JP2008294170A - Resist removing method and apparatus - Google Patents

Resist removing method and apparatus Download PDF

Info

Publication number
JP2008294170A
JP2008294170A JP2007137290A JP2007137290A JP2008294170A JP 2008294170 A JP2008294170 A JP 2008294170A JP 2007137290 A JP2007137290 A JP 2007137290A JP 2007137290 A JP2007137290 A JP 2007137290A JP 2008294170 A JP2008294170 A JP 2008294170A
Authority
JP
Japan
Prior art keywords
ozone
gas
chamber
substrate
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007137290A
Other languages
Japanese (ja)
Other versions
JP4905253B2 (en
Inventor
Toshinori Miura
敏徳 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007137290A priority Critical patent/JP4905253B2/en
Priority to TW97145183A priority patent/TWI406111B/en
Publication of JP2008294170A publication Critical patent/JP2008294170A/en
Application granted granted Critical
Publication of JP4905253B2 publication Critical patent/JP4905253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove resist in a substrate without worrying about deformation because of thermal expansion near room temperature. <P>SOLUTION: Unsaturated hydrocarbon gas and ozone gas are supplied to a chamber 2 storing a substrate 10 supplied for removing resist 101 at room temperature under pressure lower than atmospheric pressure. The ozone gas is supplied from an ozone generator 4. The ozone generator 4 liquefies and separates only ozone based on a difference in vapor pressure from gas containing ozone and then vaporizes it again to obtain ultra-high concentration ozone gas. The chamber 2 may have a mixing chamber and a treatment chamber. The mixing chamber and the treatment chamber comprise a partition for dividing the chamber 2 into two chambers, namely upper and lower chambers. The unsaturated hydrocarbon gas and ozone gas are supplied into the mixing chamber. The mixed gas of the unsaturated hydrocarbon gas and ozone in the mixing chamber is transferred to the treatment chamber storing the substrate 10. The partition has a shower head for transferring gas in the mixing chamber into the treatment chamber. In the shower head, a plurality of holes are formed in the partition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はアッシング技術特に基板上のレジストを除去する技術に関する。   The present invention relates to an ashing technique, particularly to a technique for removing a resist on a substrate.

半導体デバイスや各種FPD(Flat Panel Display)、MEMS(Micro Electro Mechanical Systems)、センサデバイス等で利用されるフォトリグラフィ技術では、微細構造を形成するために基板上に感光性のフォトレジストを塗布し、微細パターンの遮光部を有するガラスマスクを介して光を照射して感光させた後にこれを現像してマスク上の微細パターンを転写する。次に、微細構成を形成する、ここで基板上に残されて不要となったフォトレジストの除去には酸素ガスプラズマによるアッシング処理が広く利用されている。   In photolithography technology used in semiconductor devices, various FPDs (Flat Panel Display), MEMS (Micro Electro Mechanical Systems), sensor devices, etc., a photosensitive photoresist is applied on a substrate to form a fine structure. After irradiating light through a glass mask having a light shielding part with a fine pattern and exposing it to light, this is developed to transfer the fine pattern on the mask. Next, an ashing process using oxygen gas plasma is widely used to remove the photoresist that is left on the substrate and becomes unnecessary, which forms a fine structure.

この酸素ガスプラズマによるアッシング処理は微細加工としては高速の1分間に1μm程度の処理を可能とするが、荷電粒子による素子へのダメージが大きく、LSI等の微細化した半導体素子にとって致命的な損傷を与える場合がある。   This ashing process using oxygen gas plasma enables high-speed processing of about 1 μm per minute, but the damage to the elements due to charged particles is large, and it is fatal damage to miniaturized semiconductor elements such as LSIs. May give.

プラズマダメージはウェハを直接プラズマに曝されないことによって低減されるため、ウェハとプラズマ発生部を分離することが有効であるが、アッシングレートが低下するという欠点がある(非特許文献1)。   Since plasma damage is reduced when the wafer is not directly exposed to plasma, it is effective to separate the wafer and the plasma generation unit, but there is a disadvantage that the ashing rate is reduced (Non-patent Document 1).

プラズマダメージのないレジスト除去方法としてはオゾンと紫外線を利用するオゾンアッシング法がある。この方法ではアッシング反応に寄与するラジカル酸素(O・)を下記式(1)のようにオゾンに紫外線を照射することで得ている。   As a resist removing method without plasma damage, there is an ozone ashing method using ozone and ultraviolet rays. In this method, radical oxygen (O.) contributing to the ashing reaction is obtained by irradiating ozone with ultraviolet rays as shown in the following formula (1).

3+hν→O・+O2 …(1)
h:プランク定数、ν:周波数
通常、各種の炭化水素類で構成されているレジスト材料はラジカル酸素との反応により下記式(2)に示す分解反応が起こり、除去される。実際には反応速度を速めるために基板を200℃から300℃程度に加熱する。
O 3 + hν → O · + O 2 (1)
h: Planck's constant, ν: Frequency Usually, a resist material composed of various hydrocarbons undergoes a decomposition reaction represented by the following formula (2) by reaction with radical oxygen and is removed. In practice, the substrate is heated to about 200 ° C. to 300 ° C. in order to increase the reaction rate.

xy+(2x+y/2)O・→xCO2+(y/2)H2O …(2)
しかしながら、このオゾンアッシング法は素子へのプラズマダメージはないものの、レジストの除去速度が毎分数百オングストローム〜数千オングストロームで酸素ガスプラズマによるアッシングの1万オングストローム/分(1μm/分)程度に比べ遅いという欠点がある。また、この方法は大気圧で行われることが多いがオゾンの漏洩を考慮しなければならない。
C x H y + (2x + y / 2) O · → xCO 2 + (y / 2) H 2 O ... (2)
However, although this ozone ashing method does not cause plasma damage to the device, the resist removal rate is several hundred angstroms to several thousand angstroms per minute, compared with about 10,000 angstroms / minute (1 μm / minute) of ashing by oxygen gas plasma. There is a disadvantage of being slow. This method is often performed at atmospheric pressure, but ozone leakage must be taken into account.

これに対して減圧下で高温の基板に高濃度オゾンを吹き付け、熱分解により発生したラジカル酸素を用いることでアッシング速度が向上する方法があるが、基板温度は従来同様高く、基板への熱負荷は大きくなっている。   On the other hand, there is a method to improve the ashing speed by spraying high-concentration ozone on a high-temperature substrate under reduced pressure and using radical oxygen generated by thermal decomposition, but the substrate temperature is high as before, and the thermal load on the substrate is high. Is getting bigger.

前記フォトレジスト除去ではエッチング加工後に基板上に残ったフォトレジストを完全に取り除くのに対してフォトレジストへの感光、現像後にパターン底部に残留するわずかなフォトレジストの除去や、パターン寸法の誤差原因となるパターン底部隅の裾引き(スカム)等の除去の要求もある。これらは配線抵抗の変動や配線不良等の原因となりデバイスの性能劣化や歩留まりの低下を引き起こす。   The photoresist removal completely removes the photoresist remaining on the substrate after the etching process, whereas the photoresist is exposed to light, the slight photoresist remaining at the bottom of the pattern after development, and the cause of pattern dimension error. There is also a need to remove the bottom (scum) of the bottom corner of the pattern. These cause fluctuations in wiring resistance, defective wiring, and the like, causing device performance deterioration and yield reduction.

また、MEMSやセンサデバイス、一部の半導体デバイスでは金等の貴金属で極めて反応性の低いものや、ドライエッチング後に形成される物質の蒸気圧が低く処理できない材質も用いることもあるため、これらにはリフトオフ技術やメッキ技術等も用いられる。このようなプロセスでは現像後のフォトレジストの残膜やスカムはさらに深刻な問題となり、配線材料と基板との密着性を害する。   In addition, MEMS, sensor devices, and some semiconductor devices may use precious metals such as gold, which have extremely low reactivity, or materials that cannot be processed because the vapor pressure of substances formed after dry etching is low. Lift-off technology and plating technology are also used. In such a process, the residual film and scum of the photoresist after development become a more serious problem, which impairs the adhesion between the wiring material and the substrate.

このような問題に対して、従来はプラズマアッシングによって短時間で処理することで残膜を除去することや同方法でパターン底部隅のレジストの裾引き(スカム)を除去して配線幅の減少を防いでいる(特許文献1等)。   In order to solve such problems, conventionally, the remaining film can be removed by plasma ashing in a short time, and the resist bottoming (scum) at the bottom corner of the pattern can be removed by the same method to reduce the wiring width. (Patent Document 1 etc.).

この方法は年々微細化する半導体回路パターンの製作過程で複数回行われるフォトリソグラフィ工程で用いられるフォトマスクの製作へも適用され、より厳しくなる寸法精度への対応から設計値との誤差を補正する手法として用いられている。   This method is also applied to the manufacture of photomasks used in photolithography processes that are performed multiple times in the process of manufacturing semiconductor circuit patterns that are becoming finer year by year, and corrects errors from design values in response to stricter dimensional accuracy. It is used as a method.

これらフォトマスクやデバイスの製造工程ではサイズの微細化に伴って回路パターンのアスペクト比が大きくなっており、このような形状へのプラズマプロセスではパターン溝底部やこの底部の隅に加工残りが発生しやすくなるマイクロローディング効果の問題が出てくる。   In these photomask and device manufacturing processes, the aspect ratio of the circuit pattern has increased with the miniaturization of the size, and in the plasma process to such a shape, there is a processing residue at the bottom of the pattern groove and at the corner of the bottom. The problem of the microloading effect becomes easier.

残渣除去の他にフォトレジストの露光、現像の後にアッシング処理によりレジストパターンを細らせ、露光装置の限界以上の微細パターンを得る方法も実施されている。
電子ジャーナル発行,半導体テクノロジー大全,2002,pp.320 特開2006−294842
In addition to residue removal, a method of thinning a resist pattern by ashing after exposure and development of a photoresist to obtain a fine pattern that exceeds the limit of the exposure apparatus is also practiced.
Issued electronic journal, Semiconductor Technology Taizen, 2002, pp. 320 JP 2006-294842 A

酸素ガスプラズマによるアッシング処理は高速処理を可能とするが、荷電粒子による素子へのダメージが大きく、LSI等の微細化した半導体素子にとって致命的な損傷を与える場合がある。   The ashing treatment using oxygen gas plasma enables high-speed processing, but the device is greatly damaged by charged particles, which may cause fatal damage to a miniaturized semiconductor device such as an LSI.

プラズマダメージはウェハを直接プラズマに曝さないことによって低減されるため、ウェハとプラズマ発生部を分離することが有効であるが、アッシングレートが低下するという欠点がある。   Since plasma damage is reduced by not directly exposing the wafer to the plasma, it is effective to separate the wafer and the plasma generating portion, but there is a drawback that the ashing rate is lowered.

しかし、この方法でもプラズマダメージを完全になくすことはできない。   However, this method cannot completely eliminate plasma damage.

さらに、近年の半導体デバイスでは微細化の進行に伴いアスペクト比が大きくなっている他、MEMS分野でも立体的な構造物を形成するため、アスペクト比を大きく取ることが多く、マイクロローディング効果によるパターン底部でのレジストの残留が問題となる。   Furthermore, in recent semiconductor devices, the aspect ratio has increased with the progress of miniaturization, and in order to form a three-dimensional structure in the MEMS field, the aspect ratio is often increased, and the pattern bottom due to the microloading effect Residual residue at this point becomes a problem.

また、プラズマによる処理ではアッシングの最中にチャンバ内の温度が上昇し、数分の処理でも100℃以上に達することに加え、微細で複雑なパターンでは局所的な電界集中により基板表面温度がより高い場所ができ、パターン配置に応じてそのばらつきも大きくなることから、パターンの形成されたレジストの変形も大きくなり、パターン寸法精度のばらつきが大きくなる。処理中の温度上昇に対しては枚葉式の装置では冷却機構が設けられるが、回路パターン状に加工されたフォトレジスト上の局所的なばらつきまでは抑えることができない。   In addition, in plasma processing, the temperature in the chamber rises during ashing, and in addition to reaching 100 ° C. or more even in processing for several minutes, the substrate surface temperature is higher due to local electric field concentration in fine and complex patterns. Since a high place is formed and the variation becomes large according to the pattern arrangement, the deformation of the resist on which the pattern is formed becomes large, and the variation in pattern dimensional accuracy becomes large. A single-wafer type apparatus is provided with a cooling mechanism for temperature rise during processing, but local variations on the photoresist processed into a circuit pattern cannot be suppressed.

他のレジスト除去法としてはオゾンを利用したアッシング法があるが、実用的なアッシング速度を得るには200〜300℃に加熱する必要があり、100℃以下ではほとんど効果が得られない。   As another resist removal method, there is an ashing method using ozone. However, in order to obtain a practical ashing rate, it is necessary to heat to 200 to 300 ° C., and at 100 ° C. or less, almost no effect is obtained.

200〜300℃の温度では熱膨張によるレジストパターンの変形以上にレジスト材料の変質や軟化等によるパターンの崩れが問題となるため前述のようなパターン溝底部のレジスト残渣除去やデスカム工程等、パターン形状の調整には用いることができない。   At temperatures of 200 to 300 ° C., pattern deformation such as resist residue removal and descum process as described above occurs because the resist pattern is not deformed or softened due to thermal expansion. It cannot be used for adjustment.

比較的変形の少ない100℃〜150℃で用いることはできるが、そのアッシングレートが遅いことに加え、サブミクロンを超えて微細化されたパターンでは熱膨張によるパターン変形が無視できない。   Although it can be used at 100 ° C. to 150 ° C. with relatively little deformation, in addition to a slow ashing rate, pattern deformation due to thermal expansion cannot be ignored in a pattern refined beyond submicron.

これらの処理はいずれも基板を加熱しながら行うため、下地に酸化され易い物質があると、それも酸化し変質させる。金属等では表面に酸化皮膜を作り、多くは絶縁体となるため電気特性へ悪影響を及ぼす。   Since all of these processes are performed while heating the substrate, if there is a substance that is easily oxidized on the base, it is also oxidized and altered. Metals and other materials produce an oxide film on the surface, and many of them become insulators, which adversely affects electrical characteristics.

半導体デバイスでは、配線材料としてAl、Cu、W、Ti、Au、Pt、Cr等様々な金属が使用されている。これらの金属群のなかでもCuは非常に酸化され易く、100℃台でも酸化が進行し、時には膜が剥離する場合があり、微細構造を有する半導体デバイスとしては致命的なパーティクルを発生させる原因ともなる。   In semiconductor devices, various metals such as Al, Cu, W, Ti, Au, Pt, and Cr are used as wiring materials. Among these metal groups, Cu is very easy to oxidize, oxidation proceeds even at a temperature of 100 ° C., and sometimes the film is peeled off, which may cause fatal particles to be generated as a semiconductor device having a fine structure. Become.

以上のように従来、フォトレジストの露光、現像後の残膜除去や加工形状補正等にはプラズマアッシング法が広く用いられていたが、プラズマダメージの影響や発熱によりレジスト形状が変形する傾向にある。また、プラズマダメージの心配がないオゾンアッシング法では効果を得るために基板を200℃程度以上に加熱する必要がありレジスト形状の補正には適用できない。   As described above, conventionally, the plasma ashing method has been widely used for photoresist exposure, residual film removal after development, processing shape correction, etc., but the resist shape tends to be deformed due to the influence of plasma damage or heat generation. . In addition, the ozone ashing method that does not cause the risk of plasma damage requires heating the substrate to about 200 ° C. or more in order to obtain an effect, and cannot be applied to resist shape correction.

そこで、請求項1のレジスト除去方法は、大気圧よりも低圧のもと室温で不飽和炭化水素ガスとオゾンガスとを基板に供給して前記基板上のレジストを除去する。   Accordingly, the resist removal method of claim 1 removes the resist on the substrate by supplying an unsaturated hydrocarbon gas and ozone gas to the substrate at room temperature under a pressure lower than atmospheric pressure.

請求項2のレジスト除去方法は、請求項1のレジスト除去方法において、前記オゾンガスはオゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化して得られる超高濃度オゾンガスである。   The resist removal method according to claim 2 is the resist removal method according to claim 1, wherein the ozone gas is an ultra-high-concentration ozone gas obtained by liquefying only ozone-containing gas based on a difference in vapor pressure and then vaporizing again. is there.

請求項3のレジスト除去装置は、基板を格納するチャンバを備え、このチャンバには大気圧よりも低圧のもと室温で不飽和炭化水素ガスとオゾンガスとが供給される。   According to another aspect of the present invention, there is provided a resist removing apparatus including a chamber for storing a substrate, and an unsaturated hydrocarbon gas and an ozone gas are supplied to the chamber at a room temperature under a pressure lower than atmospheric pressure.

請求項4のレジスト除去装置は、請求項3のレジスト除去装置において、前記チャンバは、前記不飽和炭化水素ガスと前記オゾンガスとが供給される混合室と、前記基板を格納する共に前記混合室から不飽和炭化水素とオゾンの混合ガスが供給される処理室とを備える。   According to a fourth aspect of the present invention, there is provided the resist removing apparatus according to the third aspect, wherein the chamber contains a mixed chamber to which the unsaturated hydrocarbon gas and the ozone gas are supplied, and stores the substrate from the mixed chamber. And a treatment chamber to which a mixed gas of unsaturated hydrocarbon and ozone is supplied.

請求項5のレジスト除去装置は、請求項4のレジスト除去装置において、前記混合室及び前記処理室は前記チャンバを上下二つの室に区画する仕切りによって形成され、前記仕切りは前記混合室内のガスを前記処理室内に移行させるシャワーヘッドを備え、このシャワーヘッドは前記仕切りに複数の孔を形成して成る。   The resist removing apparatus according to claim 5 is the resist removing apparatus according to claim 4, wherein the mixing chamber and the processing chamber are formed by a partition that divides the chamber into two upper and lower chambers, and the partition removes the gas in the mixing chamber. A shower head that is transferred into the processing chamber is provided, and the shower head is formed by forming a plurality of holes in the partition.

請求項6のレジスト除去装置は、請求項5のレジスト除去装置において、前記複数の孔からなる群は少なくとも基板の径よりも大径となるように配置される。   A resist removing apparatus according to a sixth aspect is the resist removing apparatus according to the fifth aspect, wherein the group of the plurality of holes is arranged to have a diameter larger than at least the diameter of the substrate.

請求項7のレジスト除去装置は、請求項3から6のいずれかのレジスト除去装置において、前記オゾンガスの供給は、オゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化することで超高濃度オゾンガスを発生するオゾン発生装置により行う。   The resist removal apparatus according to claim 7 is the resist removal apparatus according to any one of claims 3 to 6, wherein the supply of the ozone gas vaporizes again the ozone-containing gas after liquefying and separating only ozone based on the difference in vapor pressure. This is done with an ozone generator that generates ultra-high-concentration ozone gas.

請求項1〜7の発明によると、大気圧よりも低圧(例えば数Paから数千Pa程度の中真空から低真空の圧力範囲)のもと室温でオゾンガスと不飽和炭化水素ガスとを基板に供給して前記基板のレジストを除去している。不飽和炭化水素ガスとオゾンガスは室温で反応するとオゾニド等の不安定な中間体を発生させる。この中間体及びオゾンを含んだガスに基板を介在させることで基板上のレジストが除去される。実際には50nm/min程度のアッシングレートが得られる。室温でアッシングできるのでフォトレジスト露光、現像後の残膜除去とパターン底部の裾引き(スカム)の除去で熱膨張によるパターンの変形を抑えることができ、より加工精度の高い処理ができる。また、室温でアッシングできることによりレジスト膜の下地が酸化されやすい材質であっても、ほとんど侵されることなく処理できる。従来多用されてきたプラズマを用いていないのでプラズマダメージの心配なくレジスト形状の微調整ができる。また、プラズマを発生させる高周波電源や冷却機構等の複雑な機構を備えていないので装置構成が簡略化する。不飽和炭化水素としては例えばエチレンガスに例示される炭化の2重結合を有する炭化水素(アルケン)やアセチレンに例示される3重結合を有する炭化水素(アルキン)、その他にはブチレン等の低分子量のものが挙げられる。   According to the first to seventh aspects of the present invention, ozone gas and unsaturated hydrocarbon gas are applied to the substrate at room temperature under a pressure lower than atmospheric pressure (for example, a pressure range from about a few Pa to a few thousand Pa). The resist on the substrate is removed by supplying. When unsaturated hydrocarbon gas and ozone gas react at room temperature, unstable intermediates such as ozonide are generated. The resist on the substrate is removed by interposing the substrate in the intermediate and the gas containing ozone. Actually, an ashing rate of about 50 nm / min can be obtained. Since ashing can be performed at room temperature, pattern exposure due to thermal expansion can be suppressed by photoresist exposure, removal of residual film after development, and removal of the bottom of the pattern (scum), and processing with higher processing accuracy can be performed. Moreover, even if the resist film base is easily oxidized due to the ashing at room temperature, the resist film can be processed without being eroded. Since the conventionally used plasma is not used, the resist shape can be finely adjusted without worrying about plasma damage. Further, since a complicated mechanism such as a high-frequency power source for generating plasma or a cooling mechanism is not provided, the apparatus configuration is simplified. Examples of unsaturated hydrocarbons include hydrocarbons having carbon double bonds exemplified by ethylene gas (alkenes), hydrocarbons having triple bonds exemplified by acetylene (alkynes), and other low molecular weights such as butylene. Can be mentioned.

特に、請求項2及び請求項7の発明によれば前記超高濃度オゾンガスが利用されることでアッシングレートが高まる。   In particular, according to the invention of claim 2 and claim 7, the ashing rate is increased by using the ultra-high concentration ozone gas.

請求項3及び請求項4の発明においては、前記チャンバのオゾンガス吹き出し口からフォトレジスト除去に供される基板までの距離をオゾンガス流が基板に直接届く範囲内に設定するとよい。請求項5の発明においては、シャワーヘッドの下部からフォトレジスト付き基板までの距離はオゾンと不飽和炭化水素の混合ガス流が基板に直接届く範囲内に設定するとよい。前記チャンバ内に導入されたオゾンガスと不飽和炭化水素ガスとが混合により分解して安定な生成物を生じる前に前記オゾンガスと不飽和炭化水素とが前記基板に到達させることができる。   In the third and fourth aspects of the invention, the distance from the ozone gas outlet of the chamber to the substrate used for photoresist removal may be set within a range where the ozone gas flow reaches the substrate directly. In the invention of claim 5, the distance from the lower part of the shower head to the substrate with the photoresist is preferably set within a range in which the mixed gas flow of ozone and unsaturated hydrocarbon reaches the substrate directly. The ozone gas and the unsaturated hydrocarbon can reach the substrate before the ozone gas and the unsaturated hydrocarbon gas introduced into the chamber are decomposed by mixing to produce a stable product.

また、請求項5の発明においては、シャワーヘッドによってオゾンガスと不飽和炭化水素ガスの混合ガスが基板に供給されることで基板全面に対して均一なガス流となるので均一にアッシングできる。   According to the fifth aspect of the present invention, since a mixed gas of ozone gas and unsaturated hydrocarbon gas is supplied to the substrate by the shower head, a uniform gas flow is generated over the entire surface of the substrate, so that ashing can be performed uniformly.

さらに、請求項6の発明においては、前記複数の孔からなる群が少なくとも基板の径よりも大径となるように配置されることでより一層均一にアッシングできる。   Further, in the invention of claim 6, ashing can be performed more uniformly by arranging the group of the plurality of holes so as to have a diameter larger than at least the diameter of the substrate.

請求項4〜請求項6に係る混合室の高さは例えば10mm以下にするとオゾンガスと混合した不飽和炭化水素ガスが前記混合室に不必要に滞留せずに前記処理室に導くことができる。すなわち、前記混合室内に導入されたオゾンガスと不飽和炭化水素ガスとが混合により分解して安定な生成物を生じる前に前記オゾンガスと不飽和炭化水素とが処理室内に基板に到達させることができる。   If the height of the mixing chamber according to claims 4 to 6 is set to 10 mm or less, for example, the unsaturated hydrocarbon gas mixed with ozone gas can be led to the processing chamber without unnecessarily staying in the mixing chamber. That is, the ozone gas and the unsaturated hydrocarbon gas can reach the substrate in the processing chamber before the ozone gas and the unsaturated hydrocarbon gas introduced into the mixing chamber are decomposed by mixing to produce a stable product. .

請求項1〜請求項7の発明においては、不飽和炭化水素ガスの分圧とオゾンガスの分圧(オゾン濃度が100%でない場合はオゾンガスのみの分圧)の比は少なくとも化学式上、水と炭酸ガスへ完全分解させることができる値よりもオゾンガスの供給量の方が多くなるように設定するとよい。レジストが除去される過程で生じるアルコール類やアルデヒド類等の副産物が完全に除去される。   In the first to seventh aspects of the invention, the ratio of the partial pressure of the unsaturated hydrocarbon gas to the partial pressure of the ozone gas (or the partial pressure of only the ozone gas when the ozone concentration is not 100%) is at least in terms of chemical formula. It is preferable to set the supply amount of ozone gas to be larger than the value that can be completely decomposed into gas. By-products such as alcohols and aldehydes generated in the process of removing the resist are completely removed.

請求項3〜請求項7の発明においては、不飽和炭化水素ガスとオゾンガスの混合ガスの排気管にはオゾン分解装置を具備させるとよい。チャンバの内圧を大気圧よりも低くさせる真空ポンプの寿命低下を回避できる。前記オゾン分解装置としては例えば未反応または水と二酸化炭素以外の生成ガスを完全に燃焼させるために少なくとも300℃以上に加熱された発熱体を備えたものがある。   In the inventions according to claims 3 to 7, the exhaust pipe of the mixed gas of unsaturated hydrocarbon gas and ozone gas may be provided with an ozonolysis device. It is possible to avoid a reduction in the lifetime of the vacuum pump that causes the internal pressure of the chamber to be lower than the atmospheric pressure. Examples of the ozonolysis apparatus include an unreacted or a heating element heated to at least 300 ° C. or higher in order to completely burn a product gas other than water and carbon dioxide.

また、請求項1〜請求項7の発明に供される不飽和炭化水素ガスの分子量は100程度以下とするとよい。反応生成物としてドライポンプで圧縮時に凝縮して液化するようなアルコール類等の発生がない。   The molecular weight of the unsaturated hydrocarbon gas used in the inventions of claims 1 to 7 is preferably about 100 or less. As a reaction product, there is no generation of alcohols that are condensed and liquefied when compressed by a dry pump.

請求項1〜7の発明は、酸化されやすい材質上のレジスト除去、フォトレジストの露光、現像後のアッシングによる残膜除去、デスカム工程等のフォトレジストパターン形状の調整の過程に有効である。   The inventions of claims 1 to 7 are effective in the process of adjusting the photoresist pattern shape, such as resist removal on a material that is easily oxidized, exposure of the photoresist, removal of the remaining film by ashing after development, and a descum process.

したがって、以上の発明によれば室温付近で熱膨張による変形を気にすることなく基板のレジストを除去できる。   Therefore, according to the above invention, the resist on the substrate can be removed without worrying about deformation due to thermal expansion near room temperature.

微細化したレジストパターンのデスカムや残渣除去ではレジストパターンの形状を崩さずに処理する必要がある。そこで、発明に係るレジスト除去装置はプラズマアッシング法や薬液を用いないでオゾンアッシング法の低温化によりレジスト残渣を除去する。   In the descum and residue removal of a miniaturized resist pattern, it is necessary to process without destroying the shape of the resist pattern. Therefore, the resist removing apparatus according to the invention removes the resist residue by reducing the temperature of the ozone ashing method without using the plasma ashing method or the chemical solution.

図3に示したように一般にオゾンガスは室温でも不飽和炭化水素と反応し、オゾニド等の不安定な中間体を経てケトンやカルボン酸等に分解することが知られている。   As shown in FIG. 3, it is generally known that ozone gas reacts with unsaturated hydrocarbons even at room temperature, and decomposes into ketones, carboxylic acids and the like via unstable intermediates such as ozonides.

以下の発明の実施形態に係るレジスト除去装置ではオゾニド等の不安定な中間体が分解する過程に処理したいフォトレジスト付きの基板を介在させて室温付近で熱膨張による変形を気にすることなくアッシングの効果を得ている。   In the resist removing apparatus according to the embodiments of the present invention, ashing is performed without worrying about deformation due to thermal expansion near room temperature by interposing a substrate with a photoresist to be processed in the process of decomposing an unstable intermediate such as ozonide. Has the effect of.

図1(a)は発明の第一の実施形態に係るレジスト除去装置1の概略構成を示した断面図である。図1(b)はレジスト除去装置1の概略構成を示した平面図である。   FIG. 1A is a cross-sectional view showing a schematic configuration of a resist removing apparatus 1 according to the first embodiment of the invention. FIG. 1B is a plan view showing a schematic configuration of the resist removing apparatus 1.

レジスト除去装置1はチャンバ2と不飽和炭化水素供給装置3とオゾン発生装置4と真空ポンプ5とオゾン分解装置6とを備える。   The resist removal apparatus 1 includes a chamber 2, an unsaturated hydrocarbon supply device 3, an ozone generator 4, a vacuum pump 5, and an ozonolysis device 6.

チャンバ2はレジスト101の除去に供される基板10を格納する。チャンバ2には配管21,22,23が接続されている。配管21は、不飽和炭化水素を導入するための配管であって、チャンバ2の側面に接続されている。配管22は、オゾンガスを導入する配管であって、チャンバ2の上部(天井部)に接続されている。配管23は、チャンバ2内のガスを排出するための配管であって、配管21と対向したチャンバ2の側面に配管21とほぼ同軸に配置されるように接続されている。配管23には真空ポンプ5とオゾン分解装置6が設置されている。オゾン分解装置6は真空ポンプ5の上流側に配置されている。尚、図示省略されているが配管21,22,23には適宜にマスフローコントローラやバルブが設置され、チャンバ2内のガス流及び圧力が適宜に制御される。   The chamber 2 stores a substrate 10 that is used for removing the resist 101. Pipes 21, 22 and 23 are connected to the chamber 2. The pipe 21 is a pipe for introducing unsaturated hydrocarbons, and is connected to the side surface of the chamber 2. The pipe 22 is a pipe for introducing ozone gas, and is connected to the upper part (ceiling part) of the chamber 2. The pipe 23 is a pipe for discharging the gas in the chamber 2, and is connected to the side surface of the chamber 2 facing the pipe 21 so as to be substantially coaxial with the pipe 21. A vacuum pump 5 and an ozonolysis device 6 are installed in the pipe 23. The ozonolysis device 6 is disposed on the upstream side of the vacuum pump 5. Although not shown in the figure, the pipes 21, 22, and 23 are appropriately provided with mass flow controllers and valves, and the gas flow and pressure in the chamber 2 are appropriately controlled.

基板10はホルダー7に保持される。ホルダー7はSiCに被覆されている。ホルダー7にはチャンバ2内の温度を感知するための熱電対8が接続されている。熱電対8によって検出された熱は電気信号として図示省略された制御部に供給される。ホルダー7は、チャンバ2内に導入されたオゾンガスと不飽和炭化水素ガスとが混合により分解して安定な生成物を生じる前に、前記オゾンガスと不飽和炭化水素とが基板10に到達できるように例えば、オゾンガス吹き出し口と基板10との距離が30mm以下となるようにホルダー7の位置が設定される。   The substrate 10 is held by the holder 7. The holder 7 is covered with SiC. The holder 7 is connected to a thermocouple 8 for sensing the temperature in the chamber 2. The heat detected by the thermocouple 8 is supplied as an electric signal to a control unit (not shown). The holder 7 allows the ozone gas and the unsaturated hydrocarbon to reach the substrate 10 before the ozone gas and the unsaturated hydrocarbon gas introduced into the chamber 2 are decomposed by mixing to produce a stable product. For example, the position of the holder 7 is set so that the distance between the ozone gas outlet and the substrate 10 is 30 mm or less.

不飽和炭化水素供給装置3は不飽和炭化水素ガスをチャンバ2に供給する。不飽和炭化水素供給装置3は不飽和炭化水素ガスを充填したボンベ31と前記充填された不飽和炭化水素ガスの供給及びその停止を行うバルブ32とを備える。不飽和炭化水素としては例えばエチレンガスに例示される炭化の2重結合を有する炭化水素(アルケン)やアセチレンに例示される3重結合を有する炭化水素(アルキン)が挙げられる他、ブチレン等の低分子量のものを使用することが考えられる。   The unsaturated hydrocarbon supply device 3 supplies an unsaturated hydrocarbon gas to the chamber 2. The unsaturated hydrocarbon supply device 3 includes a cylinder 31 filled with an unsaturated hydrocarbon gas, and a valve 32 for supplying and stopping the filled unsaturated hydrocarbon gas. Examples of unsaturated hydrocarbons include hydrocarbons having carbon double bonds exemplified by ethylene gas (alkenes) and hydrocarbons having triple bonds exemplified by acetylene (alkynes), as well as low butylene. It is conceivable to use a molecular weight.

オゾン発生装置4はチャンバ2に供されるオゾンガスを発生させる。オゾン発生装置4は超高濃度オゾンガスを発生させる機能を有している。前記超高濃度オゾンガスはオゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化さえて得られる。前記超高濃度オゾンガスを得るための装置は例えば特開2001−304756や特開2003−20209の特許文献に開示されている。前記特許文献のオゾン生成装置はオゾンと他のガス成分(例えば酸素)の蒸気圧の差に基づきオゾンのみを液化分離して超高濃度(オゾン濃度≒100%)のオゾンガスを生成している。特に、特開2003−20209のオゾン供給装置はオゾンのみを液化及び気化させるチャンバを複数備え、これらのチャンバを個別に温度制御することで高純度オゾンガスを連続的に供給できるようになっている。オゾン発生装置4はこの高純度オゾンガス連続供給方式に基づく市販のオゾン発生装置である。この市販のオゾン発生装置としては例えば明電舎製のピュアオゾンジェネレータ(MPOG−HM1A1)が挙げられる。尚、この市販のオゾン発生装置は不飽和炭化水素ガスをより完全に酸化分解するためであるが、チャンバ2に供給されるオゾンガスはオゾン濃度が数十wt%以上である高濃度オゾンガスであってもよい。   The ozone generator 4 generates ozone gas supplied to the chamber 2. The ozone generator 4 has a function of generating ultra-high concentration ozone gas. The ultra-high-concentration ozone gas can be obtained by vaporizing again ozone-containing gas after liquefying and separating only ozone based on the difference in vapor pressure. An apparatus for obtaining the ultra-high concentration ozone gas is disclosed in, for example, Japanese Patent Laid-Open Nos. 2001-304756 and 2003-20209. The ozone generator of the above-mentioned patent document generates ozone gas with an extremely high concentration (ozone concentration≈100%) by liquefying and separating only ozone based on the difference in vapor pressure between ozone and other gas components (for example, oxygen). In particular, the ozone supply device disclosed in Japanese Patent Application Laid-Open No. 2003-20209 includes a plurality of chambers for liquefying and vaporizing only ozone, and the high purity ozone gas can be continuously supplied by individually controlling the temperature of these chambers. The ozone generator 4 is a commercially available ozone generator based on this high-purity ozone gas continuous supply system. An example of this commercially available ozone generator is a pure ozone generator (MPOG-HM1A1) manufactured by Meidensha. This commercially-available ozone generator is for oxidatively decomposing the unsaturated hydrocarbon gas more completely. The ozone gas supplied to the chamber 2 is a high-concentration ozone gas having an ozone concentration of several tens wt% or more. Also good.

真空ポンプ5はチャンバ2内を減圧調整すると共にチャンバ2内のガスを排出するためのポンプである。ポンプにはオゾンに耐性のあるドライポンプを採用するとよい。排気中に多少なりとも含まれる可能性のあるオゾンガスによる性能低下及び劣化による寿命低下を避けるためである。   The vacuum pump 5 is a pump for adjusting the pressure inside the chamber 2 and discharging the gas in the chamber 2. A dry pump that is resistant to ozone may be used as the pump. This is in order to avoid a decrease in performance due to ozone gas that may be included in the exhaust gas and a decrease in life due to deterioration.

オゾン分解装置6はチャンバ2から排出されたガスを完全に燃焼させることでガス中のオゾンを分解する。オゾン分解装置の一例としては排ガスが供給される容器内に300℃以上に加熱される発熱体を備え、この発熱体によって排ガスを燃焼させるものがある。   The ozone decomposition device 6 decomposes ozone in the gas by completely burning the gas discharged from the chamber 2. As an example of the ozonolysis apparatus, there is an apparatus in which a heating element heated to 300 ° C. or more is provided in a container to which exhaust gas is supplied, and the exhaust gas is burned by this heating element.

図1を参照しながらレジスト除去装置1の動作例について説明する。   An example of the operation of the resist removal apparatus 1 will be described with reference to FIG.

チャンバ2内は室温に維持された状態で不飽和炭化水素供給装置3から不飽和炭化水素ガスとしてエチレンガスが配管21から導入されると共にオゾン発生装置4からオゾンガスが配管22を介して基板10に吹き付けられる。これにより基板10上のレジスト101が分解除去される。このとき不飽和炭化水素とオゾンとの反応やその過程で生じるオゾニド等の不安定な中間体(図3)が急激に分解反応を起こし反応の制御が不能となるのを防ぐため、不飽和炭化水素ガスとオゾンの全圧は数Pa〜数千Pa程度の中真空から低真空の範囲に制御される。この制御はマスフローコントローラやバルブによって実行される。   While the inside of the chamber 2 is maintained at room temperature, ethylene gas is introduced as an unsaturated hydrocarbon gas from the unsaturated hydrocarbon supply device 3 through the pipe 21 and ozone gas is supplied from the ozone generator 4 to the substrate 10 via the pipe 22. Be sprayed. Thereby, the resist 101 on the substrate 10 is decomposed and removed. At this time, in order to prevent unstable intermediates (Fig. 3) such as the reaction between unsaturated hydrocarbons and ozone and ozonides generated in the process from suddenly decomposing and making the reaction uncontrollable, The total pressure of hydrogen gas and ozone is controlled in the range of medium vacuum to low vacuum of about several Pa to several thousand Pa. This control is executed by a mass flow controller or a valve.

また、エチレンガスを完全に水と炭酸ガスに分解するには分子式から判断すると2倍のオゾンガスを必要とするが、一般的にはアルコール、アルデヒド等が生成するものと考えられる。したがって、前記アルコールやアルデヒド等を完全に除去できるようにオゾンガスをエチレンガスの3倍以上供給し300℃以上に加熱された発熱体を備えたオゾン分解装置6を介して排気することで真空ポンプ5の劣化が防止される。   Further, in order to completely decompose ethylene gas into water and carbon dioxide gas, judging from the molecular formula, double ozone gas is required, but it is generally considered that alcohol, aldehyde and the like are generated. Therefore, the vacuum pump 5 is supplied by supplying ozone gas more than three times the ethylene gas and exhausting it through the ozonolysis apparatus 6 equipped with a heating element heated to 300 ° C. or more so that the alcohol, aldehyde and the like can be completely removed. Deterioration is prevented.

図2(a)は発明の第二の実施形態に係るレジスト除去装置11の概略構成を示した断面図である。図2(b)はレジスト除去装置11の概略構成を示した平面図である。   FIG. 2A is a cross-sectional view showing a schematic configuration of a resist removing apparatus 11 according to the second embodiment of the invention. FIG. 2B is a plan view showing a schematic configuration of the resist removing apparatus 11.

レジスト除去装置11はチャンバ2内に不飽和炭化水素ガスとオゾンガスの混合室9を有していること以外は基本的にレジスト除去装置1と同じ構成である。混合室9はチャンバ2内に仕切り24によって形成される。レジスト101の除去に供される基板10を格納する処理室12は仕切り24を介した混合室9の下段に配置されている。   The resist removing apparatus 11 has basically the same configuration as the resist removing apparatus 1 except that the chamber 2 includes a mixed chamber 9 of unsaturated hydrocarbon gas and ozone gas. The mixing chamber 9 is formed in the chamber 2 by a partition 24. The processing chamber 12 for storing the substrate 10 to be used for removing the resist 101 is disposed in the lower stage of the mixing chamber 9 with a partition 24 interposed therebetween.

仕切り24のほぼ中央部には混合室9内のガスを処理室11内の基板10に供給するためのシャワーヘッド25が形成されている。シャワーヘッド25は図2(a)及び図2(b)に示されたように仕切り24に混合室9内のガスを排出するための孔26を複数形成させて成る。孔26の群26aは少なくともホルダー7上の基板10の径よりも大径となるように配置される。   A shower head 25 for supplying the gas in the mixing chamber 9 to the substrate 10 in the processing chamber 11 is formed at a substantially central portion of the partition 24. The shower head 25 is formed by forming a plurality of holes 26 for discharging the gas in the mixing chamber 9 in the partition 24 as shown in FIGS. 2 (a) and 2 (b). The group 26 a of the holes 26 is arranged so as to have a diameter that is at least larger than the diameter of the substrate 10 on the holder 7.

そして、不飽和炭化水素ガスを導入するための配管27及びオゾンガスを導入するための配管28はチャンバ2の上部すなわち混合室9の天井部に接続されている。配管27,28は図2(b)に例示されたように複数の配管に枝分かれした形態で接続される。   A pipe 27 for introducing unsaturated hydrocarbon gas and a pipe 28 for introducing ozone gas are connected to the upper part of the chamber 2, that is, the ceiling part of the mixing chamber 9. The pipes 27 and 28 are connected in a branched form into a plurality of pipes as illustrated in FIG.

シャワーヘッド25とレジスト付き基板10との間の距離は、混合室9で混合されてから基板10の表面に到達するまでの距離を最小限にし、さらにシャワーヘッド25によるガス流の均一化の効果としてのアッシングの均一性を損なわない程度の距離に、例えば、シャワーヘッド25とレジスト付き基板10との間の距離は5mmとなるように設定される。この場合、混合室9で混合された不飽和炭化水素ガスとオゾンガスとが不要に滞留するのを避けるために混合室9の高さ(シャワーヘッド25面から混合室9の天井面までの距離)は10mm以内に設定される。   The distance between the shower head 25 and the resist-coated substrate 10 minimizes the distance from the mixing in the mixing chamber 9 to the surface of the substrate 10, and further the effect of uniforming the gas flow by the shower head 25. For example, the distance between the shower head 25 and the resist-coated substrate 10 is set to 5 mm so that the uniformity of ashing is not impaired. In this case, the height of the mixing chamber 9 (distance from the surface of the shower head 25 to the ceiling surface of the mixing chamber 9) in order to avoid unnecessary retention of the unsaturated hydrocarbon gas and ozone gas mixed in the mixing chamber 9. Is set within 10 mm.

図2を参照しながらレジスト除去装置11の動作例について説明する。   An example of the operation of the resist removal apparatus 11 will be described with reference to FIG.

チャンバ2内は室温に維持されている。混合室9には不飽和炭化水素供給装置3から不飽和炭化水素ガスとしてエチレンガスが配管27から導入されると共にオゾン発生装置4からオゾンガスが配管28を介して導入される。混合室9内のエチレンとオゾンとの混合ガスはシャワーヘッド25から処理室12内の基板10に吹き付けられる。これにより基板10上のレジスト101が分解除去される。レジスト除去装置2でも、不飽和炭化水素ガスとオゾンの全圧が数Pa〜数千Pa程度の中真空から低真空の範囲に制御される。これによりレジスト除去装置1と同様に不飽和炭化水素とオゾンとの反応やその過程で生じるオゾニド等の不安定な中間体(図3)が急激に分解反応を起こし反応の制御が不能となるのが防止される。この制御はマスフローコントローラやバルブによって実行される。処理室12内のガスは真空ポンプ5によって吸引されてオゾン分解装置6を介して排出される。オゾン分解装置6ではオゾン等を残留させた排ガスが300℃以上に加熱された発熱体によって燃焼処理される。これにより真空ポンプ5の劣化が防止される。   The inside of the chamber 2 is maintained at room temperature. Ethylene gas is introduced from the unsaturated hydrocarbon supply device 3 as an unsaturated hydrocarbon gas into the mixing chamber 9 through the pipe 27 and ozone gas is introduced from the ozone generator 4 through the pipe 28. A mixed gas of ethylene and ozone in the mixing chamber 9 is sprayed from the shower head 25 to the substrate 10 in the processing chamber 12. Thereby, the resist 101 on the substrate 10 is decomposed and removed. Also in the resist removing apparatus 2, the total pressure of the unsaturated hydrocarbon gas and ozone is controlled in a range from a medium vacuum to a low vacuum of about several Pa to several thousand Pa. As a result, as in the resist removal apparatus 1, unstable intermediates (FIG. 3) such as the reaction of unsaturated hydrocarbons with ozone and the ozonide generated in the process suddenly undergo a decomposition reaction and the control of the reaction becomes impossible. Is prevented. This control is executed by a mass flow controller or a valve. The gas in the processing chamber 12 is sucked by the vacuum pump 5 and discharged through the ozonolysis device 6. In the ozonolysis device 6, the exhaust gas in which ozone or the like is left is burned by a heating element heated to 300 ° C. or higher. Thereby, deterioration of the vacuum pump 5 is prevented.

以上のレジスト除去装置1,11の実施例について述べる。フォトレジストとしてOFPR800(東京応化工業製)とTDUR−P509PM(東京応化工業製)をシリコンウェハ上に各約1μmと0.6μmの厚さで回転塗布した後に約2cm角のチップ状に加工したものをアッシング処理した。その結果、いずれのレジストに対してもレジスト除去装置1,11のチャンバ2内の温度が室温(20〜30℃)もとで50nm/min程度のアッシングレートが得られた。このとき、反応熱により1分間に1〜2℃の温度上昇が認められるが実用上問題にならない。このアッシングレートはレジストの完全除去には遅いが、室温で実施できるので、レジストパターン形状の微調整や残膜除去には効果を発揮する。   Examples of the resist removing apparatuses 1 and 11 will be described. OFPR800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) and TDUR-P509PM (manufactured by Tokyo Ohka Kogyo Co., Ltd.) as photoresists, which are spin-coated on silicon wafers with thicknesses of about 1 μm and 0.6 μm, respectively, and then processed into chips of about 2 cm square. Ashed. As a result, an ashing rate of about 50 nm / min was obtained for any of the resists when the temperature in the chamber 2 of the resist removing apparatuses 1 and 11 was room temperature (20 to 30 ° C.). At this time, a temperature rise of 1 to 2 ° C. per minute is recognized due to reaction heat, but this is not a problem in practice. Although this ashing rate is slow for complete removal of the resist, it can be carried out at room temperature, and is effective for fine adjustment of the resist pattern shape and removal of the remaining film.

(a)発明の第一の実施形態に係るレジスト除去装置の概略構成を示した断面図、(b)前記レジスト除去装置の概略構成を示した平面図。(A) Sectional drawing which showed schematic structure of the resist removal apparatus which concerns on 1st embodiment of invention, (b) The top view which showed schematic structure of the said resist removal apparatus. (a)発明の第二の実施形態に係るレジスト除去装置の概略構成を示した断面図、(b)前記レジスト除去装置の概略構成を示した平面図。(A) Sectional drawing which showed schematic structure of resist removal apparatus which concerns on 2nd embodiment of invention, (b) The top view which showed schematic structure of the said resist removal apparatus. 不飽和炭化水素とオゾンとの反応を示した説明図。Explanatory drawing which showed reaction of unsaturated hydrocarbon and ozone.

符号の説明Explanation of symbols

1,11…レジスト除去装置
2…チャンバ、21〜23,27,28…配管
3…不飽和炭化水素供給装置、31…ボンベ、32…バルブ
4…オゾン発生装置
5…真空ポンプ
6…オゾン分解装置
7…ホルダー
8…熱電対
9…混合室
10…基板、101…レジスト
12…処理室
24…仕切り
25…シャワーヘッド、26…孔、26a…群
DESCRIPTION OF SYMBOLS 1,11 ... Resist removal apparatus 2 ... Chamber, 21-23, 27, 28 ... Pipe 3 ... Unsaturated hydrocarbon supply apparatus, 31 ... Cylinder, 32 ... Valve 4 ... Ozone generator 5 ... Vacuum pump 6 ... Ozone decomposition apparatus 7 ... Holder 8 ... Thermocouple 9 ... Mixing chamber 10 ... Substrate 101 ... Resist 12 ... Processing chamber 24 ... Partition 25 ... Shower head 26 ... Hole 26a ... Group

Claims (7)

大気圧よりも低圧のもと室温で不飽和炭化水素ガスとオゾンガスとを基板に供給して前記基板上のレジストを除去することを特徴とするレジスト除去方法。   A resist removal method, comprising: supplying unsaturated hydrocarbon gas and ozone gas to a substrate at room temperature under a pressure lower than atmospheric pressure to remove the resist on the substrate. 前記オゾンガスは、オゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化して得られる超高濃度オゾンガスであることを特徴とする請求項1に記載のレジスト除去方法。   The resist removal method according to claim 1, wherein the ozone gas is an ultra-high concentration ozone gas obtained by liquefying and separating only ozone from an ozone-containing gas based on a difference in vapor pressure and then vaporizing again. 基板を格納するチャンバを備え、このチャンバには大気圧よりも低圧のもと室温で不飽和炭化水素ガスとオゾンガスとが供給されることを特徴とするレジスト除去装置。   1. A resist removing apparatus comprising a chamber for storing a substrate, wherein an unsaturated hydrocarbon gas and an ozone gas are supplied to the chamber at room temperature under a pressure lower than atmospheric pressure. 前記チャンバは、
前記不飽和炭化水素ガスと前記オゾンガスとが供給される混合室と、
前記基板を格納する共に前記混合室から不飽和炭化水素とオゾンの混合ガスが供給される処理室と
を備えること
を特徴とする請求項3に記載のレジスト除去装置。
The chamber is
A mixing chamber to which the unsaturated hydrocarbon gas and the ozone gas are supplied;
The resist removing apparatus according to claim 3, further comprising a processing chamber that stores the substrate and is supplied with a mixed gas of unsaturated hydrocarbon and ozone from the mixing chamber.
前記混合室及び前記処理室は前記チャンバを上下二つの室に区画する仕切りによって形成され、
前記仕切りは前記混合室内のガスを前記処理室内に移行させるシャワーヘッドを備え、
このシャワーヘッドは前記仕切りに複数の孔を形成して成ること
を特徴とする請求項4に記載のレジスト除去装置。
The mixing chamber and the processing chamber are formed by partitions that divide the chamber into two upper and lower chambers,
The partition includes a shower head for transferring the gas in the mixing chamber to the processing chamber,
5. The resist removing apparatus according to claim 4, wherein the shower head is formed with a plurality of holes in the partition.
前記複数の孔からなる群は少なくとも基板の径よりも大径となるように配置されることを特徴とする請求項5に記載のレジスト除去装置。   The resist removing apparatus according to claim 5, wherein the group of the plurality of holes is arranged to have a diameter that is at least larger than a diameter of the substrate. 前記オゾンガスの供給は、オゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化することで超高濃度オゾンガスを発生するオゾン発生装置により行うことを特徴とする請求項3から6のいずれか1項に記載のレジスト除去装置。   The ozone gas supply is performed by an ozone generator that generates an ultra-high-concentration ozone gas by liquefying and separating only ozone from the ozone-containing gas based on a difference in vapor pressure and then vaporizing it again. 7. The resist removal apparatus according to any one of items 6.
JP2007137290A 2007-05-23 2007-05-23 Resist removing method and apparatus Active JP4905253B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007137290A JP4905253B2 (en) 2007-05-23 2007-05-23 Resist removing method and apparatus
TW97145183A TWI406111B (en) 2007-05-23 2008-11-21 Method for removing resist and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137290A JP4905253B2 (en) 2007-05-23 2007-05-23 Resist removing method and apparatus

Publications (2)

Publication Number Publication Date
JP2008294170A true JP2008294170A (en) 2008-12-04
JP4905253B2 JP4905253B2 (en) 2012-03-28

Family

ID=40168595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137290A Active JP4905253B2 (en) 2007-05-23 2007-05-23 Resist removing method and apparatus

Country Status (1)

Country Link
JP (1) JP4905253B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086886A (en) * 2009-10-19 2011-04-28 Fujitsu Semiconductor Ltd Carbon contamination removing processing method and carbon contamination removing processing apparatus
JP2012243852A (en) * 2011-05-17 2012-12-10 Renesas Electronics Corp Exposure device, exposure method, manufacturing method of semiconductor device, inspection device, inspection method and cleaning method
WO2016143897A1 (en) * 2015-03-12 2016-09-15 株式会社明電舎 Method and device for modifying resin
KR20200111807A (en) 2018-03-28 2020-09-29 메이덴샤 코포레이션 How to form an oxide film
KR20210088722A (en) 2018-11-30 2021-07-14 메이덴샤 코포레이션 Oxide film forming device
KR20220038169A (en) 2019-08-30 2022-03-25 메이덴샤 코포레이션 Atomic layer deposition apparatus and atomic layer deposition method
US11414755B2 (en) 2019-02-19 2022-08-16 Meidensha Corporation Atomic layer deposition method and atomic layer deposition device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057030B1 (en) * 2015-05-21 2017-01-11 株式会社明電舎 Resin modification method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150013A (en) * 1990-10-15 1992-05-22 Hitachi Ltd Ashing method of resist
JPH0786134A (en) * 1993-09-14 1995-03-31 Toshiba Corp Ashing method and ashing system
JPH11219926A (en) * 1997-11-20 1999-08-10 Interuniv Micro Electronica Centrum Vzw Removal of organic contaminant from surface of semiconductor substrate
JP2000077387A (en) * 1998-08-28 2000-03-14 Iwatani Internatl Corp Method and system for removing resist
JP2000323455A (en) * 1999-05-07 2000-11-24 Hitachi Ltd Ashing apparatus
JP2001223206A (en) * 1999-12-03 2001-08-17 Mitsubishi Electric Corp Substrate treating method and device
JP2003188137A (en) * 2001-12-14 2003-07-04 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2003273059A (en) * 2002-03-19 2003-09-26 Mitsubishi Electric Corp Method and apparatus for treating substrate
JP2003330206A (en) * 2001-10-23 2003-11-19 Ums:Kk Method for removing organic coating film, and removing device
JP2006156919A (en) * 2004-12-01 2006-06-15 Purex:Kk Method of dislodging organic coating and remover

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150013A (en) * 1990-10-15 1992-05-22 Hitachi Ltd Ashing method of resist
JPH0786134A (en) * 1993-09-14 1995-03-31 Toshiba Corp Ashing method and ashing system
JPH11219926A (en) * 1997-11-20 1999-08-10 Interuniv Micro Electronica Centrum Vzw Removal of organic contaminant from surface of semiconductor substrate
JP2000077387A (en) * 1998-08-28 2000-03-14 Iwatani Internatl Corp Method and system for removing resist
JP2000323455A (en) * 1999-05-07 2000-11-24 Hitachi Ltd Ashing apparatus
JP2001223206A (en) * 1999-12-03 2001-08-17 Mitsubishi Electric Corp Substrate treating method and device
JP2003330206A (en) * 2001-10-23 2003-11-19 Ums:Kk Method for removing organic coating film, and removing device
JP2003188137A (en) * 2001-12-14 2003-07-04 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2003273059A (en) * 2002-03-19 2003-09-26 Mitsubishi Electric Corp Method and apparatus for treating substrate
JP2006156919A (en) * 2004-12-01 2006-06-15 Purex:Kk Method of dislodging organic coating and remover

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086886A (en) * 2009-10-19 2011-04-28 Fujitsu Semiconductor Ltd Carbon contamination removing processing method and carbon contamination removing processing apparatus
JP2012243852A (en) * 2011-05-17 2012-12-10 Renesas Electronics Corp Exposure device, exposure method, manufacturing method of semiconductor device, inspection device, inspection method and cleaning method
WO2016143897A1 (en) * 2015-03-12 2016-09-15 株式会社明電舎 Method and device for modifying resin
JP6052470B1 (en) * 2015-03-12 2016-12-27 株式会社明電舎 Resin modification method
US10253148B2 (en) 2015-03-12 2019-04-09 Meidensha Corporation Method and device for modifying resin
US10978293B2 (en) 2018-03-28 2021-04-13 Meidensha Corporation Oxide film formation method
KR20200111807A (en) 2018-03-28 2020-09-29 메이덴샤 코포레이션 How to form an oxide film
DE112018007372B4 (en) 2018-03-28 2022-07-14 Meidensha Corporation OXIDE FILM FORMING PROCESS
KR20210088722A (en) 2018-11-30 2021-07-14 메이덴샤 코포레이션 Oxide film forming device
US11306396B2 (en) 2018-11-30 2022-04-19 Meidensha Corporation Oxide film forming device
US11414755B2 (en) 2019-02-19 2022-08-16 Meidensha Corporation Atomic layer deposition method and atomic layer deposition device
KR20220038169A (en) 2019-08-30 2022-03-25 메이덴샤 코포레이션 Atomic layer deposition apparatus and atomic layer deposition method
US11680319B2 (en) 2019-08-30 2023-06-20 Meidensha Corporation Atomic layer deposition device and atomic layer deposition method

Also Published As

Publication number Publication date
JP4905253B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4905253B2 (en) Resist removing method and apparatus
US11135626B2 (en) Contamination removal apparatus and method
US7119020B2 (en) Method for fabricating semiconductor device
US8569178B2 (en) Plasma processing method and plasma processing apparatus
US20130048606A1 (en) Methods for in-situ chamber dry clean in photomask plasma etching processing chamber
JP2020527856A (en) Atomic layer cleaning to remove photoresist patterning scum
JP5287558B2 (en) Substrate processing method
TWI432886B (en) Photomask having self-masking layers and methods of etching same
CN107180774B (en) System and method for gas phase hydroxyl radical processing of substrates
EP1496544A1 (en) Resist film removing apparatus, method of removing resist film, organic matter removing apparatus and method of removing organic matter
KR20110027759A (en) Method for forming amorphous carbon nitride film, amorphous carbon nitride film, multilayer resist film, method for manufacturing semiconductor device, and storage medium in which control program is stored
KR20100099094A (en) Copper discoloration prevention following bevel etch process
TW200819908A (en) Mask etch process
US20050241673A1 (en) Resist removing apparatus and method of removing resist
US20080264566A1 (en) Apparatus and method for removing a photoresist structure from a substrate
JP2002270575A (en) Etching method, semiconductor device fabricated by that method and etching system
JP3028927B2 (en) Dry etching method for refractory metal film
JP2008070882A (en) Phase shifting photomask and method of fabricating the same
JPH10172960A (en) Ashing method
JP5098969B2 (en) Etching method and apparatus
US10818512B2 (en) Photo-assisted chemical vapor etch for selective removal of ruthenium
TWI262547B (en) System and method of varying critical dimension (CD) of a resist pattern
TWI835981B (en) Photo-assisted chemical vapor etch for selective removal of ruthenium
KR20090066938A (en) Method for fabricating in semicondutor device using dry etching apparatus
TW202040689A (en) Method of etching film and plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150