JP2019019656A - Roof earthquake-resistant structure - Google Patents

Roof earthquake-resistant structure Download PDF

Info

Publication number
JP2019019656A
JP2019019656A JP2017206534A JP2017206534A JP2019019656A JP 2019019656 A JP2019019656 A JP 2019019656A JP 2017206534 A JP2017206534 A JP 2017206534A JP 2017206534 A JP2017206534 A JP 2017206534A JP 2019019656 A JP2019019656 A JP 2019019656A
Authority
JP
Japan
Prior art keywords
roof
connecting member
earthquake
frame
mooring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017206534A
Other languages
Japanese (ja)
Other versions
JP6833292B2 (en
Inventor
洋一 向山
Yoichi Mukoyama
洋一 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoe Corp
Original Assignee
Tomoe Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoe Corp filed Critical Tomoe Corp
Publication of JP2019019656A publication Critical patent/JP2019019656A/en
Application granted granted Critical
Publication of JP6833292B2 publication Critical patent/JP6833292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

To provide support part structure that can suppress damage of the roof support part, as simple and low in cost as possible, with respect to the earthquake horizontal load over assumption, in the placed roof type roof frame placed on the body frame of a building.SOLUTION: Roof earthquake-resistant structure includes, in a roof frame 2 of steel frame structure placed on a body frame 1 of a building, (1) all support parts 3 of the roof frame 2 that satisfy the supporting point condition of roller in both of two horizontal direction, (2) in intermediate positions of two support parts 3 adjacent to each other, mooring parts 4 that do not support the vertical load from the roof frame 2 and constrain movements in the vertical direction and two horizontal direction, with them installed to the building frame of the body frame 1, and (3) the support parts 3 and the mooring parts 4, which have elastoplasticity characteristic and are connected with connection members 5 made from the material resisting by axial force.SELECTED DRAWING: Figure 1

Description

本発明は、体育館等の建物の本体架構の上に乗せた、置き屋根形式の屋根架構の支承部に対して、耐震性能を向上させる技術に関する。   The present invention relates to a technique for improving seismic performance of a support part of a roof structure of a standing roof type placed on a main frame of a building such as a gymnasium.

近年の大地震(平成23年東北地方太平洋沖地震、平成28年熊本地震等)により、体育館等において、RC造の本体架構の上に乗せた置き屋根形式の屋根架構の屋根支承部(アンカーボルトやコンクリート)の被害が多発し、問題視されている。   Due to recent large earthquakes (the 2011 Tohoku-Pacific Ocean Earthquake, 2016 Kumamoto Earthquake, etc.), the roof bearings (anchor bolts) of the roof-type roof frame placed on the RC main frame in gymnasiums, etc. And concrete) are often seen as problems.

実際の地震水平荷重の方が想定よりも大きい場合、屋根支承部において、アンカーボルトの破断やアンカーボルトに押された周囲のコンクリートに破壊が生じることがある。屋根からの鉛直荷重を支えている屋根支承部にそのような損傷が生じると、コンクリート破片落下による人的被害だけでなく、復旧する時の修復困難性を高める結果となる。   When the actual seismic horizontal load is larger than expected, the anchor bearing may break or the surrounding concrete pushed by the anchor bolt may break at the roof bearing. If such damage occurs in the roof bearing that supports the vertical load from the roof, not only will human damage be caused by falling concrete fragments, but it will also increase the difficulty of restoration when it is restored.

これらの地震被害を教訓として、屋根架構への地震入力を抑制して、建物の耐震性向上を図る技術的提案がされている。   Based on the lessons learned from these earthquake damages, technical proposals have been made to improve the earthquake resistance of buildings by suppressing earthquake input to the roof frame.

屋根架構への地震入力を低減して屋根支承部への反力を抑制する技術に関連した文献として、例えば、特許文献1では、屋根支承部を水平2方向に移動可能にしておき、その支承部に、鋼棒、摩擦、粘性体等のダンパー部材を連結することによって、地震時に、屋根架構とそれを支持する下部構造とが相対的に水平変位を生じた場合、前記ダンパーがエネルギーを吸収して、屋根架構および支承部への作用力を抑制する支承部構造が開示されている。この開示技術は、所謂屋根免震を目指したものであり、支承部の浮き上がり拘束と水平2方向移動を可能とし、かつ個別支承部へのダンパー付加を前提としているので、構造がやや複雑である。   For example, in Patent Document 1, the roof support part is movable in two horizontal directions as a document related to a technique for suppressing the reaction force to the roof support part by reducing the earthquake input to the roof frame. By connecting a damper member such as a steel bar, friction, or viscous material to the section, when the roof frame and the lower structure that supports it are relatively horizontally displaced during an earthquake, the damper absorbs energy. And the support part structure which suppresses the acting force to a roof frame and a support part is disclosed. This disclosed technology is aimed at so-called roof isolation, and it is possible to restrain the lifting of the bearing part and move horizontally in two directions, and it is assumed that a damper is added to the individual bearing part, so the structure is somewhat complicated. .

また、特許文献2には、共通の一体型大屋根を利用して、それを支持する複数の構造物の地震応答を効果的に低減することを目的とした制振システムが開示されており、その大屋根と構造物とを連結して振動エネルギーを吸収するダンパー機構が説明されている。しかし、建物全体の高度な振動抑制を目的とするため、使用するダンパーは、性能確保の観点から高価なものにならざるを得ない。   Further, Patent Document 2 discloses a vibration control system for the purpose of effectively reducing the earthquake response of a plurality of structures that support a common integrated large roof, A damper mechanism is described that connects the large roof and the structure to absorb vibration energy. However, since the purpose is to suppress the vibrations of the entire building, the dampers used must be expensive from the viewpoint of ensuring performance.

非常に多くの体育館等の屋根支承部における地震被害を軽減する、あるいは被災後の早期復旧という観点からは、特許文献1もしくは2のように機構が複雑あるいは高価な屋根免震や制振による高度な耐震性能の付与ではなく、より簡易かつ安価で手軽に採用し易い方法が望まれる。   From the standpoint of reducing earthquake damage at the roof bearings of many gymnasiums, or early restoration after a disaster, the mechanism is complicated or expensive due to expensive seismic isolation or vibration control as described in Patent Document 1 or 2. A method that is simpler, less expensive, and easier to adopt is desired rather than imparting seismic performance.

特開2001−152696号公報JP 2001-152696 A 特開2011−256591号公報JP 2011-256591 A

本発明は、上記のような背景に鑑み、想定以上の地震水平荷重に対して、出来るだけ簡易かつ安価で、屋根支承部の損傷を抑制する屋根耐震構造を提供するものである。   In view of the background as described above, the present invention provides a roof seismic structure that is as simple and inexpensive as possible with respect to an earthquake horizontal load that is greater than expected, and that suppresses damage to the roof support.

前記課題を解決するための本発明の手段は、以下の通りである。建物の本体架構上に置かれた屋根架構において、
(1)前記屋根架構の全ての支承部が、水平2方向共にローラーの支点条件を満たす構成になっている。
(2)相隣接する2つの前記支承部の中間位置において、屋根架構からの鉛直荷重は支持せず、上下と水平2方向を移動拘束された係留部が、1または2箇所、本体架構の躯体(梁等)に設置されている。
(3)前記支承部と前記係留部とは、弾塑性特性を有し軸力で抵抗する材料(鋼材等)から成る連結部材で連結されている。
以上の構成を有する屋根耐震構造である。
Means of the present invention for solving the above-mentioned problems are as follows. In the roof frame placed on the main frame of the building,
(1) All the support portions of the roof frame are configured to satisfy the fulcrum condition of the roller in two horizontal directions.
(2) At the middle position between the two adjacent support parts, the vertical load from the roof frame is not supported, and there are one or two mooring parts that are restricted in movement in the vertical and horizontal directions. (Beam etc.)
(3) The support portion and the mooring portion are connected by a connecting member made of a material (steel material or the like) having elastic-plastic characteristics and resisting with an axial force.
It is a roof earthquake-resistant structure having the above configuration.

また、本発明は、上記の屋根耐震構造において、連結部材は、係留部もしくは支承部の両側に連結され、かつ引張のみに抵抗することを特徴とする、屋根耐震構造である。   Moreover, this invention is a roof earthquake-resistant structure characterized by the above-mentioned roof earthquake-resistant structure being connected to the both sides of a mooring part or a support part, and resisting only tension | tensile_strength.

また、本発明は、以上の何れかに記載の屋根耐震構造において、連結部材の一部をその連結部材のその他の部分よりも軸耐力が少し低いヒューズ部として加工し、もしくはそのような部位を着脱可能なヒューズ部材として連結部材に組み込んだことを特徴とする、屋根耐震構造である。   Further, the present invention provides a roof seismic structure according to any one of the above, wherein a part of the connecting member is processed as a fuse part having a slightly lower axial strength than the other parts of the connecting member, or such a part is processed. It is a roof earthquake-resistant structure characterized by being incorporated in a connecting member as a detachable fuse member.

また、本発明は、以上の何れか1つに記載の屋根耐震構造において、連結部材と係留部または支承部との接合部、もしくはヒューズ部材と係留部または支承部との接合部において、連結部材およびヒューズ部材が圧縮力を伝達しない機構を組み込んだことを特徴とする、屋根耐震構造である。圧縮軸力が作用しない機構としては、例えば、圧縮力の作用方向に長軸を有する長孔(ルーズ孔)、或いは圧縮力の作用方向に伸縮するゴムやバネ等がある。   Further, the present invention provides the roof seismic structure according to any one of the above, wherein the connecting member is connected to the connecting portion between the connecting member and the mooring portion or the supporting portion, or the connecting portion between the fuse member and the mooring portion or the supporting portion. And a roof seismic structure characterized by incorporating a mechanism in which the fuse member does not transmit compressive force. As a mechanism in which the compression axial force does not act, for example, there is a long hole (loose hole) having a long axis in the acting direction of the compressing force, or a rubber or a spring that expands and contracts in the acting direction of the compressing force.

また、本発明は、以上の何れか1つに記載の屋根耐震構造において、連結部材の両端部は、例えば、鋼板を水平に用いた端部板であり、これらの端部板が、それぞれ支承部もしくは係留部の出来るだけ低い位置に、鉛直の1本ボルトにより接合されており、少なくとも一方の端部板に設けられた、前記1本ボルト用のボルト孔はルーズ孔であることを特徴とする、屋根耐震構造である。   Further, the present invention provides the roof earthquake-resistant structure according to any one of the above, wherein both ends of the connecting member are, for example, end plates using steel plates horizontally, and these end plates are respectively supported by the support plates. It is joined to a position as low as possible of the part or mooring part by a vertical single bolt, and the bolt hole for the single bolt provided in at least one end plate is a loose hole. It is a roof earthquake-resistant structure.

更に本発明は、以上の何れか1つに記載の屋根耐震構造において、
(1)前記屋根架構の1または2以上の支承部と、それらの支承部に相対する前記屋根架構部分とを接続し、かつ前記連結部材の軸芯と概ね直交する方向に配設された直交連結部材であって、その直交連結部材の中間位置が、前記屋根架構を支える柱等の躯体から持ち出されたブラケットに接合されている。
(2)前記直交連結部材は、弾塑性特性を有し軸力で抵抗する材料(鋼材等)から成り、引張のみに抵抗するように取り付けられている。
以上の構成を有すること特徴とする、屋根耐震構造である。
Furthermore, the present invention provides the roof seismic structure according to any one of the above,
(1) One or two or more support parts of the roof frame, and the roof frame part facing the support parts, and orthogonally arranged in a direction substantially orthogonal to the axis of the connecting member It is a connection member, Comprising: The intermediate position of the orthogonal connection member is joined to the bracket taken out from housings, such as a pillar which supports the said roof frame.
(2) The orthogonal connecting member is made of a material (steel material or the like) having elastic-plastic characteristics and resisting with an axial force, and is attached so as to resist only tension.
It is a roof earthquake-resistant structure characterized by having the above structure.

本発明は、以上のような手段によるので、次のような効果が得られる。
(1)連結部材の軸耐力を、設計上の想定レベルの地震では弾性範囲に止まり、想定以上の大きな地震力が作用した場合には降伏するように断面を設計しておき、かつ係留部を十分強くしておけば、その連結部材が降伏するような大地震が発生した時、屋根架構が損傷を受ける前に、前記連結部材が先行して塑性化して、それ以上の地震入力を抑えると共に、地震エネルギーを吸収することにより、屋根支承部と係留部に作用する地震力を抑制することが可能になるので、その屋根支承部および周囲コンクリートの損傷を軽減できる。
Since the present invention is based on the above means, the following effects can be obtained.
(1) The axial strength of the connecting member is designed to stay within the elastic range in the case of an earthquake of the assumed design level, and to yield when a large seismic force exceeds the expected level. If it is sufficiently strong, when a large earthquake occurs that yields the connecting member, the connecting member is plasticized in advance before the roof frame is damaged, and further seismic input is suppressed. By absorbing the seismic energy, it is possible to suppress the seismic force acting on the roof support and the mooring part, so that damage to the roof support and surrounding concrete can be reduced.

(2)連結部材が降伏するまでは、各係留部への地震水平反力分布はばらつきがあり、特定の係留部に反力が集中することがあるが、想定以上の大地震では、その特定の係留部に連結された連結部材を降伏させることにより、水平反力の再分配が促されるので、特定の係留部への水平反力集中が緩和され、その損傷が回避されるという効果もある。   (2) Until the connecting member yields, the horizontal reaction force distribution on each mooring part varies, and the reaction force may concentrate on a specific mooring part. By yielding the connecting member connected to the mooring portion, the redistribution of the horizontal reaction force is promoted, so that the concentration of the horizontal reaction force on the specific mooring portion is alleviated and the damage can be avoided. .

(3)構成が単純なので、弾塑性特性を有し、安価な鋼材を連結部材に用いれば、低コストで耐震性の高い屋根支承部が実現可能である。   (3) Since the structure is simple, a roof support portion having low elastic and high earthquake resistance can be realized if an inexpensive steel material having elasto-plastic characteristics is used as the connecting member.

(4)地震力による損傷を連結部材に集中させるため、連結部材の取り替えのみで修復可能であり、またその取り換えは簡単なので、修復費用が従来よりも大幅に安くなる。   (4) Since damage due to seismic force is concentrated on the connecting member, it can be repaired only by replacing the connecting member, and the replacement is simple, so the repair cost is significantly lower than before.

(5)連結部材にヒューズ部材を組み込んだ場合は、ヒューズ部材のみが塑性化するため、そのヒューズ部材のみの取り換えで済むので、被災後の修復工事が、更に簡単かつ安価であり、かつ早期に実施し易い。   (5) When a fuse member is incorporated in the connecting member, only the fuse member is plasticized, so only the fuse member needs to be replaced. Easy to implement.

(6)万が一、係留部が損傷しても、屋根からの鉛直荷重を支持していないので、修復は比較的容易である。   (6) Even if the mooring part is damaged, the vertical load from the roof is not supported, so the repair is relatively easy.

(7)地震による連結部材降伏のために支承部の位置がずれていた場合、連結部材をジャッキに取り替えて、係留部を反力点として引張れば、容易に屋根を元の位置に戻すことができる。   (7) If the position of the support part is shifted due to the yielding of the connecting member due to an earthquake, the roof can be easily returned to its original position by replacing the connecting member with a jack and pulling the mooring part as a reaction point. it can.

(8)直交連結部材も設置した場合には、連結部材と同様にエネルギー吸収をするので、想定以上の地震力がどちらの方向から作用しても効果が発揮される。しかも、支承部を乗せた柱頂部の、地震力による建物内外方向への変位を抑制することができるので、屋根架構のみでなく、建物本体架構の損傷も減らすことができる。   (8) When the orthogonal connecting member is also installed, energy is absorbed in the same manner as the connecting member, so that the effect is exerted no matter which direction the seismic force more than expected acts. In addition, since the displacement of the column top portion on which the bearing portion is placed in the direction of the inside and outside of the building due to the seismic force can be suppressed, damage to not only the roof frame but also the building body frame can be reduced.

以上のことから、地震後の被災建物の復旧が早期に実施され易いので、その建物の早期再使用に大きく寄与する。   From the above, since the restoration of the damaged building after the earthquake is easy to be carried out early, it greatly contributes to the early reuse of the building.

体育館等の建物の1例であり、屋根支承部が設置された軒レベルにおける本体架構の柱と梁、および屋根架構(一部)の伏図である。It is an example of a building such as a gymnasium, and is a plan view of columns and beams of a main frame and a roof frame (a part) at an eave level where a roof support is installed. 本発明の第1実施例であり、図1のイ−イ線断面の拡大説明図である。FIG. 2 is an enlarged explanatory view of a section taken along the line II in FIG. 1 according to the first embodiment of the present invention. 図2のロ−ロ線断面図であり、(a)は連結部材の配置および座屈変形状況(2重破線表示)、(b)は連結部材の曲げ変形状況を、それぞれ説明した図である。FIGS. 3A and 3B are cross-sectional views taken along the line of FIG. 2, in which FIG. 2A is a diagram illustrating the arrangement and buckling deformation status of a connecting member (indicated by a double broken line), and FIG. . 本発明の第2実施例であり、図1のイ−イ線断面の拡大説明図である。FIG. 5 is an enlarged explanatory view of a section taken along the line II in FIG. 1 according to the second embodiment of the present invention. 本発明の第3実施例であり、図1のイ−イ線断面の拡大説明図である。FIG. 4 is an enlarged explanatory view of a section taken along the line II in FIG. 1 according to the third embodiment of the present invention. 本発明の第4実施例であり、係留部の詳細説明図である。It is 4th Example of this invention and is a detailed explanatory view of a mooring part. 本発明の第5実施例の平面説明図である。It is plane explanatory drawing of 5th Example of this invention. 図7のハ−ハ線断面図である。FIG. 8 is a sectional view taken along the line ha-ha in FIG. 本発明の第6実施例であり、屋根支承部が設置された軒レベルにおける本体架構の柱と梁、および屋根架構(主にトラス下弦材)の伏図に、直交連結部材の配置を示したものである。In the sixth embodiment of the present invention, the layout of the columns and beams of the main frame and the roof frame (mainly truss lower chord material) at the eaves level where the roof support is installed, the arrangement of the orthogonal connecting members is shown. Is. 図9のニ−ニ線断面の拡大説明図である。FIG. 10 is an enlarged explanatory view of a cross section of the knee line in FIG. 9. 本発明の第6実施例において、直交連結部材が圧縮を受けた時の変形状態を模式的に説明した図である。In 6th Example of this invention, it is the figure which demonstrated typically the deformation | transformation state when an orthogonal connection member receives compression.

本発明の実施例を、図1〜図11を参照して説明する。図1は、1例として、体育館等の建物において、支承部3、3、…が設置された本体架構1の軒レベル(柱1a、梁1b)の伏図であり、立体トラスから成る鉄骨構造の屋根架構2の一部を重ねて表示したものである。本体架構1はRC造等のRC系構造建物である。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view of the eaves level (column 1a, beam 1b) of the main frame 1 in which the support portions 3, 3,... Are installed in a gymnasium or the like as an example, and is a steel structure composed of a solid truss. A part of the roof frame 2 of FIG. The main frame 1 is an RC structure building such as RC structure.

屋根架構2の全ての支承部3、3、…は、水平2方向共にローラー(図1の十字矢印方向)の支点条件を満たす構成になっている。   All the support portions 3, 3,... Of the roof frame 2 are configured so as to satisfy the fulcrum conditions of the rollers (in the direction of the cross arrow in FIG. 1) in the two horizontal directions.

図2は、本発明の第1実施例であり、図1のイ−イ線断面に対応する立面図を示す。屋根架構2からの鉛直荷重は、支承部3、3によって支持され、相隣接する支承部3、3の中間のトラス節点Aでは、後述の係留部4とは接続されておらず、鉛直荷重は支持していない。   FIG. 2 is a first embodiment of the present invention, and shows an elevation view corresponding to the section taken along the line II in FIG. The vertical load from the roof frame 2 is supported by the support portions 3 and 3, and the truss node A between the adjacent support portions 3 and 3 is not connected to the mooring portion 4 described later, and the vertical load is I do not support it.

支承部3には、そのベースプレートを貫通するアンカーボルト3a、3a、…の孔3b、3b、…の開口寸法が、水平2方向共アンカーボルト3a、3a、…の直径よりも一定寸法だけ大きく設定されており、水平2方向への移動が可能となっているが、浮き上がりはワッシャープレート3c、3c、…で抑える(図3(a)参照)。   In the support portion 3, the opening dimensions of the holes 3b, 3b,... Of the anchor bolts 3a, 3a,... Penetrating the base plate are set larger than the diameter of the horizontal two-direction anchor bolts 3a, 3a,. It is possible to move in two horizontal directions, but lifting is suppressed by the washer plates 3c, 3c,... (See FIG. 3A).

一方、相隣接する2つの支承部3、3の中間位置に、係留部4が本体架構1の梁1b上に設置されている。係留部4は、屋根からの鉛直荷重は支持せず、上方向と水平2方向をアンカーボルト4a、4a、…で移動拘束されている(図3(a)参照)。   On the other hand, a mooring portion 4 is installed on the beam 1 b of the main body frame 1 at an intermediate position between two adjacent support portions 3 and 3. The mooring portion 4 does not support a vertical load from the roof, and is restrained by anchor bolts 4a, 4a,... In the upward and horizontal directions (see FIG. 3A).

係留部4と支承部3、3とを、弾塑性特性を有し軸力で抵抗する材料、例えば鋼材から成る連結部材5、5で連結している。連結部材5と係留部4もしくは支承部3とは、連結板7、7と複数のボルトにて接合されている。   The mooring portion 4 and the support portions 3 and 3 are connected by connecting members 5 and 5 made of a material having elastic-plastic characteristics and resisting by an axial force, for example, a steel material. The connecting member 5 and the mooring part 4 or the support part 3 are joined to the connecting plates 7 and 7 by a plurality of bolts.

本発明は以上のような構成であるので、例えば、図1に図示の右向きの大きな矢印方向に、地震水平荷重が屋根架構2に作用した場合、その荷重は、屋根架構2から、Y1通りおよびY4通りの柱1a、1a、…の上に設置された支承部3、3、…に伝達されるが、これらの支承部3、3、…は水平2方向にローラーとなっているため、地震水平荷重は連結部材5、5、…を介して係留部4、4、…に伝達され、そして本体架構1に伝えられる。 Since the present invention are of the above configuration, for example, in the large arrow direction rightward shown in FIG. 1, if the seismic horizontal load acts on the roof Frame 2, the load from the roof Frame 2, Y 1 ways Are transmitted to the support portions 3, 3,... Installed on the four pillars 1a, 1a,..., Because these support portions 3, 3,. The seismic horizontal load is transmitted to the mooring portions 4, 4,... Via the connecting members 5, 5,.

この時、図2もしくは図3(a)に図示の細い矢印の方向に支承部3、3、…が移動しようとするので、圧縮軸力を受ける連結部材5では、座屈が問題となる。即ち、図3(a)に図示の連結部材5のように厚みの薄い鋼板では、2重破線で表示(5')のように湾曲変形を起し、係留部4への荷重伝達が出来なくなる。しかし、本実施例では、係留部4もしくは支承部3の両側に連結部材5、5が連結されているので、引張軸力が作用する反対側の連結部材5によって、前記地震水平荷重を係留部4に伝達することが可能となり、本体架構1に伝わる。   At this time, since the support portions 3, 3,... Are about to move in the direction of the thin arrows shown in FIG. 2 or FIG. 3 (a), buckling becomes a problem in the connecting member 5 that receives the compression axial force. That is, a thin steel plate such as the connecting member 5 shown in FIG. 3A causes a curved deformation as indicated by a double broken line (5 ′), and the load cannot be transmitted to the mooring portion 4. . However, in this embodiment, since the connecting members 5 and 5 are connected to both sides of the mooring portion 4 or the support portion 3, the seismic horizontal load is applied to the mooring portion by the opposite connecting member 5 on which the tensile axial force acts. 4 can be transmitted to the main frame 1.

地震水平荷重が上記と直交方向に屋根架構2に作用した場合は、X1およびX5通りの柱1a、1a、…の上に設置された支承部3、3、…に伝達されるが、上記と同様、これらの支承部は水平2方向にローラーとなっているため、地震水平荷重は連結部材5、5を介して係留部4、4、…に伝達され、そして本体架構1に伝えられる。 If seismic horizontal load acts on the roof Frame 2 in the direction perpendicular to the above, X 1 and X 5 kinds pillars 1a, 1a, ... bearing 3,3 was placed on top of, but is transmitted to ..., As described above, since these support portions are rollers in two horizontal directions, the seismic horizontal load is transmitted to the mooring portions 4, 4,... Via the connecting members 5, 5, and is transmitted to the main frame 1. .

以上のような荷重伝達機構なので、屋根架構2を設計する際に、連結部材5の軸耐力を、設計上の想定レベルの地震では弾性範囲に止まり、想定以上の大地震力が作用した場合には降伏するように断面を設計しておき、かつ係留部を十分強くしておけば、その連結部材5が降伏するような大地震が発生した時、屋根架構2が損傷を受ける前に、引張を受ける側の前記連結部材5が先行して塑性化して、それ以上の地震入力を抑えると共に、地震エネルギーを吸収することにより、支承部3、3、…と係留部4、4…に作用する地震力を抑制することが可能になるので、その支承部3、3、…と係留部4、4…および周囲コンクリートの損傷を軽減できる。   Since the load transmission mechanism is as described above, when the roof frame 2 is designed, the axial strength of the connecting member 5 is limited to the elastic range in the case of an earthquake of an assumed design level, and a greater earthquake force than expected is applied. If the cross section is designed to yield, and the mooring part is sufficiently strong, when a large earthquake occurs that yields the connecting member 5, the roof frame 2 is pulled before being damaged. The connecting member 5 on the receiving side is plasticized in advance to suppress further earthquake input and absorb seismic energy, thereby acting on the support portions 3, 3,... And the mooring portions 4, 4,. Since the seismic force can be suppressed, damage to the bearing portions 3, 3,... And the mooring portions 4, 4,.

なお、図3の例では、連結部材5として厚みの薄い鋼板が用いられており座屈し易い部材だが、座屈しない座屈拘束ブレースや摩擦ダンパー等を用いることも可能である。但し、これらを用いれば、地震水平荷重の伝達はより効率的で、エネルギー吸収能力も高いが、通常の鉄骨部材に比べるとかなり高価であるため、その適用対象建物の重要度等を考慮することが望ましい。   In the example of FIG. 3, a thin steel plate is used as the connecting member 5 and is easily buckled. However, a buckling restrained brace or a friction damper that does not buckle can also be used. However, if these are used, the transmission of seismic horizontal load is more efficient and the energy absorption capacity is higher, but it is considerably more expensive than ordinary steel members, so the importance of the applicable building should be considered. Is desirable.

また、図3において、支承部3、3は紙面上下方向にも移動可能だが、係留部4は移動拘束されているため、例えば、地震により、屋根架構2が紙面上方向に移動、または支持架構1が紙面下方向に移動すると、支承部3、3のみが図3(b)に図示の短い矢印方向に変位し、連結部材5、5は、その部材軸直交方向に、最大で、2方向ルーズ孔3bのクリアランス分の曲げを受けることになるが、連結部材5が曲げ剛性の低い部材(例えば、平鋼等)であれば、曲げ歪は僅かであり、連結部材5としての性能に影響を及ぼす程ではない。しかし、より剛性の高い部材(鋼管等)や前記座屈拘束ブレース等の場合には、その端部における曲げ歪が無視できないので、その両端部にヒンジを設けて、部材端の曲げを回避する工夫が必要である。   In FIG. 3, the support portions 3 and 3 can also move in the vertical direction on the paper surface, but the mooring portion 4 is restricted to move, so that the roof frame 2 moves upward on the paper surface due to, for example, an earthquake, or the support frame. When 1 moves downward in the drawing, only the support portions 3 and 3 are displaced in the direction of the short arrow shown in FIG. 3B, and the connecting members 5 and 5 are in two directions at maximum in the direction perpendicular to the member axis. If the connecting member 5 is a member having low bending rigidity (for example, a flat steel), the bending distortion is slight, and the performance as the connecting member 5 is affected. Is not enough. However, in the case of a more rigid member (such as a steel pipe) or the buckling-restrained brace, the bending strain at its end cannot be ignored, so hinges are provided at both ends to avoid bending of the member end. Ingenuity is necessary.

図4は、本発明の第2実施例であり、連結部材5の中央もしくは端部付近に、その他部分よりも軸耐力の低いヒューズ部5aを設けたものである。第1実施例ではどの部分も同断面であったので、引張軸力を受けた場合、一様に伸びるため軸剛性が低いが、第2実施例のようにヒューズ部5aを設けると、この短い区間に塑性変形が集中するので、この部分の軸断面積が第1実施例と同じであれば、降伏軸力は同じでも軸剛性の高い連結部材5を設計できる。即ち、連結部材5の軸剛性の調整が自由にできるという利点がある。   FIG. 4 shows a second embodiment of the present invention, in which a fuse portion 5a having a lower axial strength than other portions is provided in the center or in the vicinity of the end portion of the connecting member 5. FIG. Since all the parts have the same cross section in the first embodiment, when the tensile axial force is received, the shaft rigidity is low because it extends uniformly, but if the fuse portion 5a is provided as in the second embodiment, this short Since plastic deformation concentrates in the section, if the axial cross-sectional area of this part is the same as in the first embodiment, the connecting member 5 having high axial rigidity can be designed even if the yield axial force is the same. That is, there is an advantage that the axial rigidity of the connecting member 5 can be freely adjusted.

図5は、本発明の第3実施例であり、第2実施例のヒューズ部5aを分離してヒューズ部材6として、接合板7、7と複数のボルトにより、連結部材5Aもしくは5Bに着脱可能にしたものである。前述の第2実施例では、ヒューズ部5aを連結部材5と一体に作成しているため、地震後に取り換えが必要になった場合、長く重い連結部材5全体の取り替えを人力で行うことになるため、作業が大変である。   FIG. 5 shows a third embodiment of the present invention, in which the fuse portion 5a of the second embodiment is separated and can be attached to or detached from the connecting member 5A or 5B as the fuse member 6 by the joining plates 7 and 7 and a plurality of bolts. It is a thing. In the second embodiment described above, since the fuse portion 5a is formed integrally with the connecting member 5, when replacement after the earthquake is necessary, the entire long and heavy connecting member 5 is manually replaced. The work is difficult.

従って、塑性化をヒューズ部材6に集中させる第3実施例は、この部分のみの取り替えで済むので、被災後の修復工事が、第2実施例の場合よりも更に簡単かつ安価であり、かつ早期に実施し易い。   Accordingly, in the third embodiment in which plasticization is concentrated on the fuse member 6, only this part needs to be replaced, so that the repair work after the disaster is simpler and cheaper than the case of the second embodiment, and is early. Easy to implement.

図6は、本発明の第4実施例である。連結部材5(5A、5B)の端部接合部が、接合板7、7と複数のボルトで剛に接合された場合、連結部材5(5A、5B)もしくはヒューズ部材6には圧縮軸力が作用しうるので、図3(a)に図示の2重破線(5’)のように座屈する可能性が高い。仮に座屈しても、引張側の連結部材5(5A、5B)によって荷重伝達機能は維持されるが、出来れば座屈は回避することが望ましい。   FIG. 6 shows a fourth embodiment of the present invention. When the end joint portion of the connecting member 5 (5A, 5B) is rigidly joined to the joining plates 7 and 7 with a plurality of bolts, the connecting member 5 (5A, 5B) or the fuse member 6 has a compressive axial force. Since it can act, there is a high possibility of buckling as shown by a double broken line (5 ') shown in FIG. Even if buckling occurs, the load transmitting function is maintained by the connecting member 5 (5A, 5B) on the tension side, but it is desirable to avoid buckling if possible.

そこで、第4実施例では、連結部材5(5A、5B)と支承部3または係留部4、もしくはヒューズ部材6と支承部3または係留部4との接合部のボルト孔を、軸方向に一定長のルーズ孔にして、圧縮軸力が作用した時のみ、その接合部が滑るようにして、座屈を回避するようにしたものである。   Therefore, in the fourth embodiment, the bolt hole at the joint portion between the connecting member 5 (5A, 5B) and the support portion 3 or the mooring portion 4 or between the fuse member 6 and the support portion 3 or the mooring portion 4 is constant in the axial direction. A long loose hole is used to prevent buckling by sliding the joint only when a compression axial force is applied.

図6はその納まりの1例であり、係留部4側のボルト孔のみをルーズ孔4b、4b、…として、係留部4と連結部材5(5A、5B)もしくはヒューズ部材6とを、接合板7、7と複数のボルトで接合した場合を示す。但し、ルーズ孔4b、4b、…に挿入するボルトは、連結部材5(5A、5B)もしくはヒューズ部材6が引張を受けた時には滑らないように、ルーズ孔4b、4b、…の外側端部に接触させて取り付ける。   FIG. 6 shows an example of the housing. Only the bolt holes on the side of the anchoring part 4 are used as loose holes 4b, 4b,..., And the anchoring part 4 and the connecting member 5 (5A, 5B) or the fuse member 6 are joined to each other. The case where it joins with 7 and 7 and a plurality of bolts is shown. However, the bolts to be inserted into the loose holes 4b, 4b,... Are not attached to the outer ends of the loose holes 4b, 4b,... So that the connecting member 5 (5A, 5B) or the fuse member 6 does not slip when pulled. Install in contact.

また、連結部材5が圧縮を受けた時に、ルーズ孔4b、4b、…のボルトの締め付けによる摩擦力によって、滑りが阻害されないように工夫をする必要があるが、ルーズ孔4b、4b、…のボルトを締め付けた時の摩擦力を一定に保つように、皿ばね等を付加することも一つの工夫である。即ち、連結部材5が座屈しない程度の摩擦力が保持されるように、皿ばね等(図示せず)をルーズ孔4b、4b、…のボルトにて締め付けておけば、中小地震時において、滑り摩擦によるエネルギー吸収が期待できる。   Further, when the connecting member 5 is compressed, it is necessary to devise so that the sliding is not hindered by the frictional force generated by tightening the bolts of the loose holes 4b, 4b,. Adding a disc spring or the like is also a device to keep the frictional force when the bolt is tightened constant. That is, if a disc spring or the like (not shown) is tightened with the bolts of the loose holes 4b, 4b,... So that the frictional force is maintained so that the connecting member 5 does not buckle, Energy absorption by sliding friction can be expected.

図7と図8は、本発明の第5実施例を示す。連結部材5が設置されるのは、図2でも分かるように、本体架構1の軒部の梁1bと屋根架構2の軒梁(図2では下弦材2bに相当)とに挟まれた高さのない狭い空間である。従って、地震後に、連結部材5の取り替え作業を実施する場合には、狭い空間での手作業になるため、連結部材5と軒梁との隙間は少しでも広いことが望ましい。   7 and 8 show a fifth embodiment of the present invention. As shown in FIG. 2, the connecting member 5 is installed at a height sandwiched between the eaves beam 1b of the main frame 1 and the eaves beam of the roof frame 2 (corresponding to the lower chord member 2b in FIG. 2). It is a narrow space without any space. Therefore, when the replacement work of the connecting member 5 is performed after the earthquake, it is a manual work in a narrow space, and therefore it is desirable that the gap between the connecting member 5 and the eaves beam is as wide as possible.

そこで、第5実施例では、連結部材5の両端部を、鋼板を水平に用いた端部板5C、5Cとし、これらを支承部3もしくは係留部4の出来るだけ低い位置に取り付け、その接合は鉛直の太い1本ボルト10、10である。かつ、少なくとも一方の端部板5Cに設けた1本ボルト10用のボルト孔はルーズ孔10aであり、1本ボルト10は、連結部材5が引張抵抗できるように、ルーズ孔10aの一端に接触した状態となっている。   Therefore, in the fifth embodiment, both end portions of the connecting member 5 are end plates 5C and 5C using steel plates horizontally, and these are attached to a position as low as possible of the support portion 3 or the mooring portion 4, and the joining is performed. Vertical thick single bolts 10 and 10. In addition, the bolt hole for the single bolt 10 provided in at least one end plate 5C is a loose hole 10a, and the single bolt 10 contacts one end of the loose hole 10a so that the connecting member 5 can be tensile resistance. It has become a state.

係留部4は、スペーサー4cにて端部板5Cを挿入する隙間4dを確保し、また、梁1bへの固定は、先行施工の係留部設置プレート40上に、精度よく位置決めした後、現場溶接する。   The mooring portion 4 secures a gap 4d for inserting the end plate 5C with the spacer 4c, and is fixed to the beam 1b after being positioned on the mooring portion installation plate 40 of the preceding construction with high precision, and then welded on site. To do.

第5実施例は、以上のような構成なので、連結部材5と軒梁との隙間が比較的広くなると共に、地震時に、図3(b)の細い矢印方向に支承部3、3が水平変位を生じても、端部板5C、5Cの接合は鉛直の1本ボルトのため回転自由なので、連結部材5には曲げ変形は発生しない。また、端部板5Cのルーズ孔10aにより、図3(a)の細い矢印方向に支承部3、3が水平変位を生じても、圧縮側となる連結部材5は座屈(図3(a)の2重破線参照)を回避できる。   Since the fifth embodiment is configured as described above, the gap between the connecting member 5 and the eaves beam is relatively wide, and the bearings 3 and 3 are horizontally displaced in the direction of the thin arrow in FIG. Even if this occurs, the joining of the end plates 5C, 5C is free to rotate because of a single vertical bolt, so that no bending deformation occurs in the connecting member 5. Further, even if the support portions 3 and 3 are horizontally displaced in the direction of the thin arrow in FIG. 3 (a) by the loose hole 10a of the end plate 5C, the connecting member 5 on the compression side is buckled (FIG. 3 (a)). ) Can be avoided.

以上に記載の何れの実施例においても同じであるが、連結部材5もしくはヒューズ部材6が降伏するまでは、各係留部4、4、…への地震水平反力分布はばらつきがあり、特定の係留部4に反力が集中することが考えられる。その時、もしその特定の係留部5に接続された連結部材5等が降伏しなければ、前記特定の係留部4が損傷する可能性が高まるので、想定以上の大地震の時には連結部材5等が他の部位に先行して降伏するようにしておくことにより水平反力の再配分を促し、特定の係留部4への水平反力集中を緩和して、そのアンカーボルトや周囲コンクリートの損傷を回避することが可能になる。   The same applies to any of the embodiments described above. However, until the connecting member 5 or the fuse member 6 yields, the seismic horizontal reaction force distribution to the mooring portions 4, 4,. It is conceivable that the reaction force concentrates on the mooring part 4. At that time, if the connecting member 5 or the like connected to the specific mooring part 5 does not yield, the possibility that the specific mooring part 4 is damaged is increased. By promoting yielding ahead of other parts, redistribution of horizontal reaction force is promoted, and concentration of horizontal reaction force on a specific mooring part 4 is alleviated to prevent damage to the anchor bolt and surrounding concrete. It becomes possible to do.

なお、上記何れの実施例でも、係留部4は、相隣接する支承部3、3の中間に1箇所のみ設置されているが、これを2箇所に増やし、1つの支承部3を挟んで2つの係留部4、4と連結するようにしてもよい(図示せず)。   In any of the above embodiments, the mooring part 4 is installed only at one place in the middle of the adjacent support parts 3, 3. You may make it connect with the two mooring parts 4 and 4 (not shown).

図9〜図11は、本発明の第6実施例であり、支承部3が設置された軒レベルにおける本体架構1の柱1aと梁1b、および屋根架構2のトラス下弦材2bの伏図に、直交連結部材50の配置を示したものである。また、図10は、図9のニ−ニ線断面の拡大図であり、直交連結部材50の設置状態を示したものである。   9 to 11 show a sixth embodiment of the present invention. In the plan view of the column 1a and the beam 1b of the main frame 1 and the truss lower chord member 2b of the roof frame 2 at the eave level where the support 3 is installed. The arrangement of the orthogonal connecting members 50 is shown. FIG. 10 is an enlarged view of the cross section of the knee line of FIG. 9 and shows the installation state of the orthogonal connecting member 50.

図9および図10に示すように、隅部を除く支承部3、3、…と、それらの支承部3、3、…に相対して近接する屋根架構2の下弦節点20、20、…とを接続し、かつ連結部材5、5、…の軸芯と概ね直交する方向に、直交連結部材50、50、…が配設されている。その直交連結部材50の中間点が、支承部3を支える柱1aの上部内面にアンカーボルト30b、30b、…で定着され、持ち出されたブラケット30の先端部30aに接合されている。但し、本実施例では、直交連結部材50は2分割されている(図10の50a、50b)。また、図9中、二重破線で示す斜めの下弦材2dは、直交連結部材50を挿入するために必要な補強材である。   As shown in FIG. 9 and FIG. 10, the support portions 3, 3,... Excluding the corners, and the lower chord nodes 20, 20,... Of the roof frame 2 adjacent to the support portions 3, 3,. Are connected to each other, and orthogonal connecting members 50, 50,... Are arranged in a direction substantially orthogonal to the axis of the connecting members 5, 5,. The intermediate point of the orthogonal connecting member 50 is fixed to the upper inner surface of the pillar 1a supporting the support portion 3 with anchor bolts 30b, 30b,... And joined to the tip portion 30a of the bracket 30 taken out. However, in this embodiment, the orthogonal connecting member 50 is divided into two (50a, 50b in FIG. 10). In FIG. 9, an oblique lower chord material 2 d indicated by a double broken line is a reinforcing material necessary for inserting the orthogonal connecting member 50.

直交連結部材50(50a、50b)は、引張のみに抵抗するように、回転できるように1本ピンで連結する連結板51を介して、両端部が接合されている。
直交連結部材50(50a、50b)はこのような形態なので、図11に示すように、直交連結部材50a(50b)が圧縮力Pを受けて、元の全長Lが短く(L´)なろうとすると、連結板51、51は、51a、51aのように回転を起すので、直交連結部材50a(50b)は座屈を起すことがない。
Both ends of the orthogonal connecting member 50 (50a, 50b) are joined via a connecting plate 51 that is connected by a single pin so as to be able to rotate so as to resist only tension.
Since the orthogonal connecting member 50 (50a, 50b) has such a configuration, as shown in FIG. 11, the orthogonal connecting member 50a (50b) receives the compressive force P, so that the original total length L is shortened (L '). Then, since the connection plates 51 and 51 rotate like 51a and 51a, the orthogonal connection member 50a (50b) does not buckle.

従って、図10の紙面左右方向の地震動によって図10の状態に対して、例えば、柱1aの頂部が右側に変位し、かつ屋根架構2が左に変位すると、ブラケット30の先端部30aとその右隣の下弦節点20とを連結する直交連結部材50aは、図11に示すように回転するので軸力を伝達しないが、ローラー支承である支承部3とブラケット30の先端部30aとを連結している直交連結部材50bは引張となり、柱1aの頂部が右側に変位するのを抑制しようとする。   Therefore, for example, when the top of the column 1a is displaced to the right and the roof frame 2 is displaced to the left with respect to the state of FIG. Since the orthogonal connecting member 50a that connects the adjacent lower chord node 20 rotates as shown in FIG. 11 and transmits no axial force, it connects the support portion 3 that is a roller support and the tip portion 30a of the bracket 30. The orthogonal connecting member 50b is tensioned and tries to suppress displacement of the top of the column 1a to the right side.

なお、直交連結部材50は、弾塑性特性を有し軸力で抵抗する材料(鋼材等)を使用すれば安価である。
また、直交連結部材50a(50b)の一部の断面を減じて、図4の5aもしくは図5の6のようなヒューズ機能を組み込めば、直交連結部材50の降伏強度および軸剛性の調整が容易になる。
The orthogonal connecting member 50 is inexpensive if a material (steel material or the like) having elastic-plastic characteristics and resisting with an axial force is used.
Also, if the cross-section of the orthogonal connecting member 50a (50b) is reduced and a fuse function such as 5a in FIG. 4 or 6 in FIG. 5 is incorporated, the yield strength and axial rigidity of the orthogonal connecting member 50 can be easily adjusted. become.

以上のようであるので、第6実施例のように、連結部材5だけでなく直交連結部材50も設置した場合には、連結部材5と同様に直交連結部材50もエネルギー吸収をするので、想定以上の地震力がどちらの方向から作用しても効果を発揮できる。しかも、支承部3を乗せた柱1aの頂部の、地震力による建物内外方向への変位を抑制することができるので、屋根架構2のみでなく、建物本体架構1の損傷も減らすことができる。   As described above, when not only the connecting member 5 but also the orthogonal connecting member 50 is installed as in the sixth embodiment, the orthogonal connecting member 50 absorbs energy in the same manner as the connecting member 5, so it is assumed. The effect can be exerted regardless of which direction the above seismic force acts. In addition, since the displacement of the top of the column 1a on which the support portion 3 is placed in the direction of the inside and outside of the building due to the seismic force can be suppressed, damage to the building main frame 1 as well as the roof frame 2 can be reduced.

なお、以上の実施例においては、RC系構造の建物本体架構上に設置された屋根支承部であったが、建物本体架構が鉄骨造の場合でも、支承部および係留部の設置場所が確保できれば、本発明の適用は可能である。   In the above embodiment, the roof bearing part is installed on the RC system structure main body frame. However, even if the building main body frame is a steel structure, if the installation place of the bearing part and the mooring part can be secured. The application of the present invention is possible.

本発明は、RC系構造建物の本体架構の上に乗せた、置き屋根形式の屋根架構の支承部において、想定以上の大地震が発生した場合でも、屋根支承部に作用する地震力を抑制して、アンカーボルトやコンクリートの被害を低減できる、簡易かつ安価な技術を提供できるので、建物の耐震性向上に貢献すると共に、被災建物(特に避難所となる多くの体育館等)の地震後の早期復旧および早期再使用にも大きく寄与する。   The present invention suppresses the seismic force acting on the roof support even when a large earthquake than expected occurs in the support of the roof structure of the standing roof type that is placed on the main frame of the RC system structure building. As a result, it is possible to provide simple and inexpensive technology that can reduce the damage to anchor bolts and concrete, thus contributing to the improvement of earthquake resistance of buildings and early after earthquakes in damaged buildings (especially many gymnasiums that serve as shelters). Greatly contributes to recovery and early reuse.

1:本体架構
1a:柱
1b:梁
2:屋根架構
2a:上弦材
2b、2d:下弦材
2c:ラチス材
3:支承部
3a:アンカーボルト
3b:2方向ルーズ孔
3c:ワッシャープレート
4:係留部
4a:アンカーボルト
4b:ルーズ孔
4c:スペーサー
4d:隙間
5、5’、5A、5B:連結部材
5C:端部板
5a:ヒューズ部
6:ヒューズ部材
7:接合板
10:1本ボルト
10a:ルーズ孔
20:下弦節点
30:ブラケット
30a:ブラケットの先端部
30b:アンカーボルト
40:係留部設置プレート
50、50a、50b:直交連結部材
51、51a:連結板
A:トラス節点
P:圧縮力
1: Main frame 1a: Pillar 1b: Beam 2: Roof frame 2a: Upper chord material 2b, 2d: Lower chord material 2c: Lattice material 3: Support part 3a: Anchor bolt 3b: Two-way loose hole 3c: Washer plate 4: Mooring part 4a: Anchor bolt 4b: Loose hole 4c: Spacer 4d: Clearance 5, 5 ', 5A, 5B: Connection member 5C: End plate 5a: Fuse portion 6: Fuse member 7: Joint plate 10: One bolt 10a: Loose Hole 20: Lower chord node 30: Bracket 30a: Tip of bracket 30b: Anchor bolt 40: Mooring portion installation plate 50, 50a, 50b: Orthogonal connecting member 51, 51a: Connecting plate A: Truss node P: Compression force

Claims (6)

以下の構成を有する屋根耐震構造。
建物の本体架構上に置かれた屋根架構において、
(1)前記屋根架構の全ての支承部が、水平2方向共にローラーの支点条件を満たす構成になっている。
(2)相隣接する2つの前記支承部の中間位置において、屋根架構からの鉛直荷重は支持せず、上下と水平2方向を移動拘束された係留部が、前記本体架構の躯体に設置されている。
(3)前記支承部と前記係留部とは、弾塑性特性を有し軸力で抵抗する材料から成る連結部材で連結されている。
A roof seismic structure with the following configuration.
In the roof frame placed on the main frame of the building,
(1) All the support portions of the roof frame are configured to satisfy the fulcrum condition of the roller in two horizontal directions.
(2) At an intermediate position between the two adjacent support parts, a vertical load from the roof frame is not supported, and a mooring part that is moved and restrained in two vertical and horizontal directions is installed on the frame of the main frame. Yes.
(3) The support portion and the mooring portion are connected by a connecting member made of a material having elastic-plastic characteristics and resisting with an axial force.
請求項1記載の屋根耐震構造において、
連結部材は、係留部もしくは支承部の両側に連結され、かつ引張のみに抵抗することを特徴とする、屋根耐震構造。
In the roof earthquake-resistant structure according to claim 1,
The connecting member is connected to both sides of the mooring part or the support part and resists only tension, and is a roof earthquake-resistant structure.
請求項1または2記載の屋根耐震構造において、
連結部材の一部をその連結部材のその他の部分よりも軸耐力が低いヒューズ部として加工し、もしくはそのような部位を着脱可能なヒューズ部材として連結部材に組み込んだことを特徴とする、屋根耐震構造。
In the roof earthquake-resistant structure according to claim 1 or 2,
Seismic roof, characterized in that a part of the connecting member is processed as a fuse part having a lower axial strength than the other part of the connecting member, or such part is incorporated into the connecting member as a removable fuse member Construction.
請求項1乃至3の何れか1つに記載の屋根耐震構造において、
連結部材と係留部または支承部との接合部、もしくはヒューズ部材と係留部または屋根支承部との接合部において、連結部材およびヒューズ部材が圧縮力を伝達しない機構を組み込んだことを特徴とする、屋根耐震構造。
In the roof earthquake-proof structure according to any one of claims 1 to 3,
In the joint part between the connecting member and the mooring part or the bearing part, or in the joint part between the fuse member and the mooring part or the roof bearing part, a mechanism in which the connecting member and the fuse member do not transmit a compressive force is incorporated. Roof seismic structure.
請求項1乃至4の何れか1つに記載の屋根耐震構造において、
連結部材の両端部に設けられた端部板が、鉛直の1本ボルトにより接合されており、少なくとも一方の端部板に設けられた、前記1本ボルト用のボルト孔はルーズ孔であることを特徴とする、屋根耐震構造。
In the roof earthquake-proof structure according to any one of claims 1 to 4,
End plates provided at both ends of the connecting member are joined by a single vertical bolt, and the bolt hole for the single bolt provided in at least one of the end plates is a loose hole. The roof is earthquake-resistant.
請求項1乃至5の何れか1つに記載の屋根耐震構造において、
(1)前記屋根架構の1または2以上の支承部と、それらの支承部に相対する前記屋根架構部分とを接続し、かつ前記連結部材の軸芯と概ね直交する方向に配設された直交連結部材であって、その直交連結部材の中間位置が、前記屋根架構を支える躯体から持ち出されたブラケットに接合されている。
(2)前記直交連結部材は、弾塑性特性を有し軸力で抵抗する材料から成り、引張のみに抵抗するように取り付けられている。
以上の構成を有することを特徴とする、屋根耐震構造。
In the roof earthquake-resistant structure according to any one of claims 1 to 5,
(1) One or two or more support parts of the roof frame, and the roof frame part facing the support parts, and orthogonally arranged in a direction substantially orthogonal to the axis of the connecting member It is a connection member, Comprising: The intermediate position of the orthogonal connection member is joined to the bracket taken out from the housing which supports the said roof frame.
(2) The orthogonal connecting member is made of a material having elastic-plastic characteristics and resisting with an axial force, and is attached so as to resist only tension.
A roof earthquake-resistant structure characterized by having the above configuration.
JP2017206534A 2017-07-11 2017-10-25 Roof seismic structure Active JP6833292B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017135282 2017-07-11
JP2017135282 2017-07-11

Publications (2)

Publication Number Publication Date
JP2019019656A true JP2019019656A (en) 2019-02-07
JP6833292B2 JP6833292B2 (en) 2021-02-24

Family

ID=65353958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206534A Active JP6833292B2 (en) 2017-07-11 2017-10-25 Roof seismic structure

Country Status (1)

Country Link
JP (1) JP6833292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112814186A (en) * 2020-12-31 2021-05-18 青岛三山机电科技发展有限公司 Anti-seismic energy absorption device of wooden house ceiling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144901A (en) * 1998-11-05 2000-05-26 Nkk Corp Splice plate and beam joint construction
JP2001152696A (en) * 1999-11-26 2001-06-05 Tomoe Corp Seismic isolation support device for roof framework
JP2003064768A (en) * 2001-08-21 2003-03-05 Toyo Tire & Rubber Co Ltd Damper attaching construction and attaching method
JP2010001602A (en) * 2008-06-18 2010-01-07 Shimizu Corp Composite structure building consisting of suspension floor and string beam
JP2012158911A (en) * 2011-02-01 2012-08-23 Mitsubishi Heavy Ind Ltd Aseismic structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144901A (en) * 1998-11-05 2000-05-26 Nkk Corp Splice plate and beam joint construction
JP2001152696A (en) * 1999-11-26 2001-06-05 Tomoe Corp Seismic isolation support device for roof framework
JP2003064768A (en) * 2001-08-21 2003-03-05 Toyo Tire & Rubber Co Ltd Damper attaching construction and attaching method
JP2010001602A (en) * 2008-06-18 2010-01-07 Shimizu Corp Composite structure building consisting of suspension floor and string beam
JP2012158911A (en) * 2011-02-01 2012-08-23 Mitsubishi Heavy Ind Ltd Aseismic structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112814186A (en) * 2020-12-31 2021-05-18 青岛三山机电科技发展有限公司 Anti-seismic energy absorption device of wooden house ceiling

Also Published As

Publication number Publication date
JP6833292B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP5007380B2 (en) Seismic isolation / damping mechanism
KR20100105726A (en) Connection metal fitting and building with the same
KR101372087B1 (en) Strengthen method for steel frame structure using seismic control device
JP4771160B2 (en) Damping structure
JP2013057207A (en) Exposure type column base structure of iron frame column
JP4908039B2 (en) Structure for mounting vibration energy absorber of wooden building
JP5777986B2 (en) Damping pillar and its structure
KR101344813B1 (en) Coupling structure and method for beam to column connection
JP5483525B2 (en) Seismic wall
JP2019019656A (en) Roof earthquake-resistant structure
JP4191687B2 (en) Damping damper connector, damping damper, and building damping structure
JP7081745B2 (en) Seismic isolation structure
JP6275314B1 (en) Seismic reinforcement structure for bridges
KR102083066B1 (en) Frame-type Damping Device and Reinforcing Method Using The Same
JP6862057B2 (en) Building stigma displacement suppression structure
JP2017122365A (en) Function separation type vibration damping structure for bridge
KR101403660B1 (en) Building structure for improving seismic performance
JP5305756B2 (en) Damping wall using corrugated steel
JP2019082031A (en) Damper mechanism for base-isolation structure, arranging structure of damper mechanism for base-isolation structure, trigger mechanism for base-isolation structure, arranging structure of trigger mechanism for base-isolation structure, sliding bearing structure for base-isolation structure, and building
JP2008184826A (en) Base isolated building
JP2008002658A (en) Member holding device and member holding method
JP6976653B2 (en) Axial force member
JP5338382B2 (en) Vibration control panel
JP5159487B2 (en) Seismic control column construction method, seismic control column, and building structure
JP2002004632A (en) Base isolation column base structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6833292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350