JP2008266139A - Method for measuring thermal conductivity of activated carbon layer - Google Patents

Method for measuring thermal conductivity of activated carbon layer Download PDF

Info

Publication number
JP2008266139A
JP2008266139A JP2008191770A JP2008191770A JP2008266139A JP 2008266139 A JP2008266139 A JP 2008266139A JP 2008191770 A JP2008191770 A JP 2008191770A JP 2008191770 A JP2008191770 A JP 2008191770A JP 2008266139 A JP2008266139 A JP 2008266139A
Authority
JP
Japan
Prior art keywords
activated carbon
thermal conductivity
measuring
carbon layer
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008191770A
Other languages
Japanese (ja)
Other versions
JP4754607B2 (en
Inventor
Takayuki Yamada
隆之 山田
Soichi Maeno
宗一 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2008191770A priority Critical patent/JP4754607B2/en
Publication of JP2008266139A publication Critical patent/JP2008266139A/en
Application granted granted Critical
Publication of JP4754607B2 publication Critical patent/JP4754607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the thermal conductivity of an activated carbon layer to obtain hardly ignitable activated carbon which can efficiently dissipate locally generated heat, has high performance to remove harmful substances, and is used in a method for treating exhaust gas. <P>SOLUTION: The method for measuring the thermal conductivity of an activated carbon layer comprises: automatically filling a 100 ml measuring cylinder with activated carbon up to the 100 ml gauge line while feeding the activated carbon at a feeding speed of 0.75-1.0 ml/s from a funnel by using a vibrator, then drying the activated carbon in a constant temperature dryer at 115±5°C for 3 hours, leaving the dried activated carbon to cool in a desiccator, measuring the mass to obtain a packing density, after that, forming an activated carbon layer by filling a container with the activated carbon to satisfy the above packing density, and measuring the thermal conductivity of the activated carbon layer by a hot wire method using a thermal conductivity meter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、活性炭層の熱伝導率の測定方法に関する。   The present invention relates to a method for measuring the thermal conductivity of an activated carbon layer.

近年、ゴミ焼却炉等から発生する煙道排ガス中に含まれるダイオキシン類を代表とする有害物質が大きな社会問題となっており、ゴミ焼却炉などでは厳しい環境基準が定められている。そして、この環境基準に対処するため、煙道排ガス中の有害物質の除去に活性炭が一般的に用いられている。煙道排ガスは、排ガス中に含まれる酸性物質の凝縮による設備の腐食を防止するため、通常100〜250℃の高温となっている。また、焼却時の不完全燃焼によりダイオキシンが発生するのを抑制するために燃焼用の空気が過剰に供給されており、従って、排ガス中の酸素濃度は通常数%〜10数%に達していることが多い。   In recent years, toxic substances such as dioxins contained in flue gas generated from garbage incinerators have become a major social problem, and strict environmental standards are established for garbage incinerators. And in order to cope with this environmental standard, activated carbon is generally used for removal of harmful substances in flue exhaust gas. The flue exhaust gas is usually at a high temperature of 100 to 250 ° C. in order to prevent equipment corrosion due to condensation of acidic substances contained in the exhaust gas. Moreover, in order to suppress the generation of dioxins due to incomplete combustion during incineration, the combustion air is supplied in excess, and therefore the oxygen concentration in the exhaust gas usually reaches several percent to several tens percent. There are many cases.

このような高温の酸素含有排ガス中で用いられる活性炭は、飛灰などによる局所的発熱、さらには発火の危険を伴っており、実際、海外では数例の発火事故が報告されている。また、活性炭の温度上昇は活性炭の有害物質除去性能を低下させる要因にもなる。   Activated carbon used in such a high-temperature oxygen-containing exhaust gas is accompanied by local heat generation due to fly ash and the risk of ignition, and in fact, several cases of ignition have been reported overseas. Moreover, the temperature rise of activated carbon becomes a factor which reduces the harmful substance removal performance of activated carbon.

活性炭の温度上昇を抑制し、発火を防止するために、グラファイト、アルミナ粉末などの熱伝導率向上材と活性炭からなる活性炭物質及びガス処理装置が開示されている(特許文献1、特許文献2)。また、活性炭中に含まれるアルカリ金属化合物を水洗又は酸洗により低減させ、発火温度の高い活性炭を製造する方法が開示されている(特許文献3)。そして、特定の細孔直径における細孔容積を限定することにより、発火点が向上した粒状の活性炭が開示されている(特許文献4)。
特開2000−272914公報 特開2003−1065公報 特開2000−34113公報 特開2000−225320公報
In order to suppress the temperature rise of activated carbon and prevent ignition, an activated carbon material and a gas treatment device made of activated carbon and activated carbon such as graphite and alumina powder and activated carbon are disclosed (Patent Document 1, Patent Document 2). . Moreover, the method of reducing the alkali metal compound contained in activated carbon by water washing or pickling, and manufacturing activated carbon with a high ignition temperature is disclosed (patent document 3). And the granular activated carbon which the ignition point improved by limiting the pore volume in a specific pore diameter is disclosed (patent document 4).
JP 2000-272914 A JP 2003-1065 A JP 2000-34113 A JP 2000-225320 A

上述したように、ゴミ焼却炉等の煙道排ガス中の有害物質の処理に用いられる活性炭は、常に発火の危険性をはらんでおり、発火等の重大事故を防止するためには、活性炭の局所的発熱がなく、容易に発火しない安全性の高い、しかも安価な活性炭を使用する必要がある。このような活性炭を開発するには、活性炭の局所的発熱を効率良く放散させ、有害物質の除去性能を向上させることが重要であり、上述したような活性炭はかかる観点から開発されたものである。   As described above, activated carbon used for the treatment of harmful substances in flue gas such as garbage incinerators always has a risk of ignition, and in order to prevent serious accidents such as ignition, It is necessary to use activated carbon that has no local heat generation, is highly safe and does not easily ignite, and is inexpensive. In order to develop such activated carbon, it is important to efficiently dissipate the local heat generation of the activated carbon and improve the removal performance of harmful substances, and the activated carbon as described above has been developed from such a viewpoint. .

しかしながら、特許文献1及び特許文献2に開示された活性炭物質は、活性炭の他に、グラファイト、アルミナ粉末などの熱伝導率向上材を必要とするものであるのでコスト的に不利である。また、特許文献3に開示された活性炭は、水洗又は酸洗した後、乾燥工程が必要であり、製造の観点から見て工業的に有利な方法であるとはいえない。   However, the activated carbon materials disclosed in Patent Document 1 and Patent Document 2 are disadvantageous in terms of cost because they require a thermal conductivity improving material such as graphite and alumina powder in addition to activated carbon. In addition, the activated carbon disclosed in Patent Document 3 requires a drying step after washing with water or pickling, and is not an industrially advantageous method from the viewpoint of production.

しかも、具体的な実施例によれば、活性炭の発火点はせいぜい450℃程度であり、決して発火温度が高い活性炭とはいえない上に、活性炭層の温度上昇を防止するものではない。特許文献4に開示された活性炭についてもほぼ同様である。したがって、本発明の目的は、局所的発熱を効率良く放散させることができるとともに有害物質の除去性能にも優れた排ガスの処理方法に用いるための難発火性活性炭を得るために、活性炭層の熱伝導率を測定する方法を提供することにある。   Moreover, according to a specific embodiment, the ignition point of the activated carbon is at most about 450 ° C., which is not an activated carbon having a high ignition temperature, and does not prevent an increase in the temperature of the activated carbon layer. The same applies to the activated carbon disclosed in Patent Document 4. Accordingly, an object of the present invention is to obtain a fire-resistant activated carbon for use in an exhaust gas treatment method that can efficiently dissipate local heat generation and also has an excellent ability to remove harmful substances. It is to provide a method for measuring conductivity.

本発明者らは、上記目的を達成するため鋭意検討を重ね、本発明に至った。すなわち、本発明は、活性炭を漏斗から0.75〜1.0ミリリットル/秒の供給速度で100ミリリットルメスシリンダーの100ミリリットル標線までバイブレータを使用して自動充填し、115±5℃の恒温乾燥器中で3時間乾燥した後、デシケーター中で放冷し、質量を測定することによって充填比重を求め、次いで該充填比重を満足するように活性炭を容器に充填して活性炭層を構成し、熱伝導率計を用いて熱線法により熱伝導率を測定する活性炭層の熱伝導率の測定方法である。   The inventors of the present invention have made extensive studies in order to achieve the above object, and have reached the present invention. That is, according to the present invention, activated carbon is automatically filled from a funnel to a 100 ml mark line of a 100 ml graduated cylinder at a feeding rate of 0.75 to 1.0 ml / sec using a vibrator and dried at a constant temperature of 115 ± 5 ° C. After drying in a vessel for 3 hours, the mixture is allowed to cool in a desiccator, and the specific gravity is determined by measuring the mass. Next, activated carbon is filled in the container so as to satisfy the specific gravity, and an activated carbon layer is formed. It is a measuring method of the thermal conductivity of the activated carbon layer which measures thermal conductivity by a hot wire method using a conductivity meter.

本発明により、排ガスの処理方法に用いられる難発火性活性炭を得るための活性炭層の熱伝導率の測定方法を提供することができる。本発明の活性炭層の熱伝導率の測定方法によれば、活性炭吸着層内での発火事故の危険性を著しく低下させることができ、活性炭の温度が安定化することによりダイオキシン等の有害物質の除去効率を安定化させることが可能となるので、高温排ガス処理に好ましく使用される。   ADVANTAGE OF THE INVENTION By this invention, the measuring method of the heat conductivity of the activated carbon layer for obtaining the inflammable activated carbon used for the processing method of waste gas can be provided. According to the method for measuring the thermal conductivity of the activated carbon layer of the present invention, the risk of ignition accidents in the activated carbon adsorption layer can be significantly reduced, and the temperature of the activated carbon stabilizes the harmful substances such as dioxins. Since removal efficiency can be stabilized, it is preferably used for high-temperature exhaust gas treatment.

上述したように、本発明における難発火性活性炭は、比表面積が100m/g以上の活性炭であり、かかる活性炭を充填して活性炭層を構成したとき、該活性炭層における熱伝導率が0.14W/m・K以上であることに最大の特徴を有する。比表面積が100m/g未満であると、有害物質の除去性能が不十分となるので、比表面積は400m/g以上とするのが好ましく、700m/g以上とするのがさらに好ましい。比表面積の上限はとくに限られるものではない。 As described above, the hardly ignitable activated carbon in the present invention is activated carbon having a specific surface area of 100 m 2 / g or more. When the activated carbon layer is formed by filling the activated carbon, the thermal conductivity in the activated carbon layer is 0.00. It has the greatest feature of being 14 W / m · K or more. When the specific surface area is less than 100 m 2 / g, the harmful substance removal performance becomes insufficient. Therefore, the specific surface area is preferably 400 m 2 / g or more, and more preferably 700 m 2 / g or more. The upper limit of the specific surface area is not particularly limited.

活性炭の原料である炭素質材料としては、賦活することによって活性炭を形成するものであればとくに制限はなく、植物系、鉱物系、天然素材及び合成素材などから広く選択することができる。具体的には、植物系の炭素質材料として、木材、木炭、ヤシ殻などの果実殻、鉱物系の炭素質材料として、石油系及び/又は石炭系ピッチ、コークス、天然素材として、木綿、麻などの天然繊維、レーヨン、ビスコースレーヨンなどの再生繊維、アセテート、トリアセテートなどの半合成繊維、合成素材として、ナイロンなどのポリアミド系、ビニロンなどのポリビニルアルコール系、アクリルなどのポリアクリロニトリル系、ポリエチレン、ポリプロピレンなどのポリオレフィン系、ポリウレタン、フェノール系樹脂、塩化ビニル系樹脂などを例示することができる。   The carbonaceous material that is the raw material of the activated carbon is not particularly limited as long as it can be activated to form activated carbon, and can be widely selected from plant-based, mineral-based, natural materials, and synthetic materials. Specifically, plant-based carbonaceous materials include fruit shells such as wood, charcoal, and coconut shells, mineral-based carbonaceous materials include petroleum-based and / or coal-based pitches, coke, and natural materials such as cotton and hemp. Natural fibers such as rayon, regenerated fibers such as viscose rayon, semi-synthetic fibers such as acetate and triacetate, synthetic materials such as polyamides such as nylon, polyvinyl alcohols such as vinylon, polyacrylonitriles such as acrylic, polyethylene, Examples include polyolefins such as polypropylene, polyurethanes, phenolic resins, vinyl chloride resins, and the like.

炭素質材料の形状は限定されるものではなく、粒状、微粉状、繊維状など種々の形状のものを使用することができる。これらの炭素質材料は、賦活することによって活性炭となる。通常活性炭の平均粒径としては0.1μm〜10mm程度、好ましくは1〜4mm程度で実施するのが実用的であり、好ましい。   The shape of the carbonaceous material is not limited, and various shapes such as granular, fine powder, and fibrous can be used. These carbonaceous materials become activated carbon when activated. Usually, it is practical and preferable that the average particle diameter of the activated carbon is about 0.1 μm to 10 mm, preferably about 1 to 4 mm.

炭素質材料を微粉砕し、バインダを用いて造粒してもよい。例えば、炭素質材料を適度な粒度に微粉砕し、コールタール、コールタールピッチなどの石炭又は石油系、澱粉、カルボキシメチルセルロース、糖類などのセルロース系有機物、フェノール樹脂などのバインダを添加して混練、成型し、乾留、賦活を行うことによって造粒した造粒炭を使用することができる。   The carbonaceous material may be finely pulverized and granulated using a binder. For example, the carbonaceous material is finely pulverized to an appropriate particle size, and coal or petroleum such as coal tar and coal tar pitch, cellulose organic substances such as starch, carboxymethyl cellulose, and saccharide, and a binder such as phenol resin are added and kneaded. Granulated coal that has been molded, granulated by dry distillation and activation can be used.

限定されるものではないが、例えば成型工程においては、Z型二軸方式のニーダーなどで微粉砕した原料とバインダーを十分混練し、180kg/cm以上の圧力で成型することにより成型物を斑なく得ることができる。また、成型装置としては、ロールプレス式、ディスク型ペレッター式、リング型ペレッター式、押し出し式などの成型装置が使用可能である。成型物の形状はとくに限定されるものではなく、円柱状、円筒状、ペレット状、球状など目的に応じて適宜決めればよい。これらの大きさはとくに限定されない。 Although not limited, for example, in the molding process, the raw material finely pulverized with a Z-type biaxial kneader or the like and the binder are sufficiently kneaded and molded at a pressure of 180 kg / cm 2 or more to make the molded product uneven. You can get without. Further, as a molding apparatus, a roll press type, a disk type pelleter type, a ring type pelleter type, an extrusion type or the like can be used. The shape of the molded product is not particularly limited, and may be appropriately determined according to the purpose, such as a columnar shape, a cylindrical shape, a pellet shape, and a spherical shape. These sizes are not particularly limited.

乾留は、還元ガス雰囲気下で550〜750℃まで加熱すればよい。200〜400℃まで酸化ガス雰囲気下5〜30℃/分で昇温し、さらに550℃〜750℃まで還元ガス雰囲気下5〜30℃/分で昇温するのが好ましい。   The dry distillation may be heated to 550 to 750 ° C. in a reducing gas atmosphere. It is preferable to raise the temperature from 200 to 400 ° C. in an oxidizing gas atmosphere at 5 to 30 ° C./min, and further to 550 to 750 ° C. in a reducing gas atmosphere at 5 to 30 ° C./min.

賦活は、水蒸気、二酸化炭素、空気、プロパン燃焼排ガス、これらの混合ガス等の酸化性ガス雰囲気下400〜1100℃で実施するガス賦活や塩化亜鉛、リン酸、塩化カルシウム、硫化カリウムなどの薬剤の存在下400〜800℃程度で実施する薬品賦活が採用される。   Activation is performed at 400 to 1100 ° C. in an oxidizing gas atmosphere such as water vapor, carbon dioxide, air, propane combustion exhaust gas, and mixed gas thereof, and chemicals such as zinc chloride, phosphoric acid, calcium chloride, and potassium sulfide are used. Chemical activation carried out at about 400 to 800 ° C. in the presence is employed.

活性炭層における熱伝導率が0.14W/m・K未満であると熱の放散が不十分となるため、活性炭層の熱伝導率は0.14W/m・K以上とする必要がある。熱の放散という点から、活性炭層の熱伝導率は0.15W/m・K以上とするのが好ましく、0.18W/m・K以上とするのがさらに好ましい。   When the thermal conductivity in the activated carbon layer is less than 0.14 W / m · K, heat dissipation is insufficient, and thus the thermal conductivity of the activated carbon layer needs to be 0.14 W / m · K or more. From the viewpoint of heat dissipation, the thermal conductivity of the activated carbon layer is preferably 0.15 W / m · K or more, and more preferably 0.18 W / m · K or more.

本発明でいう熱伝導率は、活性炭自体の熱伝導率を指すのではなく、活性炭を所定の容器に充填して構成した活性炭層における熱伝導率を意味する。一般的に活性炭の平均粒径は0.1μm〜10mm程度まであり、活性炭自体の熱伝導率は0.1〜0.4W/m・Kと言われている。しかしながら、活性炭を排ガス処理等の用途に用いる場合、活性炭自体の熱伝導率よりもむしろ活性炭層全体としての熱伝導率が重要であることに鑑みて本発明はなされたものである。   The thermal conductivity referred to in the present invention does not mean the thermal conductivity of the activated carbon itself, but means the thermal conductivity in an activated carbon layer constituted by filling activated carbon in a predetermined container. Generally, the average particle diameter of activated carbon is about 0.1 μm to 10 mm, and the thermal conductivity of the activated carbon itself is said to be 0.1 to 0.4 W / m · K. However, when activated carbon is used for exhaust gas treatment or the like, the present invention has been made in view of the fact that the thermal conductivity of the entire activated carbon layer is more important than the thermal conductivity of the activated carbon itself.

活性炭の充填状況は熱伝導率に大きく影響するため、本発明において、活性炭の熱伝導率は次のようにして測定される。先ず、JIS K 1474に準拠して活性炭の充填比重を求めるが、本発明において、活性炭の充填比重は自動充填法により充填比重を求める。具体的には、比表面積が100m/g以上の活性炭を漏斗から0.75〜1.0ミリリットル/秒の供給速度で100ミリリットルメスシリンダーの100ミリリットル標線までバイブレータを使用して自動充填し、115±5℃の恒温乾燥器中で3時間乾燥した後、デシケーター中で放冷し、質量を測定することによって充填比重を求める。 Since the filling state of activated carbon greatly affects the thermal conductivity, in the present invention, the thermal conductivity of activated carbon is measured as follows. First, the specific gravity of the activated carbon is determined according to JIS K 1474. In the present invention, the specific gravity of the activated carbon is determined by the automatic filling method. Specifically, activated carbon having a specific surface area of 100 m 2 / g or more is automatically filled from a funnel to a 100 ml mark line of a 100 ml graduated cylinder at a feed rate of 0.75 to 1.0 ml / sec using a vibrator. After drying in a constant temperature dryer at 115 ± 5 ° C. for 3 hours, the mixture is allowed to cool in a desiccator and the mass is measured to determine the filling specific gravity.

次いで、例えば図1及び図2に示すような試料充填容器(容器内部サイズ:120×120×120mm)を作製し、活性炭を前記充填密度になるように該試料充填容器に充填し、京都電子工業製のTC−51形高温用熱伝導率計を用いて熱線法により熱伝導率の測定を室温、大気中で行う。試料充填容器の形状及び大きさは、あまり小さいと、熱線からの長さ不足により熱伝導率の値が不正確となることがあるので、充填部分における熱線方向の長さが114mm、直径80mmの円柱状以上の大きさのものが好ましい。かかる観点から上記したような試料充填容器は取扱いやすく、好ましい。   Next, for example, a sample filling container (container internal size: 120 × 120 × 120 mm) as shown in FIG. 1 and FIG. 2 is prepared, and activated carbon is filled into the sample filling container so as to have the filling density. Using a manufactured TC-51 type high temperature thermal conductivity meter, the thermal conductivity is measured in the air at room temperature by the hot wire method. If the shape and size of the sample filling container is too small, the thermal conductivity value may be inaccurate due to insufficient length from the heat ray. Therefore, the length in the heat ray direction at the filling portion is 114 mm and the diameter is 80 mm. Those having a columnar shape or larger are preferable. From such a viewpoint, the sample filling container as described above is preferable because it is easy to handle.

図1は試料充填容器を正面から見た正面立面図であり、図2は平面図である。図において、1は試料充填容器、2は試料、3は試料中央部の熱電対、4はニクロム線である。ここでニクロム線及び熱電対は活性炭に通電しないようにセラミック系コーティング剤で被覆しておく。試料充填容器の材質はとくに限定されるものではないが、耐熱性の材質を用いるのが好ましい。本発明の活性炭層の熱伝導率の測定方法は、JIS K 1474に準拠して測定した充填密度になるように活性炭を容器に充填して活性炭層を構成し、熱伝導率を測定することに特徴を有する。   FIG. 1 is a front elevation view of the sample filling container as viewed from the front, and FIG. 2 is a plan view. In the figure, 1 is a sample filling container, 2 is a sample, 3 is a thermocouple at the center of the sample, and 4 is a nichrome wire. Here, the nichrome wire and the thermocouple are coated with a ceramic coating agent so that the activated carbon is not energized. The material of the sample filling container is not particularly limited, but it is preferable to use a heat resistant material. The method for measuring the thermal conductivity of the activated carbon layer of the present invention is to fill the container with activated carbon so as to have a packing density measured in accordance with JIS K 1474, configure the activated carbon layer, and measure the thermal conductivity. Has characteristics.

本発明の難発火性活性炭は、X線回折強度を測定したとき、X線回折強度曲線において、(002)面の回折ピークの両裾に接線を引き、その接線から上の部分の強度の最大値をIp(002)とし、(002)面の回折強度から空気の散乱強度を差し引いた残りの強度をIo(002)としたとき、Ip(002)/Io(002)が0.59以上0.95未満であるのが好ましい。以下、Ip(002)/Io(002)を黒鉛的結晶構造パラメータと略称するが、黒鉛的結晶構造パラメータの求め方を活性炭原料を石炭とした場合について図3によりさらに詳細に説明する。   When the X-ray diffraction intensity is measured, the hardly ignitable activated carbon of the present invention draws a tangent to both hems of the diffraction peak of the (002) plane in the X-ray diffraction intensity curve, and the maximum intensity of the portion above the tangent When the value is Ip (002) and the remaining intensity obtained by subtracting the air scattering intensity from the diffraction intensity of the (002) plane is Io (002), Ip (002) / Io (002) is 0.59 or more and 0 Is preferably less than .95. Hereinafter, Ip (002) / Io (002) is abbreviated as a graphitic crystal structure parameter. The method for obtaining the graphitic crystal structure parameter will be described in more detail with reference to FIG.

石炭を微粉砕後、直径2mm、長さ10mmの円柱状に成型し、例えば300℃で酸化、650℃で乾留、900℃で水蒸気を20容積%含むガスで賦活し、比表面積100m/g以上の活性炭とする。図3は比表面積が1100m/gの活性炭を1200℃で1時間焼成した活性炭のX線回折強度曲線を示す図である。図3において実線で表した曲線5は活性炭の(002)面における実際のX線回折強度曲線(CuKα)を示したものであり、縦軸はX線回折強度、横軸は回折角(2θ)をそれぞれ表す。 After finely pulverizing the coal, it is molded into a cylindrical shape with a diameter of 2 mm and a length of 10 mm, for example, oxidized at 300 ° C., dry-distilled at 650 ° C., activated with a gas containing 20% by volume of water vapor at 900 ° C., and a specific surface area of 100 m 2 / g. The above activated carbon is used. FIG. 3 is a diagram showing an X-ray diffraction intensity curve of activated carbon obtained by calcining activated carbon having a specific surface area of 1100 m 2 / g at 1200 ° C. for 1 hour. In FIG. 3, a curve 5 represented by a solid line represents an actual X-ray diffraction intensity curve (CuKα) on the (002) plane of the activated carbon, the vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the diffraction angle (2θ). Respectively.

上記した実測曲線5の両裾に接線6を引き、実測曲線5と接線6との差をベースライン上に書き直すことによって曲線7を得る。曲線7における最大のX線回折強度値であるピーク強度Ip(002)の値を図3のグラフから求め、該Ip(002)を示す回折角2θ、さらには該回折角2θにおける実測曲線5の強度から空気の散乱強度を差し引いて、実測曲線5における最大X線回折強度であるピーク強度の値Io(002)を求め、それらのIp(002)及びIo(002)から、黒鉛的結晶構造パラメータ該Ip(002)/Io(002)を求めることができる。8は実測曲線5における最大X線回折強度であるピーク強度の値Io(002)、9は曲線7における最大のX線回折強度値であるピーク強度Ip(002)である。   A curve 7 is obtained by drawing the tangent line 6 at both hems of the measured curve 5 and rewriting the difference between the measured curve 5 and the tangent line 6 on the baseline. The value of the peak intensity Ip (002), which is the maximum X-ray diffraction intensity value in the curve 7, is obtained from the graph of FIG. 3, the diffraction angle 2θ indicating the Ip (002), and further the measured curve 5 at the diffraction angle 2θ. By subtracting the scattering intensity of air from the intensity, a peak intensity value Io (002) which is the maximum X-ray diffraction intensity in the actual measurement curve 5 is obtained, and from these Ip (002) and Io (002), a graphitic crystal structure parameter is obtained. The Ip (002) / Io (002) can be obtained. 8 is a peak intensity value Io (002) which is the maximum X-ray diffraction intensity in the actual measurement curve 5, and 9 is a peak intensity Ip (002) which is the maximum X-ray diffraction intensity value in the curve 7.

空気の散乱強度としては、試料のない状態で同一条件で走査して得られたときの値を採用する。上記のIp(002)は黒鉛的結晶構造に起因するX線回折ピークであり、Io(002)からIp(002)を差し引いた{Io(002)−Ip(002)}は非晶構造に起因するX線散乱強度に相当する。   As the air scattering intensity, a value obtained by scanning under the same conditions in the absence of a sample is adopted. The above Ip (002) is an X-ray diffraction peak due to the graphite-like crystal structure, and {Io (002) -Ip (002)} obtained by subtracting Ip (002) from Io (002) is due to the amorphous structure. This corresponds to the X-ray scattering intensity.

一般に、X線回折ピーク強度は、結晶子の結晶サイズ及び結晶化度が大きいほど大きくなり、結晶の発達の程度を示す。とくに、結晶サイズはX線回折ピークのシャープさにより定量される。結晶化度は一般に(全結晶散乱強度/全散乱強度)により表され、X線照射体積中の結晶の体積分率を意味する。しかし、炭素材料の場合、結晶部分と非晶部分とは構造的に明確には分かれておらず、炭素材料を一つの集合組織としてとらえ、集合組織の黒鉛的結晶性領域からの干渉性散乱がIpであり、非晶性領域からの比干渉性散乱が(Io−Ip)である。   In general, the X-ray diffraction peak intensity increases as the crystal size and crystallinity of the crystallite increases, and indicates the degree of crystal growth. In particular, the crystal size is quantified by the sharpness of the X-ray diffraction peak. The degree of crystallinity is generally expressed by (total crystal scattering intensity / total scattering intensity), and means the volume fraction of crystals in the X-ray irradiation volume. However, in the case of a carbon material, the crystal part and the amorphous part are not clearly separated structurally, and the carbon material is regarded as one texture, and coherent scattering from the graphitic crystalline region of the texture does not occur. Ip, and the specific coherent scattering from the amorphous region is (Io-Ip).

黒鉛的結晶構造パラメータの値は、あまり小さいと結晶化度が低く、熱伝導率も低くなるため、活性炭層の温度上昇の防止が困難となることがあり、また、黒鉛的結晶構造パラメータの値があまり大きいと、結晶化度が高くなり、非晶部分が減少し、黒鉛のような構造をとるため、熱伝導率が高くなる傾向にあるが、排ガス中のダイオキシン等の有害物質除去に用いる活性炭としては適さなくなることがあるので、0.59以上0.95未満とするのが好ましい。黒鉛的結晶構造パラメータの値は、好ましくは0.6以上であり、さらに好ましくは0.8以上である。以上は活性炭原料が石炭の場合であるが、石炭以外の活性炭原料についても同様にして求めることができる。   If the value of the graphitic crystal structure parameter is too small, the degree of crystallinity is low and the thermal conductivity is also low, which may make it difficult to prevent the activated carbon layer from rising in temperature. If it is too large, the degree of crystallinity will increase, the amorphous part will decrease, and it will have a graphite-like structure, which tends to increase the thermal conductivity, but it will be used to remove harmful substances such as dioxins in the exhaust gas. Since it may become unsuitable as activated carbon, it is preferable to set it as 0.59 or more and less than 0.95. The value of the graphitic crystal structure parameter is preferably 0.6 or more, and more preferably 0.8 or more. The above is the case where the activated carbon raw material is coal, but the same can be obtained for activated carbon raw materials other than coal.

活性炭の発火点は高い方が発火の危険性を著しく低下させることが可能となるため好ましく、本発明の難発火性活性炭の発火点は530℃以上であるのが好ましい。   A higher ignition point of the activated carbon is preferable because the risk of ignition can be significantly reduced, and the ignition point of the hardly ignitable activated carbon of the present invention is preferably 530 ° C. or higher.

本発明の活性炭は、比表面積150m/g以上の活性炭を950℃以上、好ましくは1000℃以上、さらに好ましくは1200℃以上の温度で焼成することにより製造することができる。しかしながら、あまり高い焼成温度を採用すると、結晶性構造パラメータの値は大きくなり、熱伝導率は向上するものの、比表面積が低下する傾向にあるので、2000℃未満で実施するのがよい。 The activated carbon of the present invention can be produced by firing an activated carbon having a specific surface area of 150 m 2 / g or more at a temperature of 950 ° C. or higher, preferably 1000 ° C. or higher, more preferably 1200 ° C. or higher. However, if a too high firing temperature is employed, the value of the crystalline structure parameter increases and the thermal conductivity improves, but the specific surface area tends to decrease.

また、比表面積は大きい方が望ましく、700m/g以上、さらには1100m/g以上のものが好ましい。加熱方法は酸素のない条件下で例えばマッフル炉、カーボン炉、管状炉などの加熱装置が使用される。以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例及び比較例において、物性の測定は以下の方法によった。 Moreover, the one where a specific surface area is larger is desirable, 700 m < 2 > / g or more, Furthermore, a thing of 1100 m < 2 > / g or more is preferable. As a heating method, for example, a heating device such as a muffle furnace, a carbon furnace, or a tubular furnace is used under a condition without oxygen. Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In Examples and Comparative Examples, physical properties were measured by the following methods.

比表面積:窒素の吸着量から求めたBET比表面積である。   Specific surface area: BET specific surface area determined from the amount of nitrogen adsorbed.

X線回折強度曲線:株式会社マック・サイエンス製の全自動多結晶X線回折装置MXP3VAを用いて測定した。測定条件は40kV、20mA、CuKα線(λ=1.54056Å)、サンプリング幅=0.020deg、走査速度=1°/分、発散スリット=1.00deg、受光スリット=0.15mmとした。   X-ray diffraction intensity curve: It was measured using a fully automatic polycrystalline X-ray diffractometer MXP3VA manufactured by Mac Science Co., Ltd. The measurement conditions were 40 kV, 20 mA, CuKα line (λ = 1.54056 mm), sampling width = 0.020 deg, scanning speed = 1 ° / min, divergence slit = 1.00 deg, and light receiving slit = 0.15 mm.

充填密度:JISK1474活性炭試験方法5.7充填密度に準拠して測定した。   Packing density: Measured according to JISK1474 activated carbon test method 5.7 packing density.

発火点:JISK1474活性炭試験方法5.6発火点に準拠して測定した。   Ignition point: Measured according to JIS K 1474 activated carbon test method 5.6 ignition point.

ベンゼン吸着性能:JISK1474活性炭試験方法5.1.2溶剤蒸気の吸着性能に準拠して測定した。   Benzene adsorption performance: Measured according to JISK1474 activated carbon test method 5.1.2 Solvent vapor adsorption performance.

発火性の評価:図4に示す装置を使用し、活性炭層における活性炭の層高を100mmとし、ガス入口部(位置1)、活性炭層の中央部(位置2)及びガス出口部(位置3)の3ケ所に温度計測用の熱電対を設置し、活性炭層へ高温ガスを通気することにより、発火を確認することによって行った。図4において、10は高温ガスの入口、11は活性炭試料、12〜14は各々ガス入口部(位置1)、活性炭層の中央部(位置2)及びガス出口部(位置3)における熱電対を示す。また、15は排気ガスの出口である。   Evaluation of ignitability: Using the apparatus shown in FIG. 4, the activated carbon layer height of the activated carbon layer is 100 mm, the gas inlet part (position 1), the central part of the activated carbon layer (position 2) and the gas outlet part (position 3) The temperature measurement thermocouples were installed at the three locations, and the ignition was confirmed by ventilating high-temperature gas through the activated carbon layer. In FIG. 4, 10 is a hot gas inlet, 11 is an activated carbon sample, 12 to 14 are thermocouples at the gas inlet (position 1), the central part of the activated carbon layer (position 2) and the gas outlet (position 3). Show. Reference numeral 15 denotes an exhaust gas outlet.

活性炭層へ流入するガスは、プロパン燃焼ガスと酸素の混合ガスで、実際の使用条件に合わせて酸素濃度が10体積%になるように調整した高温ガスを線速度LV=0.2m/secで活性炭層に通気し、各温度測定位置が試験開始から400℃に到達するまでの時間及び活性炭が発火に至るまでの時間を測定した。発火の目安は活性炭層の中央部2の温度が発火によって急激に上昇する変曲点を発火時間とした。   The gas flowing into the activated carbon layer is a mixed gas of propane combustion gas and oxygen, and a high-temperature gas adjusted so that the oxygen concentration becomes 10% by volume according to actual use conditions is linear velocity LV = 0.2 m / sec. Air was passed through the activated carbon layer, and the time until each temperature measurement position reached 400 ° C. from the start of the test and the time until the activated carbon reached ignition were measured. As a measure of ignition, the inflection point at which the temperature of the central portion 2 of the activated carbon layer suddenly increases due to the ignition was defined as the ignition time.

実施例1
石炭原料100重量部に、コールタール35重量部を添加、混練したものを、リング型ペレッターで直径2mm、長さ10mmの円柱状に成型し、650℃で乾留した後に、水蒸気20容量%及び二酸化炭素20容量%を含む混合ガス中、900℃で賦活した。
Example 1
Coal tar is added to 100 parts by weight of coal, and 35 parts by weight of coal tar is kneaded and formed into a cylindrical shape having a diameter of 2 mm and a length of 10 mm with a ring-type pelleter, and after dry distillation at 650 ° C., It activated at 900 degreeC in the mixed gas containing 20 volume% of carbon.

このようにして得た比表面積1100m/g、発火点480℃の石炭系粒状活性炭を石英るつぼに入れ、アルゴン雰囲気下のマッフル炉で1200℃で1時間焼成した。得られた活性炭(平均粒径2mm)をJISK1474に準拠して充填比重を測定したところ0.541g/mlであった。 The thus obtained coal-based granular activated carbon having a specific surface area of 1100 m 2 / g and an ignition point of 480 ° C. was placed in a quartz crucible and fired at 1200 ° C. for 1 hour in a muffle furnace under an argon atmosphere. It was 0.541 g / ml when the filling specific gravity was measured for the obtained activated carbon (average particle diameter 2mm) based on JISK1474.

次いで、容器内部サイズ:120×120×120mmの試料充填容器に上記充填比重と同じになるように充填し、京都電子工業製のTC−51形高温用熱伝導率計を用いて熱線法により熱伝導率の測定を室温、大気中で行った。得られた活性炭の比表面積、熱伝導率、結晶構造パラメータ、発火点、ベンゼン吸着性能を測定した結果を表1に示す。また、活性炭の発火性試験結果を表2に示す。   Next, a sample filling container having a container inner size of 120 × 120 × 120 mm is filled so as to have the same specific gravity as described above, and heat is applied by a hot wire method using a TC-51 type high temperature thermal conductivity meter manufactured by Kyoto Electronics Industry. The conductivity was measured at room temperature in the air. Table 1 shows the results of measuring the specific surface area, thermal conductivity, crystal structure parameters, ignition point, and benzene adsorption performance of the obtained activated carbon. In addition, Table 2 shows the results of the ignitability test of activated carbon.

実施例2
1500℃で1時間焼成する以外は実施例1と同様にして活性炭を得た。同様に、活性炭の比表面積、熱伝導率、結晶構造パラメータ、発火点、ベンゼン吸着性能を測定した。結果を表1に示す。また、活性炭の発火性試験結果を表2に示す。
Example 2
Activated carbon was obtained in the same manner as in Example 1 except that the baking was performed at 1500 ° C. for 1 hour. Similarly, the specific surface area, thermal conductivity, crystal structure parameters, ignition point, and benzene adsorption performance of activated carbon were measured. The results are shown in Table 1. In addition, Table 2 shows the results of the ignitability test of activated carbon.

実施例3
実施例1と同様にして賦活して得た比表面積1500m/g、発火点480℃の石炭系粒状活性炭を石英るつぼに入れ、アルゴン雰囲気下のマッフル炉で1200℃で1時間焼成した。得られた活性炭(直径2mm、長さ10mmの円柱状)の比表面積、熱伝導率、結晶構造パラメータ、発火点、ベンゼン吸着性能を同様にして測定した。結果を表1に示す。また、活性炭の発火性試験結果を表2に示す。
Example 3
A coal-based granular activated carbon having a specific surface area of 1500 m 2 / g and an ignition point of 480 ° C. obtained by activation in the same manner as in Example 1 was placed in a quartz crucible and fired at 1200 ° C. for 1 hour in a muffle furnace under an argon atmosphere. The specific surface area, thermal conductivity, crystal structure parameters, ignition point, and benzene adsorption performance of the obtained activated carbon (2 mm in diameter and 10 mm in length) were measured in the same manner. The results are shown in Table 1. In addition, Table 2 shows the results of the ignitability test of activated carbon.

実施例4
実施例1と同様にして賦活して得た比表面積750m/g、発火点500℃の石炭系粒状活性炭(直径2mm、長さ10mmの円柱状)を焼成せずに使用し、比表面積、熱伝導率、結晶構造パラメータ、ベンゼン吸着性能を同様にして測定した。結果を表1に示す。また、活性炭の発火性試験結果を表2に示す。
Example 4
A specific surface area of 750 m 2 / g obtained by activating in the same manner as in Example 1 and a coal-based granular activated carbon (a cylindrical shape with a diameter of 2 mm and a length of 10 mm) having an ignition point of 500 ° C. is used without firing. The thermal conductivity, crystal structure parameters, and benzene adsorption performance were measured in the same manner. The results are shown in Table 1. In addition, Table 2 shows the results of the ignitability test of activated carbon.

比較例1
実施例1と同様にして賦活して得た比表面積1100m/g、発火点480℃の石炭系粒状活性炭を石英るつぼに入れ、アルゴン雰囲気下のマッフル炉で900℃で1時間焼成した。得られた活性炭(直径2mm、長さ10mmの円柱状)の比表面積、熱伝導率、結晶構造パラメータ、発火点、ベンゼン吸着性能を同様にして測定した。結果を表1に示す。また、活性炭の発火性試験結果を表2に示す。
Comparative Example 1
A coal-based granular activated carbon having a specific surface area of 1100 m 2 / g and an ignition point of 480 ° C. obtained by activation in the same manner as in Example 1 was placed in a quartz crucible and calcined at 900 ° C. for 1 hour in a muffle furnace under an argon atmosphere. The specific surface area, thermal conductivity, crystal structure parameters, ignition point, and benzene adsorption performance of the obtained activated carbon (2 mm in diameter and 10 mm in length) were measured in the same manner. The results are shown in Table 1. In addition, Table 2 shows the results of the ignitability test of activated carbon.

比較例2
実施例1と同様にして賦活して得た比表面積1100m/g、発火点480℃の石炭系粒状活性炭を石英るつぼに入れ、アルゴン雰囲気下のマッフル炉で2000℃で1時間焼成した。得られた活性炭(直径2mm、長さ10mmの円柱状)の比表面積、熱伝導率、結晶構造パラメータ、発火点、ベンゼン吸着性能を同様にして測定した。結果を表1に示す。また、活性炭の発火性試験結果を表2に示す。
Comparative Example 2
A coal-based granular activated carbon having a specific surface area of 1100 m 2 / g and an ignition point of 480 ° C. obtained by activation in the same manner as in Example 1 was placed in a quartz crucible and fired at 2000 ° C. for 1 hour in a muffle furnace under an argon atmosphere. The specific surface area, thermal conductivity, crystal structure parameters, ignition point, and benzene adsorption performance of the obtained activated carbon (2 mm in diameter and 10 mm in length) were measured in the same manner. The results are shown in Table 1. In addition, Table 2 shows the results of the ignitability test of activated carbon.

比較例3
実施例1で使用した未焼成の活性炭を用いて、熱伝導率、結晶構造パラメータ、発火点、ベンゼン吸着性能を同様にして測定した。結果を表1に示す。また、活性炭の発火性試験結果を表2に示す。
Comparative Example 3
Using the unfired activated carbon used in Example 1, the thermal conductivity, crystal structure parameters, ignition point, and benzene adsorption performance were measured in the same manner. The results are shown in Table 1. In addition, Table 2 shows the results of the ignitability test of activated carbon.

Figure 2008266139
Figure 2008266139

Figure 2008266139
Figure 2008266139

発火性試験では各温度測定位置での400℃到達時間はそれぞれ時間の長い方が、活性炭が高温ガスから受けた熱を保持しないで系外に速やかに放散していることを表しており、そのような活性炭ほど発火安全性は高いと言える。またそれぞれの活性炭は発火点付近で発火しており、180分経過時で発火しなかったものは、その時点で活性炭の温度が発火点に到達しなかったことを示している。この発火に至るまでの時間を表す発火時間は活性炭層の熱の放散と発火点の温度を複合的に表したものであり、この発火時間が長いほど、実際に発火しにくい難発火性であると言える。   In the ignitability test, 400 ° C arrival time at each temperature measurement position indicates that the longer the time, the activated carbon quickly dissipates out of the system without retaining the heat received from the high temperature gas. Such activated carbon can be said to have higher ignition safety. Moreover, each activated carbon ignited in the vicinity of an ignition point, and what did not ignite at the time of 180 minutes has shown that the temperature of activated carbon did not reach the ignition point at that time. The ignition time that represents the time until this ignition is a composite representation of the heat dissipation of the activated carbon layer and the temperature of the ignition point. The longer this ignition time, the harder it is to ignite. It can be said.

また、活性炭の吸着性能指標の1つとして、25℃におけるベンゼン蒸気の吸着量評価が用いられる。煙道排ガス中の有害物質として代表的であるダイオキシン類と類似した構造を持つベンゼンの吸着性能は、実際に活性炭を排ガス処理に用いるためには、少なくとも1%以上、好ましくは3%以上は必要である。   Further, as one of the adsorption performance indicators of activated carbon, evaluation of the amount of adsorption of benzene vapor at 25 ° C. is used. The adsorption performance of benzene having a structure similar to that of dioxins, which are typical harmful substances in flue gas, is required to be at least 1%, preferably 3%, in order to actually use activated carbon for exhaust gas treatment. It is.

表1及び表2の結果から熱伝導率が0.14W/m・K以上の実施例1〜4は、400℃到達時間において位置2で70分以上であり、熱伝導率の効果により発火安全性は高いものであった。とくに活性炭をそれぞれ1200℃、1500℃で焼成した実施例1、2及び3は位置3で120分以上であり、非常に安全性は高いと言える。一方、比較例1及び3は熱伝導率が0.11W/m・Kであり、発火性試験での400℃到達時間はそれぞれ63、62分であり、難発火性の活性炭であるとはいえない。   From the results of Tables 1 and 2, Examples 1 to 4 having a thermal conductivity of 0.14 W / m · K or more are 70 minutes or more at position 2 when reaching 400 ° C., and are ignited safely due to the effect of thermal conductivity. The nature was high. In particular, Examples 1, 2 and 3 in which the activated carbon was fired at 1200 ° C. and 1500 ° C., respectively, were 120 minutes or more at position 3, and it can be said that the safety is very high. On the other hand, in Comparative Examples 1 and 3, the thermal conductivity is 0.11 W / m · K, and the arrival time at 400 ° C. in the ignitability test is 63 and 62 minutes, respectively. Absent.

なお、活性炭を2000℃で焼成した比較例2については、熱伝導率が高く発火性試験も非常に良好な結果が得られているが、Ip(002)/Io(002)は0.98と一般的な黒鉛の領域であり、比表面積が非常に小さくなっているため、ベンゼン吸着性能0.4%と極端に小さくなっているため、有害物質除去用の活性炭としては使用に適さない。   In addition, as for Comparative Example 2 in which the activated carbon was fired at 2000 ° C., the thermal conductivity was high and the ignition test was very good, but Ip (002) / Io (002) was 0.98. Since it is a general graphite region and its specific surface area is very small, it has an extremely small benzene adsorption performance of 0.4%, so it is not suitable for use as activated carbon for removing harmful substances.

また、発火時間について見ると、活性炭を950℃以上2000℃未満で焼成した実施例1、2及び実施例3は、発火点がいずれも570℃以上と非常に高くなっており、表2の発火性試験においても180分で発火しないという結果となっている。   Further, regarding the ignition time, in Examples 1, 2 and Example 3 where the activated carbon was calcined at 950 ° C. or more and less than 2000 ° C., the ignition point was very high at 570 ° C. or more. In the sex test, the result is that it does not ignite in 180 minutes.

以上の実施例、比較例から明らかなように、比表面積100m/g以上で熱伝導率が0.14W/m・K以上の活性炭を用いることによって発火の危険性が低くなり、好ましくは、比表面積150m/g以上の活性炭を950℃以上2000℃未満で焼成した活性炭は発火点が高く、極めて安全性の高い活性炭を得ることが可能となる。 As is clear from the above examples and comparative examples, the use of activated carbon having a specific surface area of 100 m 2 / g or more and a thermal conductivity of 0.14 W / m · K or more reduces the risk of ignition, Activated carbon obtained by calcining activated carbon having a specific surface area of 150 m 2 / g or more at 950 ° C. or more and less than 2000 ° C. has a high ignition point, and it becomes possible to obtain activated carbon with extremely high safety.

本発明の活性炭層の熱伝導率の測定方法によれば、活性炭吸着層内での発火事故の危険性を著しく低下させることができ、活性炭の温度が安定化することによりダイオキシン等の有害物質の除去効率を安定化させることが可能となるので、高温排ガス処理を安全に実施することがで、産業上有用である。   According to the method for measuring the thermal conductivity of the activated carbon layer of the present invention, the risk of ignition accidents in the activated carbon adsorption layer can be significantly reduced, and the temperature of the activated carbon stabilizes the harmful substances such as dioxins. Since removal efficiency can be stabilized, high-temperature exhaust gas treatment can be performed safely, which is industrially useful.

試料充填容器を正面から見た正面立面図である。It is the front elevation which looked at the sample filling container from the front. 試料充填容器平面図である。It is a top view of a sample filling container. X線回折強度曲線の一例である。It is an example of an X-ray diffraction intensity curve. 発火性の評価を行うための装置の一例である。It is an example of the apparatus for performing ignition property evaluation.

符号の説明Explanation of symbols

1 試料充填容器
2 試料(活性炭)
3 試料中央部の熱電対
4 ニクロム線
5 活性炭の(002)面におけるX線回折強度曲線
6 曲線5の両裾に引いた接線
7 曲線5と接線6との差をベースライン上に書き直した曲線
8 曲線5における最大のX線回折強度値
9 曲線7における最大のX線回折強度値
10 高温ガスの入口
11 試料(活性炭)
12 ガス入口部(位置1)の熱電対
13 活性炭層の中央部(位置2)
14 ガス出口部(位置3)の熱電対
15 排気ガスの出口
1 Sample filling container 2 Sample (activated carbon)
3 Thermocouple 4 in the center of the sample 4 Nichrome wire 5 X-ray diffraction intensity curve 6 on the (002) plane of activated carbon Tangent line 7 drawn on both hems of curve 5 Curve obtained by rewriting the difference between curve 5 and tangent line 6 on the baseline 8 Maximum X-ray diffraction intensity value in curve 5 9 Maximum X-ray diffraction intensity value in curve 7 10 Hot gas inlet 11 Sample (activated carbon)
12 Thermocouple at gas inlet (position 1) 13 Center of activated carbon layer (position 2)
14 Gas outlet (position 3) thermocouple 15 Exhaust gas outlet

Claims (1)

活性炭を漏斗から0.75〜1.0ミリリットル/秒の供給速度で100ミリリットルメスシリンダーの100ミリリットル標線までバイブレータを使用して自動充填し、115±5℃の恒温乾燥器中で3時間乾燥した後、デシケーター中で放冷し、質量を測定することによって充填比重を求め、次いで該充填比重を満足するように活性炭を容器に充填して活性炭層を構成し、熱伝導率計を用いて熱線法により熱伝導率を測定する活性炭層の熱伝導率の測定方法。 Activated charcoal is automatically filled from a funnel to a 100 ml mark of a 100 ml graduated cylinder at a feed rate of 0.75 to 1.0 ml / sec using a vibrator and dried in a constant temperature dryer at 115 ± 5 ° C. for 3 hours. After that, the mixture is allowed to cool in a desiccator, and the filling specific gravity is obtained by measuring the mass. Then, the activated carbon is filled into the container so as to satisfy the filling specific gravity, and the activated carbon layer is formed, and a thermal conductivity meter is used. A method for measuring the thermal conductivity of an activated carbon layer for measuring the thermal conductivity by a hot wire method.
JP2008191770A 2008-07-25 2008-07-25 Method for measuring thermal conductivity of activated carbon layer Expired - Fee Related JP4754607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191770A JP4754607B2 (en) 2008-07-25 2008-07-25 Method for measuring thermal conductivity of activated carbon layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191770A JP4754607B2 (en) 2008-07-25 2008-07-25 Method for measuring thermal conductivity of activated carbon layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003092389A Division JP4290456B2 (en) 2003-03-28 2003-03-28 Exhaust gas treatment method using fire-resistant activated carbon

Publications (2)

Publication Number Publication Date
JP2008266139A true JP2008266139A (en) 2008-11-06
JP4754607B2 JP4754607B2 (en) 2011-08-24

Family

ID=40046158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191770A Expired - Fee Related JP4754607B2 (en) 2008-07-25 2008-07-25 Method for measuring thermal conductivity of activated carbon layer

Country Status (1)

Country Link
JP (1) JP4754607B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000272914A (en) * 1999-03-26 2000-10-03 Hirobe:Kk Thermally conductive activated carbon substance and gas treating apparatus
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000272914A (en) * 1999-03-26 2000-10-03 Hirobe:Kk Thermally conductive activated carbon substance and gas treating apparatus
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof

Also Published As

Publication number Publication date
JP4754607B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
WO2017004185A3 (en) Heat generation segment for an aerosol-generation system of a smoking article
US20080236389A1 (en) Impregnated Monoliths
JPWO2014115814A1 (en) Alumina fiber and alumina fiber aggregate
US20160228860A1 (en) Catalytic activated carbon structures and methods of use and manufacture
JP4290456B2 (en) Exhaust gas treatment method using fire-resistant activated carbon
Choi et al. Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels
CN108927118B (en) Petroleum coke calcination waste gas adsorbent and preparation method and application thereof
JP2006062954A (en) Method of manufacturing activated carbon
JP4754607B2 (en) Method for measuring thermal conductivity of activated carbon layer
JP2011212531A (en) Alkylsilanol removing material, and method for manufacturing the same
Wang et al. Activated carbon preparation from cassava residue using a two-step KOH activation: preparation, micropore structure and adsorption capacity
CN103201029A (en) Improved brominated sorbents for removing mercury from emissions produced during fuel combustion
JP5661960B1 (en) Chemical heat storage material
JP3073196B1 (en) Thermal conductive activated carbon material and gas treatment equipment
JP3707573B2 (en) Heat-resistant adsorption element and manufacturing method thereof
Shui et al. A Peach‐Kernel‐Derived Ultramicroporous Carbon with Extremely High CO2‐Capture Ability
JP2008201651A (en) Porous charcoal and its production method
JP4708409B2 (en) Molded activated carbon for waste gas treatment and method for producing the same
JP2022155011A (en) Granulated charcoal and production method therefor, filter for air cleaner and air cleaner
JP7165669B2 (en) filter
Yuan et al. Catalytic Pyrolysis of 2‐Chloro‐1, 1‐difluoroethane to Synthesize Vinylidene Fluoride over the Potassium‐Promoted Carbon Catalysts
Koreňová et al. Pore structure of pyrolyzed scrap tires
JP2007286023A (en) Radioactive iodine in vapor phase and adsorbent of radioactive iodine compound
JP2000225320A (en) Method for treating high temperature gas and active carbon
US580308A (en) Joseph beverley fenby

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4754607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees