JP2009235206A - Plastic decomposition device - Google Patents

Plastic decomposition device Download PDF

Info

Publication number
JP2009235206A
JP2009235206A JP2008081967A JP2008081967A JP2009235206A JP 2009235206 A JP2009235206 A JP 2009235206A JP 2008081967 A JP2008081967 A JP 2008081967A JP 2008081967 A JP2008081967 A JP 2008081967A JP 2009235206 A JP2009235206 A JP 2009235206A
Authority
JP
Japan
Prior art keywords
decomposition
tank
liquid
cooling
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008081967A
Other languages
Japanese (ja)
Inventor
Hiroshi Yano
宏 矢野
Shin Matsugi
伸 真継
Toshihiro Miyazaki
敏博 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008081967A priority Critical patent/JP2009235206A/en
Publication of JP2009235206A publication Critical patent/JP2009235206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plastic decomposition device capable of efficiently cooling and recovering a decomposed liquid in a decomposition tank when a plastic molded product and the like in a supercritical/subcritical state is decomposed. <P>SOLUTION: The plastic decomposition device is provided with the decomposition tank 1, in which plastics are decomposed in a supercritical/subcritical state by using a fluid, a cooling tank 10 connected to the decomposition tank 1, and an opening/closing valve 11 decompressing the inside of the cooling tank 10. In the cooling tank 10, a gas-liquid interface B of the decomposed liquid 20 of the plastics transferred from the decomposition tank 1 is larger than a gas-liquid interface A of the decomposed liquid 20 in the decomposition tank 1. After transferring the decomposed liquid 20 of the plastics to the cooling tank 10 from the decomposition tank 1, the opening/closing valve 11 is opened to release vapor of the decomposed liquid 20 in the cooling tank 10 to the outside for decompressing the cooling tank 10, and heat of vaporization in this process cools down the decomposed liquid 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プラスチックの分解装置に関するものである。   The present invention relates to a plastic decomposing apparatus.

従来より、FRP(繊維強化プラスチック)に代表されるプラスチック成形品中の無機有価物及び有機有価物を回収して再利用できるようにするために、超臨界又は亜臨界状態の流体で分解する方法(例えば、特許文献1参照)が提案されている。   Conventionally, a method of decomposing with a supercritical or subcritical fluid in order to recover and reuse inorganic and organic valuables in plastic molded products represented by FRP (fiber reinforced plastic). (See, for example, Patent Document 1).

しかしながら、超臨界又は亜臨界の状態でのプラスチックの分解においては、FRPからのガラス繊維や炭素繊維等の補強繊維の回収を伴う場合をはじめ、破砕した粒状のプラスチックを含む混合液はスラリー状となるため、連続的に分解槽内に原料を供給し、連続的に分解槽内から分解液を取り出すことは、必ずしも容易ではないという問題がある。その理由は、第1には、スラリー液を高温高圧で送液するポンプが高価であり、固形物による部品の磨耗等の耐久性に問題が生じやすいことであり、第2には、反応性を確保しつつ、分解槽に残留した未反応固形物の全量排出が困難であることによる。特にプラスチックがFRPの場合、比重の重いガラス繊維や炭酸カルシウム等の無機物成分が未反応のまま残り、沈降性の高いこれらの成分を伴う分解液の排出は難しい。   However, in the decomposition of plastics in a supercritical or subcritical state, the mixed liquid containing crushed granular plastics is in a slurry state, including the case where recovery of reinforcing fibers such as glass fibers and carbon fibers from FRP is involved. Therefore, there is a problem that it is not always easy to continuously supply the raw material into the decomposition tank and continuously take out the decomposition solution from the decomposition tank. The reason for this is that, firstly, the pump for feeding the slurry liquid at high temperature and high pressure is expensive, and problems such as wear of parts due to solid matter are likely to occur, and secondly, the reactivity. This is because it is difficult to discharge the entire amount of unreacted solids remaining in the decomposition tank while ensuring the above. In particular, when the plastic is FRP, inorganic components such as glass fiber having a high specific gravity and calcium carbonate remain unreacted, and it is difficult to discharge the decomposition solution with these components having high sedimentation properties.

したがって、このような場合には、回分式の分解装置が採用される。回分式の分解装置はバッチ処理であり、投入した原料は1バッチの反応後そのまま全量抜き出される操作となる。反応生成物を含む分解液を分解槽から取り出すにあたっては、分解槽内は液体を超臨界又は亜臨界状態にしているために高温・高圧の状態にあることから、分解槽内を常温にまで冷却する必要がある。また、分解液を取り出すために分解槽内を常圧にまで減圧する必要がある。   Therefore, in such a case, a batch type decomposition apparatus is employed. The batch-type decomposition apparatus is a batch process, and the input raw material is extracted as it is after one batch of reaction. When removing the decomposition solution containing reaction products from the decomposition tank, the decomposition tank is cooled to room temperature because it is in a supercritical or subcritical state and is in a high-temperature / high-pressure state. There is a need to. Further, it is necessary to reduce the pressure in the decomposition tank to normal pressure in order to take out the decomposition solution.

しかしながら、常温常圧まで分解液を冷却するには長時間必要であり、1バッチの処理時間を長引かせる主要因となっていた。そこで、冷却時間を短縮するために、従来、超臨界又は亜臨界状態の分解温度からフラッシュ冷却をおこない、分解槽内が大気圧以下になるまで分解液温を低下させ、分解槽からの排出をおこなうことが知られている。フラッシュ冷却とは、分解槽に設けられた開閉弁を開放して分解槽内の気体を分解槽外の低圧の系統に放出して分解槽内を減圧し、分解槽内をこのように減圧して流体を蒸発させ、そのときの気化熱により分解槽内の分解液を冷却するものである。   However, it takes a long time to cool the decomposition solution to room temperature and normal pressure, which has been a major factor in prolonging the processing time of one batch. Therefore, conventionally, in order to shorten the cooling time, flash cooling is performed from the supercritical or subcritical decomposition temperature, the decomposition liquid temperature is lowered until the decomposition tank is below atmospheric pressure, and the discharge from the decomposition tank is performed. It is known to do. In flash cooling, the open / close valve provided in the decomposition tank is opened, the gas in the decomposition tank is released to a low-pressure system outside the decomposition tank, the pressure in the decomposition tank is reduced, and the pressure in the decomposition tank is thus reduced. Thus, the fluid is evaporated, and the decomposition liquid in the decomposition tank is cooled by the heat of vaporization at that time.

フラッシュ冷却による温度低下を促進するには、蒸気の排出口である開閉弁の開度を大きくし、蒸気の分解槽からの排出量を増大させる必要がある。しかし、開閉弁の開度を急激に上げると、液表面からの蒸気の供給が間に合わず、飽和液中に液体が気化する、いわゆる突沸が生じる。分解槽内で突沸が生じると、持ち上げられたスラリーが開閉弁から同伴排出される。スラリーが同伴排出されると、弁体の損傷、配管の詰まり等を引き起こす可能性があるため、突沸を生じさせないような弁操作が必要であった。例えば、所定の分解時間経過後、開閉弁を微開とし、フラッシュ冷却を開始する。分解槽内の液温が低下するにつれて開閉弁開度を大きくし、冷却効率の向上を図っていた。しかし、このような弁操作をおこなっても冷却時間の短縮は充分とはいえず、さらなる冷却効率の向上が望まれているのが実情である。
国際公開第2004/041917号パンフレット
In order to promote the temperature drop due to flash cooling, it is necessary to increase the opening of the on-off valve, which is a steam discharge port, and increase the amount of steam discharged from the decomposition tank. However, when the opening degree of the on-off valve is rapidly increased, the supply of vapor from the liquid surface is not in time, and so-called bumping occurs in which the liquid vaporizes in the saturated liquid. When bumping occurs in the decomposition tank, the lifted slurry is discharged from the on-off valve. When the slurry is discharged together, there is a possibility of causing damage to the valve body, clogging of the piping, and the like, so that the valve operation was required so as not to cause bumping. For example, after a predetermined decomposition time has elapsed, the on-off valve is slightly opened and flash cooling is started. As the liquid temperature in the decomposition tank decreased, the opening / closing valve opening was increased to improve the cooling efficiency. However, even if such a valve operation is performed, the cooling time cannot be said to be sufficiently shortened, and the actual situation is that further improvement in cooling efficiency is desired.
International Publication No. 2004/041917 Pamphlet

本発明は、以上の通りの事情に鑑みてなされたものであり、超臨界状態又は亜臨界状態でのプラスチック成形品等の分解において、分解槽の分解液を効率的に冷却して回収することのできるプラスチックの分解装置を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and efficiently decomposes and recovers a decomposition solution in a decomposition tank in the decomposition of a plastic molded article or the like in a supercritical state or a subcritical state. An object of the present invention is to provide a plastic disassembling apparatus that can be used.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1に、プラスチックを超臨界状態又は亜臨界状態で流体により分解する分解槽と、分解槽に接続され、分解槽から移送されたプラスチックの分解液の気液界面が分解槽における分解液の気液界面よりも大きな冷却槽と、冷却槽内を減圧する開閉弁とを備え、プラスチックの分解液を分解槽から冷却槽に移送した後、開閉弁を開放して冷却槽における分解液の蒸気を外部に放出して冷却槽を減圧し、そのときの気化熱で分解液を冷却することを特徴とする。   First, a decomposition tank that decomposes plastic in a supercritical state or a subcritical state with a fluid, and a gas-liquid interface of the plastic decomposition liquid that is connected to the decomposition tank and transferred from the decomposition tank is A cooling tank larger than the liquid interface and an on-off valve that depressurizes the inside of the cooling tank. After transferring the plastic decomposition liquid from the decomposition tank to the cooling tank, the on-off valve is opened and the vapor of the decomposition liquid in the cooling tank is released. The cooling tank is decompressed by discharging to the outside, and the decomposition liquid is cooled by the heat of vaporization at that time.

第2に、上記第1のプラスチックの分解装置において、分解槽から冷却槽に移送されるプラスチックの分解液が、超臨界状態又は亜臨界状態の液体であることを特徴とする。   Second, in the first plastic decomposition apparatus, the plastic decomposition liquid transferred from the decomposition tank to the cooling tank is a liquid in a supercritical state or a subcritical state.

上記第1の発明によれば、分解槽から移送されたプラスチックの分解液の気液界面が分解槽における分解液の気液界面よりも大きな冷却槽であることにより、液表面からの蒸気発生量が増加する。したがって、開閉弁の開度を急激に上げた場合でも、液表面からの蒸気の供給が充分であるため、突沸の心配なくフラッシュ冷却を実施することが可能になり、分解液を効果的に冷却して回収することができる。   According to the first aspect of the present invention, since the gas-liquid interface of the plastic decomposition liquid transferred from the decomposition tank is a larger cooling tank than the gas-liquid interface of the decomposition liquid in the decomposition tank, the amount of steam generated from the liquid surface Will increase. Therefore, even when the opening degree of the on-off valve is suddenly increased, the supply of steam from the liquid surface is sufficient, so it is possible to perform flash cooling without worrying about bumping, effectively cooling the cracked liquid. And can be recovered.

上記第2の発明によれば、分解槽から冷却槽に移送されるプラスチックの分解液が超臨界又は亜臨界状態の液体であることにより、上記第1の発明の効果がより一層顕著なものとして実現され、冷却時間を短縮することが可能になる。   According to the second aspect of the invention, the plastic decomposition liquid transferred from the decomposition tank to the cooling tank is a liquid in a supercritical or subcritical state. This is realized and the cooling time can be shortened.

図1は、本発明に係るプラスチックの分解装置の一実施形態を示した概要構成図である。   FIG. 1 is a schematic configuration diagram showing an embodiment of a plastic disassembling apparatus according to the present invention.

この実施形態のプラスチックの分解装置は、耐圧性を有する円筒形の分解槽1を備えており、この分解槽1内で超臨界状態又は亜臨界状態の流体にてプラスチック成形品の分解を行っている。   The plastic decomposing apparatus of this embodiment includes a cylindrical decomposition tank 1 having pressure resistance, and the plastic molded product is decomposed in the supercritical or subcritical fluid in the decomposition tank 1. Yes.

分解槽1の外周にはヒーターや熱媒ジャケット等で形成される加熱手段2が設けられており、温度センサー等で形成される温度検出器3が分解槽1内に差し込んで設けられている。また、分解槽1には内部の圧力を測定する圧力ゲージなどで形成される圧力検出手段4が設けられている。この温度検出器3及び圧力検出手段4で分解槽1の温度、圧力をそれぞれ検出しながら、加熱手段2で分解槽1内を加熱することによって、検出される温度と圧力に基づいて加熱手段2を制御して最適温度での加熱を行うようにしている。   A heating means 2 formed by a heater, a heat medium jacket, or the like is provided on the outer periphery of the decomposition tank 1, and a temperature detector 3 formed by a temperature sensor or the like is inserted into the decomposition tank 1. The decomposition tank 1 is provided with a pressure detection means 4 formed by a pressure gauge for measuring the internal pressure. While detecting the temperature and pressure of the decomposition tank 1 with the temperature detector 3 and the pressure detection means 4, the heating means 2 is heated based on the detected temperature and pressure by heating the inside of the decomposition tank 1 with the heating means 2. Is controlled to perform heating at the optimum temperature.

分解槽1には、分解槽1内に投入されるプラスチック成形品と流体とを混合する攪拌装置5が設けられている。攪拌装置5は、回転軸51と、回転軸51に取り付けられた攪拌翼52を有しており、分解槽1の上部に設けたモータで回転軸51を回転駆動することにより、分解槽1内のプラスチック成形品と流体を攪拌混合する。本実施形態において分解するプラスチック成形品としては、特に制限されるものではないが、不飽和ポリエステル樹脂成形品等の熱硬化性樹脂成形品を用いることができる。そしてプラスチック成形品は分解反応がし易くなるように粉砕して粉粒状にし、水等の流体と共に分解槽1に投入するが、プラスチック成形品は通常疎水性であるため水等の流体と馴染みにくく、しかも粉砕したプラスチック成形品の粉粒体は空気を噛んでいるために液面に浮き易い。このようにプラスチック成形品と流体との混合が不十分であると、プラスチック成形品の分解の効率が悪くなる。   The decomposition tank 1 is provided with a stirrer 5 for mixing the plastic molded product and the fluid that is put into the decomposition tank 1. The stirring device 5 has a rotating shaft 51 and a stirring blade 52 attached to the rotating shaft 51, and the rotating shaft 51 is rotated by a motor provided on the upper portion of the decomposition tank 1. Stir and mix the plastic molding and fluid. Although it does not restrict | limit especially as a plastic molded product decomposed | disassembled in this embodiment, Thermosetting resin molded products, such as an unsaturated polyester resin molded product, can be used. The plastic molded product is pulverized and pulverized so as to be easily decomposed, and is put into the decomposition tank 1 together with a fluid such as water. However, since the plastic molded product is usually hydrophobic, it is difficult to adapt to a fluid such as water. In addition, the pulverized plastic molded product powder is easy to float on the liquid surface because it is in the air. Thus, when mixing of a plastic molded product and a fluid is insufficient, the efficiency of decomposition | disassembly of a plastic molded product will worsen.

このために本実施形態では、プラスチック成形品と流体との混合を十分なものとするために、攪拌装置6を備えた前処理槽7が原料供給配管8を介して分解槽1に接続されている。そしてプラスチック成形品の粉粒体と水等の流体とを前処理槽7に投入し、攪拌装置6で十分に攪拌して流体中にプラスチック成形品を混合して、流体中にプラスチック成形品が馴染んだスラリー状にした後、液送ポンプ9で原料供給配管8を通してプラスチック成形品と流体のスラリーを分解槽1に供給するようにしており、プラスチック成形品の分解が効率良くおこなわれるようにしている。   Therefore, in this embodiment, in order to sufficiently mix the plastic molded product and the fluid, the pretreatment tank 7 provided with the stirring device 6 is connected to the decomposition tank 1 through the raw material supply pipe 8. Yes. Then, the powder of the plastic molded product and a fluid such as water are put into the pretreatment tank 7, and the plastic molded product is mixed in the fluid by sufficiently stirring with the stirring device 6. After making the familiar slurry, the liquid feed pump 9 supplies the plastic molded product and fluid slurry to the decomposition tank 1 through the raw material supply pipe 8 so that the plastic molded product can be efficiently decomposed. Yes.

また、分解槽1に供給されたプラスチック成形品の粉粒体が流体中を分解槽1下部に沈降して分解反応が受け難くなることを防止したり、また加熱時にプラスチック成形品の粉粒体が分解槽1内面に固着したりすることを防止するなど、プラスチック成形品の粉粒体の流体に対する攪拌混合性を高めて流体との反応効率を向上させるために、プラスチック成形品は粒径が2〜20mm程度、好ましくは最大粒子径が5mm以下になるように粉砕して使用するのが好ましい。プラスチックの最大粒子径は小さいほど望ましいものであり、粉砕可能であればいくら小さくてもよい。   Moreover, it prevents that the granular material of the plastic molded product supplied to the decomposition tank 1 settles in the fluid at the lower part of the decomposition tank 1 and does not easily undergo a decomposition reaction. In order to improve the agitation and mixing properties of the powder of the plastic molded product with respect to the fluid and improve the reaction efficiency with the fluid, such as preventing the adhesion to the inner surface of the decomposition tank 1, the plastic molded product has a particle size of It is preferably used after being pulverized so that the maximum particle diameter is about 2 to 20 mm, preferably 5 mm or less. The smaller the maximum particle size of the plastic, the more desirable it is.

本実施形態のプラスチックの分解装置は、さらに冷却槽10と、その上部に開度の調整が可能な開閉弁11とを備えている。   The plastic disassembling apparatus according to the present embodiment further includes a cooling tank 10 and an opening / closing valve 11 capable of adjusting an opening degree at an upper portion thereof.

冷却槽10は排出用開閉弁12を備えた排出配管14を介して分解槽1の底部と接続されている。本実施形態では、冷却槽10は分解槽1よりも下方の位置に設置されている。これにより、液送ポンプ等の搬送手段を設けなくても、排出用開閉弁12を開放することでプラスチック成形品の分解液20を分解槽1から冷却槽10に移送することができる。冷却槽10は、分解液20の気液界面Bが分解槽1における分解液20の気液界面Aよりも大きくなるように、例えば、分解槽1よりも断面積が大きな円筒形に形成されている。本実施形態では、例えば、分解槽1が外径1200mm程度、高さ3000mm程度に設定されているのに対して、冷却槽10が外径2500mm程度と分解槽1の外径の倍程度に設定されているが、分解槽1の断面積よりも大きければ特に制限されるものではない。冷却槽10の高さは特に制限されるものではなく、例えば1500mm程度に設定することが考慮される。   The cooling tank 10 is connected to the bottom of the decomposition tank 1 via a discharge pipe 14 having a discharge on-off valve 12. In the present embodiment, the cooling tank 10 is installed at a position below the decomposition tank 1. Accordingly, the plastic molded product decomposition liquid 20 can be transferred from the decomposition tank 1 to the cooling tank 10 by opening the discharge on-off valve 12 without providing a conveying means such as a liquid feed pump. For example, the cooling tank 10 is formed in a cylindrical shape having a larger cross-sectional area than the decomposition tank 1 so that the gas-liquid interface B of the decomposition liquid 20 is larger than the gas-liquid interface A of the decomposition liquid 20 in the decomposition tank 1. Yes. In the present embodiment, for example, the decomposition tank 1 is set to an outer diameter of about 1200 mm and a height of about 3000 mm, whereas the cooling tank 10 is set to an outer diameter of about 2500 mm and about twice the outer diameter of the decomposition tank 1. However, there is no particular limitation as long as it is larger than the cross-sectional area of the decomposition tank 1. The height of the cooling tank 10 is not particularly limited, and for example, setting to about 1500 mm is considered.

冷却槽10の外周には、図示しないが、分解槽1と同様にヒーターや熱媒ジャケット等で形成される加熱手段が設けられていてもよく、さらに温度検出器及び圧力検出手段が設けられていてもよい。そして分解槽1から冷却槽10への分解液20の移送を超臨界状態又は亜臨界状態でおこなう場合には、分解液20を冷却槽10に移送する前に、分解槽1と同じく加熱手段によって冷却槽10内部を高温高圧状態にしておく。   Although not shown, the cooling tank 10 may be provided with heating means formed of a heater, a heat medium jacket, etc., as well as the decomposition tank 1, and further provided with a temperature detector and pressure detection means. May be. When the decomposition liquid 20 is transferred from the decomposition tank 1 to the cooling tank 10 in a supercritical state or a subcritical state, before the decomposition liquid 20 is transferred to the cooling tank 10, the heating means is used similarly to the decomposition tank 1. The inside of the cooling tank 10 is kept in a high temperature and high pressure state.

プラスチック成形品の分解液20を分解槽1から冷却槽10に移送した後、冷却槽10の上部に設けられた開閉弁11を開くと、分解液20の蒸気が配管16を通じて冷却槽10の外部に放出され、冷却槽10内の圧力が減圧する。このように冷却槽10内の圧力が減圧すると冷却槽10内の分解液20が気化し、その際の気化熱によって分解液20の温度が下がり、分解液20が冷却される(フラッシュ冷却)。気化して配管16に放出された蒸気は、冷却水等の冷媒が循環している凝縮器17に送られて熱交換され、流体として貯留槽18に回収されるようになっている。   After the decomposition liquid 20 of the plastic molded product is transferred from the decomposition tank 1 to the cooling tank 10, when the on-off valve 11 provided at the upper part of the cooling tank 10 is opened, the vapor of the decomposition liquid 20 passes through the pipe 16 to the outside of the cooling tank 10. And the pressure in the cooling bath 10 is reduced. When the pressure in the cooling tank 10 is reduced in this way, the decomposition liquid 20 in the cooling tank 10 is vaporized, the temperature of the decomposition liquid 20 is lowered by the heat of vaporization at that time, and the decomposition liquid 20 is cooled (flash cooling). The vapor that has been vaporized and discharged to the pipe 16 is sent to a condenser 17 in which a coolant such as cooling water is circulated, heat exchanged, and recovered as a fluid in a storage tank 18.

冷却槽10で冷却された分解液20は、冷却槽10の底部に接続される排出配管15を通じて回収槽19に回収される。ここで、排出配管15には排出弁13が設けられており、これを開放することで冷却槽10の底部から分解液20が排出されて、回収槽19に送られる。   The decomposition solution 20 cooled in the cooling tank 10 is recovered in the recovery tank 19 through the discharge pipe 15 connected to the bottom of the cooling tank 10. Here, the discharge pipe 13 is provided with a discharge valve 13, and the decomposition solution 20 is discharged from the bottom of the cooling tank 10 by being opened, and sent to the recovery tank 19.

以上の構成を備えたプラスチックの分解装置を用いて、次にようにしてプラスチック成形品の分解処理をおこなう。   Using the plastic disassembling apparatus having the above configuration, the plastic molded product is disassembled as follows.

まずプラスチック成形品と水等の流体とを前処理槽7に投入して十分に攪拌し、分解槽1に供給する。このようにプラスチック成形品と流体とを分解槽1に供給した後、分解槽1を密閉状態にし、プラスチック成形品と流体を攪拌装置5で攪拌しながら加熱手段2で加熱する。   First, a plastic molded product and a fluid such as water are put into the pretreatment tank 7, sufficiently stirred, and supplied to the decomposition tank 1. After the plastic molded product and the fluid are supplied to the decomposition tank 1 in this manner, the decomposition tank 1 is sealed, and the plastic molded product and the fluid are heated by the heating unit 2 while being stirred by the stirring device 5.

そして、温度検出器3で分解槽1内の温度を、圧力検出手段4で分解槽1内の圧力を、それぞれ検出しながら加熱手段2による加熱をおこない、検出された温度と圧力に応じて加熱を制御することによって、分解槽1内の流体が超臨界状態又は亜臨界状態になる温度・圧力を維持し、この超臨界状態又は亜臨界状態の流体を反応触媒としてプラスチック成形品を分解することができる。例えばプラスチック成形品として不飽和ポリエステル樹脂成形品を用い、流体として水を用いる場合、プラスチック成形品濃度10〜15wt%、分解温度180〜250℃、圧力1.0〜4.0MPaに調整し、水を超臨界状態又は亜臨界状態に維持して1〜4時間反応させることによって、不飽和ポリエステル樹脂をエステル交換反応させ、スチレンマレイン酸共重合体や多価アルコール等のモノマーに加水分解することができる。   Then, heating is performed by the heating means 2 while detecting the temperature in the decomposition tank 1 by the temperature detector 3 and the pressure in the decomposition tank 1 by the pressure detection means 4, and heating is performed according to the detected temperature and pressure. By controlling the temperature, the temperature and pressure at which the fluid in the decomposition tank 1 becomes supercritical or subcritical is maintained, and the plastic molded product is decomposed using the fluid in the supercritical or subcritical state as a reaction catalyst. Can do. For example, when an unsaturated polyester resin molded product is used as the plastic molded product and water is used as the fluid, the plastic molded product concentration is adjusted to 10 to 15 wt%, the decomposition temperature is 180 to 250 ° C., and the pressure is 1.0 to 4.0 MPa. Is allowed to react for 1 to 4 hours while maintaining the supercritical state or subcritical state, thereby allowing the unsaturated polyester resin to undergo a transesterification reaction and hydrolyzing into a monomer such as a styrene maleic acid copolymer or a polyhydric alcohol. it can.

所定の分解時間経過後、排出用開閉弁12を操作することにより、超臨界状態又は亜臨界状態の分解液20を排出配管14を通じて冷却槽10に移送する。   After elapse of a predetermined decomposition time, the supercritical or subcritical decomposition liquid 20 is transferred to the cooling tank 10 through the discharge pipe 14 by operating the discharge on-off valve 12.

分解液20を分解槽1から冷却槽10に移送した後、冷却槽10の上部に設けられた開閉弁11を開いて冷却槽10内の分解液20の蒸気を配管16を通じて放出させ、冷却槽10内の圧力を減圧していく。このように冷却槽10内の圧力が減圧すると、上述したように、冷却槽10内の分解液20が気化し、その際の気化熱によって分解液20の温度が下がり、分解液20が冷却される。本実施形態では、分解槽1よりも断面積が大きな円筒形の冷却槽10を用いているため、冷却槽10における分解液20の気液界面Bが分解槽1における分解液20の気液界面Aよりも大きく液表面からの蒸気発生量が増加している。このため、従来、分解槽1でおこなっていた分解液20のフラッシュ冷却に比べて、開閉弁11の開度を急激に上げた場合でも液表面からの蒸気が充分に供給され、突沸の心配なく効率的にフラッシュ冷却を実施することができる。したがって、より短時間でフラッシュ冷却による分解液20の温度低下を一層促進することができ、冷却時間の短縮化が図られる。   After the decomposition liquid 20 is transferred from the decomposition tank 1 to the cooling tank 10, the on-off valve 11 provided at the upper part of the cooling tank 10 is opened to release the vapor of the decomposition liquid 20 in the cooling tank 10 through the pipe 16. The pressure in 10 is reduced. When the pressure in the cooling tank 10 is reduced in this way, as described above, the decomposition liquid 20 in the cooling tank 10 is vaporized, and the temperature of the decomposition liquid 20 is lowered by the vaporization heat at that time, and the decomposition liquid 20 is cooled. The In this embodiment, since the cylindrical cooling tank 10 having a larger cross-sectional area than the decomposition tank 1 is used, the gas-liquid interface B of the decomposition liquid 20 in the cooling tank 10 is the gas-liquid interface of the decomposition liquid 20 in the decomposition tank 1. The amount of steam generated from the liquid surface is larger than A, and the amount of generated steam is increased. For this reason, compared with the flash cooling of the decomposition liquid 20 conventionally performed in the decomposition tank 1, even when the opening degree of the on-off valve 11 is rapidly increased, the vapor from the liquid surface is sufficiently supplied, and there is no fear of bumping. Flash cooling can be performed efficiently. Therefore, the temperature drop of the decomposition liquid 20 by flash cooling can be further accelerated in a shorter time, and the cooling time can be shortened.

このようにして冷却槽10内の分解液20を冷却し、冷却槽10内の圧力が常圧またはその付近になった時点で排出弁13を開放して分解液20を回収槽19に回収する。   In this way, the decomposition liquid 20 in the cooling tank 10 is cooled, and when the pressure in the cooling tank 10 reaches or near normal pressure, the discharge valve 13 is opened and the decomposition liquid 20 is recovered in the recovery tank 19. .

以上、実施形態に基づいて本発明を説明したが、本発明は上記の実施形態に何ら限定されるものではない。例えば、分解槽と冷却槽の間に、円筒多管式熱交換器を設け、分解液を分解槽から冷却槽に移送中に分解液温度を低下させることもできる。また、冷却効率促進のために、冷却槽をジャケット構造にして冷却水等の冷媒を冷却槽の外周に供給するようにしてもよい。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment at all. For example, a cylindrical multi-tube heat exchanger can be provided between the decomposition tank and the cooling tank, and the decomposition liquid temperature can be lowered while the decomposition liquid is being transferred from the decomposition tank to the cooling tank. In order to promote cooling efficiency, the cooling tank may be a jacket structure and a coolant such as cooling water may be supplied to the outer periphery of the cooling tank.

本発明に係るプラスチックの分解装置の一実施形態を示した概要構成図である。It is the outline | summary block diagram which showed one Embodiment of the plastics decomposition | disassembly apparatus based on this invention.

符号の説明Explanation of symbols

1 分解槽
2 加熱手段
3 温度検出器
4 圧力検出手段
10 冷却槽
11 開閉弁
12 排出用開閉弁
13 排出弁
14,15 排出配管
16 配管
17 凝縮器
18 貯留槽
19 回収槽
20 分解液
DESCRIPTION OF SYMBOLS 1 Decomposition tank 2 Heating means 3 Temperature detector 4 Pressure detection means 10 Cooling tank 11 On-off valve 12 Discharge on-off valve 13 Discharge valve 14, 15 Discharge pipe 16 Pipe 17 Condenser 18 Storage tank 19 Recovery tank 20 Decomposition liquid

Claims (2)

プラスチックを超臨界状態又は亜臨界状態で流体により分解する分解槽と、分解槽に接続され、分解槽から移送されたプラスチックの分解液の気液界面が分解槽における分解液の気液界面よりも大きな冷却槽と、冷却槽内を減圧する開閉弁とを備え、プラスチックの分解液を分解槽から冷却槽に移送した後、開閉弁を開放して冷却槽における分解液の蒸気を外部に放出して冷却槽を減圧し、そのときの気化熱で分解液を冷却することを特徴とするプラスチックの分解装置。   A cracking tank that decomposes plastic in a supercritical state or subcritical state with a fluid, and a gas-liquid interface of the plastic decomposition liquid that is connected to the decomposition tank and transferred from the decomposition tank is more than the gas-liquid interface of the decomposition liquid in the decomposition tank. Equipped with a large cooling tank and an open / close valve that depressurizes the inside of the cooling tank. After transferring the plastic decomposition liquid from the decomposition tank to the cooling tank, the open / close valve is opened to release the vapor of the decomposition liquid in the cooling tank to the outside. And decompressing the cooling tank, and cooling the decomposition liquid with the heat of vaporization at that time. 分解槽から冷却槽に移送されるプラスチックの分解液が、超臨界状態又は亜臨界状態の液体であることを特徴とする請求項1に記載のプラスチックの分解装置。   2. The plastic decomposition apparatus according to claim 1, wherein the plastic decomposition liquid transferred from the decomposition tank to the cooling tank is a liquid in a supercritical state or a subcritical state.
JP2008081967A 2008-03-26 2008-03-26 Plastic decomposition device Pending JP2009235206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081967A JP2009235206A (en) 2008-03-26 2008-03-26 Plastic decomposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081967A JP2009235206A (en) 2008-03-26 2008-03-26 Plastic decomposition device

Publications (1)

Publication Number Publication Date
JP2009235206A true JP2009235206A (en) 2009-10-15

Family

ID=41249569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081967A Pending JP2009235206A (en) 2008-03-26 2008-03-26 Plastic decomposition device

Country Status (1)

Country Link
JP (1) JP2009235206A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052698A (en) * 1996-06-04 1998-02-24 Ebara Corp Method for treating water medium containing organic substance and apparatus for hydrothermal reaction
JP2007197576A (en) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd Apparatus and method of for decomposing plastic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052698A (en) * 1996-06-04 1998-02-24 Ebara Corp Method for treating water medium containing organic substance and apparatus for hydrothermal reaction
JP2007197576A (en) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd Apparatus and method of for decomposing plastic

Similar Documents

Publication Publication Date Title
KR101369930B1 (en) Energy-saving sewage sludge solubilization device and method
EP3156374B1 (en) Method and facility for thermal hydrolysis of organic matter having short residence times and no pumps
WO2011114909A1 (en) Subcritical water treatment apparatus and method
JP2008264763A (en) Decomposition apparatus
JP6653108B2 (en) How to fix carbon dioxide
JP2010126556A (en) Plastic decomposition apparatus
JP2009235206A (en) Plastic decomposition device
JP2009106816A (en) Decomposition apparatus
JP2007197576A (en) Apparatus and method of for decomposing plastic
JP4788673B2 (en) Plastic disassembly method
JP4846307B2 (en) Continuous or semi-continuous processing apparatus and continuous or semi-continuous processing method
WO2005103131A1 (en) Method for decomposing thermosetting resin
JP2009051967A (en) Plastic decomposition device and plastic decomposition and recovery method using the same
JP2009155388A (en) Decomposition apparatus for plastic and decomposition method for plastic using the same
JP2010253395A (en) Method for discharging decomposition liquid
JP2009051968A (en) Plastic decomposition device
JP5032281B2 (en) Disassembly equipment
JP2009203291A (en) Decomposing apparatus and decomposition process method
JP5859713B1 (en) Biomass gasification system and biomass gasification method
JPH0977905A (en) Apparatus and method for recovering constituent monomers from polyethylene terephthalate
JP5110054B2 (en) Disassembly device and discharge method of decomposition liquid
JP2008239819A (en) Apparatus and method for decomposing thermosetting resin
JP2010126548A (en) Apparatus for decomposing plastic and method for decomposing plastic using the same
JP2010138230A (en) Method for producing solid fuel
JP4458187B2 (en) Disassembly device and discharge method of decomposition liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605