JP2008201651A - Porous charcoal and its production method - Google Patents

Porous charcoal and its production method Download PDF

Info

Publication number
JP2008201651A
JP2008201651A JP2007042877A JP2007042877A JP2008201651A JP 2008201651 A JP2008201651 A JP 2008201651A JP 2007042877 A JP2007042877 A JP 2007042877A JP 2007042877 A JP2007042877 A JP 2007042877A JP 2008201651 A JP2008201651 A JP 2008201651A
Authority
JP
Japan
Prior art keywords
surface area
specific surface
carbonization
furnace
processing object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007042877A
Other languages
Japanese (ja)
Inventor
Tadashi Yokoi
正 横井
Masayoshi Yashio
政禧 八塩
Koji Nakano
孝司 中野
Yasusuke Niwa
庸介 丹羽
Seiichi Shimizu
誠一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Nippon Furnace Co Ltd
Shimizu Corp
Suzuken KK
Oshima Shipbuilding Co Ltd
IPB KK
Original Assignee
Shimizu Construction Co Ltd
Nippon Furnace Co Ltd
Shimizu Corp
Suzuken KK
Oshima Shipbuilding Co Ltd
IPB KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Nippon Furnace Co Ltd, Shimizu Corp, Suzuken KK, Oshima Shipbuilding Co Ltd, IPB KK filed Critical Shimizu Construction Co Ltd
Priority to JP2007042877A priority Critical patent/JP2008201651A/en
Publication of JP2008201651A publication Critical patent/JP2008201651A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous charcoal which has a high specific surface area and a porous structure suitable for an electric double layer capacitor and is produced by using an organic material to be processed, e.g. a woody material, as a raw material; and its production method. <P>SOLUTION: A porous charcoal production apparatus having a drying furnace and a carbonization furnace continuously performing carbonization and activation is used. A carbonization treatment and an activation treatment are continuously performed by introducing superheated steam with an entrance temperature of 750-950°C into the carbonization furnace for a processing object, by rotating a rotation paddle with a frequency of 3-6 rotations per minute and with a peripheral speed of 0.035-0.07 m/s, and keeping a raw material feeding rate of 0.2-0.5 kg/h/liter per a raw material processing volume in the carbonization furnace. Thus, provided is a porous charcoal, which has a total specific surface area of 600 m<SP>2</SP>/g or more and a pore distribution structure wherein the outside specific surface area accounts for 30-75% of the total specific surface area. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、木質系材料を原料として、過熱水蒸気を加熱熱源ならびに賦活剤として用いて製造される多孔炭およびその製造方法に関する。   The present invention relates to a porous coal produced using a woody material as a raw material and superheated steam as a heating heat source and an activator, and a method for producing the same.

従来、電気二重層キャパシタ電極に用いる多孔炭(一般に活性炭、あるいは多孔質炭素材とも呼ばれるが、ここでは多孔炭と呼ぶ。)の有力候補の一つとして、フェノール樹脂等の石油系炭素前駆体を炭化、賦活処理して得られるものが挙げられる。そして、このような多孔炭については、電気二重層キャパシタに用いる際に適した細孔分布構造として孔径の小さなミクロ孔の分布を抑制する試みが有機電解液系の電気二重層キャパシタ用分野で行われている。   Conventionally, petroleum-based carbon precursors such as phenol resins are used as one of the promising candidates for porous carbon (generally referred to as activated carbon or porous carbon material, but here referred to as porous carbon) used for electric double layer capacitor electrodes. Those obtained by carbonization and activation treatment may be mentioned. With regard to such porous carbon, an attempt to suppress the distribution of micropores having a small pore size as a pore distribution structure suitable for use in electric double layer capacitors has been made in the field of organic electrolyte-based electric double layer capacitors. It has been broken.

例えば、特許文献1では、電解液として有機系電解液を使用する電気二重層キャパシタおよびその電極材料(活性炭)の製造方法が開示されており、この場合、石油系炭素前駆体に所定の粒径を有する金属化合物の粒子を混合し、アルゴンや窒素等の非酸化性雰囲気中で700℃ないし2000℃の温度で長時間温度を保持した後に、水蒸気又は二酸化炭素等の酸化性ガス中で加熱することで活性炭を製造する。そして、得られた活性炭は、窒素吸着等温線からt−plot法により算出されるミクロポアに基づく比表面積が全比表面積の70%以下であることが示されている。   For example, Patent Document 1 discloses an electric double layer capacitor that uses an organic electrolytic solution as an electrolytic solution and a method for producing the electrode material (activated carbon). In this case, the petroleum carbon precursor has a predetermined particle size. After mixing the particles of the metal compound having the above and maintaining the temperature at a temperature of 700 ° C. to 2000 ° C. for a long time in a non-oxidizing atmosphere such as argon or nitrogen, the mixture is heated in an oxidizing gas such as water vapor or carbon dioxide. To produce activated carbon. The obtained activated carbon is shown to have a specific surface area of 70% or less of the total specific surface area based on micropores calculated from the nitrogen adsorption isotherm by the t-plot method.

また、特許文献2では、炭素化物原料に対して450℃ないし550℃で1時間ないし10時間の第1次空気賦活処理を行い、その後、350℃ないし430℃で10時間ないし60時間の第二次空気賦活処理を行うことを特徴とする活性炭の製造方法が開示されている。そして、メソ孔の容積が比較的大きい活性炭が得られることが示されている。   Further, in Patent Document 2, a primary air activation treatment is performed on a carbonized material at 450 ° C. to 550 ° C. for 1 hour to 10 hours, and then at 350 ° C. to 430 ° C. for 10 hours to 60 hours. A method for producing activated carbon characterized by performing a secondary air activation treatment is disclosed. And it is shown that activated carbon having a relatively large mesopore volume can be obtained.

さらに、特許文献3では、合成樹脂、石油系ピッチ、石油系ピッチ(原料)を熱処理(焼成)したコークス等の炭素化物にアルカリ土類金属化合物の粉末を添加して高温熱処理することにより所定の活性炭を製造する技術が開示されている。   Further, in Patent Document 3, a powder of an alkaline earth metal compound is added to a carbonized material such as coke obtained by heat treatment (calcination) of synthetic resin, petroleum pitch, or petroleum pitch (raw material), and heat treatment is performed at a predetermined temperature. A technique for producing activated carbon is disclosed.

特開2000−340470号公報JP 2000-340470 A 特開2005−286170号公報JP-A-2005-286170 特開2004−175660号公報JP 2004-175660 A

しかしながら、上記特許文献1〜3に記載の活性炭の製造方法は、木質材料を出発原料とするものではなく、いずれも合成樹脂、石炭系ピッチ、石油系ピッチ等を原料として用いたものであった。そして、従来、木質材料等の原料は、合成樹脂、石炭系ピッチ、石油系ピッチ等と比較して比表面積や細孔構造を制御することが難しく、電気二重層キャパシタとして用いるには性能を適合させにくいという問題があった。また、特許文献1、3は電解液としてイオン径の大きい有機系電解液のみを用いることを想定したものであり、有機系に比べイオン径の小さな水系電解液を想定したものではなかった。   However, the methods for producing activated carbon described in Patent Documents 1 to 3 described above do not use woody materials as starting materials, and all use synthetic resins, coal-based pitches, petroleum-based pitches, and the like as raw materials. . Conventionally, it is difficult to control the specific surface area and pore structure of raw materials such as woody materials compared to synthetic resin, coal-based pitch, petroleum-based pitch, etc., and it is suitable for use as an electric double layer capacitor There was a problem that it was difficult to do. Patent Documents 1 and 3 assume that only an organic electrolytic solution having a large ionic diameter is used as the electrolytic solution, and do not assume an aqueous electrolytic solution having a small ionic diameter compared to an organic system.

上記従来の状況に鑑み、本発明では、木質材料を原料として用いて、大きい比表面積と、有機電解液系に限定されない電気二重層キャパシタに適合できる細孔構造を有する多孔炭、およびその製造方法を提供することを目的とする。   In view of the above-described conventional situation, in the present invention, a porous carbon having a large specific surface area and a pore structure that can be adapted to an electric double layer capacitor not limited to an organic electrolyte system using a wood material as a raw material, and a method for producing the same The purpose is to provide.

上記課題を解決するため、本発明の多孔炭の製造方法では請求項1として、木質材料を主成分とした処理対象物を乾燥する乾燥炉と、乾燥炉で乾燥された処理対象物を400℃ないし950℃の過熱水蒸気雰囲気中で、炉内の攪拌兼フィード用回転パドルで攪拌兼フィードを行いつつ所定時間滞留させることにより炭化と賦活を連続して行う炭化炉とを有する多孔炭製造装置を用いて、入口温度750℃ないし950℃の過熱水蒸気を前記炭化炉に導入し、前記回転パドルの回転数を毎分3回転ないし6回転、周速度で0.035m/sないし0.07m/sで回転させ、原料供給速度を炭化炉内原料工程容積当たり0.2kg/h/リットルないし0.5kg/h/リットルとして炭化処理を行うことを特徴とする。   In order to solve the above-mentioned problem, in the method for producing porous coal of the present invention, as claimed in claim 1, a drying furnace for drying a processing object mainly composed of a wood material and a processing object dried in the drying furnace at 400 ° C. Or a carbonizing furnace having a carbonizing furnace in which carbonization and activation are continuously performed by staying for a predetermined time while stirring and feeding with a rotating paddle for stirring and feeding in a superheated steam atmosphere at 950 ° C. The superheated steam having an inlet temperature of 750 ° C. to 950 ° C. is introduced into the carbonization furnace, and the rotational speed of the rotary paddle is 3 to 6 revolutions per minute, and the peripheral speed is 0.035 m / s to 0.07 m / s. And carbonization is performed at a raw material supply speed of 0.2 kg / h / liter to 0.5 kg / h / liter per raw material process volume in the carbonization furnace.

また、本発明の多孔炭は、請求項2として、請求項1の方法によって製造され、全比表面積が600m/g以上を有するとともに、外比表面積が全比表面積の30%以上75%以下を占める細孔分布構造を有することを特徴とする。 Further, the porous coal of the present invention is produced by the method of claim 1 as claim 2, and has a total specific surface area of 600 m 2 / g or more and an outer specific surface area of 30% or more and 75% or less of the total specific surface area. It has the pore distribution structure which occupies.

なお、ここで、全比表面積は、多孔炭に対する窒素ガスの吸着量からαプロット法を用いて算出された多孔炭1g当たりの表面積を表す。また、外比表面積は、同様にαプロット法を用いて算出される数値であり、ミクロ孔(細孔径が2nm以下のものをいう)以外の大きさの細孔に対する多孔炭1g当たりの表面積を表し、外比表面積の多くはメソ孔によるものである。 Here, the total specific surface area represents the surface area per porous coal 1g calculated using the alpha S blotting from the adsorption of nitrogen gas to a porous coal. Further, the external specific surface area is a numerical value similarly calculated using the α S plot method, and the surface area per 1 g of porous coal with respect to pores having a size other than micropores (meaning pore diameters of 2 nm or less). Most of the external specific surface area is due to mesopores.

本発明の多孔炭によれば、木質材料を主成分とした処理対象物を原料として用いるとともに、大きな比表面積を有するとともに、さらには全比表面積に対して高い外比表面積の割合を有する。そして、外比表面積の大きさは電気二重層キャパシタの静電容量の向上に大きく寄与するものであり、電気二重層キャパシタに好適に用いることができる。さらには、木質材料を出発原料に用いているので、近年森林に大量に放置されている間伐材を電気二重層キャパシタの電極材料など付加価値の高い活性炭として利用することが可能になる。   According to the porous charcoal of the present invention, a processing object mainly composed of a wood material is used as a raw material, and it has a large specific surface area, and further has a high external specific surface area ratio with respect to the total specific surface area. The size of the outer specific surface area greatly contributes to the improvement of the capacitance of the electric double layer capacitor, and can be suitably used for the electric double layer capacitor. Furthermore, since woody materials are used as starting materials, it is possible to use thinned wood that has been left in large quantities in the forest in recent years as activated carbon with high added value such as electrode materials for electric double layer capacitors.

また、本発明の多孔炭の製造方法によれば、木質系材料を原料として、過熱水蒸気を加熱熱源ならびに賦活剤として用いて多孔炭を製造することで、木質系材料を原料から大きな比表面積を有するとともに、さらには全比表面積に対して高い外比表面積の割合を有する多孔炭を効率的に製造することができる。   In addition, according to the method for producing porous coal of the present invention, a wood material is used as a raw material, and the porous coal is produced using superheated steam as a heating heat source and an activator. Furthermore, the porous charcoal which has a high ratio of an external specific surface area with respect to a total specific surface area can be manufactured efficiently.

以下、本発明を実施するための最良の形態について詳細に説明する。本発明の多孔炭の製造方法は、木質材料を主成分とした処理対象物を乾燥する乾燥炉と、乾燥炉で乾燥された処理対象物を400℃ないし950℃の過熱水蒸気雰囲気中で、炉内の攪拌兼フィード用回転パドルで攪拌兼フィードを行いつつ所定時間滞留させることにより炭化と賦活を連続して行う炭化炉とを有する多孔炭の製造装置を用いて、入口温度750℃ないし950℃の過熱水蒸気を前記炭化炉に導入し、前記回転パドルの回転数を毎分3回転ないし6回転、好ましくは4回転ないし5回転、周速度で0.035m/sないし0.07m/s、好ましくは0.05m/sないし0.06m/sで回転させ、原料供給速度を炭化炉内原料工程容積当たり0.2kg/h/リットルないし0.5kg/h/リットル、好ましくは0.15kg/h/リットルないし0.3kg/h/リットルとして炭化処理を行う。   Hereinafter, the best mode for carrying out the present invention will be described in detail. The method for producing porous coal of the present invention includes a drying furnace for drying a processing object mainly composed of a wood material, and a processing object dried in the drying furnace in a superheated steam atmosphere at 400 ° C. to 950 ° C. An inlet temperature of 750 ° C. to 950 ° C. using an apparatus for producing porous coal having a carbonizing furnace in which carbonization and activation are continuously performed by staying for a predetermined time while stirring and feeding with a rotating paddle for stirring and feeding inside Of superheated steam is introduced into the carbonization furnace, and the rotational speed of the rotary paddle is 3 to 6 revolutions per minute, preferably 4 to 5 revolutions, and the peripheral speed is 0.035 m / s to 0.07 m / s, preferably Is rotated at 0.05 m / s to 0.06 m / s, and the feed rate of the raw material is 0.2 kg / h / liter to 0.5 kg / h / liter, preferably 0.15 per raw material process volume in the carbonization furnace. It is no g / h / liter performing carbonization treatment as 0.3 kg / h / liter.

また、本発明の多孔炭は、上記の方法によって製造され、全比表面積が600m/g以上、好ましくは800m/g以上を有するとともに、外比表面積が全比表面積の30%以上75%以下、好ましくは35%以上75%以下、特に好ましくは45%以上75%以下を占める細孔分布構造を有する。 The porous coal of the present invention is produced by the above-described method, and has a total specific surface area of 600 m 2 / g or more, preferably 800 m 2 / g or more, and an outer specific surface area of 30% or more and 75% of the total specific surface area. Hereinafter, it has a pore distribution structure that preferably accounts for 35% to 75%, particularly preferably 45% to 75%.

なお、本発明における多孔炭の全比表面積、及び外比表面積は、窒素吸着測定装置を用いて以下の手法で測定した。全比表面積の算出に当たっては、Singにより提唱されたαプロット法を用いた。具体的には、低相対圧における窒素ガスの吸着量データからα値に対する窒素ガスの吸着量をプロットしたαプロットを作成した。なお、α値とは、式1に示すように、各相対圧での吸着量Wを吸着等温線上のP/P=0.4における吸着量(WP/P0=0.4)で割った値を示す。
α=W/WP/P0=0.4 ・・・(1)
そして、作成したαプロットに基づき、全比表面積Stotalは、αプロット中の原点を通る一本の右上がりの直線部分の傾きから求めた。また、外比表面積Sextはミクロ孔以外の比表面積であり、αプロット中の上部の勾配が小さい直線の傾きから算出した。そして、ミクロ孔比表面積Smicroは全比表面積Stotalから求めた。
In addition, the total specific surface area and the external specific surface area of the porous coal in this invention were measured with the following methods using the nitrogen adsorption measuring device. In calculating the total specific surface area, an α S plot method proposed by Sing was used. Specifically, an α S plot was created by plotting the nitrogen gas adsorption amount against the α S value from the nitrogen gas adsorption amount data at a low relative pressure. As shown in Equation 1, the α S value is the adsorption amount W at each relative pressure at an adsorption isotherm at P / P 0 = 0.4 (W P / P0 = 0.4 ). Indicates the divided value.
α S = W / W P / P0 = 0.4 (1)
Then, based on the created α S plot, the total specific surface area S total was determined from the slope of one straight line portion that passes through the origin in the α S plot. Further, the outer specific surface area S ext is a specific surface area other than micropores, and was calculated from the slope of a straight line having a small upper slope in the α S plot. And micropore specific surface area Smicro was calculated | required from total specific surface area Stotal .

また、本発明における多孔炭は、BET法により算出されたBET比表面積SBETを用いて表した場合600m/g以上の比表面積を有する。なお、BET比表面積については、多孔炭に対する窒素ガスの吸着量からBET式を用いて算出した。 The porous carbon in the present invention has a 600 meters 2 / g or more specific surface when expressed with a BET specific surface area S BET calculated by the BET method. In addition, about the BET specific surface area, it computed using the BET type | formula from the adsorption amount of the nitrogen gas with respect to porous coal.

続いて、上述のような多孔炭を製造するための多孔炭製造装置の全体構成を説明する。
図1は、本発明に実施の形態に係る多孔炭を製造する多孔炭製造用炭化装置の全体構成図である。また、図2は、多孔炭製造用炭化装置に用いる炭化炉を示す図である。図1に示すように、多孔炭製造用炭化装置10には、木材チップなどの原料を乾燥炉30に供給する処理対象物供給手段20と、炭化炉40が排出した水蒸気を導入して処理対象物を乾燥させて乾燥済みの処理対象物と使用済みの水蒸気とを排出する乾燥工程を行う乾燥炉30と、乾燥炉30にて乾燥させた処理対象物を供給し高温水蒸気発生装置60から過熱水蒸気を導入して処理対象物を炭化処理、賦活処理させて炭化済みの活性炭と使用済みの水蒸気とを排出する炭化・賦活処理を行う炭化炉40と、炭化炉40にて炭化した活性炭を冷却して貯蔵する排出装置50とを設けてある。
Then, the whole structure of the porous coal manufacturing apparatus for manufacturing the above porous coal is demonstrated.
FIG. 1 is an overall configuration diagram of a carbonizing apparatus for producing porous coal for producing porous coal according to an embodiment of the present invention. Moreover, FIG. 2 is a figure which shows the carbonization furnace used for the carbonization apparatus for porous coal manufacture. As shown in FIG. 1, the carbonization apparatus 10 for producing porous coal introduces the processing object supply means 20 for supplying raw materials such as wood chips to the drying furnace 30, and the steam to be processed by introducing the steam discharged from the carbonization furnace 40. A drying furnace 30 that performs a drying process of discharging the dried processing target and used steam, and supplying the processing target dried in the drying furnace 30 and superheating from the high-temperature steam generator 60. Carbonization furnace 40 for performing carbonization / activation process for discharging carbonized activated carbon and used water vapor by carbonizing and activating the object to be processed by introducing water vapor, and cooling the activated carbon carbonized in carbonization furnace 40 And a discharge device 50 for storage.

また、多孔炭製造用炭化装置10には、廃熱ボイラ80から水蒸気を導入して炭化炉40に供給する高温の過熱水蒸気を生成する高温水蒸気発生装置60と、乾燥炉30から排出された使用済みの水蒸気に含まれる不純物を加熱して脱臭燃焼させ高温の排気を排出する脱臭炉70と、脱臭炉70から排出される高温の排気を用いて水を加熱し高温水蒸気発生装置60に供給するための水蒸気を生成する廃熱ボイラ80と、廃熱ボイラ80に水を供給する水供給装置90と、脱臭炉70から排出された後に廃熱ボイラ80で熱交換を行なった後の排気に含まれる粉塵や水分を、サイクロン等を用いて集塵するとともに無臭化、無煙化する集塵装置96と、集塵した後の排気を大気に放出する排気筒98とを設けている。   Moreover, in the carbonization apparatus 10 for producing porous coal, a high-temperature steam generator 60 that generates high-temperature superheated steam supplied from the waste heat boiler 80 and supplied to the carbonization furnace 40, and a use discharged from the drying furnace 30 are used. Water is heated and supplied to the high-temperature steam generator 60 using the deodorization furnace 70 that heats impurities contained in the water vapor and deodorizes and burns it to discharge high-temperature exhaust, and the high-temperature exhaust gas discharged from the deodorization furnace 70. Included in waste heat boiler 80 for generating water vapor, water supply device 90 for supplying water to waste heat boiler 80, and exhaust after heat exchange in waste heat boiler 80 after being discharged from deodorizing furnace 70 A dust collector 96 that collects dust and moisture using a cyclone or the like and is non-brominated and smokeless, and an exhaust cylinder 98 that discharges the exhaust gas after dust collection to the atmosphere are provided.

処理対象物供給手段20には、木材チップなどの原料処理対象物を貯蔵するホッパ22と、ホッパ22に貯蔵してある処理対象物をフィーダ26に供給するコンベア24と、乾燥炉30に処理対象物を計量供給するフィーダ26とを設けている。   The processing object supply means 20 includes a hopper 22 that stores a raw material processing object such as wood chips, a conveyor 24 that supplies the processing object stored in the hopper 22 to a feeder 26, and a drying furnace 30. A feeder 26 is provided for weighing things.

乾燥炉30の円筒シェル31には、フィーダ26が計量した処理対象物を供給する処理対象物供給口32と、処理対象物を乾燥、乾留させつつ攪拌移動させる円筒部33と、円筒シェル31内で処理対象物を乾燥、乾留させつつ攪拌移動させるための1ないし複数の回転可能なプロペラフィーダ等の攪拌兼フィード用回転パドル34と、乾燥、乾留済みの処理対象物を排出する排出口35と、炭化炉40から排出された使用済みの水蒸気を円筒部33外側から攪拌兼フィード用回転パドル34の回転方向と同じ方向の円筒内面接線方向(タンジェンシャル方向)に導入する水蒸気導入口36と、円筒シェル31内で処理対象物を加熱した後の使用済み水蒸気を円筒部33内面から円筒部外側へ円筒部33内面の接線方向(タンジェンシャル方向)に排出する水蒸気排出口37を設けている。   The cylindrical shell 31 of the drying furnace 30 has a processing object supply port 32 for supplying the processing object weighed by the feeder 26, a cylindrical portion 33 for moving the processing object while stirring and dry distillation, and inside the cylindrical shell 31. A rotating paddle 34 for stirring and feeding, such as one or a plurality of rotatable propeller feeders, for moving the stirring object while drying and dry distillation, and a discharge port 35 for discharging the dried and dry distillation processing object. A steam inlet 36 for introducing the used steam discharged from the carbonization furnace 40 from the outside of the cylindrical portion 33 in the tangential direction (tangential direction) of the cylinder inner surface in the same direction as the rotation direction of the stirring and feeding rotary paddle 34; The tangential direction of the inner surface of the cylindrical portion 33 from the inner surface of the cylindrical portion 33 to the outer side of the cylindrical portion 33 (tangential direction) is used after heating the processing object in the cylindrical shell 31. It is provided steam outlet 37 for discharging the).

炭化炉40の円筒シェル41には、乾燥炉30の排出口35から排出されてきた乾燥済みの処理対象物を供給する処理対象物供給口42と、処理対象物を炭化、賦活させつつ攪拌移動させる円筒部43と、円筒シェル41内の低酸素状態で処理対象物を炭化、賦活させつつ攪拌移動させるための1ないし複数の回転可能なスクリュー型コンベア、プロペラフィーダ等の攪拌兼フィード用回転パドル44と、炭化、賦活済みの処理対象物を排出する排出口45と、高温水蒸気発生装置60から排出された700℃ないし920℃の過熱水蒸気を円筒部43外側から攪拌兼フィード用回転パドル44の回転方向と同じ方向の円筒内面接線方向(タンジェンシャル方向)に導入する水蒸気導入口46と、円筒シェル41内で処理対象物を加熱した後の使用済み水蒸気を円筒部43内面から円筒部外側へ円筒部43内面の接線方向(タンジェンシャル方向)に排出する水蒸気排出口47を設けている。   The cylindrical shell 41 of the carbonizing furnace 40 is stirred and moved while carbonizing and activating the processing target object supply port 42 for supplying the dried processing target object discharged from the discharge port 35 of the drying furnace 30. And a rotating paddle for stirring and feeding such as one or a plurality of rotatable screw conveyors and propeller feeders for carbonizing and activating the object to be treated in a low oxygen state in the cylindrical shell 41. 44, a discharge port 45 for discharging the carbonized and activated processing target, and 700 ° C. to 920 ° C. superheated steam discharged from the high temperature steam generator 60 from the outside of the cylindrical portion 43 of the rotating paddle 44 for stirring and feeding After heating the object to be treated in the water vapor inlet 46 to be introduced in the cylinder inner surface tangential direction (tangential direction) in the same direction as the rotation direction, and the cylindrical shell 41 And a steam discharge port 47 for discharging the spent steam in the tangential direction of the cylindrical portion 43 the inner surface of the cylindrical portion 43 the inner surface to the cylindrical portion outwardly (tangential direction) is provided.

なお、回転可能に構成された攪拌兼フィード用回転パドルの回転軸は円筒部43と平行となるように設けられている。炭化炉40の円筒シェル41は、木質材料を主成分とした処理対象物を過熱水蒸気に接触することによって炭化させる炭化部と、前記炭化部で炭化処理された処理対象物を連続して過熱水蒸気に接触することによって賦活処理を行う賦活部とに区分される。   The rotating shaft of the stirring and feeding rotary paddle configured to be rotatable is provided so as to be parallel to the cylindrical portion 43. The cylindrical shell 41 of the carbonization furnace 40 continuously superheats steam from a carbonization part that carbonizes a processing object mainly composed of a wood material by contacting the superheated steam and a processing object carbonized in the carbonization part. It is divided into the activation part which performs an activation process by contacting.

この際、図2に示すように、過熱水蒸気は炭化炉40に設けた1箇所の水蒸気導入口46から集中的に導入されるので、水蒸気導入口46から水蒸気排出口47へ向かって過熱水蒸気の温度は低下する。一方、処理対象物側から見た場合には、処理対象物供給口42から排出口45へ向かって撹拌移動されるが、接触する過熱水蒸気の温度は排出口45へ向かって上昇することとなる。   At this time, as shown in FIG. 2, superheated steam is intensively introduced from one steam inlet 46 provided in the carbonization furnace 40, so that the superheated steam flows from the steam inlet 46 toward the steam outlet 47. The temperature drops. On the other hand, when viewed from the processing object side, the agitation is moved from the processing object supply port 42 toward the discharge port 45, but the temperature of the superheated steam that comes in contact with the discharge port 45 rises. .

なお、処理対象物供給口42における過熱水蒸気の温度は、炭化処理を開始する際の炭化処理開始温度であり400℃ないし700℃が好ましく、500℃ないし650℃であることが特に好ましい。また、排出口45における過熱水蒸気の温度は賦活処理を終了する際の賦活処理終了温度であり800℃ないし920℃であることが好ましく、800℃ないし880℃であることが特に好ましい。また、炭化炉40に供給する過熱水蒸気又は使用済みの水蒸気の流速は、処理対象物への熱伝達を進める上で、5m/s以上の流速であることが望ましい。しかし、20m/s以上にすると炭化炉40の内部で使用している部品にエロージョン等の問題が発生するので、適切な流速の範囲が存在する。水蒸気導入口46には、水蒸気導入口の開口面積等を圧力調節機構又は絞りによって調節することで過熱水蒸気の流量を制御する流量制御弁を設けることが好ましい。   Note that the temperature of the superheated steam at the processing object supply port 42 is a carbonization start temperature at the start of carbonization, preferably 400 ° C. to 700 ° C., and particularly preferably 500 ° C. to 650 ° C. Further, the temperature of the superheated steam at the discharge port 45 is an activation treatment end temperature when the activation treatment is finished, and is preferably 800 ° C. to 920 ° C., and particularly preferably 800 ° C. to 880 ° C. Further, the flow rate of superheated steam or used steam supplied to the carbonization furnace 40 is preferably 5 m / s or more in order to promote heat transfer to the object to be processed. However, if the speed is set to 20 m / s or more, problems such as erosion occur in the parts used in the carbonization furnace 40, and therefore there is an appropriate flow velocity range. The steam inlet 46 is preferably provided with a flow rate control valve for controlling the flow rate of superheated steam by adjusting the opening area of the steam inlet or the like by a pressure adjusting mechanism or a throttle.

排出装置50には、炭化炉40にて炭化、賦活した高温の多孔炭を水で冷却する冷却ジャケット52と、出来上がった多孔炭を冷却しつつ製品タンク54に送る水冷ジャケット付のスクリューコンベア56とを設けてある。   The discharge device 50 includes a cooling jacket 52 that cools the high-temperature porous coal carbonized and activated in the carbonization furnace 40 with water, and a screw conveyor 56 with a water-cooling jacket that sends the finished porous coal to the product tank 54 while cooling it. Is provided.

高温水蒸気発生装置60は、廃熱ボイラ80から水蒸気を、LPG等をバーナで燃焼させている雰囲気中に導入して過熱水蒸気を生成する。高温水蒸気発生装置60にて生成した過熱水蒸気は、炭化炉40に供給し、処理対象物を乾留、炭化、賦活させて活性炭を生成する。   The high-temperature steam generator 60 introduces steam from the waste heat boiler 80 into an atmosphere in which LPG or the like is burned by a burner to generate superheated steam. The superheated steam generated by the high-temperature steam generator 60 is supplied to the carbonization furnace 40, and activated carbon is generated by subjecting the object to be treated to dry distillation, carbonization, and activation.

脱臭炉70は、炭化炉40から排出された使用済みの水蒸気を石油バーナ等の燃焼雰囲気中に供給して、使用済みの水蒸気に含まれる、アンモニア、メルカブタン、硫化水素、硫化メチル、二硫化メチル、トリメチルアミン、アセトアルデヒド、スチレン等の不純物を脱臭燃焼させ、高温の排気を排出する。   The deodorization furnace 70 supplies the used steam discharged from the carbonization furnace 40 into a combustion atmosphere such as a petroleum burner, and includes ammonia, mercaptan, hydrogen sulfide, methyl sulfide, methyl disulfide contained in the used steam. Deodorizing and burning impurities such as trimethylamine, acetaldehyde, styrene, etc., and exhausting high-temperature exhaust.

廃熱ボイラ80は、脱臭炉70から排出される高温の排気を用いて水を多段階に加熱して水蒸気(ドライスチーム)を生成し、高温水蒸気発生装置60に供給する。   The waste heat boiler 80 heats water in multiple stages using the high-temperature exhaust discharged from the deodorizing furnace 70 to generate water vapor (dry steam), and supplies the water vapor to the high-temperature water vapor generator 60.

集塵装置96は、脱臭炉70から排出された後に廃熱ボイラ80で熱交換を行なった後の排気に含まれる粉塵(固形物など)や水分を、サイクロン等を用いて集塵するとともに、無煙化する処理を行なう。また、排気筒98は、集塵した後のクリーンな排気を大気に放出する。   The dust collector 96 collects dust (solid matter, etc.) and moisture contained in the exhaust gas after being discharged from the deodorizing furnace 70 and then exchanging heat with the waste heat boiler 80 using a cyclone, Process to make smokeless. Further, the exhaust tube 98 discharges clean exhaust after dust collection to the atmosphere.

続いて、多孔炭製造用炭化装置10を用いた多孔炭の製造方法について説明する。
先ず脱臭炉ブロワー72を動作させて脱臭炉70に燃焼用の空気を供給する。次に灯油タンク74から灯油ポンプ76を用いて灯油を脱臭炉70に供給して燃焼を開始させる。脱臭炉70からは、800℃ないし1200℃の排気が排出され、この高温の排気は廃熱ボイラ80に供給する。
Then, the manufacturing method of the porous coal using the carbonization apparatus 10 for porous coal manufacture is demonstrated.
First, the deodorizing furnace blower 72 is operated to supply combustion air to the deodorizing furnace 70. Next, the kerosene is supplied from the kerosene tank 74 to the deodorizing furnace 70 using the kerosene pump 76 to start combustion. From the deodorizing furnace 70, exhaust at 800 ° C. to 1200 ° C. is discharged, and this high-temperature exhaust is supplied to the waste heat boiler 80.

廃熱ボイラ80の温度が上昇したら、水供給装置90の軟水器92を経由して軟水タンク94に貯蔵されている軟水を給水ポンプ95にて圧送して廃熱ボイラ80に供給する。廃熱ボイラ80の後段では、供給した軟水を高温に加熱する。そして、更に廃熱ボイラ80の前段に供給して150℃ないし300℃の過熱水蒸気(ドライスチーム)を生成して高温水蒸気発生装置60に供給する。   When the temperature of the waste heat boiler 80 rises, the soft water stored in the soft water tank 94 is fed by the feed water pump 95 via the water softener 92 of the water supply device 90 and supplied to the waste heat boiler 80. In the subsequent stage of the waste heat boiler 80, the supplied soft water is heated to a high temperature. Further, it is supplied to the front stage of the waste heat boiler 80 to generate superheated steam (dry steam) at 150 ° C. to 300 ° C. and supplied to the high temperature steam generator 60.

高温水蒸気発生装置60では、送風機62を動作させて燃焼用の空気を高温水蒸気発生装置60に供給する。次に、水蒸気を加熱するために、LPGボンベ64からガバナ66を介してLPGをバーナ68に供給して点火する。すると、廃熱ボイラ80から導入した150℃ないし300℃の水蒸気を更に加熱して750℃ないし950℃の過熱水蒸気、より好ましくは880℃ないし920℃の過熱水蒸気を生成し、炭化炉40に供給する。   In the high temperature steam generator 60, the blower 62 is operated to supply combustion air to the high temperature steam generator 60. Next, in order to heat the water vapor, LPG is supplied from the LPG cylinder 64 through the governor 66 to the burner 68 and ignited. Then, the steam of 150 ° C. to 300 ° C. introduced from the waste heat boiler 80 is further heated to generate superheated steam of 750 ° C. to 950 ° C., more preferably 880 ° C. to 920 ° C., and supplied to the carbonization furnace 40. To do.

一方、多孔炭のもとになる木質材料等の処理対象物は、予め処理対象物供給手段20のホッパ22に投入して貯蔵しておく。ホッパ22内に貯蔵された処理対象物は、処理対象物供給手段20に設けてあるコンベア24にてフィーダ26に供給する。フィーダ26は、所定の量の処理対象物を適宜乾燥炉30に計量供給する。   On the other hand, a processing object such as a wood material that becomes the basis of the porous coal is stored in advance in the hopper 22 of the processing object supply means 20. The processing object stored in the hopper 22 is supplied to the feeder 26 by the conveyor 24 provided in the processing object supply means 20. The feeder 26 measures and supplies a predetermined amount of the processing object to the drying furnace 30 as appropriate.

処理対象物は、乾燥炉30の円筒シェル31に設けられている処理対象物供給口32から円筒シェル31内部に供給される。円筒シェル31内部では攪拌兼フィード用回転パドル34が回転しているので、円筒シェル31内の円筒部33において処理対象物が攪拌されつつ排出口35の方向へ徐々に移動する。   The processing object is supplied into the cylindrical shell 31 from a processing object supply port 32 provided in the cylindrical shell 31 of the drying furnace 30. Since the rotating paddle 34 for stirring and feeding is rotating inside the cylindrical shell 31, the processing object is gradually moved in the direction of the discharge port 35 while being stirred in the cylindrical portion 33 in the cylindrical shell 31.

なお、水蒸気導入口36からは、炭化炉40から排出された使用済みの750℃ないし950℃の過熱水蒸気が、円筒部33外側から攪拌兼フィード用回転パドル34の回転方向と同じ方向の円筒内面接線方向(タンジェンシャル方向)に導入されて、強い渦を発生している。したがって過熱水蒸気は、攪拌兼フィード用回転パドル34にて攪拌移動されている処理対象物とよく混合しながら加熱分解又は加水分解等の反応を行なう。   Note that the used superheated steam at 750 ° C. to 950 ° C. discharged from the carbonization furnace 40 is introduced into the cylinder in the same direction as the rotation direction of the rotating paddle 34 for stirring and feeding from the outside of the cylindrical portion 33 through the steam introduction port 36. Introduced in the tangential direction (tangential direction), a strong vortex is generated. Accordingly, the superheated steam undergoes a reaction such as thermal decomposition or hydrolysis while being well mixed with the object to be processed which is being stirred and moved by the rotating paddle 34 for stirring and feeding.

過熱水蒸気によって処理対象物は、加熱、乾燥、乾留の反応を行いつつ円筒部33を水蒸気排出口37に向かって進み、使用済み過熱水蒸気は円筒部33内面から円筒部外側へ円筒部33内面の接線方向(タンジェンシャル方向)に排出される。ここでも円筒部33内面の接線方向に使用済みの過熱水蒸気が排出されるように水蒸気排出口37を設けているので、円筒部33内の過熱水蒸気の旋回流れを維持し処理対象物との相対流速を高く保ち、伝熱を促進する。   The object to be treated is heated, dried, and dry-distilled by the superheated steam, and proceeds through the cylindrical portion 33 toward the water vapor discharge port 37. The used superheated steam moves from the inner surface of the cylindrical portion 33 to the outer side of the cylindrical portion 33. It is discharged in the tangential direction (tangential direction). Also here, since the steam outlet 37 is provided so that the used superheated steam is discharged in the tangential direction of the inner surface of the cylindrical portion 33, the swirling flow of the superheated steam in the cylindrical portion 33 is maintained, and the relative to the processing object. Keep the flow rate high and promote heat transfer.

なお、過熱水蒸気は、円筒部33の外側から5m/sないし20m/sの流速にて攪拌兼フィード用回転パドル34の回転方向と同じ方向の円筒内面接線方向に導入して、強い水蒸気の渦を発生するようにしている。またこの過熱水蒸気は、円筒部33の製品の排出口35に近い側面から円周接線方向に5m/sないし20m/sの流速をもって吹き付け、処理対象物供給口32の入口近くに設けた水蒸気排出口37から、攪拌兼フィード用回転パドル34と同一の回転方向の円周接線方向に向かって排出する。この構造によって、水蒸気は旋回流を伴って被処理物質との大きな相対速度をある程度継続して持ちながら反応炉内を移動するために、処理対象物に対する熱の伝達が促進され、処理対象物の温度が水蒸気の温度に近づき、乾燥、乾留等の各種反応が促進される。   The superheated steam is introduced from the outside of the cylindrical portion 33 at a flow rate of 5 m / s to 20 m / s in the tangential direction of the inner surface of the cylinder in the same direction as the rotation direction of the rotating paddle 34 for stirring and feeding. A vortex is generated. Further, the superheated steam is sprayed from the side surface of the cylindrical portion 33 close to the product outlet 35 in the circumferential tangential direction at a flow rate of 5 m / s to 20 m / s, and the steam exhaust provided near the inlet of the processing object supply port 32. From the outlet 37, it discharges toward the circumferential tangential direction in the same rotational direction as the rotating paddle 34 for stirring and feeding. With this structure, water vapor moves in the reaction furnace with a swirling flow and has a relatively high relative velocity with the material to be treated to some extent, so that heat transfer to the object to be treated is promoted, The temperature approaches the temperature of water vapor, and various reactions such as drying and dry distillation are promoted.

なお、処理対象物供給口32あるいは水蒸気排出口37付近における使用済の過熱水蒸気は、250℃ないし600℃の温度を有していることが好ましく、300℃ないし500℃の温度を有していることが特に好ましい。この使用済みの水蒸気には、窒素化合物等の有害な物質や臭気を含まれており、脱臭炉70内において使用済みの水蒸気中に含まれた有害な物質を灯油等とともに燃焼させて800℃ないし1200℃の温度に加熱して、有害物質が分解される。   The used superheated steam in the vicinity of the processing object supply port 32 or the steam discharge port 37 preferably has a temperature of 250 ° C. to 600 ° C., and has a temperature of 300 ° C. to 500 ° C. It is particularly preferred. This used steam contains harmful substances such as nitrogen compounds and odors, and the harmful substances contained in the used steam in the deodorizing furnace 70 are burned together with kerosene, etc. Upon heating to a temperature of 1200 ° C., harmful substances are decomposed.

続いて、乾燥炉30にて乾燥させた処理対象物は排出口35から排出され、次の処理工程の炭化炉40に供給される。乾燥炉30から排出された処理対象物は、乾燥炉40の円筒シェル41に設けられている処理対象物供給口42から円筒シェル41内部に供給される。円筒シェル41内部では攪拌兼フィード用回転パドル44が回転しているので、円筒シェル41内の円筒部43において処理対象物が攪拌されつつ排出口45の方向へ徐々に移動する。   Subsequently, the processing object dried in the drying furnace 30 is discharged from the discharge port 35 and supplied to the carbonization furnace 40 of the next processing step. The processing object discharged from the drying furnace 30 is supplied into the cylindrical shell 41 from a processing object supply port 42 provided in the cylindrical shell 41 of the drying furnace 40. Since the rotating paddle 44 for stirring and feeding is rotating inside the cylindrical shell 41, the processing object is gradually moved toward the discharge port 45 while being stirred in the cylindrical portion 43 in the cylindrical shell 41.

水蒸気導入口46からは、高温水蒸気発生装置60から供給される過熱水蒸気が、円筒部43外側から攪拌兼フィード用回転パドル44の回転方向と同じ方向の円筒内面接線方向(タンジェンシャル方向)に導入されて、水蒸気の強い旋回流を発生するようにしている。したがって過熱水蒸気は、攪拌兼フィード用回転パドル44にて攪拌移動されている処理対象物とよく混合して反応し、処理対象物を炭化、賦活させつつ円筒部43を水蒸気排出口47に向かって進み、使用済み水蒸気は円筒部34内面から円筒部外側へ円筒部43内面の接線方向(タンジェンシャル方向)に排出される。ここでも円筒部43内面の接線方向に使用済みの水蒸気が排出されるように水蒸気排出口47を設けているので、処理対象物とよく混合しながら加熱分解又は加水分解等の反応が促進される。   Superheated steam supplied from the high-temperature steam generator 60 from the steam inlet 46 is tangential to the cylinder inner surface (tangential direction) in the same direction as the rotation direction of the rotating paddle 44 for stirring and feeding from the outside of the cylindrical portion 43. Introduced to generate a strong swirl flow of water vapor. Accordingly, the superheated steam is well mixed with and reacted with the processing object being stirred and moved by the rotating paddle 44 for stirring and feeding, and the cylindrical portion 43 is directed toward the water vapor outlet 47 while carbonizing and activating the processing object. The used steam is discharged from the inner surface of the cylindrical portion 34 to the outer side of the cylindrical portion 34 in the tangential direction (tangential direction) of the inner surface of the cylindrical portion 43. Again, since the water vapor outlet 47 is provided so that the used water vapor is discharged in the tangential direction of the inner surface of the cylindrical portion 43, a reaction such as thermal decomposition or hydrolysis is promoted while being well mixed with the object to be treated. .

続いて、炭化炉40にて炭化、賦活させた結果生成した多孔炭は排出口45から排出され、排出装置50に供給される。炭化炉40から排出された高温の多孔炭を酸素雰囲気中に置くと再燃焼してしまう場合があるので、排出装置50に設けた冷却ジャケット52にて冷却する。更に水冷ジャケット付のスクリューコンベア56によって多孔炭を冷却しつつ製品タンク54に送り貯蔵する。   Subsequently, the porous coal generated as a result of carbonization and activation in the carbonization furnace 40 is discharged from the discharge port 45 and supplied to the discharge device 50. If the high-temperature porous coal discharged from the carbonization furnace 40 is placed in an oxygen atmosphere, it may be recombusted, and therefore it is cooled by the cooling jacket 52 provided in the discharge device 50. Further, the porous charcoal is cooled and stored in the product tank 54 by a screw conveyor 56 with a water cooling jacket.

上記実施の形態では、乾燥炉30(第1の反応炉)と炭化炉40(第2の反応炉)との2種類の反応炉を用いて、有機系の処理対象物を乾燥、乾留、賦活等の炭化処理を行なう多孔炭製造用炭化装置について説明したが、本発明は2種類の反応炉を用いて炭化処理を行なう例に限定されるものではない。   In the above embodiment, the organic processing object is dried, dry-distilled and activated using two types of reaction furnaces, ie, the drying furnace 30 (first reaction furnace) and the carbonization furnace 40 (second reaction furnace). The carbonization apparatus for producing porous coal that performs carbonization such as the above has been described, but the present invention is not limited to an example in which carbonization is performed using two types of reactors.

例えば、処理対象物の種類や処理量に応じて、脱臭炉70から排出される高温の排気から熱回収を行なった過熱水蒸気を用いて高温の過熱水蒸気を生成し、この高温の過熱水蒸気を乾燥炭化炉(第1の反応炉)に導入して処理対象物を乾燥させるとともに炭化し、使用済みの水蒸気を排出する処理を行なっても本発明の目的を達成することが可能である。   For example, high-temperature superheated steam is generated using superheated steam that has been heat-recovered from the high-temperature exhaust discharged from the deodorizing furnace 70 in accordance with the type and amount of processing object, and the high-temperature superheated steam is dried. Even if it introduce | transduces into a carbonization furnace (1st reaction furnace), a process target object is dried and carbonized, and the process which discharges used water vapor | steam is performed, it is possible to achieve the objective of this invention.

以下、実施例と比較例を用いて本発明について具体的に説明する。(実施例1と2)及び(比較例1から3)において、異なる運転条件で得られた多孔炭の比表面積に関するデータを表1に示している。ここで、実施例1は、4個のサンプルを有し、実施例2は、5個のサンプルを有する。なお、比較例3は、11個のサンプルを有する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In (Examples 1 and 2) and (Comparative Examples 1 to 3), data relating to the specific surface area of the porous coal obtained under different operating conditions is shown in Table 1. Here, Example 1 has four samples, and Example 2 has five samples. In addition, the comparative example 3 has 11 samples.

Figure 2008201651
Figure 2008201651

(実施例1)
・多孔炭の製造
処理可能な大きさに加工された檜間伐材チップを予め処理対象物供給手段20のホッパ22に投入して貯蔵しておく。ホッパ22内に貯蔵された処理対象物は、処理対象物供給手段20に設けてあるコンベア24にてフィーダ26に供給する。乾燥炉30に供給された処理対象物は、円筒シェル31内部で攪拌羽根34により処理対象物が攪拌されつつ排出口35の方向へ徐々に移動し乾燥される。続いて、乾燥炉30にて乾燥させた処理対象物は排出口35から排出され、次の処理工程の炭化炉40に供給され、炭化、賦活が行われる。そして、炭化炉40の内部には、水蒸気導入口36より832℃の過熱水蒸気を導入し、攪拌兼フィード用パドル34の回転数を4.7rpmに設定するとともに原料の供給量を炭化炉40の処理対象物供給口42から排出口45までの工程容積当りの供給速度を0.238kg/h/リットルとして、炭化および賦活等の反応を行なった。炭化炉40にて炭化、賦活させた結果生成した多孔炭は排出口45から排出され、得られた多孔炭について比表面積、細孔構造評価、電気二重層キャパシタ容量を測定した。その結果、全比表面積に対する外比表面積の割合Sext/Stotalは、0.45ないし0.55の範囲に分布した。
(Example 1)
-Manufacture of porous charcoal The thinned wood chip processed into the processable magnitude | size is thrown into the hopper 22 of the process target supply means 20 previously, and is stored. The processing object stored in the hopper 22 is supplied to the feeder 26 by the conveyor 24 provided in the processing object supply means 20. The processing object supplied to the drying furnace 30 is gradually moved in the direction of the discharge port 35 and dried while the processing object is stirred by the stirring blade 34 inside the cylindrical shell 31. Subsequently, the processing object dried in the drying furnace 30 is discharged from the discharge port 35 and supplied to the carbonization furnace 40 of the next processing step, and carbonization and activation are performed. Then, superheated steam at 832 ° C. is introduced into the carbonization furnace 40 from the steam introduction port 36, the rotational speed of the stirring and feeding paddle 34 is set to 4.7 rpm, and the supply amount of the raw material is set in the carbonization furnace 40. Reactions such as carbonization and activation were performed at a supply rate per process volume from the processing object supply port 42 to the discharge port 45 of 0.238 kg / h / liter. The porous coal produced as a result of carbonization and activation in the carbonization furnace 40 was discharged from the discharge port 45, and the specific surface area, pore structure evaluation, and electric double layer capacitor capacity were measured for the obtained porous coal. As a result, the ratio S ext / S total of the outer specific surface area to the total specific surface area was distributed in the range of 0.45 to 0.55.

(実施例2)
次に、実施例1と同じ原料から採取した間伐材チップについて、回転パドルや原料供給速度を変えずに、水蒸気導入口36の過熱蒸気入口温度を849℃に上げて運転した。これによって得られた多孔炭の全比表面積に対する外比表面積の割合Sext/Stotalは、0.40ないし0.48の範囲にあった。即ち、実施例1においても実施例2においても、回転パドルの回転数4.7rpmに抑え、原料の工程容積当り供給速度を0.238kg/h/リットルに設定したことによって、全比表面積を約900m/g程度以上を維持しながらも、外比表面積の割合Sext/Stotalが0.40ないし0.55という非常に高い細孔分布の多孔炭が得られることが判明した。
(Example 2)
Next, the thinned wood chips collected from the same raw material as in Example 1 were operated by raising the superheated steam inlet temperature of the water vapor inlet 36 to 849 ° C. without changing the rotating paddle or the raw material supply speed. The ratio of the outer specific surface area to the total specific surface area of the porous coal thus obtained, Sext / Stotal, was in the range of 0.40 to 0.48. That is, in both Example 1 and Example 2, the rotational speed of the rotating paddle was suppressed to 4.7 rpm, and the feed rate per raw material process volume was set to 0.238 kg / h / liter, so that the total specific surface area was reduced to about It has been found that a porous charcoal having a very high pore distribution with an outer specific surface area ratio Sext / Stotal of 0.40 to 0.55 can be obtained while maintaining about 900 m 2 / g or more.

次に、実施例と同じ装置を用いて、運転条件を変えて炭化処理を行った場合の例を比較例として示す。
比較例1、比較例2a,2b,2cおよび比較例3a,3b,3c,3d,3e,3f,3gは、合計11個のサンプルがあり、これらのサンプルは、原料の供給速度を実施例の2倍即ち、0.476kg/h/リットルとして運転したものであるが、概ね外比表面積が低下して0.3以下のものが多い。さらに詳しく分析すると、回転パドルの回転数を19rpmおよび9.4rpmでも4サンプルのうち2サンプルでSext/Stotal の割合が0.3を割る。そして、回転数をさらに下げて実施例と同じ4.7rpmとしても多くが0.3を割る。それに反して、実施例では、回転パドルの回転数と原料の供給速度が適正化され前述の結果を生んでいる。ちなみに、このときの回転パドルの周速は約0.06m/sであった。
Next, an example in which carbonization treatment is performed by changing the operating conditions using the same apparatus as in the example will be shown as a comparative example.
Comparative Example 1, Comparative Examples 2a, 2b, 2c and Comparative Examples 3a, 3b, 3c, 3d, 3e, 3f, 3g have a total of 11 samples. The operation was performed at twice, that is, 0.476 kg / h / liter, but the outer specific surface area generally decreased and many of them were 0.3 or less. More specifically, even if the rotational speed of the rotating paddle is 19 rpm and 9.4 rpm, the ratio of Sext / Stotal is divided by 0.3 in 2 samples out of 4 samples. And even if the number of revolutions is further reduced to 4.7 rpm, which is the same as in the embodiment, most of them divide 0.3. On the other hand, in the embodiment, the rotational speed of the rotary paddle and the feed rate of the raw material are optimized to produce the above-mentioned result. Incidentally, the peripheral speed of the rotating paddle at this time was about 0.06 m / s.

・比表面積の測定
各実施例、比較例において製造された多孔炭をメノウ乳鉢中で粉砕して多孔炭粉末を得て、得られた多孔炭粉末を窒素気流中で900℃に1時間加熱処理する。その後、ガス吸着測定用シリンダー中で真空中300℃で数時間乾燥を行って、多孔炭粉末を秤量した。なお、真空中での飛散を防ぐため多孔炭粉末はアルミ箔容器の中に入れた。そして、77Kにおいて高純度窒素ガスの吸着曲線を測定した。そして、得られた窒素ガスの吸着曲線の窒素ガス相対圧P/P<0.3における窒素ガスの吸着量からBET比表面積SBETを多点法により測定した。
Measurement of specific surface area Porous charcoal produced in each example and comparative example was pulverized in an agate mortar to obtain porous charcoal powder, and the obtained porous charcoal powder was heat-treated at 900 ° C. for 1 hour in a nitrogen stream. To do. Thereafter, the porous carbon powder was weighed by drying in a vacuum for gas adsorption measurement at 300 ° C. for several hours. In order to prevent scattering in vacuum, the porous charcoal powder was placed in an aluminum foil container. And the adsorption curve of high purity nitrogen gas was measured at 77K. And BET specific surface area S BET was measured by the multipoint method from the nitrogen gas adsorption amount in the nitrogen gas relative pressure P / P 0 <0.3 in the obtained nitrogen gas adsorption curve.

・細孔構造評価
ミクロポアの比表面積はSingにより提唱されたαプロット法により算出した。低相対圧における窒素ガスの吸着量データからαプロットを作成し、作成したαsプロットに基づき、全比表面積Stotal、外比表面積Sext,ミクロ孔比表面積Smicroを求めた。
-Pore structure evaluation The specific surface area of the micropore was calculated by the α S plot method proposed by Sing. An α S plot was created from the adsorption amount data of nitrogen gas at a low relative pressure, and a total specific surface area S total , an external specific surface area S ext , and a micropore specific surface area S micro were determined based on the created αs plot.

表1に示すように、本発明の多孔炭製造方法で製造された多孔炭は、比較例より大きな比表面積を有するとともに、さらには全比表面積に対して高い外比表面積の割合を有する。   As shown in Table 1, the porous coal produced by the method for producing porous coal of the present invention has a specific surface area larger than that of the comparative example, and further has a high ratio of external specific surface area to the total specific surface area.

本発明の実施の形態に係る多孔炭を製造するための多孔炭製造用炭化装置の全体構成図である。It is a whole block diagram of the carbonization apparatus for porous coal manufacture for manufacturing the porous coal which concerns on embodiment of this invention. 多孔炭製造用炭化装置の炭化炉を示す図である。It is a figure which shows the carbonization furnace of the carbonization apparatus for porous coal manufacture.

符号の説明Explanation of symbols

10 多孔炭製造用炭化装置
20 処理対象物供給手段
22 ホッパ
24 コンベア
26 フィーダ
30 乾燥炉
31 円筒シェル
32 処理対象物供給口
33 円筒部
34 攪拌兼フィード用回転パドル
35 排出口
36 水蒸気導入口
37 水蒸気排出口
40 炭化炉
41 円筒シェル
42 処理対象物供給口
43 円筒部
44 攪拌兼フィード用回転パドル
45 排出口
46、46A、46B、46C…水蒸気導入口
47 水蒸気排出口
50 排出装置
52 冷却ジャケット
54 製品タンク
56 スクリューコンベア
60 高温水蒸気発生装置
62 送風機
64 LPGボンベ
66 ガバナ
68 バーナ
70 脱臭炉
72 脱臭炉ブロワー
74 灯油タンク
76 灯油ポンプ
80 廃熱ボイラ
90 水供給装置
92 軟水器
94 軟水タンク
95 給水ポンプ
96 集塵装置
98 排気筒
DESCRIPTION OF SYMBOLS 10 Carbonization apparatus for porous coal production 20 Process target supply means 22 Hopper 24 Conveyor 26 Feeder 30 Drying furnace 31 Cylindrical shell 32 Process target supply port 33 Cylindrical part 34 Rotating paddle 35 for agitation / feed 35 Discharge port 36 Steam inlet 37 Steam Discharge port 40 Carbonization furnace 41 Cylindrical shell 42 Processing object supply port 43 Cylindrical portion 44 Rotating paddle 45 for stirring and feeding 45 Discharge port 46, 46A, 46B, 46C ... Steam inlet 47 Steam outlet 50 Discharger 52 Cooling jacket 54 Product Tank 56 Screw conveyor 60 High temperature steam generator 62 Blower 64 LPG cylinder 66 Governor 68 Burner 70 Deodorizing furnace 72 Deodorizing furnace blower 74 Kerosene tank 76 Kerosene pump 80 Waste heat boiler 90 Water supply device 92 Softener 94 Soft water tank 95 Feed water pump 6 dust collector 98 exhaust tube

Claims (2)

木質材料を主成分とした処理対象物を乾燥する乾燥炉と、乾燥炉で乾燥された処理対象物を400℃ないし950℃の過熱水蒸気雰囲気中で、炉内の攪拌兼フィード用回転パドルで攪拌兼フィードを行いつつ所定時間滞留させることにより炭化と賦活を連続して行う炭化炉とを有する多孔炭製造装置を用いて、入口温度750℃ないし950℃の過熱水蒸気を前記炭化炉に導入し、前記回転パドルの回転数を毎分3回転ないし6回転、周速度で0.035m/sないし0.07m/sで回転させ、原料供給速度を炭化炉内原料工程容積当たり0.2kg/h/リットルないし0.5kg/h/リットルとして炭化処理を行うことを特徴とする多孔炭の製造方法。   A drying furnace for drying a processing object mainly composed of a wood material, and a processing object dried in the drying furnace in a superheated steam atmosphere at 400 ° C. to 950 ° C. with a rotating paddle for stirring and feeding in the furnace Using a porous coal production apparatus having a carbonization furnace that continuously performs carbonization and activation by retaining for a predetermined time while performing a cum feed, superheated steam having an inlet temperature of 750 ° C. to 950 ° C. is introduced into the carbonization furnace, The rotational speed of the rotary paddle is 3 to 6 revolutions per minute, the peripheral speed is 0.035 m / s to 0.07 m / s, and the feed rate is 0.2 kg / h / per raw material process volume in the carbonization furnace. A method for producing porous charcoal, characterized in that carbonization is performed at 1 to 0.5 kg / h / liter. 請求項1の方法によって製造され、全比表面積が600m/g以上を有するとともに、外比表面積が全比表面積の30%以上75%以下を占める細孔分布構造を有することを特徴とする多孔炭。 A porous material produced by the method of claim 1, having a total specific surface area of 600 m 2 / g or more and an outer specific surface area having a pore distribution structure occupying 30% to 75% of the total specific surface area. Charcoal.
JP2007042877A 2007-02-22 2007-02-22 Porous charcoal and its production method Pending JP2008201651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042877A JP2008201651A (en) 2007-02-22 2007-02-22 Porous charcoal and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042877A JP2008201651A (en) 2007-02-22 2007-02-22 Porous charcoal and its production method

Publications (1)

Publication Number Publication Date
JP2008201651A true JP2008201651A (en) 2008-09-04

Family

ID=39779540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042877A Pending JP2008201651A (en) 2007-02-22 2007-02-22 Porous charcoal and its production method

Country Status (1)

Country Link
JP (1) JP2008201651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394954A1 (en) 2010-06-08 2011-12-14 Honda Motor Co., Ltd. Carbon manufacturing method
CN105905894A (en) * 2016-01-28 2016-08-31 赵英杰 Carbonization and activation device for active coke production
CN109323271A (en) * 2018-12-04 2019-02-12 深圳市中粤华远科技有限公司 Porous type water cooling self-adapting seal discharging device and its discharging method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394954A1 (en) 2010-06-08 2011-12-14 Honda Motor Co., Ltd. Carbon manufacturing method
US8192712B2 (en) 2010-06-08 2012-06-05 Honda Motor Co., Ltd. Carbon manufacturing method
CN105905894A (en) * 2016-01-28 2016-08-31 赵英杰 Carbonization and activation device for active coke production
CN109323271A (en) * 2018-12-04 2019-02-12 深圳市中粤华远科技有限公司 Porous type water cooling self-adapting seal discharging device and its discharging method

Similar Documents

Publication Publication Date Title
JP2009179485A (en) Activated carbon, method for producing the same, and production apparatus
JPWO2005063923A1 (en) Carbonization equipment for activated carbon production
WO2010035430A1 (en) Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
CN106336879A (en) Biomass pyrolysis-reforming hydrogen production method
JP2015509993A (en) Fixed bed gasification method and apparatus
JP6677863B1 (en) Method for producing porous carbon, electrode and catalyst carrier containing porous carbon produced by this method
Liu et al. Improvement of activated carbon from Jixi bituminous coal by air preoxidation
Li et al. Production of hydrogen-rich syngas from absorption-enhanced steam gasification of biomass with conch shell-based absorbents
JP2008201651A (en) Porous charcoal and its production method
Yeletsky et al. Conversion of natural feedstocks to porous carbons via carbonization in fluidized catalyst bed followed by leaching the feedstock mineral template phase: A comparison of biomass and sedimentary raw materials
Deng et al. Study on the thermal conversion characteristics of demineralized coal char under pressurized O2/H2O atmosphere
JP2009034662A (en) Fluorine fixing agent, perfluorocarbon decomposition processing agent, and method for preparing the same
Wang et al. Activated carbon preparation from cassava residue using a two-step KOH activation: preparation, micropore structure and adsorption capacity
Yakovlev et al. Preparation and investigation of nanostructured carbonaceous composites from the high-ash biomass
CN108913223A (en) The device and method of tar purifying in a kind of thick combustion gas of gasification of biomass
WO2013094749A1 (en) Biomass carbonization method and biomass carbonization device
Deng et al. Thermochemical method for controlling pore structure to enhance hydrogen storage capacity of biochar
EP3498665B1 (en) Method for the production of synthesis gas
Nikitin et al. Agricultural waste derived silicon carbide composite nanopowders as efficient coelectrocatalysts for water splitting
CN109939706A (en) The manufacturing method of catalyst and its manufacturing method and artificial fuel gas
JP2004182568A (en) Porous material
Tokpayev et al. New supports for carbon-metal catalytic systems based on shungite and carbonizates of plant raw materials
JP6672884B2 (en) Method for producing anhydrous gypsum
JP6634875B2 (en) Waste gypsum reforming apparatus and operating method thereof
Taer et al. Suitable Micro/Mesoporous Carbon Derived from Galangal Leaves (Alpinia galanga L.) Biomass for Enhancing Symmetric Electrochemical Double‐layer Capacitor Performances