JP2008264763A - Decomposition apparatus - Google Patents

Decomposition apparatus Download PDF

Info

Publication number
JP2008264763A
JP2008264763A JP2007248203A JP2007248203A JP2008264763A JP 2008264763 A JP2008264763 A JP 2008264763A JP 2007248203 A JP2007248203 A JP 2007248203A JP 2007248203 A JP2007248203 A JP 2007248203A JP 2008264763 A JP2008264763 A JP 2008264763A
Authority
JP
Japan
Prior art keywords
reaction
liquid
cooler
reaction tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007248203A
Other languages
Japanese (ja)
Inventor
Shin Matsugi
伸 真継
Toshihiro Miyazaki
敏博 宮崎
Hiroshi Yano
宏 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007248203A priority Critical patent/JP2008264763A/en
Publication of JP2008264763A publication Critical patent/JP2008264763A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new decomposition apparatus capable of taking out and recovering reaction liquid efficiently in a short time from a high-temperature and high-pressure reactor, in decomposition of plastic in a supercritical or subcritical state. <P>SOLUTION: The decomposition apparatus comprises: the reactor 1 that hydrothermally decomposes plastic in a supercritical or subcritical state; and a take-out part of the high-temperature and high-pressure reaction liquid 2 from the inside of the reactor 1, wherein the take-out part comprises (A) a cooler 4 that takes out and cools the reaction liquid, (B) a pressure regulation valve 5 on the outlet side or inlet side of the cooler and (C) a control means that detects the temperature of the outlet of the cooler and adjusts the opening of the pressure regulation valve such that the temperature of the reaction liquid becomes the boiling point or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、廃棄物プラスチック等を、超臨界又は亜臨界の状態で反応させて水熱分解する分解装置に関するものである。   The present invention relates to a decomposition apparatus for hydrothermally decomposing waste plastics or the like in a supercritical or subcritical state.

従来より、たとえば、有害物を無害化分解することや、食品廃棄物等を分解して再資源化することや、プラスチック廃棄物を分解して有機酸、アルコール等のプラスチックの合成原料やFRP中の補強繊維等を回収して再利用できるようにするために、超臨界又は亜臨界状態の水熱反応によって分解することが様々な装置の構成として提案されている。   Conventionally, for example, detoxifying and decomposing harmful substances, decomposing and recycling food waste, etc., or decomposing plastic waste and synthesizing raw materials for plastics such as organic acids and alcohols and FRP In order to collect and recycle the reinforcing fibers, etc., it has been proposed as a configuration of various apparatuses to decompose by a supercritical or subcritical hydrothermal reaction.

しかしながら、超臨界又は亜臨界の状態でのプラスチックの分解においては、FRPからのガラス繊維や炭素繊維の回収を伴う場合(たとえば、特許文献1を参照)をはじめ、破砕した粒状のプラスチックを含む被処理混合液は固液混合のスラリー状となるため、連続的に反応槽内に原料を供給し、連続的に反応槽内から反応液を取出すことは、必ずしも容易ではないという問題がある。その理由は、第1には、スラリー液を高温高圧で送液するポンプが高価であり、固形物による部品の磨耗等の耐久性に問題が生じやすいことであり、第2には、反応性を確保しつつ、反応槽に残留した未反応固形物の全量排出が困難であることによる。特にプラスチックがFRP(繊維強化プラスチック)の場合、比重の重いガラス繊維や炭酸カルシウム等の無機物成分が未反応のまま残り、沈降性の高いこれらの成分を伴う反応液の排出は難しい。   However, in the decomposition of plastics in a supercritical or subcritical state, there is a case where glass fibers or carbon fibers are recovered from FRP (see, for example, Patent Document 1), and a material containing crushed granular plastic is included. Since the treatment liquid mixture is in the form of a solid-liquid mixed slurry, there is a problem that it is not always easy to continuously supply the raw material into the reaction tank and continuously take out the reaction liquid from the reaction tank. The reason for this is that, firstly, the pump for feeding the slurry liquid at high temperature and high pressure is expensive, and problems such as wear of parts due to solid matter are likely to occur, and secondly, the reactivity. This is because it is difficult to discharge the entire amount of unreacted solids remaining in the reaction tank while ensuring the above. In particular, when the plastic is FRP (fiber reinforced plastic), inorganic components such as glass fiber having a high specific gravity and calcium carbonate remain unreacted, and it is difficult to discharge the reaction solution with these components having high sedimentation properties.

したがって、このような場合には、回分式の反応装置が採用される。回分式はバッチ処理であり、投入した原料は1バッチの反応後そのまま全量抜き出される操作となる。反応生成物を反応槽から取り出すにあたっては、反応槽内は液体を超臨界又は亜臨界状態にしているために高温・高圧の状態にあることから、反応槽内を常温にまで冷却する必要がある。また、分解生成物を取り出すために反応槽内を常圧にまで減圧する必要がある。   Therefore, in such a case, a batch type reaction apparatus is employed. The batch system is a batch process, and the input raw material is extracted as it is after the reaction of one batch. When removing the reaction product from the reaction vessel, the reaction vessel is in a supercritical or subcritical state and is in a high temperature / high pressure state, so the reaction vessel must be cooled to room temperature. . Moreover, in order to take out the decomposition product, it is necessary to reduce the pressure in the reaction tank to normal pressure.

しかしながら、プラスチックの分解のような固液反応では反応槽内部に冷却用の熱交換器を設置することは、
・熱交換器への固形物の固着
・攪拌効率の低下
等の理由で難しく、このため、自然放冷却や反応槽の外部ジャケット内に冷媒を入れる等の方法を採用してきた。だが、反応槽は圧力容器であるため金属製で肉厚のため外部からのみでは放冷しにくく、冷却に時間がかかるという問題があった。
However, in solid-liquid reactions such as plastic decomposition, installing a heat exchanger for cooling inside the reaction tank
・ Solid adhering to the heat exchanger ・ It is difficult for reasons such as a decrease in stirring efficiency. For this reason, methods such as spontaneous cooling or putting a refrigerant in the external jacket of the reaction tank have been adopted. However, since the reaction tank is a pressure vessel, it is made of metal and is thick, so that it is difficult to cool it from the outside alone, and there is a problem that it takes time for cooling.

一方、反応槽に開閉弁を設け、開閉弁を開いて分解槽内から気体を放出させることによって反応槽内を減圧し、反応槽内をこのように減圧して流体を蒸発させることによって潜熱を奪い、自然放冷に比べて冷却時間を短くすることも考えられている。また、このように開閉弁を開いて反応槽内から気体を放出させることで槽内を大気圧にまで減圧することもできる。そして、開閉弁を開いて分解槽内を減圧するにあたって、開閉弁を大きく開いて減圧速度を早くすればするほど、常温にまで冷却する時間や大気圧に戻す時間を短縮することができる。しかしながら、減圧速度を早くすると、分解槽内で突沸が発生し易くなり、突沸によって反応槽内の流体が開閉弁から流出するおそれがあるという問題があった。また逆に、突沸の発生を防止するために減圧速度を遅くすると、常温にまで冷却する時間や大気圧に戻す時間が長くなって生産性に問題を生じるものであった。   On the other hand, an open / close valve is provided in the reaction tank, and the open / close valve is opened to release the gas from the decomposition tank to depressurize the reaction tank. It is also considered to shorten the cooling time compared to natural cooling. Moreover, the inside of the tank can be reduced to atmospheric pressure by opening the on-off valve and releasing the gas from the reaction tank in this way. And when opening the on-off valve and depressurizing the inside of the decomposition tank, as the on-off valve is greatly opened to increase the pressure reducing speed, the time for cooling to room temperature and the time for returning to atmospheric pressure can be shortened. However, if the decompression speed is increased, bumping is likely to occur in the decomposition tank, and the fluid in the reaction tank may flow out of the on-off valve due to bumping. On the other hand, if the pressure reduction rate is slowed to prevent bumping, the time for cooling to room temperature and the time for returning to atmospheric pressure become longer, causing problems in productivity.

以上のような事情から、従来では、分解槽からの反応液の取出しには時間的な負担が大きいため、どうしても生産性の向上には制約があった。   In view of the above circumstances, conventionally, there is a limitation in improving productivity because a time burden is large in taking out the reaction solution from the decomposition tank.

もちろん、分解槽内からの反応液の取出しについては、従来よりプラスチックの分解だけでなく、超臨界又は亜臨界状態での各種の分解反応においても検討されてきている。従来では、分解槽より高温高圧の反応液を取出すために、反応液を取出して冷却する冷却器と、この冷却器の出口側に圧力調整弁を備えることが考えられている(たとえば特許文献2−6)。また、ダイオキシン、PCB等の有害物の分解装置では、分解槽からの反応液の状態を炭酸ガスや酸素ガスの検知として判別し、これによって分解槽の希釈水の投入量を制御することも考えられている(特許文献7)。   Of course, taking out of the reaction liquid from the decomposition tank has been conventionally studied not only in plastic decomposition but also in various decomposition reactions in a supercritical or subcritical state. Conventionally, in order to take out a high-temperature and high-pressure reaction liquid from a decomposition tank, it has been considered to provide a cooler that takes out and cools the reaction liquid, and a pressure adjusting valve on the outlet side of the cooler (for example, Patent Document 2). -6). In addition, in the decomposition equipment for harmful substances such as dioxins and PCBs, it is considered that the state of the reaction liquid from the decomposition tank is determined as detection of carbon dioxide gas or oxygen gas, thereby controlling the amount of dilution water input to the decomposition tank. (Patent Document 7).

しかしながら、これらの反応液の取出しにおいては、高温高圧の反応液の冷却をいかに短時間で行うのかの点についてはほとんど考慮されていない。このため、反応液の取出しについての時間的負担を軽減すること、特に、固形分を含む固液反応系としてのプラスチックの分解においてこの時間負担を軽減するための方策については実際的なものとなっていないのが実情である。
特開平10−87872号公報 特開2002−102869号公報 特開2002−113347号公報 特開2003−236570号公報 特開2003−320240号公報 特開2003−181406号公報 特開2006−732号公報
However, in taking out these reaction solutions, little consideration is given to how quickly the high-temperature and high-pressure reaction solution is cooled. For this reason, it is practical to reduce the time burden of taking out the reaction liquid, and in particular, to reduce the time burden in the decomposition of plastic as a solid-liquid reaction system containing solids. The fact is not.
Japanese Patent Laid-Open No. 10-87872 JP 2002-102869 A JP 2002-113347 A JP 2003-236570 A JP 2003-320240 A Japanese Patent Laid-Open No. 2003-181406 JP 2006-732 A

本発明は、上記のとおりの背景から、従来の問題点を解消し、超臨界又は亜臨界状態でのプラスチック等の分解において、高温高圧の反応槽内より反応液を効率的に短時間で取出し回収することのできる、新しい分解装置を提供することを課題としている。   The present invention eliminates the conventional problems from the background as described above, and efficiently removes the reaction liquid from the high-temperature and high-pressure reaction tank in a short time in the decomposition of plastics in the supercritical or subcritical state. It is an object to provide a new disassembling apparatus that can be collected.

本発明の分解装置は以下のことを特徴としている。   The decomposition apparatus of the present invention is characterized by the following.

第1:超臨界又は亜臨界の状態において被分解物を水熱分解する反応槽とともに、反応槽内からの高温高圧の反応液の取出し部を備えた分解装置において、取出し部には、
(A)反応液を取出して冷却する冷却器、
(B)冷却器の出口側又は入口側の圧力調整弁、
(C)冷却器出口の反応液の温度を検出して反応液の温度が沸点以下となるように圧力調整弁の開度を調整する制御手段
を有している。
1st: In the decomposition apparatus provided with the extraction part of the reaction liquid of the high temperature / high pressure from the inside of a reaction tank with the reaction tank which hydroly decomposes to-be-decomposed material in a supercritical or subcritical state,
(A) a cooler that takes out and cools the reaction solution;
(B) a pressure regulating valve on the outlet side or inlet side of the cooler;
(C) Control means for detecting the temperature of the reaction solution at the outlet of the cooler and adjusting the opening of the pressure adjustment valve so that the temperature of the reaction solution is equal to or lower than the boiling point.

第2:上記第1の発明の分解装置において、取出し部には、固形分含有の反応液の上澄み液の取出し口部が配設されている。   Second: In the decomposition apparatus according to the first aspect of the present invention, the take-out part is provided with a take-out part for the supernatant liquid of the reaction liquid containing solids.

第3:上澄み液の取出し口部が反応槽内の水位に追随して反応液の取出し位置変更可能に配設されている。   Third: The supernatant liquid take-out port portion is disposed so as to change the reaction liquid take-out position following the water level in the reaction tank.

第4:上澄み液の取出し口部が反応槽の深さ方向に離れて複数配設されている。   Fourth: A plurality of supernatant liquid take-out ports are provided apart in the depth direction of the reaction tank.

第5:上記第1から第4のいづれかの発明の分解装置において、冷却器から取出された反応液の反応槽への還流手段が配設されている。   Fifth: In the decomposition apparatus according to any one of the first to fourth inventions, means for refluxing the reaction liquid taken out from the cooler to the reaction tank is provided.

第6:上記第1から第5のいづれかの発明の分解装置において、冷却器の出口側には、反応槽内に供給を予定する液を冷却器を介して反応槽に供給可能としている液供給手段が配設されている。   Sixth: In the decomposition apparatus according to any one of the first to fifth aspects of the invention, a liquid supply is provided on the outlet side of the cooler so that the liquid to be supplied into the reaction tank can be supplied to the reaction tank via the cooler. Means are provided.

上記の第1の発明によれば、(C)圧力調整弁の開度を調整する制御手段によって、(A)冷却器の出口温度が設定温度より高い場合は(B)圧力調整弁を絞り、低い場合は開けて反応液温度が設定温度である反応液の沸点以下となるよう調整することから、反応槽の内圧が大気圧以下になって圧力調整弁を全開して反応液を全量排出するまでの反応液の取出し速度は従来に比べて大幅に向上され、分解装置における昇温、反応、取出しの1サイクル処理時間を顕著に短縮することが可能となる。上記圧力調整弁は冷却器の出口側に配設されていてもよいし、冷却器の入口側に配設されていてもよい。後者の場合、圧力調整弁の開度の調整が冷却器の入口側で行われるため、設備として冷却器に反応槽からの圧力がかからず設備コスト低減のメリットがある。   According to said 1st invention, (C) When the outlet temperature of a cooler is higher than preset temperature by (C) the control means which adjusts the opening degree of a pressure regulation valve, (B) The pressure regulation valve is throttled, If it is low, open and adjust the reaction liquid temperature to be lower than the boiling point of the reaction liquid, which is the set temperature. Therefore, the internal pressure of the reaction tank becomes lower than atmospheric pressure and the pressure adjustment valve is fully opened to discharge the entire reaction liquid. The reaction liquid take-out speed up to the above is greatly improved as compared with the prior art, and it becomes possible to significantly shorten the one-cycle processing time of the temperature rise, reaction, and take-out in the decomposition apparatus. The pressure regulating valve may be disposed on the outlet side of the cooler, or may be disposed on the inlet side of the cooler. In the latter case, since the adjustment of the opening of the pressure regulating valve is performed on the inlet side of the cooler, there is an advantage of reducing the equipment cost since the pressure from the reaction tank is not applied to the cooler as the equipment.

また、反応液の上澄み液の取出し口部を設ける第2の発明によれば、反応が固体と液体の反応で反応後も一部固体が残ってスラリー状の反応液となる場合には攪拌等による混合操作を停止すると上部に液体分、底部に固形分が沈降するが、上澄み液だけ抜くことで固形分の少ない液のみを回収することができ、冷却器、圧力調整弁の閉塞を防ぐことができる。
なお、底部に沈降した固形分は液が排出され内圧が下がった状態で冷却器、圧力調節弁を通らない経路で排出することができる。
In addition, according to the second aspect of the present invention, the reaction liquid supernatant liquid outlet is provided. When the reaction is a solid-liquid reaction and a part of the solid remains after the reaction, a slurry-like reaction liquid is obtained. When the mixing operation is stopped, the liquid content at the top and the solid content at the bottom settle, but by removing only the supernatant liquid, only the liquid with a low solid content can be recovered, preventing the clogging of the cooler and pressure regulating valve. Can do.
In addition, the solid content settled on the bottom can be discharged through a path that does not pass through the cooler and the pressure control valve in a state where the liquid is discharged and the internal pressure is lowered.

上澄み液を抜き取る取出し口部が分解槽水位に追随する第3の発明によれば、常に一番清澄度の高い液を取り出すことが可能で、固形分による冷却器、圧力調整弁への詰まりの原因をより効果的に抑止することが可能となる。   According to the third invention in which the take-out port portion for taking out the supernatant liquid follows the decomposition tank water level, it is possible to take out the liquid with the highest clarity at all times, and the clogging of the cooler and pressure regulating valve due to the solid content is possible. It becomes possible to suppress the cause more effectively.

そして、反応槽側面に複数の取出し口部がある第4の発明では、液位の低下に伴い、段々と取出口を下方に下げていくことができるので、上記の効果はより確実に顕著なものとして実現される。   In the fourth invention having a plurality of outlets on the side surface of the reaction tank, the outlet can be lowered gradually as the liquid level decreases, so the above effect is more clearly noticeable. Realized as a thing.

冷却器から取り出された液を反応槽内に戻す還流手段を備える第5の発明によれば、高温高圧状態で反応液が排出されていくと反応槽内液位の減少にともない反応槽内壁に固形分が固着するおそれがあるが、冷却器から取り出した液を再度反応槽に戻すことで液位が変わらず固着のおそれがない。反応槽からの取出しは反応槽が100℃以下になったところで反応槽から取り出せばよい。   According to the fifth aspect of the invention comprising the reflux means for returning the liquid taken out from the cooler into the reaction tank, when the reaction liquid is discharged in a high-temperature and high-pressure state, the reaction tank inner wall is reduced as the liquid level in the reaction tank decreases. Although there is a possibility that the solid content is fixed, the liquid level is not changed by returning the liquid taken out from the cooler to the reaction tank again, and there is no possibility of fixing. What is necessary is just to take out from a reaction tank, when the reaction tank becomes 100 degrees C or less.

また、冷却器の出口側に反応液成分を冷却器を介して反応槽内に供給可能としている第6の発明によれば、反応液が固液混合のスラリー状であるとき、冷却器、圧力調整弁の固着が懸念されるが、次回の反応に用いる液を冷却器の出口側から供給することで洗浄を兼ねることができる。   Further, according to the sixth aspect of the invention, the reaction liquid component can be supplied into the reaction tank through the cooler on the outlet side of the cooler. When the reaction liquid is in the form of a solid-liquid mixed slurry, Although there is a concern about the sticking of the regulating valve, cleaning can be performed by supplying the liquid used for the next reaction from the outlet side of the cooler.

本発明の分解装置は上記のとおりの特徴を有するものであって、プラスチックの分解による有機酸、アルコール等のプラスチック原料の回収や、FRP中の補強繊維等の無機物の回収をはじめ、ダイオキシン、PCB等の有機物の分解、木質材の分解によるリグニン、エタノールの回収、魚類、肉類等の食品タンパク質廃棄物の分解による有機酸、アミノ酸、アルコール等の回収等のために適用され、顕著な効果を奏することになる。   The decomposition apparatus of the present invention has the characteristics as described above, and includes recovery of plastic raw materials such as organic acids and alcohols by decomposition of plastic, recovery of inorganic substances such as reinforcing fibers in FRP, dioxin, PCB Applied to the recovery of organic acids such as amino acids, amino acids, alcohols, etc. by decomposition of food protein waste such as fish, meat, etc. It will be.

そこで、以下に本発明の分解装置について、その実施の形態について例示説明する。もちろん、本発明は以下の例示によって限定されるものではない。
<実施形態1>
図1は、第1の発明の分解装置の一例を示した概要構成図である。たとえば、この図1に示したように、本発明の分解装置は、反応槽1とともに、この反応槽1内からの高温高圧の反応液2の取出し部として、少くとも、排出用開閉弁3、冷却器4、圧力調整弁5、温度検出器6を備えている。圧力調整弁5は、冷却器4の出口側に設けられ、また、温度検出器6は、冷却器4の出口の反応液の温度を検出して取出した反応液の温度が沸点以下となるように圧力調整弁5の開度を調整する制御手段を構成している。
Accordingly, the embodiment of the decomposition apparatus of the present invention will be described below by way of example. Of course, the present invention is not limited to the following examples.
<Embodiment 1>
FIG. 1 is a schematic configuration diagram showing an example of the disassembling apparatus of the first invention. For example, as shown in FIG. 1, the decomposition apparatus of the present invention includes at least a discharge on-off valve 3 as a part for taking out a high-temperature and high-pressure reaction liquid 2 from the reaction tank 1 together with the reaction tank 1. A cooler 4, a pressure adjustment valve 5, and a temperature detector 6 are provided. The pressure regulating valve 5 is provided on the outlet side of the cooler 4, and the temperature detector 6 detects the temperature of the reaction liquid at the outlet of the cooler 4 so that the temperature of the reaction liquid taken out is equal to or lower than the boiling point. A control means for adjusting the opening of the pressure regulating valve 5 is configured.

より具体的には、たとえば、反応液の沸点よりも高い温度と、常圧よりも高い圧力にある高温高圧状態の反応液2を取出すために、排出用開閉弁3を開け、冷却器4において冷却水7によって冷却した反応液を圧力調整弁5を開いて液体として排出する。圧力調整弁5は、冷却器4の出口の反応液の温度によってその開度が調整される。この開度の調整は温度検出器6によって出口の反応液の温度を直接または間接的に検知し、この出口温度が設定された反応液の沸点温度よりも高い場合は圧力調整弁5を絞ることにより、また、低い場合には開くことにより行われる。このような開度の調整は、反応槽1内の内圧が大気圧以下になって圧力調整弁5を全開して反応液全量が排出されるまで行われることになる。   More specifically, for example, in order to take out the reaction liquid 2 in a high temperature and high pressure state at a temperature higher than the boiling point of the reaction liquid and a pressure higher than normal pressure, the discharge on-off valve 3 is opened and the cooler 4 The reaction liquid cooled by the cooling water 7 is discharged as a liquid by opening the pressure regulating valve 5. The opening of the pressure regulating valve 5 is adjusted by the temperature of the reaction liquid at the outlet of the cooler 4. The degree of opening is adjusted by directly or indirectly detecting the temperature of the reaction liquid at the outlet by the temperature detector 6, and when the outlet temperature is higher than the set boiling point temperature of the reaction liquid, the pressure regulating valve 5 is throttled. And, if low, by opening. Such adjustment of the opening degree is performed until the internal pressure in the reaction tank 1 becomes equal to or lower than the atmospheric pressure, the pressure adjustment valve 5 is fully opened, and the total amount of the reaction solution is discharged.

従来では、このような出口温度による圧力調整弁5における開度の調整は行われていない。このため、短時間での反応液の取出しは困難であったが、本発明の分解装置によれば、反応液の冷却をコントロールして高温高圧状態の反応液であっても取出し可能としていることから、短時間での反応後の排出が可能となる。   Conventionally, the opening degree of the pressure regulating valve 5 is not adjusted by such outlet temperature. For this reason, it was difficult to take out the reaction solution in a short time, but according to the decomposition apparatus of the present invention, it is possible to take out even the reaction solution in a high temperature and high pressure state by controlling the cooling of the reaction solution. Therefore, discharge after the reaction in a short time becomes possible.

上記の構成においては、たとえば、反応槽1は円筒形で耐圧製に形成され、反応槽1の底部には排出配管が接続してあり、排出配管には排出用開閉弁3が設けられ、さらに、冷却器4、圧力調整弁5が接続される。そして、これらを経て反応後の反応液が取出される。冷却器4は円筒多管式熱交換器等である。冷却器4と圧力調整弁5との間に冷却後の反応液温度を検出する温度検出器6が設けられる。温度検出器6は圧力調整弁5の制御手段に電気的に接続され、温度検出器6によって検出される冷却器4出口の反応液温度に応じて、圧力調整弁5の開閉を制御できるようにしてある。圧力調整弁5は連続的に開度が調整できるものとする。   In the above configuration, for example, the reaction tank 1 is formed in a cylindrical shape and is made pressure-resistant, and a discharge pipe is connected to the bottom of the reaction tank 1, and a discharge on-off valve 3 is provided in the discharge pipe. The cooler 4 and the pressure regulating valve 5 are connected. And the reaction liquid after reaction is taken out through these. The cooler 4 is a cylindrical multi-tube heat exchanger or the like. Between the cooler 4 and the pressure regulating valve 5, a temperature detector 6 for detecting the temperature of the reaction liquid after cooling is provided. The temperature detector 6 is electrically connected to the control means of the pressure regulating valve 5 so that the opening and closing of the pressure regulating valve 5 can be controlled according to the reaction liquid temperature at the outlet of the cooler 4 detected by the temperature detector 6. It is. It is assumed that the opening of the pressure adjusting valve 5 can be adjusted continuously.

また、反応槽1の上部には反応槽1内の圧力を測定する圧力ゲージ等で形成される圧力検出器8が設けてある。反応槽1の外周にはヒーターや熱媒ジャケット等で形成される加熱手段9が設けてあり、温度センサー等で形成される反応槽温度検出器10が反応槽1内に差し込んで設けてある。この反応槽温度検出器10で反応槽内の温度を検出しながら、加熱手段9で反応槽1内を加熱することによって、検出される温度に基づいて加熱手段9を制御して最適温度での加熱を行なうことができるものである。また、反応槽1には、反応槽1内に投入されるプラスチックと流体とを混合する攪拌手段11が設けてある。本発明において分解するプラスチックとしては、特に制限されるものではないが、不飽和ポリエステル樹脂等の熱硬化性樹脂を用いることができる。そしてプラスチックは分解反応がし易くなるように粉砕して粉粒状にし、水等の流体と共に原料液供給配管12等から反応槽1内に投入する。   Further, a pressure detector 8 formed by a pressure gauge or the like for measuring the pressure in the reaction tank 1 is provided at the upper part of the reaction tank 1. A heating means 9 formed of a heater, a heat medium jacket or the like is provided on the outer periphery of the reaction tank 1, and a reaction tank temperature detector 10 formed of a temperature sensor or the like is provided inserted into the reaction tank 1. While heating the reaction tank 1 with the heating means 9 while detecting the temperature in the reaction tank with the reaction tank temperature detector 10, the heating means 9 is controlled based on the detected temperature, and at the optimum temperature. It can be heated. Further, the reaction tank 1 is provided with a stirring means 11 for mixing the plastic and the fluid charged into the reaction tank 1. Although it does not restrict | limit especially as a plastic decomposed | disassembled in this invention, Thermosetting resins, such as unsaturated polyester resin, can be used. Then, the plastic is pulverized and granulated so that the decomposition reaction is easy, and is introduced into the reaction tank 1 from a raw material liquid supply pipe 12 or the like together with a fluid such as water.

プラスチックと流体の供給方法は別々に供給してもよいし、プラスチックを粉砕した粉粒体と水等の流体とを前処理槽にて攪拌しスラリー状にした後、液送ポンプで供給配管を通してプラスチックと流体のスラリーを反応槽1内に供給してもよい。   The plastic and fluid supply methods may be supplied separately, or the powdered powder and plastic fluid are stirred in a pretreatment tank to form a slurry, and then fed through a supply pipe with a liquid feed pump. A slurry of plastic and fluid may be supplied into the reaction vessel 1.

また、プラスチックの粉粒体が流体中を槽下部に沈降して分解反応を受け難くなることを防止したり、また、加熱時にプラスチックの粉粒体が反応槽1内面に固着したりすることを防止する等、プラスチックの粉粒体の流体に対する攪拌混合性を高めて流体との反応効率を向上させるために、プラスチックは最大粒子径が30mm以下になるように粉砕して使用するのが好ましい。プラスチックの最大粒子径は小さいほど望ましい。   In addition, it is possible to prevent plastic powder particles from sinking into the lower part of the tank and making it difficult to undergo a decomposition reaction, or to prevent plastic powder particles from adhering to the inner surface of the reaction tank 1 during heating. In order to improve the stirring and mixing properties of the plastic powder particles to the fluid and to improve the reaction efficiency with the fluid, such as preventing, it is preferable to use the plastic after pulverization so that the maximum particle size is 30 mm or less. The smaller the maximum particle size of the plastic, the better.

プラスチックを分解して回収するにあたっては、まず、プラスチックと水等の流体の混合スラリーを反応槽1内に供給する。このようにプラスチックと流体とを反応槽1に供給した後、反応槽1を密閉状態にし、プラスチックと流体を攪拌手段11で攪拌しながら加熱手段9で加熱する。   In disassembling and recovering the plastic, first, a mixed slurry of fluid such as plastic and water is supplied into the reaction tank 1. After supplying the plastic and the fluid to the reaction tank 1 in this manner, the reaction tank 1 is sealed, and the plastic and the fluid are heated by the heating means 9 while being stirred by the stirring means 11.

そして、反応槽温度検出器10で反応槽1内温度を、圧力検出器8で反応槽1内圧力を、それぞれ検出しながら加熱を行ない、検出された温度と圧力に応じて加熱を制御することによって、反応槽1内の流体が超臨界状態又は亜臨界状態になる温度・圧力を維持し、この超臨界状態又は亜臨界状態の流体を反応触媒としてプラスチックを分解する。たとえば、プラスチックとして不飽和ポリエステル樹脂を、流体として水を用いる場合、180〜250℃、1.0〜4.0MPaの温度・圧力に調整し、水を超臨界状態又は亜臨界状態に維持して30分〜4時間反応させることによって、不飽和ポリエステル樹脂をエステル交換反応させ、スチレンマレイン酸共重合体や多価アルコール等のモノマーに加水分解することができる。   Then, heating is performed while detecting the internal temperature of the reaction tank 1 with the reaction tank temperature detector 10 and the internal pressure of the reaction tank 1 with the pressure detector 8, and the heating is controlled according to the detected temperature and pressure. Thus, the temperature and pressure at which the fluid in the reaction tank 1 becomes supercritical or subcritical is maintained, and the plastic is decomposed using the fluid in the supercritical or subcritical state as a reaction catalyst. For example, when using unsaturated polyester resin as the plastic and water as the fluid, adjust the temperature and pressure to 180 to 250 ° C. and 1.0 to 4.0 MPa to maintain the water in the supercritical state or subcritical state. By reacting for 30 minutes to 4 hours, the unsaturated polyester resin can be transesterified and hydrolyzed to a monomer such as a styrene maleic acid copolymer or a polyhydric alcohol.

反応終了後、排出用開閉弁3を開けると反応液2は冷却器4まで排出されるが、冷却器4出口の温度が液体の常圧での飽和温度(水では100℃)以下になるように圧力調整弁5の開度は制御されているため、冷却器4を経て圧力調整弁5から大気に開放された時点では液体となって排出されることになる。従来、液温が下がってくると減圧による液の気化熱での液温冷却の効果は小さく、肉厚な反応槽を介した放冷にたより、槽内での冷却に多大な時間を要していたが、本発明により直接反応液2を抜き出して外部の冷却器4で冷却することで排出時間の短縮が可能となる。
<実施形態2>
図2は、図1と同様に第1の発明の分解装置の一例を示した概要構成図であるが、図1では圧力調整弁5が冷却器4の出口側に設けられているの対し、本実施形態では冷却器4の入口側に設けられており、温度検出器6によって検出される冷却器4出口の反応液2の温度に応じた圧力調整弁5の開度の調整が冷却器4の入口側で行われる。
After the completion of the reaction, when the discharge on-off valve 3 is opened, the reaction liquid 2 is discharged to the cooler 4, but the temperature at the outlet of the cooler 4 is less than the saturation temperature (100 ° C. for water) at the normal pressure of the liquid. Since the opening degree of the pressure regulating valve 5 is controlled, the liquid is discharged as a liquid when the pressure regulating valve 5 is opened to the atmosphere through the cooler 4. Conventionally, when the liquid temperature is lowered, the effect of liquid temperature cooling due to the heat of vaporization of the liquid due to the reduced pressure is small, and it takes much time to cool in the tank rather than letting it cool through a thick reaction tank. However, the discharge time can be shortened by directly extracting the reaction liquid 2 and cooling it with the external cooler 4 according to the present invention.
<Embodiment 2>
FIG. 2 is a schematic configuration diagram showing an example of the decomposition apparatus of the first invention as in FIG. 1, but in FIG. 1, the pressure regulating valve 5 is provided on the outlet side of the cooler 4, In the present embodiment, adjustment of the opening degree of the pressure regulating valve 5 according to the temperature of the reaction liquid 2 at the outlet of the cooler 4 detected by the temperature detector 6 is provided on the inlet side of the cooler 4. Done on the entrance side.

実施形態1では、反応槽1での反応終了後、排出用開閉弁3を開けると高温高圧状態の反応液2が冷却器4まで排出されていたが、この構成においては高温高圧状態の反応液2が圧力調整弁5を介して冷却器4に送られるため、実施形態1の構成と比較して、反応槽1からの圧力が冷却器4にかからない。したがって、冷却器4の耐圧性能を小さくすることができ、設備として簡易になるメリットがあり、設備コストの低減が可能になる。
<実施形態3>
図3は、上記と別の例を示した概要構成図である。この例では、減圧による冷却のための圧力調整弁13と冷却器14とを反応槽1に併設している。この構成では、途中段階まで(反応温度230℃の時に、たとえば、150℃まで)は圧力調整弁13を開いて減圧冷却を行い、その後、排出用開閉弁3を開いて、上記の実施形態1と同様にして反応液2を取出すようにする。上記減圧冷却は、圧力調整弁13を開いて反応槽1内から気体を放出させることによって反応槽1内を減圧して潜熱を奪い、反応槽1内の液を冷却するものであり、反応槽1から放出した気体を冷却器14により冷却して液化して、液を回収するようになっている。
In Embodiment 1, the reaction liquid 2 in a high temperature and high pressure state is discharged to the cooler 4 when the discharge on-off valve 3 is opened after completion of the reaction in the reaction tank 1, but in this configuration, the reaction liquid in a high temperature and high pressure state is discharged. Since 2 is sent to the cooler 4 via the pressure regulating valve 5, the pressure from the reaction tank 1 is not applied to the cooler 4 as compared with the configuration of the first embodiment. Therefore, the pressure resistance performance of the cooler 4 can be reduced, and there is a merit that the facility is simplified, and the facility cost can be reduced.
<Embodiment 3>
FIG. 3 is a schematic configuration diagram illustrating another example. In this example, a pressure regulating valve 13 and a cooler 14 for cooling by decompression are provided in the reaction tank 1. In this configuration, until the middle stage (when the reaction temperature is 230 ° C., for example, up to 150 ° C.), the pressure regulating valve 13 is opened and cooling is performed under reduced pressure. In the same manner as described above, the reaction solution 2 is taken out. The above-mentioned reduced-pressure cooling is a method in which the pressure in the reaction tank 1 is reduced by opening the pressure regulating valve 13 to release gas from the reaction tank 1 to remove latent heat, and the liquid in the reaction tank 1 is cooled. The gas discharged from 1 is cooled and liquefied by the cooler 14 to recover the liquid.

気化による冷却効果が比較的高い段階では減圧冷却し、気化による冷却効果が比較的弱くなった後半で直接排出することでさらに排出時間を短縮するとともに圧力調整弁5、冷却器4の耐圧性能(約230℃の場合2.8MPa、150℃では0.5MPa)が小さくてすみ、設備として簡易になるメリットがある。また、耐熱性能も同様であり、また、冷却器4の冷却性能も小さくてすみ、冷却器4自体の設備コストも低減可能である。   When the cooling effect due to vaporization is relatively high, the cooling is performed under reduced pressure, and by directly discharging in the latter half when the cooling effect due to vaporization is relatively weak, the discharge time is further shortened, and the pressure regulating performance of the pressure regulating valve 5 and the cooler 4 ( In the case of about 230 ° C., 2.8 MPa, and in case of 150 ° C., 0.5 MPa) is small, and there is an advantage that the equipment is simplified. Further, the heat resistance performance is the same, the cooling performance of the cooler 4 can be small, and the equipment cost of the cooler 4 itself can be reduced.

減圧冷却と排出用開閉弁3からの排出を同時に行ってもよく、あるいは途中までは減圧冷却のみ、そこから先は減圧冷却と排出用開閉弁3からの排出を併用してもよい。   The decompression cooling and the discharge from the discharge opening / closing valve 3 may be performed simultaneously, or only the decompression cooling is performed partway, and the decompression cooling and the discharge from the discharge opening / closing valve 3 may be used thereafter.

なお、この図3の分解装置の構成では、圧力調整弁5が冷却器4の出口側に設けられているが、図2のように、圧力調整弁5が冷却器4の入口側に設けられていてもよい。
<実施形態4>
プラスチックがFRP(繊維強化プラスチック)の場合、樹脂は溶解されるもののガラス繊維や無機物充填材(炭酸カルシウム等)は溶解されることなく固形分として反応後に残留することになる。このような場合には、反応後攪拌等による混合操作を停止すると上部に液体分、底部に固形分が沈降する。
3, the pressure regulating valve 5 is provided on the outlet side of the cooler 4, but the pressure regulating valve 5 is provided on the inlet side of the cooler 4 as shown in FIG. 2. It may be.
<Embodiment 4>
When the plastic is FRP (fiber reinforced plastic), the resin is dissolved, but the glass fiber and the inorganic filler (calcium carbonate, etc.) remain as solids after the reaction without being dissolved. In such a case, when the mixing operation such as stirring after the reaction is stopped, the liquid content is settled at the top and the solid content is settled at the bottom.

そこで、反応液の上澄み液だけを取出すことが有効な手段となる。図4は、そのための第2の発明に係わる実施形態の一例を示したものである。排出用開閉弁3に連結する取出し口15を反応槽1の側面に設置して上澄み液を取出すようにしている。   Therefore, taking out only the supernatant of the reaction solution is an effective means. FIG. 4 shows an example of an embodiment according to the second invention for that purpose. A take-out port 15 connected to the discharge on-off valve 3 is installed on the side surface of the reaction tank 1 to take out the supernatant liquid.

たとえば、具体的には、排出用開閉弁3に連結する取出し口15が、底からみて反応槽1の全体高さの1/3より上の位置の反応槽1の側面に設けられている。反応液2の排出時に攪拌を停止すると未溶解の固形物が沈降し底部に溜まる。その後、排出用開閉弁3を開け、実施形態1と同様の操作で、反応液2の固形分をほとんど含まない上澄み液を取出す。上澄み液排出後、固形物は開閉弁16から排出する。反応槽1底部は擂鉢状にする等排出しやすい形状にするとともに、開閉弁16の径は固形物に対応した大口径のものとする。   For example, specifically, the take-out port 15 connected to the discharge on-off valve 3 is provided on the side surface of the reaction tank 1 at a position higher than 1/3 of the overall height of the reaction tank 1 when viewed from the bottom. When stirring is stopped when the reaction solution 2 is discharged, undissolved solids settle and accumulate at the bottom. Thereafter, the discharge on-off valve 3 is opened, and the supernatant liquid containing almost no solid content of the reaction liquid 2 is taken out by the same operation as in the first embodiment. After discharging the supernatant liquid, the solid matter is discharged from the on-off valve 16. The bottom of the reaction vessel 1 is shaped like a bowl and is easy to discharge, and the opening / closing valve 16 has a large diameter corresponding to the solid matter.

上澄み液だけを抜くことで固形分の少ない液のみを回収することができ、冷却器4、圧力調整弁5の閉塞を防ぐことができる。なお、底部に沈降した固形分は反応液2が排出され内圧が下がった状態で冷却器4、圧力調節弁5を通らない経路で排出する。   By removing only the supernatant liquid, only the liquid having a small solid content can be recovered, and the cooler 4 and the pressure regulating valve 5 can be prevented from being blocked. The solid content settled at the bottom is discharged through a path that does not pass through the cooler 4 and the pressure control valve 5 in a state where the reaction liquid 2 is discharged and the internal pressure is lowered.

このような構成において、第3の発明のように、上澄み液を抜き取る取出し口15が反応槽1内の水位に追随可能とするのが有効でもある。このことは、たとえば、反応槽1内に、浮力によって水位に追随するフロート方式の取出し管を設ける等の手段によって実現される。あるいは次の実施形態5のような方式も考慮される。   In such a configuration, as in the third aspect of the invention, it is also effective that the take-out port 15 for extracting the supernatant liquid can follow the water level in the reaction tank 1. This can be realized, for example, by means such as providing in the reaction tank 1 a float type take-out pipe that follows the water level by buoyancy. Or the system like the following Embodiment 5 is also considered.

水位に追随する取出し口部を設けることで、常に一番清澄度の高い液を取り出すことが可能で、冷却器、圧力調整弁への詰まりの原因となる固形分の排出がない。   By providing a takeout port portion that follows the water level, it is possible to always take out the liquid with the highest clarity, and there is no discharge of solids that cause clogging of the cooler and the pressure regulating valve.

なお、この図4の分解装置の構成では、圧力調整弁5が冷却器4の出口側に設けられているが、図2のように、圧力調整弁5が冷却器4の入口側に設けられていてもよい。
<実施形態5>
図5は、第4の発明の分解装置の一例を示した概要構成図である。
4, the pressure regulating valve 5 is provided on the outlet side of the cooler 4, but the pressure regulating valve 5 is provided on the inlet side of the cooler 4 as shown in FIG. It may be.
<Embodiment 5>
FIG. 5 is a schematic configuration diagram showing an example of the disassembling apparatus of the fourth invention.

排出用開閉弁3が反応槽1の深さ方向に複数設けられており、排出に応じて、より下方の排出用開閉弁3が開いて反応液2を排出するものである。排出用開閉弁3の開く制御はタイマで行ってもよいし、反応槽1の水位を検出することで制御してもよい。このような構成にすることで、より反応槽1の液位が低いところまで排出が可能となる。   A plurality of discharge open / close valves 3 are provided in the depth direction of the reaction tank 1, and the lower discharge open / close valve 3 opens to discharge the reaction liquid 2 according to discharge. Control for opening the discharge on-off valve 3 may be performed by a timer or by detecting the water level of the reaction tank 1. By adopting such a configuration, it is possible to discharge to a place where the liquid level of the reaction tank 1 is lower.

なお、この図5の分解装置の構成では、圧力調整弁5が冷却器4の出口側に設けられているが、図2のように、圧力調整弁5が冷却器4の入口側に設けられていてもよい。
<実施形態6>
図6は、第5の発明の分解装置の一例を示した概要構成図である。
5, the pressure regulating valve 5 is provided on the outlet side of the cooler 4, but the pressure regulating valve 5 is provided on the inlet side of the cooler 4 as shown in FIG. 2. It may be.
<Embodiment 6>
FIG. 6 is a schematic configuration diagram showing an example of the disassembling apparatus of the fifth invention.

上記のように、プラスチックがFRP(繊維強化プラスチック)の場合、樹脂は溶解するもののガラス繊維や無機物充填材(炭酸カルシウム等)等は溶解せずに固形分として反応後の反応液2に残留する。その場合、実施形態1,2や実施形態3のように反応液2を取出すと反応槽1本体が冷却されていない状態で液位が下がるために、反応槽1内壁面に固形物が固着し、後の洗浄が面倒になることがある。そこで図6の分解装置では、冷却器4および圧力調整弁5を介して冷却減圧して排出された反応液2を液送ポンプ等の移送手段17により再度反応槽1に戻し、この還流によって反応槽1内の液位を減らすことなく反応液2温度を下げる。液温が排出温度まで下がった段階で冷却器4を通らない排出経路18より反応液全量を排出する。   As described above, when the plastic is FRP (fiber reinforced plastic), the resin dissolves, but the glass fiber, the inorganic filler (calcium carbonate, etc.), etc. do not dissolve but remain in the reaction solution 2 after the reaction as a solid content. . In that case, when the reaction liquid 2 is taken out as in the first, second and third embodiments, the liquid level is lowered in a state where the main body of the reaction tank 1 is not cooled, so that solid matter adheres to the inner wall surface of the reaction tank 1. Later cleaning can be cumbersome. Therefore, in the decomposition apparatus of FIG. 6, the reaction liquid 2 cooled and depressurized via the cooler 4 and the pressure regulating valve 5 is returned to the reaction tank 1 again by the transfer means 17 such as a liquid feed pump, and the reaction is performed by this reflux. The reaction liquid 2 temperature is lowered without reducing the liquid level in the tank 1. When the liquid temperature falls to the discharge temperature, the entire reaction solution is discharged from the discharge path 18 that does not pass through the cooler 4.

なお、この図6の分解装置の構成では、圧力調整弁5が冷却器4の出口側に設けられているが、図2のように、圧力調整弁5が冷却器4の入口側に設けられていてもよい。
<実施形態7>
図7は、第6の発明の分解装置の一例を示した概要構成図である。
6, the pressure regulating valve 5 is provided on the outlet side of the cooler 4, but the pressure regulating valve 5 is provided on the inlet side of the cooler 4 as shown in FIG. It may be.
<Embodiment 7>
FIG. 7 is a schematic configuration diagram showing an example of the disassembling apparatus of the sixth invention.

本例も実施形態6と同様に固形物が残る場合の適用例である。このような反応液2の場合、排出時に冷却器4や圧力調整弁5の内壁に固形物が固着し、その結果、閉塞に繋がることが考えられる。そこで、本例では反応槽1内の反応液2を抜いた後の、次の反応のために反応槽1内に液を供給する時に圧力調整弁5の出口側に原料液供給配管19を接続して、冷却器4を通過して新しい液を反応槽1に供給し、その過程で固着物を供給液で洗い流すものである。若干の固着物が反応槽1に入るとしても反応には影響ない。この場合、プラスチックの粒径にもよるが、液のみ上記経路で供給し、プラスチック粉砕物は別に供給するほうが望ましい。   This example is also an application example in the case where the solid matter remains as in the sixth embodiment. In the case of such a reaction liquid 2, it is conceivable that solid matter adheres to the inner wall of the cooler 4 or the pressure regulating valve 5 at the time of discharge, and as a result, it is blocked. Therefore, in this example, the raw material liquid supply pipe 19 is connected to the outlet side of the pressure regulating valve 5 when the liquid is supplied into the reaction tank 1 for the next reaction after the reaction liquid 2 in the reaction tank 1 is removed. Then, a new liquid is supplied to the reaction tank 1 through the cooler 4, and the fixed matter is washed away with the supply liquid in the process. Even if some fixed matter enters the reaction vessel 1, the reaction is not affected. In this case, although it depends on the particle size of the plastic, it is preferable to supply only the liquid by the above route and to supply the crushed plastic separately.

なお、この図7の分解装置の構成では、圧力調整弁5が冷却器4の出口側に設けられているが、図2のように、圧力調整弁5が冷却器4の入口側に設けられていてもよい。この場合、冷却器4の出口側に原料液供給配管19を接続し、上記と同様に、新しい液が冷却器4及び圧力調整弁5を通過するように反応槽1に供給して、その過程で固着物を供給液で洗い流すようにする。   7, the pressure adjustment valve 5 is provided on the outlet side of the cooler 4, but the pressure adjustment valve 5 is provided on the inlet side of the cooler 4 as shown in FIG. 2. It may be. In this case, the raw material liquid supply pipe 19 is connected to the outlet side of the cooler 4, and in the same manner as described above, a new liquid is supplied to the reaction tank 1 so as to pass through the cooler 4 and the pressure regulating valve 5. To wash away the solids with the feed solution.

実施形態1の装置の概要構成図である。It is a schematic block diagram of the apparatus of Embodiment 1. 実施形態2の装置の概要構成図である。It is a schematic block diagram of the apparatus of Embodiment 2. 実施形態3の装置の概要構成図である。It is a schematic block diagram of the apparatus of Embodiment 3. 実施形態4の装置の概要構成図である。It is a schematic block diagram of the apparatus of Embodiment 4. 実施形態5の装置の概要構成図である。It is a schematic block diagram of the apparatus of Embodiment 5. 実施形態6の装置の概要構成図である。It is a schematic block diagram of the apparatus of Embodiment 6. 実施形態7の装置の概要構成図である。It is a schematic block diagram of the apparatus of Embodiment 7.

符号の説明Explanation of symbols

1 反応槽
2 反応液
3 排出用開閉弁
4 冷却器
5 圧力調整弁
6 温度検出器
7 冷却水
13 圧力調整弁
14 冷却器
15 取出し口
16 開閉弁
17 移送手段
18 排出経路
19 原料液供給配管
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Reaction liquid 3 Discharge on-off valve 4 Cooler 5 Pressure adjustment valve 6 Temperature detector 7 Cooling water 13 Pressure adjustment valve 14 Cooler 15 Outlet 16 On-off valve 17 Transfer means 18 Discharge path 19 Raw material liquid supply piping

Claims (6)

超臨界又は亜臨界の状態において被分解物を水熱分解する反応槽とともに、反応槽内からの高温高圧の反応液の取出し部を備えた分解装置において、取出し部には、
(A)反応液を取出して冷却する冷却器、
(B)冷却器の出口側又は入口側の圧力調整弁、
(C)冷却器出口の反応液の温度を検出して反応液の温度が沸点以下となるように圧力調整弁の開度を調整する制御手段
を有していることを特徴とする分解装置。
In a decomposition apparatus equipped with a high-temperature and high-pressure reaction liquid extraction part from the reaction tank together with a reaction tank for hydrothermally decomposing the object to be decomposed in a supercritical or subcritical state,
(A) a cooler that takes out and cools the reaction solution;
(B) a pressure regulating valve on the outlet side or inlet side of the cooler;
(C) A decomposition apparatus characterized by comprising a control means for detecting the temperature of the reaction liquid at the outlet of the cooler and adjusting the opening of the pressure regulating valve so that the temperature of the reaction liquid is below the boiling point.
請求項1に記載の分解装置において、取出し部には、固形分含有の反応液の上澄み液の取出し口部が配設されていることを特徴とする分解装置。   2. The decomposition apparatus according to claim 1, wherein an extraction port portion for a supernatant liquid of the reaction liquid containing a solid content is disposed in the extraction portion. 上澄み液の取出し口部が反応槽内の水位に追随して反応液の取出し位置変更可能に配設されていることを特徴とする請求項2に記載の分解装置。   3. The decomposition apparatus according to claim 2, wherein the outlet for removing the supernatant liquid is disposed so as to be able to change the position for removing the reaction liquid following the water level in the reaction tank. 上澄み液の取出し口部が反応槽の深さ方向に離れて複数配設されていることを特徴とする請求項2に記載の分解装置。   3. The decomposition apparatus according to claim 2, wherein a plurality of supernatant liquid take-out ports are disposed apart in the depth direction of the reaction tank. 請求項1から4のいづれかに記載の分解装置において、冷却器から取出された反応液の反応槽への還流手段が配設されていることを特徴とする分解装置。   The decomposition apparatus according to any one of claims 1 to 4, further comprising means for returning the reaction liquid taken out from the cooler to the reaction tank. 請求項1から5のいづれかに記載の分解装置において、冷却器の出口側には、反応槽内に供給を予定する液を冷却器を介して反応槽に供給可能としている液供給手段が配設されていることを特徴とする分解装置。   6. The decomposition apparatus according to claim 1, wherein a liquid supply means is provided on the outlet side of the cooler so that the liquid to be supplied into the reaction tank can be supplied to the reaction tank through the cooler. The disassembling apparatus characterized by being made.
JP2007248203A 2007-03-27 2007-09-25 Decomposition apparatus Pending JP2008264763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248203A JP2008264763A (en) 2007-03-27 2007-09-25 Decomposition apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007082936 2007-03-27
JP2007248203A JP2008264763A (en) 2007-03-27 2007-09-25 Decomposition apparatus

Publications (1)

Publication Number Publication Date
JP2008264763A true JP2008264763A (en) 2008-11-06

Family

ID=40045019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248203A Pending JP2008264763A (en) 2007-03-27 2007-09-25 Decomposition apparatus

Country Status (1)

Country Link
JP (1) JP2008264763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203291A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Decomposing apparatus and decomposition process method
JP2010077401A (en) * 2009-08-07 2010-04-08 Panasonic Electric Works Co Ltd Decomposition apparatus and method of discharging decomposed liquid
JP2010253395A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Method for discharging decomposition liquid
CN114192075A (en) * 2021-12-01 2022-03-18 江西省正百科技有限公司 Organic glass retrieves and uses high-purity decomposition device based on high temperature catalysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203291A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Decomposing apparatus and decomposition process method
JP2010253395A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Method for discharging decomposition liquid
JP2010077401A (en) * 2009-08-07 2010-04-08 Panasonic Electric Works Co Ltd Decomposition apparatus and method of discharging decomposed liquid
CN114192075A (en) * 2021-12-01 2022-03-18 江西省正百科技有限公司 Organic glass retrieves and uses high-purity decomposition device based on high temperature catalysis
CN114192075B (en) * 2021-12-01 2023-05-09 江西省正百科技有限公司 High-purity decomposing device for recycling organic glass based on high-temperature catalysis

Similar Documents

Publication Publication Date Title
US10370276B2 (en) Near-zero-release treatment system and method for high concentrated organic wastewater
JP4743627B2 (en) Water or sludge treatment equipment containing ions in liquid
JP5287010B2 (en) Method for hydrometallizing nickel oxide ore
JP5072090B2 (en) Concrete sludge treatment equipment
JP2010012467A (en) Apparatus for treating wastewater and sludge
JP2008264763A (en) Decomposition apparatus
JP2004008912A (en) Method and apparatus for treating organic waste
JP4997546B2 (en) Supercritical water biomass gasifier and system including the same
JP2010126556A (en) Plastic decomposition apparatus
JP2009106816A (en) Decomposition apparatus
CN110743476B (en) Multifunctional calcium hydroxide preparation tank and preparation method
JP5032281B2 (en) Disassembly equipment
JP4788673B2 (en) Plastic disassembly method
US20120232318A1 (en) Method for operating plant for producing mixed-gas hydrate
JP5859713B1 (en) Biomass gasification system and biomass gasification method
JP2009155388A (en) Decomposition apparatus for plastic and decomposition method for plastic using the same
JP2007197576A (en) Apparatus and method of for decomposing plastic
JP2009235206A (en) Plastic decomposition device
JP5237473B2 (en) Disassembly equipment
JP2003340262A (en) Method and apparatus for treating hydrothermal reaction
JP2009051968A (en) Plastic decomposition device
JP2009203291A (en) Decomposing apparatus and decomposition process method
JP2010253395A (en) Method for discharging decomposition liquid
JP2009051967A (en) Plastic decomposition device and plastic decomposition and recovery method using the same
WO2018003731A1 (en) Method for transporting multiphase liquid and device for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090518

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309