A (ja) アクチュエータ及びその駆動方法
JPH07264882A (ja) 超音波モータ
JP2017131052A (ja) 圧電素子駆動装置
JPH04313369A (ja) 超音波アクチュエータ駆動回路
JP2004336862A (ja) 超音波モータの駆動回路およびアクチュエータ
JP2002359988A (ja) 超音波モータ制御回路
JP6019545B2 (ja) 圧電アクチュエーター、駆動ユニット、及び、圧電アクチュエーターの駆動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820