JP2007286023A - Radioactive iodine in vapor phase and adsorbent of radioactive iodine compound - Google Patents

Radioactive iodine in vapor phase and adsorbent of radioactive iodine compound Download PDF

Info

Publication number
JP2007286023A
JP2007286023A JP2006137030A JP2006137030A JP2007286023A JP 2007286023 A JP2007286023 A JP 2007286023A JP 2006137030 A JP2006137030 A JP 2006137030A JP 2006137030 A JP2006137030 A JP 2006137030A JP 2007286023 A JP2007286023 A JP 2007286023A
Authority
JP
Japan
Prior art keywords
radioactive iodine
carbonization
adsorbent
temperature
charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006137030A
Other languages
Japanese (ja)
Other versions
JP4457193B2 (en
Inventor
Masakazu Tsujioka
正和 辻岡
Yoshihisa Onuki
喜久 大貫
Shigehisa Ishihara
茂久 石原
Kenji Yamane
健司 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKASA SHINRIN KUMIAI
Original Assignee
WAKASA SHINRIN KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKASA SHINRIN KUMIAI filed Critical WAKASA SHINRIN KUMIAI
Priority to JP2006137030A priority Critical patent/JP4457193B2/en
Publication of JP2007286023A publication Critical patent/JP2007286023A/en
Application granted granted Critical
Publication of JP4457193B2 publication Critical patent/JP4457193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide radioactive iodine manufactured economically with a woody material existing nearby richly as a material, and to provide the adsorbent of a radioactive iodine compound. <P>SOLUTION: A carbide is obtained by forming a number of minute carbon bodies that are components of the carbide by thermal decomposition, depolymerization/polycondensation, aromatization, crosslinking, or the like in an organic matter occurring inside a material at a carbonization temperature of 500-800°C or preferably 600°C in heat treatment through a process of moisture evaporation - thermal decomposition/charcolization - stabilization of a woody material. The obtained carbide is used as radioactive iodine in a vapor phase and the adsorption/capturing material of the compound of the radioactive iodine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原子力発電所、研究所、病院などで核燃料を使用する設備の排気もしくは換気系などの気相中に含まれる放射性よう素および放射性よう素化合物を捕集するために用いる吸着材に関するものである。  The present invention relates to an adsorbent used for collecting radioactive iodine and radioactive iodine compounds contained in a gas phase such as exhaust or ventilation system of facilities using nuclear fuel in nuclear power plants, laboratories, hospitals, etc. Is.

従来から、万一の事故に備えて、原子力発電所などでは気体廃棄物処理設備が設置されており、この設備には人体に危険なクリプトンなどの希ガス、およびよう素などのような放射性気体の除去用として添着ヤシガラ活性炭を充填した非常用フイルタが用いられている(例えば特許文献1参照)。
特公昭46−3522号公報
Conventionally, in preparation for an accident, a nuclear waste power plant has been equipped with a gas waste treatment facility. This facility has a noble gas such as krypton, which is dangerous to the human body, and a radioactive gas such as iodine. An emergency filter filled with impregnated coconut husk activated carbon is used for the removal of water (see, for example, Patent Document 1).
Japanese Examined Patent Publication No. 46-3522

従来、添着活性炭は、400℃程度で低温炭化されたヤシガラ炭をさらに800℃から900℃の高温度中で水蒸気賦活処理後、よう化カリウムまたはよう化第一すずあるいはテトラエチレンジアミンなどの添着剤の溶液に浸漬後、乾燥させて製造されるという手間の掛かる製造工程を経たものであるため、経費が掛かり、大変高価なものとなっていた。  Conventionally, impregnated activated carbon has been obtained by adding coconut husk charcoal carbonized at a low temperature of about 400 ° C. to a steam activation treatment at a high temperature of 800 ° C. to 900 ° C., and then adding an additive such as potassium iodide or stannous iodide or tetraethylenediamine. Since it is a time-consuming manufacturing process of manufacturing after being dipped in the solution, it is expensive and very expensive.

また、近年、原料であるヤシガラ炭は海外からの輸入であるため、将来に渡り安定した供給と、また、これまでのような低価格で入手できるということの保証は無く多少の不安が残る状況となってきている。  In recent years, coconut husk charcoal, which is a raw material, has been imported from overseas, so there is no guarantee that it will be available in a stable supply in the future and that it will be available at a low price as in the past. It has become.

本発明は、かかる事情に鑑みなされたもので、その目的とするところは、身近にあってしかも安価に得られる豊富な木質系材料を吸着材の素材として用いようとすることであり、さらには手間の掛からない簡単な製造方法で生産できる放射性よう素およびその化合物の吸着材を提供することにある。  The present invention has been made in view of such circumstances, and its purpose is to use an abundant wood-based material that is available at a low cost as a material for the adsorbent, and further, An object of the present invention is to provide an adsorbent for radioactive iodine and its compounds that can be produced by a simple manufacturing method that does not require time and effort.

上記目的を達成するために、本発明者らは、豊富に得られる身近な木質系材料として、国内各地の山間部に放置されているスギ間伐材や、里山で繁茂し利用先を求められている竹材に着目したものである。そして、これらの木質系材料の木炭および竹炭(以下これらを炭化物という)は、炭化温度によって固有の性質・特性を大きく変化させることは公知のことであり、既に、本発明者らは溶液中におけるよう素吸着量に対しては炭化温度:500℃〜800℃のヒノキ木炭が最大値を示すとの結論を実験的に得ていることから(加藤、山根、石原:第5回廃棄物学会研究発表会講演論文集、p.182(1994))、気相中の放射性よう素および放射性よう素化合物に対してもこの範囲における特定の炭化温度で優れた吸着性能を示すはずであるとの推測で、鋭意試験研究を行なった結果、その事実を確認したことにより本発明の完成に至ったものである。  In order to achieve the above-mentioned object, the present inventors have been asked to use cedar thinned wood left in the mountainous areas of various parts of the country as a familiar wood-based material that is abundantly obtained, The focus is on the bamboo material. And it is well known that charcoal and bamboo charcoal (hereinafter referred to as carbides) of these woody materials greatly change their inherent properties and characteristics depending on the carbonization temperature. We have experimentally obtained a conclusion that cypress charcoal at 500 ° C to 800 ° C shows the maximum value for iodine adsorption (Kato, Yamane, Ishihara: 5th Solid Waste Management Society study) Proceedings of the Lecture Meeting, p. 182 (1994)), speculation that radioactive iodine and radioactive iodine compounds in the gas phase should also exhibit excellent adsorption performance at specific carbonization temperatures in this range. As a result of intensive studies and research, the fact was confirmed and the present invention was completed.

すなわち、スギ材および竹材の木質系材料を500℃〜800℃の炭化温度で炭化して得られた炭化物が気相中の放射性よう素化合物に対して最も優れた吸着性能を示したころから、この炭化温度の範囲で得られた炭化物を気相中の放射性よう素および放射性よう素化合物の吸着・捕集材として用いることを特定事項とするものである。  That is, from the time when the carbide obtained by carbonizing the wood-based material of cedar and bamboo at a carbonization temperature of 500 ° C. to 800 ° C. showed the most excellent adsorption performance for the radioactive iodine compound in the gas phase, It is a specific matter that the carbide obtained in this carbonization temperature range is used as a material for adsorbing and collecting radioactive iodine and radioactive iodine compounds in the gas phase.

一般的に、スギ材、竹材などの木質系材料は、不活性もしくは低酸素濃度の雰囲気で加熱されると、水分蒸発―熱分解・炭化―炭素化という過程を経て炭化物になるが、200℃を超えたあたりから材料自身を構成する多糖類のセルロースやヘミセルロースと芳香族重合化合物のリグニンなどの有機物の熱分解が徐々に起こり始めて、300℃〜400℃程度までに急激な質量減少を起こす。その後の800℃程度までは緩やかな質量減少となり、1000℃近くまで極僅かながら減少するという変化を辿る。この変化の過程では、炭化物中の固定炭素の含有率は次第に高くなり、加熱温度(炭化温度という)に対する固定炭素の含有率を示す線図において、400℃を過ぎたあたりの500℃〜800℃の範囲で変曲点を示すようになる。  In general, wood-based materials such as cedar and bamboo will become carbides when heated in an inert or low oxygen atmosphere through a process of moisture evaporation-pyrolysis-carbonization-carbonization, but at 200 ° C The thermal decomposition of organic substances such as cellulose, hemicellulose, and lignin, which is an aromatic polymer compound, which gradually constitutes the material itself, starts to occur gradually from around 300 ° C to 400 ° C. After that, the mass decreases gradually to about 800 ° C., and changes to a slight decrease to near 1000 ° C. In the course of this change, the content of fixed carbon in the carbide gradually increases, and in the diagram showing the content of fixed carbon relative to the heating temperature (referred to as carbonization temperature), 500 ° C. to 800 ° C. around 400 ° C. An inflection point is shown in the range of.

すなわち、上記500℃〜800℃の温度域の木炭化の過程では、生じた熱分解物の主鎖の切断および解重合や縮重合によって芳香族化が起こり、さらには架橋反応によって多環芳香族化合物の扁平は微小炭素体が形成されるなどの活発な化学反応や物理的変化が起こっている。そのため、炭化温度:500℃〜800℃の炭化物の表面や内部は非常に活性な状態にあって、官能基および吸着に適した細孔などが多数存在すると推測され、気相中の放射性よう素およびその化合物は容易に化学的もしくは物理的に吸着・捕集されることになる。  That is, in the process of wood carbonization in the temperature range of 500 ° C. to 800 ° C., the main chain of the thermal decomposition product generated is aromatized by cleavage and depolymerization or polycondensation. Active chemical reactions and physical changes such as the formation of microcarbon bodies occur in the flattening of compounds. For this reason, it is speculated that the surface and the inside of a carbide having a carbonization temperature of 500 ° C. to 800 ° C. are in a very active state, and there are many functional groups and pores suitable for adsorption. And its compounds are easily adsorbed and collected chemically or physically.

また、このときの炭化物内部の炭素構造は、前記微小炭素体が数層に重なり合って数Åの大きさになったもの(これを結晶子という)の集合体であって、とくに上記温度範囲ではこの集合体の構成の状態は微妙に変化して炭化物の性質・特性に強く影響を及ぼす結果となることから、目的とする性質・機能を有する炭化物を製造するためには、これらの木質系材料を加熱する炭化温度や炭化時間および雰囲気を正確に制御できるようにする。  Further, the carbon structure inside the carbide at this time is an aggregate of the micro carbon bodies that overlaps several layers and has a size of several millimeters (this is called a crystallite), particularly in the above temperature range. The state of the composition of this aggregate changes slightly, resulting in a strong influence on the properties and characteristics of carbides. To produce carbides with the desired properties and functions, these wood-based materials are used. It is possible to accurately control the carbonization temperature, carbonization time, and atmosphere of heating.

すなわち、これらの炭化物は、前述した材料内部における化学的・物理的変化が確実に進行するよう加熱処理されることであって、そのためには材料が上記水分蒸発―熱分解・木炭化―安定化(ここでは炭素化を炭素構造の安定化とし安定化という)の過程を経るようプログラム管理された製造方法とすることである。  In other words, these carbides are heat-treated to ensure that the chemical and physical changes inside the material described above proceed, and for that purpose, the material is subjected to the above-mentioned water evaporation-pyrolysis, wood carbonization-stabilization. In this case, the production method is controlled by a program so as to go through the process of carbonization (herein, carbonization is called stabilization of carbon structure).

以上、説明したように、本発明によれば、身近に豊富に存在する木質系材料を素材として用いることができ、しかも手間の掛からない簡単な方法で製造できる高性能で経済的な放射性よう素およびその化合物の吸着材を得ることができる。  As described above, according to the present invention, a high-performance and economical radioactive iodine that can be used as a raw material, and can be manufactured by a simple method that does not require time and effort, can be used as a raw material. And an adsorbent of the compound can be obtained.

具体的には、本発明の木質系材料としてのスギ材、ヒノキ材は、間伐材として、現在約400万トン/年も発生しており、そのほとんどが林地残材となって放置されている。また竹材については、近年のタケノコ産業の不況から竹林の手入れが行き届かず国内の至るところで繁茂しており厄介な存在となっている状況にある。このようなことから、本発明はこれらの材料の有効利用にも繋がるという大きな効果がある。  Specifically, cedar wood and cypress wood as woody materials of the present invention are currently generated as thinned wood at about 4 million tons / year, and most of them are left as forest residue. . In addition, bamboo materials have become troublesome because they have not been well-maintained due to the recent recession of the bamboo shoot industry, and have been thriving throughout the country. For this reason, the present invention has a great effect that it leads to effective utilization of these materials.

また、CO削減の必要性から、今後、原子力発電所や核燃料を扱う研究所の重要性が増大し、その安全性が極めて大きな課題となってくる。とくに地域住民にとっては万が一に備えてあらゆる対策を講じておかねばならない状況となりつつあり、本発明は、この重要な一つの対策となるものであって、身近に常時備え置ける安価で容易に製造できる吸着材となるものである。In addition, due to the need for CO 2 reduction, the importance of nuclear power plants and laboratories that handle nuclear fuel will increase in the future, and its safety will become an extremely important issue. Especially for the local residents, it is becoming a situation where all measures must be taken in case of emergency, and the present invention is one important measure for this, and it can be easily manufactured at a low cost that can always be kept close to you. It becomes an adsorbent.

以下、本発明の実施形態となる吸着材の製造手順を図面に基づいて説明する。  Hereinafter, an adsorbent manufacturing procedure according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係わる吸着材の製造に用いる炭化処理プログラムであって、炭化炉内の温度もしくは材料の温度と処理時間の関係を示したものである。この場合の温度と時間は予め設定したプログラムによって管理される値であって、計測される温度は炭化される木質系材料(以下、これを被処理材という)自身の温度とすることが望ましい。このプログラムは被処理材が乾燥―熱分解・木炭化―安定化―自然冷却の工程を経るよう設定されるものである。  FIG. 1 is a carbonization processing program used for manufacturing an adsorbent according to an embodiment of the present invention, and shows the relationship between the temperature in the carbonization furnace or the temperature of the material and the processing time. The temperature and time in this case are values managed by a preset program, and the measured temperature is preferably the temperature of the wood-based material to be carbonized (hereinafter referred to as the material to be treated). This program is set so that the material to be treated goes through the process of drying-pyrolysis / carbonization-stabilization-natural cooling.

先ず吸着材の素材となる被処理材の適当量を炭化炉内に充填し、外気温から100℃程度(ステップ1)まで、t1時間かけて徐々に昇温させる。この時間:t1は、被処理材の大きさおよび充填量によって決められるが、通常は1時間〜3時間程度とする。  First, an appropriate amount of a material to be treated as an adsorbent material is filled in the carbonization furnace, and the temperature is gradually raised from outside temperature to about 100 ° C. (step 1) over a period of t1. This time: t1 is determined by the size of the material to be treated and the filling amount, but is usually about 1 to 3 hours.

上記被処理材が100℃程度近くに到達したら、この被処理材中に含まれる水分をさらに蒸発させるため、この温度を所定のt2時間(ステップ2)まで保持するようプログラムを設定する。この時間:t1〜t2も被処理材の大きさ、充填量および含水率によって決められ、通常は1時間〜3時間程度でよいが、例えば直径10cmの丸太で、60%と高い含水率の場合には、半日程度の長時間を必要とすることもある。  When the material to be processed reaches about 100 ° C., a program is set to maintain this temperature for a predetermined time t2 (step 2) in order to further evaporate the moisture contained in the material to be processed. This time: t1 to t2 is also determined by the size, filling amount and moisture content of the material to be treated. Usually, it may be about 1 hour to 3 hours, but for example, a log having a diameter of 10 cm and a moisture content as high as 60%. In some cases, a long time of about half a day is required.

上記被処理材の乾燥が終了すると熱分解・木炭化の工程に入り、被処理材を本発明の吸着材を製造する炭化温度(ステップ3)まで昇温させる。本発明の吸着材の製造において、この段階が最も重要な工程であって、上記被処理材の内部で起こる有機物の熱分解と解重合・縮重合および芳香族化、架橋結合などによって炭化物の構成要素である微小炭素体が多数形成されて行く。このステップ3の炭化温度としては500℃〜800℃の範囲の温度が選らばれるが、実験からは600℃が最も好ましい炭化温度である。実際に本発明者らは、炭化温度:600℃のスギ木炭について、この微小炭素体が著しく発達している状況を透過型電顕写真の観察で確認している。このステップ3の炭化温度を与える時間:t2〜t3は、最も的確に設定されなければならない時間であって、通常ならば昇温速度が2℃/min〜3℃/minとなるよう、4時間〜5時間程度となるが、被処理材の大きさによってはこれより長く設定されることもある。  When the drying of the material to be treated is completed, a thermal decomposition and wood carbonization process is started, and the temperature of the material to be treated is raised to the carbonization temperature (step 3) for producing the adsorbent of the present invention. In the production of the adsorbent of the present invention, this stage is the most important process, and the structure of the carbide is formed by thermal decomposition, depolymerization / condensation, aromatization, cross-linking, etc. Numerous micro carbon bodies as elements are formed. A temperature in the range of 500 ° C. to 800 ° C. is selected as the carbonization temperature in Step 3, but 600 ° C. is the most preferable carbonization temperature from the experiment. In fact, the present inventors have confirmed the state in which this microcarbon body is remarkably developed for cedar charcoal having a carbonization temperature of 600 ° C. by observation of a transmission electron micrograph. The time for giving the carbonization temperature in Step 3: t2 to t3 is the time that should be set most accurately, and is usually 4 hours so that the rate of temperature rise is 2 ° C / min to 3 ° C / min. Although it is about 5 hours, it may be set longer than this depending on the size of the material to be processed.

上記被処理材の熱分解・木炭化の工程を終了するとステップ4の安定化の工程に入る。ここは、被処理材内部で起こる種々の化学的・物理的変化を被処理材全体にむらなく均一に起こさせるための工程であって、炭化炉内もしくは被処理材自身の温度を、本発明の吸着材を製造する炭化温度を所定時間のt4まで維持する。この時間:t3〜t4は1時間以上が必要であり、通常は2時間程度とする。  When the process of pyrolysis and wood carbonization of the material to be processed is completed, the process of stabilization in Step 4 is started. This is a process for causing various chemical and physical changes occurring inside the material to be treated uniformly throughout the material to be treated. The temperature in the carbonization furnace or the material itself is determined according to the present invention. The carbonization temperature for producing the adsorbent is maintained until t4 for a predetermined time. This time: t3 to t4 needs 1 hour or more, and is usually about 2 hours.

このステップ4の後は、炭化物となった被処理材を炭化炉内から取出すことになるが、炉内温度が50℃程度に到達するまで炉内を自然冷却する。この時間:t4〜t5は、外気温度により異なるものの通常であれば半日〜1日程度となる。強制的に冷却すればこの時間はさらに短縮することもできる。  After Step 4, the material to be treated that has become a carbide is taken out from the carbonization furnace, but the inside of the furnace is naturally cooled until the furnace temperature reaches about 50 ° C. Although this time: t4 to t5 varies depending on the outside air temperature, it is usually about a half day to a day. This time can be further shortened by forced cooling.

以上の手順で製造された本発明の炭化物を、本発明の吸着材として用いるには、これらを破砕して適当大きさの粒径、もしくは粉末に調製するか、あるいは粉末に調製後、適当なバインダーを添加して圧縮成形して造粒すればよいし、あるいは特定の形状・大きさの板状体、ブロック体、ハニカム状体などに成形して用いてもよく、使用形態について特に限定するものではない。  In order to use the carbide of the present invention produced by the above procedure as the adsorbent of the present invention, they are crushed and prepared into a particle size or powder of an appropriate size, or after preparation into a powder, an appropriate It may be granulated by compression molding with the addition of a binder, or may be used after being molded into a plate-like body, block body, honeycomb-like body or the like having a specific shape / size, and the use form is particularly limited. It is not a thing.

以下、本発明の吸着材の効果を確認するために行なった分析結果と吸着性能の試験結果を詳細に説明する。  Hereinafter, the analysis results and the test results of the adsorption performance performed to confirm the effect of the adsorbent of the present invention will be described in detail.

吸着材試料の調製
被処理材のスギ材および竹材は、若狭地方で生産されたスギ間伐材および3年以上成長の竹材とした。これらの材料を適当サイズに調製後、電気加熱式の炭化炉にて炭化処理した。炭化処理は、図1に示す乾燥―熱分解・木炭化―安定化の工程を経るように予め設定したプログラムにしたがって行なった。炭化温度:Tは、スギ材では400℃、500℃、600℃、700℃、800℃、900℃、1000℃の7水準、竹材では400℃、600℃、800℃、1000℃の4水準とした。また各試料の炭化保持時間は2時間とし、その後は100℃程度まで自然冷却して炉外に取り出した。この炭化処理のプログラムにおいて、外気温〜100℃の昇温速度:1.5℃/min、乾燥時間:t1〜t2=1h、100℃〜炭化温度T℃の昇温速度:2℃/min、炭化時間:t3〜t4=2hとした。
Preparation of adsorbent sample The cedar and bamboo materials to be treated were cedar thinned wood produced in Wakasa district and bamboo material grown over 3 years. These materials were adjusted to an appropriate size and then carbonized in an electrically heated carbonization furnace. The carbonization treatment was performed according to a program set in advance so as to go through the steps of drying-pyrolysis / wood carbonization-stabilization shown in FIG. Carbonization temperature: T is 7 levels of 400 ° C, 500 ° C, 600 ° C, 700 ° C, 800 ° C, 900 ° C, 1000 ° C for cedar and 4 levels of 400 ° C, 600 ° C, 800 ° C, 1000 ° C for bamboo. did. Further, the carbonization holding time of each sample was 2 hours, and then naturally cooled to about 100 ° C. and taken out of the furnace. In this carbonization treatment program, the temperature increase rate from outside temperature to 100 ° C .: 1.5 ° C./min, drying time: t1 to t2 = 1 h, the temperature increase rate from 100 ° C. to carbonization temperature T ° C .: 2 ° C./min, Carbonization time: t3 to t4 = 2h.

この炭化処理によって得られたスギ木炭および竹炭の収率は、炭化温度の上昇とともに熱分解が進行するため次第に減少し、スギ木炭では乾燥基準で24%〜31%となり平均26%程度、竹炭では28%〜36%で平均31%程度であった。  The yield of cedar charcoal and bamboo charcoal obtained by this carbonization treatment gradually decreases as the carbonization temperature rises, and gradually decreases, with cedar charcoal being 24% to 31% on a dry basis and an average of about 26%. The average was about 31% at 28% to 36%.

スギ木炭および竹炭の工業分析
上記の炭化処理によって得られたスギ木炭および竹炭の工業分析値、すなわち、これらに含まれる固定炭素、揮発分および灰分の含有率を「JIS M8812−1933 石炭類及びコークス類−工業分析法」の試験方法に準じて測定した。この結果を図2および図3に示した。
Industrial analysis of cedar charcoal and bamboo charcoal The industrial analysis values of cedar charcoal and bamboo charcoal obtained by the above carbonization treatment, that is, the contents of fixed carbon, volatile matter and ash contained therein are defined in "JIS M8812-1933 Coal and coke. It was measured according to the test method of “Class-Industrial Analysis”. The results are shown in FIG. 2 and FIG.

上記図2および図3において、両者とも炭化温度の上昇とともに木材・竹材を構成する有機物の熱分解・木炭化が進み次第に炭素成分の含有率が高くなり、とくに600℃前後の温度範囲においては著しい変化の割合となっている。すなわち、600℃前後の温度範囲は活性な範囲であって、前述した化学的・物理的変化が被処理材の内部で活発に起こり、吸着に適した官能基や細孔が多数発達して存在しているものと推察される。  2 and 3, in both cases, as the carbonization temperature rises, the organic component constituting the wood / bamboo material gradually increases in pyrolysis / carbonization, and the carbon component content increases, particularly in the temperature range around 600 ° C. The rate of change. That is, the temperature range around 600 ° C. is an active range, and the above-described chemical and physical changes occur actively inside the material to be treated, and there are many functional groups and pores suitable for adsorption. It is inferred that

スギ木炭および竹炭の吸着性能試験
原子力発電所の空気清浄系活性炭の評価(M.J.KaBat:US DOE Rep JST、p.1298−1301(1981))に定められているよう化メチルに対するスギ木炭および竹炭の吸着性能を検知管法により測定した。このとき比較のため、現在、原子炉施設に用いられている粒状の添着ヤシガラ活性炭の吸着性能も測定した。先ず、調製した前記吸着材試料のそれぞれを粉砕後、篩い分けして得た1mm〜2mmの大きさの粒状物0.5gを5Lのテドラーバッグに充填して密閉しておく。そしてこのバッグに、よう化メチル濃度:36ppmに調製した試験用吸着ガスを充満させて後、上記粒状物を開放して吸着ガスと接触させる。そうすると吸着ガス中のよう化メチルの濃度は次第に減少することとなる。このときの残留濃度を所定時間ごとに北川式検知管で測定した結果を示したのが図4、図5、図6および図7である。なお、この試験には試薬特級よう化メチルを用い、これを高純度Nガスで濃度調整して吸着ガスとした。
Adsorption performance test of cedar charcoal and bamboo charcoal Sugi charcoal against methyl iodide as defined in the evaluation of air-cleaning activated carbon in nuclear power plants (MJ KaBat: US DOE Rep JST, p.1298-1301 (1981)) And the adsorption performance of bamboo charcoal was measured by detector tube method. For comparison, the adsorption performance of the granular impregnated coconut shell activated carbon currently used in the nuclear reactor facility was also measured. First, each of the prepared adsorbent samples is pulverized and then sieved and filled with 0.5 g of a granular material having a size of 1 mm to 2 mm in a 5 L Tedlar bag and sealed. The bag is filled with the test adsorption gas prepared to a methyl iodide concentration of 36 ppm, and then the particulate matter is released and brought into contact with the adsorption gas. Then, the concentration of methyl iodide in the adsorbed gas gradually decreases. FIG. 4, FIG. 5, FIG. 6 and FIG. 7 show the results obtained by measuring the residual concentration at this time with the Kitagawa type detector tube every predetermined time. In this test, reagent grade methyl iodide was used, and the concentration was adjusted with high-purity N 2 gas to obtain an adsorption gas.

スギ木炭および竹炭の吸着性能は炭化温度に対しては最大から最小を示すように変化し、両者とも炭化温度が600℃付近で最も優れた吸着能力となり、500℃〜800℃の範囲で高い吸着能力を示した。その能力はスギ木炭が竹炭よりも勝っており、現行の添着ヤシガラ活性炭に匹敵するほどの良好な性能を示した。このことは前述した仮説が正しかったことを実証するものである。  The adsorption performance of cedar charcoal and bamboo charcoal changes from maximum to minimum with respect to the carbonization temperature, both exhibit the best adsorption capacity when the carbonization temperature is around 600 ° C, and high adsorption in the range of 500 ° C to 800 ° C. Showed ability. The ability of cedar charcoal is better than that of bamboo charcoal, and the performance is comparable to that of the current impregnated coconut charcoal. This proves that the hypothesis mentioned above was correct.

前記被処理材としてはスギ材および竹材を用いたが、本発明における木質系材料はこれらに限らず他の木質系材料、例えば、ヒノキ材、マツ材などの針葉樹、あるいはクヌギ材、ナラ材、ウバメガシ材などの広葉樹であってもよく、用いる木質系材料の主たる成分が、セルロース、ヘミセルロースおよびリグニンで構成される草木類やバイオマス廃棄物であっても同様の効果が期待できるものであり、上記実施形態と同様の思想考え方となる。  As the material to be treated, cedar and bamboo are used, but the wood-based material in the present invention is not limited to these, and other wood-based materials, for example, conifers such as cypress, pine, or kunugi, oak, It may be a broad-leaved tree such as abalone, and the same effect can be expected even if the main component of the wood-based material used is a plant or a biomass waste composed of cellulose, hemicellulose and lignin. The idea is similar to that of the embodiment.

また、上記500℃〜800℃の温度範囲においても、これを厳密なる限定範囲とするものではなく、これの±100℃程度の範囲は本発明の実施形態と同様の思想考え方となるものである。  Further, even in the temperature range of 500 ° C. to 800 ° C., this is not a strictly limited range, and the range of about ± 100 ° C. is based on the same idea as the embodiment of the present invention. .

本発明の実施形態に係わる吸着材の製造に用いる炭化処理プログラムを示したものである。The carbonization processing program used for manufacture of the adsorbent concerning embodiment of this invention is shown. スギ木炭の炭化温度に対する固定炭素、揮発分および灰分の含有率を示したものであるIt shows the content of fixed carbon, volatile matter and ash with respect to the carbonization temperature of cedar charcoal. 竹炭の炭化温度に対する固定炭素、揮発分および灰分の含有率を示したものであるIt shows the content of fixed carbon, volatile matter and ash to the charcoal temperature of bamboo charcoal 本発明の実施形態に係わる吸着材のよう化メチルの吸着性能の試験結果の全てを示したものである。All the test results of the adsorption performance of methyl iodide of the adsorbent according to the embodiment of the present invention are shown. 本発明の実施形態に係わるスギ木炭吸着材のよう化メチルの吸着性能の試験結果をグラフにて示したものである。The test result of the adsorption | suction performance of the methyl iodide of the cedar charcoal adsorbent concerning embodiment of this invention is shown with the graph. 本発明の実施形態に係わる竹炭吸着材のよう化メチルの吸着性能の試験結果をグラフにて示したものである。The test result of the adsorption | suction performance of the methyl iodide of the bamboo charcoal adsorbent concerning embodiment of this invention is shown with the graph. 本発明の実施形態に係わるスギ木炭吸着材および竹炭吸着材のよう化メチルの吸着性能の試験結果を示したものであって、これらの吸着材とよう化メチル含有ガスとの接触1時間後のバッグ内の残留濃度を示したものである。The test result of the adsorption performance of methyl iodide of the cedar charcoal adsorbent and the bamboo charcoal adsorbent according to the embodiment of the present invention is shown, and after 1 hour of contact between these adsorbent and the methyl iodide-containing gas It shows the residual concentration in the bag.

Claims (1)

セルロース、ヘミセルロースおよびリグニンを主成分とする木質系材料を500℃から800℃の範囲の炭化温度で焼成して得られた炭化物であることを特徴とする気相中の放射性よう素および放射性よう素化合物の吸着材。Radioactive iodine and radioactive iodine in the gas phase, characterized in that it is a carbide obtained by firing a wood-based material mainly composed of cellulose, hemicellulose and lignin at a carbonization temperature in the range of 500 ° C to 800 ° C. Compound adsorbent.
JP2006137030A 2006-04-13 2006-04-13 Methyl iodide adsorbent in the gas phase Expired - Fee Related JP4457193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137030A JP4457193B2 (en) 2006-04-13 2006-04-13 Methyl iodide adsorbent in the gas phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137030A JP4457193B2 (en) 2006-04-13 2006-04-13 Methyl iodide adsorbent in the gas phase

Publications (2)

Publication Number Publication Date
JP2007286023A true JP2007286023A (en) 2007-11-01
JP4457193B2 JP4457193B2 (en) 2010-04-28

Family

ID=38757917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137030A Expired - Fee Related JP4457193B2 (en) 2006-04-13 2006-04-13 Methyl iodide adsorbent in the gas phase

Country Status (1)

Country Link
JP (1) JP4457193B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240910A (en) * 2011-05-18 2012-12-10 Tycoon Llc Method for cleaning soil and water polluted by radioactive iodine, using adsorption of charcoal
JP2013117524A (en) * 2011-10-31 2013-06-13 Gaia Institute Of Environmental Technology Inc Method for manufacturing carbide which absorb and filter radioactive substance and method for using the same, and water purifier, water treatment apparatus and functional food

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240910A (en) * 2011-05-18 2012-12-10 Tycoon Llc Method for cleaning soil and water polluted by radioactive iodine, using adsorption of charcoal
JP2013117524A (en) * 2011-10-31 2013-06-13 Gaia Institute Of Environmental Technology Inc Method for manufacturing carbide which absorb and filter radioactive substance and method for using the same, and water purifier, water treatment apparatus and functional food

Also Published As

Publication number Publication date
JP4457193B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
Kong et al. Self‐purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon‐rich biochar for methylene blue adsorption
Aziz et al. Preparation and Utilization of Jute‐Derived Carbon: A Short Review
Valero-Romero et al. Role of surface phosphorus complexes on the oxidation of porous carbons
Sartova et al. Activated carbon obtained from the cotton processing wastes
Zhu et al. Naturally nitrogen and calcium-doped nanoporous carbon from pine cone with superior CO2 capture capacities
KR950000880B1 (en) High capacity coconut shell char for carbon molecular sieves
US20160031713A1 (en) Activated carbon with high percentage mesoporosity, surface area, and total pore volume
KR102125536B1 (en) Method of producing carbon-enriched biomass material
Mao et al. Preparation of pinewood-and wheat straw-based activated carbon via a microwave-assisted potassium hydroxide treatment and an analysis of the effects of the microwave activation conditions
Kawamoto et al. Reactivity of wood charcoal with ozone
CN108455603B (en) Mesoporous-rich biochar and preparation method thereof
WO2014185183A1 (en) Method for heating treatment of fuel material, and device for carbonizing artificial raw wood
JP3760228B2 (en) Manufacturing method of high calorific value carbide
WO2013183668A1 (en) Method for producing carbon material using catalyst, and carbon material
Grima-Olmedo et al. Activated carbon from flash pyrolysis of eucalyptus residue
KR20180125758A (en) Method for Manufacturing Biomass Adsorbent using byproducts of coffee and Biomass adsorbent
Janiszewska et al. Activated biochars derived from wood biomass liquefaction residues for effective removal of hazardous hexavalent chromium from aquatic environments
Rombaldo et al. Brazilian natural fiber (jute) as raw material for activated carbon production
JP4457193B2 (en) Methyl iodide adsorbent in the gas phase
Bakhtiar et al. Characterization of oil palm Empty Fruit Bunch (EFB) biochar activated with potassium hydroxide under different pyrolysis temperature
JP2006213547A (en) Wood-based granular activated carbon and its manufacturing method
Bedane et al. Textural characteristics of activated carbons prepared from agricultural residues‐review
US10751697B2 (en) Method of producing highly porous adsorbents
JP2007153684A (en) Activated carbon and method for manufacturing pellet
JP2008094710A (en) Method for producing molecular sieve carbon, and molecular sieve carbon

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20090318

Free format text: JAPANESE INTERMEDIATE CODE: A625

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090508

A975 Report on accelerated examination

Effective date: 20090529

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees