JP2008297720A - Non-damage self-centering type base-isolation and seismic-control mechanism intended for steel bridge - Google Patents

Non-damage self-centering type base-isolation and seismic-control mechanism intended for steel bridge Download PDF

Info

Publication number
JP2008297720A
JP2008297720A JP2007142185A JP2007142185A JP2008297720A JP 2008297720 A JP2008297720 A JP 2008297720A JP 2007142185 A JP2007142185 A JP 2007142185A JP 2007142185 A JP2007142185 A JP 2007142185A JP 2008297720 A JP2008297720 A JP 2008297720A
Authority
JP
Japan
Prior art keywords
column
seismic
control mechanism
isolation
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007142185A
Other languages
Japanese (ja)
Other versions
JP2008297720A5 (en
JP5007380B2 (en
Inventor
Yoshiaki Goto
芳顯 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2007142185A priority Critical patent/JP5007380B2/en
Publication of JP2008297720A publication Critical patent/JP2008297720A/en
Publication of JP2008297720A5 publication Critical patent/JP2008297720A5/ja
Application granted granted Critical
Publication of JP5007380B2 publication Critical patent/JP5007380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base-isolation and seismic-control mechanism which prevents a structure body from being damaged by a maximal earthquake, and which satisfies serviceability after the earthquake. <P>SOLUTION: Both ends of a beam are installed on the top of a column, and prestress is introduced into a prestressing concrete (PC) steel bar which is arranged in the axial direction of the column, so that the column is fastened to the beam and a foundation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は鋼橋梁を対象とした無損傷自己復元型免震・制震機構に関する。   The present invention relates to an undamaged self-restoring type seismic isolation / damping mechanism for steel bridges.

橋脚などに用いられる鋼製門型骨組構造ではエネルギ吸収能に優れた耐震構造を用いるのが一般的であるが、近年、本体構造への損傷を極力防止するために非特許文献1の座屈拘束ブレースやシャパネルなどの経済的な履歴ダンパーを用いた制震構造の適用が検討されている(図1)。このような構造では本体構造への損傷は減少するものの、門型骨組のせん断剛性の上昇による柱基部反力の増加や履歴ダンパーの塑性化による残留変位発生の恐れが考えられる。また、門型ラーメンの自由空間を占有するとういう問題もある。   In steel gate-type frame structures used for bridge piers and the like, it is common to use earthquake-resistant structures with excellent energy absorption capability, but in recent years, the buckling of Non-Patent Document 1 has been carried out to prevent damage to the main body structure as much as possible. Application of seismic control structures using economical hysteretic dampers such as restrained braces and shear panels is being studied (Fig. 1). In such a structure, although the damage to the main body structure is reduced, there is a possibility that an increase in the reaction force of the column base due to an increase in the shear rigidity of the portal frame and a residual displacement due to plasticization of the hysteresis damper. There is also the problem of occupying the free space of the portal ramen.

剛結骨組構造における柱と基礎ならびに柱と梁の接合部での地震時における曲げモーメントの増加を抑えるためにはアンカー部や隅角部での柱の固定度を小さくした非特許文献2のいわゆる半剛結構造(Semi-rigid connection)(図2)とすることにより免震性を付与することが考えられる。しかしながら、このような構造の場合、柱への損傷は低減できるが、接合部への損傷の集中や地震後の残留変位の増加の可能性がある。この問題に対処するため、建築の多層多径間骨組においては自己復元(self-centering)機能を持ついわゆるPTED接合(Post-Tensioned Energy Dissipating Connection)(図3)を梁と柱の接合部に用いることが非特許文献3で提案されている。PTED接合は梁と柱を梁の軸方向に配置したPC鋼棒により圧縮軸力を導入することで接合し、さらに接合部に軸降伏型の金属ダンパーをはりの上下部に水平に配置し梁と柱を結合したものである。しかしながら、この構造をラーメン橋脚として適用例の多い門型骨組にそのまま適用した場合、PTED接合は2箇所の隅角部のみの配置となることと、柱基部が剛結されているので隅角部での相対回転が小さいことにより、接合部でのエネルギ吸収を有効に行うことができないという問題点がある。さらに、建築骨組と異なり梁上に上部構造の大きな死荷重が作用するので、PTED接合として相対回転を許容しつつ、大きな梁反力を柱に確実に伝達する支持構造を柱の内側フランジ面に設置することは容易でない。

履歴型ダンパー付骨組の地震応答性状と耐震設計法,日本鋼構造協会,1998. 後藤芳顯, 鈴木五月, 松浦聖:はりと柱の結合部に非弾性特性を有する半剛結矩形骨組の安定性に関する一考察,土木学会論文集,No.416,329-338,1990. Constantin Christpouluos,Andre Filiatrault,Chia-Ming Uang,Bryan Folz:Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames,Journal of structural engineering,pp.1111-1120,2002.
In order to suppress the increase in bending moment at the time of an earthquake at the column-to-base and column-to-beam joints in a rigid frame structure, the so-called Non-Patent Document 2 in which the degree of fixation of the column at the anchor and corners is reduced It is conceivable to provide seismic isolation by adopting a semi-rigid connection (Fig. 2). However, in such a structure, damage to the column can be reduced, but there is a possibility of concentration of damage to the joint and an increase in residual displacement after the earthquake. To address this problem, so-called PTED joints (Post-Tensioned Energy Dissipating Connection) (Fig. 3) with self-centering function are used for the joints between beams and columns in multi-story multi-span frames of buildings. This is proposed in Non-Patent Document 3. In PTED joining, a beam and a column are joined by introducing a compressive axial force with a PC steel rod arranged in the axial direction of the beam, and an axial yield type metal damper is placed horizontally at the top and bottom of the beam at the joint. And a pillar. However, when this structure is applied as it is to a portal frame with many examples of application as a ramen pier, the PTED joint has only two corners, and the column base is rigidly connected. There is a problem that energy absorption at the joint cannot be effectively performed due to the small relative rotation at. Furthermore, unlike a building frame, a large dead load of the superstructure acts on the beam, so a support structure that reliably transmits a large beam reaction force to the column while allowing relative rotation as a PTED joint is applied to the inner flange surface of the column. It is not easy to install.

Seismic response characteristics and seismic design method of frames with hysteretic dampers, Japan Steel Structure Association, 1998. Yoshiaki Goto, May in Suzuki, Kiyoshi Matsuura: A Study on the Stability of Semi-rigid Rectangular Frames with Inelastic Properties at the Joint between Beam and Column, Proceedings of JSCE, No. 416, 329-338, 1990. Constantin Christpouluos, Andre Filiatrault, Chia-Ming Uang, Bryan Folz: Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames, Journal of structural engineering, pp. 1111-1120, 2002.

上記従来の免震・制震機構は、つぎのようなa)乃至e)の問題点を有していた。
a) 座屈拘束ブレースやシヤパネルなどの制震構造では地震後の残留変位が生じる可能性がある。
b) 座屈拘束ブレースやシヤパネルなどの制震構造では桁下の自由空間を占有する。
c) アンカー部や隅角部での柱の固定度を小さくしたいわゆる半剛結構造では接合部への損傷の集中や地震後の残留変位の増加の可能性がある。
d) 建築の多層多径間骨組において提案されている自己復元機能を持つPTED接合をラーメン橋脚に適用した場合、柱基部が剛結されているので隅角部での相対回転が小さいことにより、接合部でのエネルギ吸収を有効に行うことができない。
e) ラーメン橋脚では建築骨組と異なり梁上に上部構造の大きな死荷重が作用するので、PTED接合として相対回転を許容しつつ、大きな梁反力を柱に確実に伝達する支持構造を柱の内側フランジ面に設置することは容易でない。
The conventional seismic isolation / seismic control mechanism has the following problems a) to e).
a) Residual displacement after an earthquake may occur in damping structures such as buckling-restrained braces and shear panels.
b) Damping structures such as buckling-restrained braces and shear panels occupy free space under the girders.
c) In the so-called semi-rigid structure where the anchorage at the anchors and corners is reduced, there is a possibility that the damage to the joints will be concentrated and the residual displacement after the earthquake will increase.
d) When the PTED joint with self-restoration function proposed for multi-story multi-span frames of architecture is applied to the ramen pier, the column base is rigidly connected, so the relative rotation at the corner is small, Energy absorption at the joint cannot be performed effectively.
e) Unlike a framework, a large dead load of the superstructure acts on the beam on the ramen pier, so a support structure that reliably transmits a large beam reaction force to the column while allowing relative rotation as a PTED joint is provided inside the column. It is not easy to install on the flange surface.

本発明は、上記従来の問題点を解決した免震・制震機構を提供することを解決すべき課題としている。   This invention makes it the subject which should be solved to provide the seismic isolation and damping mechanism which solved the said conventional problem.

本発明の免震・制震機構は、
a) 柱の軸線方向に配置したPC鋼棒に導入する初期張力とともに上部構造の自重により地震後のダンパーの残留変形を防止し、構造全体の残留変形をほとんどゼロにすること、
b) 梁を柱頂部で支え、大きな梁反力を柱に確実に伝達する支持構造であること、
c) 柱と梁の接合部に柱の軸線方向に配置した履歴型ダンパーによりエネルギ吸収を図り、損傷をこの取り替え可能なダンパー部分に限定すること、
を特徴とする。
The seismic isolation / damping mechanism of the present invention is
a) Prevent the residual deformation of the damper after the earthquake by the self-weight of the superstructure together with the initial tension introduced into the PC steel rod arranged in the axial direction of the column, and make the residual deformation of the whole structure almost zero,
b) A support structure that supports the beam at the top of the column and reliably transmits a large beam reaction force to the column.
c) Absorb energy with a hysteretic damper placed in the axial direction of the column at the junction between the column and the beam, and limit the damage to this replaceable damper part;
It is characterized by.

したがって、本発明の免震・制震機構によれば、従来よりもより経済的かつ容易に極大地震下の構造物の損傷を抑え,早期の復旧を行うことができる用意にy。   Therefore, according to the seismic isolation / seismic control mechanism of the present invention, it is possible to suppress damage to a structure under a maximum earthquake more easily and more economically than before and to prepare for early restoration.

以下、本発明を具体化した実施例を図面を参照しつつ説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.

図4は、本発明の免震・制震機構を門型ラーメン橋脚へ適用した例である。
この図に示されているように
1) 柱頂部に梁両端を設置し、柱の軸線方向に配置したPC鋼棒にプレストレスを導入することにより柱を梁ならびに基礎と締結する。
2) 相対回転の生じる接合部において相対回転量を制御するとともに地震時の運動エネルギの吸収を行うために軸降伏型の金属ダンパーを設置する。ダンパーは曲げモーメントに抵抗するように各接合部の柱の上下フランジ近傍の2箇所において鉛直方向に配置し、柱と梁あるいは柱と基礎とを結合している。このダンパーはレベル2地震動で引張り力による塑性化が生じるが、PC鋼棒のプレストレスによる圧縮力で再降伏し消滅するようになっている。
これらにより、
前記1)により、水平方向の地震動に対して柱と梁ならびに柱と基礎の接合部で相対回転が生じる半剛結の免震構造となるとともに自己復元構造となり、
前記2)記載の金属ダンパーのみに塑性化が集中し、これによってエネルギ吸収を図り、
また、地震後に塑性化したダンパーを交換することで容易に復旧作業を行うことができる。
そして、次のような効果が得られる。
a) 鉛直方向に導入した柱とはりのPTED接合に加え、柱基部のPTED接合により、各接合部での相対回転が大きくなる上に、4箇所にPTED接合が配置されているのでより効果的な免震とエネルギ吸収機能が期待される。
b) 金属ダンパーが柱基部の鉛直方向に配置されているので、アスペクト比が大きく負反力が生ずる場合にもロッキング型の免震・制震構造としても機能できる。
c) 金属ダンパーに塑性伸びが生じた場合も上部構造の死荷重がPC鋼棒のプレストレスとともに自己復元機能にプラスに作用するので、水平方向に配置した場合に較べ、柱へのプレストレスは小さくてすむ。
d) 梁は柱の頂部面で支持されるので、複雑な支持構造が必要でなくなる。
e) き裂発生につながる隅角部での応力集中やひずみ集中が生じない。
また、ラーメン橋脚以外の他の構造への実施形態として,図5は、本発明の免震・制震機構を上路式鋼アーチ橋へ適用した例であり、図6は、本発明の免震・制震機構を単柱式橋脚へ適用した例である。
FIG. 4 shows an example in which the seismic isolation / seismic control mechanism of the present invention is applied to a portal ramen pier.
As shown in this figure
1) Both ends of the beam are installed at the top of the column, and the column is fastened to the beam and foundation by introducing prestress into the PC steel rods arranged in the axial direction of the column.
2) Install a shaft-yield type metal damper to control the amount of relative rotation at the joint where relative rotation occurs and to absorb kinetic energy during an earthquake. The dampers are arranged vertically in two locations near the upper and lower flanges of the columns of each joint so as to resist the bending moment, and connect the columns and beams or the columns and foundations. This damper is plasticized by a tensile force due to Level 2 earthquake motion, but is re-yielded by the compressive force due to the prestress of the PC steel rod and disappears.
With these,
By the above 1), it becomes a semi-rigid seismic isolation structure in which relative rotation occurs at the joint between the column and beam and the column and foundation with respect to horizontal ground motion, and a self-restoring structure,
Plasticization concentrates only on the metal damper described in 2) above, thereby achieving energy absorption,
Moreover, the restoration work can be easily performed by replacing the plasticized damper after the earthquake.
The following effects can be obtained.
a) In addition to the column-to-beam PTED bonding introduced in the vertical direction, the PED bonding at the column base increases relative rotation at each bonding portion, and more effective because four PTED bondings are arranged. Expected to have a seismic isolation and energy absorption function.
b) Since the metal damper is arranged in the vertical direction of the column base, it can function as a rocking-type seismic isolation / damping structure even when the aspect ratio is large and negative reaction force is generated.
c) When plastic elongation occurs in the metal damper, the dead load of the superstructure works positively on the self-restoration function together with the prestress of the PC steel rod, so the prestress on the column is less than when placed horizontally. It's small.
d) Since the beam is supported on the top surface of the column, no complicated support structure is required.
e) No stress concentration or strain concentration at the corners leading to crack initiation.
FIG. 5 shows an example in which the seismic isolation / seismic control mechanism of the present invention is applied to an upper steel arch bridge, and FIG. 6 shows the seismic isolation of the present invention.・ This is an example in which the seismic control mechanism is applied to a single-column pier.

本発明の免震・制震機構は橋脚等の構造物に利用可能である。   The seismic isolation / seismic control mechanism of the present invention can be used for structures such as piers.

従来の軸降伏型ダンパーを門型ラーメン橋脚に用いた例を示す図である。It is a figure which shows the example which used the conventional axial yield type damper for the portal ramen pier. 従来の免震構造の1つである半剛結接合骨組の接合部の説明図である。It is explanatory drawing of the junction part of the semi-rigid joint frame which is one of the conventional seismic isolation structures. 建築構造を対象に提案されているPTED接合の説明図である。It is explanatory drawing of the PTED joining proposed for the building structure. 本発明の免震・制震機構を門型ラーメン橋脚へ適用した例である。This is an example in which the seismic isolation / seismic control mechanism of the present invention is applied to a portal ramen pier. 本発明の免震・制震機構を上路式鋼アーチ橋へ適用した例を示す図である。It is a figure which shows the example which applied the seismic isolation and damping mechanism of this invention to the upper-path type steel arch bridge. 本発明の免震・制震機構を単柱式橋脚へ適用した例を示す図である。It is a figure which shows the example which applied the seismic isolation / seismic control mechanism of this invention to the single column type pier.

Claims (1)

a) 柱の軸線方向に配置したPC鋼棒に導入する初期張力とともに上部構造の自重により地震後のダンパーの残留変形を防止し、構造全体の残留変形をほとんどゼロにすること、
b) 梁を柱頂部で支え、大きな梁反力を柱に確実に伝達する支持構造であること、
c) 柱と梁の接合部に柱の軸線方向に配置した履歴型ダンパーによりエネルギ吸収を図り、損傷をこの取り替え可能なダンパー部分に限定すること、
を特徴とする免震・制震機構。
a) Prevent the residual deformation of the damper after the earthquake by the self-weight of the superstructure together with the initial tension introduced into the PC steel rod arranged in the axial direction of the column, and make the residual deformation of the whole structure almost zero,
b) A support structure that supports the beam at the top of the column and reliably transmits a large beam reaction force to the column.
c) Absorb energy with a hysteretic damper placed in the axial direction of the column at the junction between the column and the beam, and limit the damage to this replaceable damper part;
A seismic isolation and vibration control mechanism.
JP2007142185A 2007-05-29 2007-05-29 Seismic isolation / damping mechanism Active JP5007380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142185A JP5007380B2 (en) 2007-05-29 2007-05-29 Seismic isolation / damping mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142185A JP5007380B2 (en) 2007-05-29 2007-05-29 Seismic isolation / damping mechanism

Publications (3)

Publication Number Publication Date
JP2008297720A true JP2008297720A (en) 2008-12-11
JP2008297720A5 JP2008297720A5 (en) 2010-07-15
JP5007380B2 JP5007380B2 (en) 2012-08-22

Family

ID=40171485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142185A Active JP5007380B2 (en) 2007-05-29 2007-05-29 Seismic isolation / damping mechanism

Country Status (1)

Country Link
JP (1) JP5007380B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214391A (en) * 2010-03-31 2011-10-27 Nagoya Institute Of Technology Self-centering dumper unit
CN102409606A (en) * 2011-07-29 2012-04-11 清华大学 Self-resetting pier column structural system with built-in energy dissipation assembly and implementing method for self-resetting piper column structural system
CN103088918A (en) * 2013-02-05 2013-05-08 北京建筑工程学院 Novel prefabricate prestressed steel frame girder-column pitch point with post-earthquake self-reset function
CN104612036A (en) * 2015-01-22 2015-05-13 宁波大学 Unbonded post-tensioning prestress concrete-filled double-wall steel pipe prefabricated assembly piers with additional dampers
CN105887665A (en) * 2016-04-12 2016-08-24 东南大学 Self-restoring rolling swinging shake-isolation bridge pier
CN107059599A (en) * 2017-04-27 2017-08-18 北京市市政工程设计研究总院有限公司 Antidetonation without bearing Self-resetting, damping cast-in-situ bridge
CN108677690A (en) * 2018-05-28 2018-10-19 北京工业大学 Energy dissipating Self-resetting bilayer rectangle hollow concrete filled steel tube waves Bridge Pier Structure System
CN110206183A (en) * 2019-06-20 2019-09-06 海南大学 A kind of assembled Self-resetting X-type metal damper
CN110318479A (en) * 2019-06-20 2019-10-11 海南大学 A kind of Self-resetting suspension column structure and its construction method
CN112030725A (en) * 2020-08-21 2020-12-04 上海应用技术大学 Self-resetting bridge pier column structure system with built-in grading energy consumption device and construction method
CN112030726A (en) * 2020-08-21 2020-12-04 上海应用技术大学 Self-resetting bridge pier column structure system with external grading energy consumption devices and construction method
JP2021123977A (en) * 2020-02-07 2021-08-30 日立Astemo株式会社 Vibration damping device and vibration damping structure
WO2021261653A1 (en) * 2020-06-22 2021-12-30 대영스틸산업주식회사 Rahmen bridge and rahmen bridge constructing method
CN118065535A (en) * 2024-04-17 2024-05-24 北京工业大学 High-toughness self-resetting assembled steel structure system with embedded composite energy-consumption damping device easy to replace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468986B (en) * 2019-07-13 2021-05-04 河南大学 Swinging self-resetting shock absorption system for center pillar of underground station and construction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872943A (en) * 1971-12-30 1973-10-02
JPH01263333A (en) * 1988-04-15 1989-10-19 Kajima Corp Variable bending rigidity device for structure
JPH0633407A (en) * 1992-07-17 1994-02-08 Tokyu Constr Co Ltd Method for constructing railroad elevated bridge
JP2001173092A (en) * 1999-12-21 2001-06-26 Shimizu Corp Structure of column
JP2002201817A (en) * 2000-12-27 2002-07-19 Kajima Corp Vibration damping structure of pc frame
JP2004218197A (en) * 2003-01-09 2004-08-05 Shimizu Corp Seismic response controlled viaduct
JP2005155019A (en) * 2003-11-20 2005-06-16 Mitsubishi Heavy Ind Ltd Seismic response control structure of rc building

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872943A (en) * 1971-12-30 1973-10-02
JPH01263333A (en) * 1988-04-15 1989-10-19 Kajima Corp Variable bending rigidity device for structure
JPH0633407A (en) * 1992-07-17 1994-02-08 Tokyu Constr Co Ltd Method for constructing railroad elevated bridge
JP2001173092A (en) * 1999-12-21 2001-06-26 Shimizu Corp Structure of column
JP2002201817A (en) * 2000-12-27 2002-07-19 Kajima Corp Vibration damping structure of pc frame
JP2004218197A (en) * 2003-01-09 2004-08-05 Shimizu Corp Seismic response controlled viaduct
JP2005155019A (en) * 2003-11-20 2005-06-16 Mitsubishi Heavy Ind Ltd Seismic response control structure of rc building

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214391A (en) * 2010-03-31 2011-10-27 Nagoya Institute Of Technology Self-centering dumper unit
CN102409606A (en) * 2011-07-29 2012-04-11 清华大学 Self-resetting pier column structural system with built-in energy dissipation assembly and implementing method for self-resetting piper column structural system
CN102409606B (en) * 2011-07-29 2014-01-01 清华大学 Self-resetting pier column structural system with built-in energy dissipation assembly and implementing method for self-resetting piper column structural system
CN103088918A (en) * 2013-02-05 2013-05-08 北京建筑工程学院 Novel prefabricate prestressed steel frame girder-column pitch point with post-earthquake self-reset function
CN103088918B (en) * 2013-02-05 2015-12-09 北京建筑大学 There is after a kind of shake the novel pre-stressed steel frame beam column joint of Self-resetting function
CN104612036A (en) * 2015-01-22 2015-05-13 宁波大学 Unbonded post-tensioning prestress concrete-filled double-wall steel pipe prefabricated assembly piers with additional dampers
CN105887665A (en) * 2016-04-12 2016-08-24 东南大学 Self-restoring rolling swinging shake-isolation bridge pier
CN107059599B (en) * 2017-04-27 2019-01-08 北京市市政工程设计研究总院有限公司 Antidetonation, damping cast-in-situ bridge without support Self-resetting
CN107059599A (en) * 2017-04-27 2017-08-18 北京市市政工程设计研究总院有限公司 Antidetonation without bearing Self-resetting, damping cast-in-situ bridge
CN108677690A (en) * 2018-05-28 2018-10-19 北京工业大学 Energy dissipating Self-resetting bilayer rectangle hollow concrete filled steel tube waves Bridge Pier Structure System
CN108677690B (en) * 2018-05-28 2019-09-27 北京工业大学 Energy dissipating Self-resetting bilayer rectangle hollow concrete filled steel tube waves Bridge Pier Structure System
CN110206183A (en) * 2019-06-20 2019-09-06 海南大学 A kind of assembled Self-resetting X-type metal damper
CN110318479A (en) * 2019-06-20 2019-10-11 海南大学 A kind of Self-resetting suspension column structure and its construction method
JP2021123977A (en) * 2020-02-07 2021-08-30 日立Astemo株式会社 Vibration damping device and vibration damping structure
WO2021261653A1 (en) * 2020-06-22 2021-12-30 대영스틸산업주식회사 Rahmen bridge and rahmen bridge constructing method
CN112030725A (en) * 2020-08-21 2020-12-04 上海应用技术大学 Self-resetting bridge pier column structure system with built-in grading energy consumption device and construction method
CN112030726A (en) * 2020-08-21 2020-12-04 上海应用技术大学 Self-resetting bridge pier column structure system with external grading energy consumption devices and construction method
CN112030725B (en) * 2020-08-21 2021-09-07 上海应用技术大学 Self-resetting bridge pier column structure system with built-in grading energy consumption device and construction method
CN118065535A (en) * 2024-04-17 2024-05-24 北京工业大学 High-toughness self-resetting assembled steel structure system with embedded composite energy-consumption damping device easy to replace

Also Published As

Publication number Publication date
JP5007380B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5007380B2 (en) Seismic isolation / damping mechanism
US20030205008A1 (en) Sleeved bracing useful in the construction of earthquake resistant structures
JP4585046B1 (en) Post restraint device in seismic retrofitting frame
JP4957295B2 (en) Seismic control pier structure
JP2007197930A (en) Base isolation/seismic response control device used for arch bridge, high pier, cable stayed bridge and suspension bridge main tower
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP5483525B2 (en) Seismic wall
JP2006233591A (en) Support structure of fixed support part in bridge, and aseismatic reinforcing method for existing bridge
JP7228398B2 (en) Joint structure of CFT column and RC column
JP2010047933A (en) Damping reinforcement frame
JP2017122365A (en) Function separation type vibration damping structure for bridge
KR101638564B1 (en) seismic reinforcement apparatus and seismic reinforcement method using the same
JP2012207389A (en) Seismic strengthening construction method for existing building
JP2009068295A (en) Elevated structure
JP6534628B2 (en) Fallout prevention structure
JP4837145B1 (en) Seismic retrofitting structure
JP2005083136A (en) Composite structure support
JP5159487B2 (en) Seismic control column construction method, seismic control column, and building structure
Sutcu et al. Near full-scale experimental investigation of low-standard RC frames retrofitted with buckling-restrained braces
JP2008274622A (en) Intermediate-story base-isolating mechanism of building
JP2012117364A (en) Vibration control bridge pier structure
JP2019019656A (en) Roof earthquake-resistant structure
JP5142214B2 (en) Seismic reinforcement structure for viaduct
Maida et al. Cyclic Loading Test of Reinforced Concrete Frame with Partial Wall having Steel Damper
JP2012233374A (en) Seismic reinforcement structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

R150 Certificate of patent or registration of utility model

Ref document number: 5007380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250