JP2008258262A - Igbt - Google Patents

Igbt Download PDF

Info

Publication number
JP2008258262A
JP2008258262A JP2007096434A JP2007096434A JP2008258262A JP 2008258262 A JP2008258262 A JP 2008258262A JP 2007096434 A JP2007096434 A JP 2007096434A JP 2007096434 A JP2007096434 A JP 2007096434A JP 2008258262 A JP2008258262 A JP 2008258262A
Authority
JP
Japan
Prior art keywords
region
concentration
igbt
drift layer
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007096434A
Other languages
English (en)
Inventor
Hirosuke Baba
浩佐 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007096434A priority Critical patent/JP2008258262A/ja
Publication of JP2008258262A publication Critical patent/JP2008258262A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

【課題】オン電圧が低いとともに耐圧が高いIGBTを提供することを目的とする。
【解決手段】本発明のIGBTは、第1導電型のコレクタ領域と、コレクタ領域上に積層された第2導電型のドリフト領域と、ドリフト領域によってコレクタ領域から分離されている第1導電型のボディ領域と、ボディ領域によってドリフト領域から分離されている第2導電型のエミッタ領域と、エミッタ領域とドリフト領域とを分離しているボディ領域と絶縁膜を介して対向しているゲート電極とを備えている。ドリフト領域は、不純物濃度が低く、ボディ領域と接する第1低濃度領域と、不純物濃度が高く、第1低濃度領域と接するとともに第1低濃度領域によってボディ領域から分離されており、半導体基板の平面方向に層状に広がる高濃度領域と、不純物濃度が低く、高濃度領域と接するとともに高濃度領域をコレクタ領域から分離している第2低濃度領域を有している。
【選択図】図1

Description

本発明は、IGBTに関する。
第1導電型のコレクタ領域と、コレクタ領域上に積層されている第2導電型のドリフト領域と、ドリフト領域によってコレクタ領域から分離されている第1導電型のボディ領域と、ボディ領域によってドリフト領域から分離されている第2導電型のエミッタ領域と、エミッタ領域とドリフト領域を分離している範囲のボディ領域に絶縁膜を介して対向しているゲート電極を備えたIGBTが知られている。このIGBTのゲート電極にオン電圧を印加すると、ボディ領域にチャネルが形成される。これによって、第2キャリア(第2導電型半導体の多数キャリア)がエミッタ電極からエミッタ領域とボディ領域を通過してドリフト領域に流入する。ドリフト領域に流入した第2キャリアは、コレクタ領域を通過してコレクタ電極へと流れる。また、第2キャリアがドリフト領域に流入すると、それに応じて、第1キャリア(第1導電型半導体の多数キャリア)がコレクタ電極からコレクタ領域を通過してドリフト領域に流入する。第1キャリアと第2キャリアがドリフト領域に流入することによって、ドリフト領域内で伝導度変調現象が活発化し、ドリフト領域の抵抗が低下する。ドリフト領域に流入した第1キャリアは、ボディ領域を通過してエミッタ電極へと流れる。これによって、IGBTがオンする。
特許文献1には、オン時にドリフト領域内に蓄積するホールの量を増大させることによってドリフト領域の抵抗をより低下させ、IGBTのオン電圧をより低減させる技術が開示されている。特許文献1のIGBTは、ドリフト領域を下記の三層で構成する。
コレクタ領域と接する範囲には不純物濃度が高いバッファ領域を設ける。ボディ領域と接する範囲にも不純物濃度が高いバリア領域を設ける。バッファ領域とバリア領域の間に不純物濃度が低いベース領域を設ける。
このIGBTでは、オン時に、ホールがコレクタ電極からコレクタ領域とバッファ領域を通過してベース領域に流入する。ベース領域に流入したホールは、バリア領域とボディ領域を通ってエミッタ電極へ流れようとする。しかしながら、ベース領域とバリア領域の界面が障壁となって、ホールがバリア領域へ流入することが抑制される。したがって、ベース領域内により多くのホールが蓄積されることとなる。ベース領域内のホールの数が多くなると、ベース領域での伝導度変調現象が活発化して抵抗が低くなる。したがって、特許文献1のIGBTは、オン電圧が低い。
特開2003−273359号公報
特許文献1のIGBTでは、ボディ領域に不純物濃度が比較的高いバリア領域が接している。したがって、IGBTのオフ時に、空乏層がドリフト領域とボディ領域の界面からドリフト領域側へ伸び難い。このために、特許文献1のIGBTは、耐圧が低いという問題があった。
本発明は、上述した実情に鑑みてなされたものであり、オン電圧が低いとともに耐圧が高いIGBTを提供することを目的とする。
本発明のIGBTは、第1導電型のコレクタ領域と、コレクタ領域上に積層されている第2導電型のドリフト領域と、ドリフト領域によってコレクタ領域から分離されている第1導電型のボディ領域と、ボディ領域によってドリフト領域から分離されている第2導電型のエミッタ領域と、エミッタ領域とドリフト領域とを分離している範囲のボディ領域に絶縁膜を介して対向しているゲート電極を備えている。本発明のIGBTのドリフト領域は、第1低濃度領域と高濃度領域と第2低濃度領域を備えている。第1低濃度領域は、ボディ領域に接するとともに、不純物濃度が低い。高濃度領域は、第1低濃度領域に接しており、第1低濃度領域によってボディ領域から分離されており、半導体基板の表面と平行な方向に層状に広がっているとともに、不純物濃度が高い。第2低濃度領域は、高濃度領域に接しており、高濃度領域をコレクタ領域から分離しているとともに、不純物濃度が低い。
上記IGBTで生じる現象をつぎに説明する。説明の便宜のために、最初は、コレクタ領域がp型であり、エミッタ領域がn型である場合を説明する。
IGBTがオンすると、ホールがコレクタ電極からコレクタ領域を通過して第2低濃度領域に流入する。第2低濃度領域に流入したホールは、高濃度領域と第1低濃度領域を通過してボディ領域へ流れようとする。しかしながら、不純物濃度が低い第2低濃度領域と不純物濃度が高い高濃度領域の界面が障壁となって、ホールが高濃度領域内へ流入することが抑制される。したがって、第2低濃度領域内により多くのホールが蓄積され、第2低濃度領域での伝導度変調現象が活発化して抵抗が低くなる。したがって、このIGBTのオン電圧は低い。
また、IGBTのオフ時には、ボディ領域と第1低濃度領域の界面に空乏層が形成される。ボディ領域と接する第1低濃度領域は不純物濃度が低いので、空乏層は前記界面から第1低濃度領域内に十分に広がることができる。したがって、空乏層の厚さが薄くなることが抑制される。すなわち、このIGBTは十分な耐圧を有している。
コレクタ領域がn型であり、エミッタ領域がp型である場合も、キャリアの導電型を反転した現象が生じる。この場合も、第2低濃度領域での伝導度変調現象が活発化して抵抗が低くなる。このIGBTでも、オン電圧は低い。
上述したIGBTでは、ボディ領域がアイランド領域内に形成されており、高濃度領域が半導体基板の表面と平行な方向に層状に広がるとともに、ボディ領域下部の所定範囲内では高濃度領域が形成されていないことが好ましい。
このような構成によれば、IGBTをターンオフさせるときに、第2低濃度領域内に蓄積されていた第1キャリアが、高濃度領域が形成されていない所定範囲を通過してボディ領域に流れることができる。したがって、IGBTのターンオフ速度を向上させることができる。
上記形式のIGBTでは、ボディ領域とエミッタ領域の上面にエミッタ電極が形成されており、ボディ領域のうちのエミッタ電極と接する範囲に、その範囲外のボディ領域より不純物濃度が高いボディコンタクト領域が形成されており、そのボディコンタクト領域の下部に高濃度領域が形成されていない所定範囲が確保されていることが好ましい。
このような構成によれば、IGBTのターンオフ速度をより向上させることができる。また、第1キャリアがエミッタ領域を流れることがなく、寄生サイリスタがオンする現象の発生を防止することができる。
上述したIGBTは、高濃度領域が、半導体基板を平面視したときに、IGBTのオン時にチャネルが形成される領域とドリフト領域と重なる範囲全体に形成されていることが好ましい。高濃度領域は、前記範囲の全体に亘っておればよく、それ以上の範囲に広がっていてもよい。
ドリフト領域のうち、チャネル領域と重なる範囲は最も多くの第2キャリアが流れる領域である。このIGBTでは、チャネル領域とドリフト領域が重なる範囲全体に高濃度領域が形成されているので、その範囲の第2低濃度領域に第1キャリアが蓄積される。すなわち、第2低濃度領域のうちで第2キャリアが最も多く流れる範囲の抵抗が下がる。したがって、高濃度領域が形成されていない範囲を形成したとしても、IGBTのオン電圧を十分低くすることができる。
(第1実施例)
本発明の第1実施例に係るIGBTについて図面を参照しながら説明する。図1は、第1実施例のIGBT10の概略構成を示す断面図である。図示するように、IGBT10は、シリコン基板12と、コレクタ電極20と、エミッタ電極40と、絶縁膜42に覆われたゲート電極44を備えている。コレクタ電極20は、シリコン基板12の下面12bの略全面に形成されている。ゲート電極44は、シリコン基板12の上面12aに形成されており、シリコン基板12と絶縁膜42を介して対向している。エミッタ電極40は、シリコン基板12の上面12aの略全面に、ゲート電極44を覆うように形成されている。ゲート電極44とエミッタ電極40は、絶縁膜42によって絶縁されている。
シリコン基板12の下面12bに臨む領域には、p型のコレクタ層22が形成されている。コレクタ層22の上側には、n型のドリフト層30が形成されている。ドリフト層30は、コレクタ層22と接する第1ドリフト層24と、第1ドリフト層24の上側に形成されている第2ドリフト層26と、第2ドリフト層26の上側に形成されている第3ドリフト層28によって構成されている。第1ドリフト層24と第3ドリフト層28のn型不純物濃度は略等しい。第2ドリフト層26は、第1ドリフト層24及び第3ドリフト層28よりn型不純物濃度が高い。シリコン基板12の上面12aに臨む領域には、n型のエミッタ領域36と、p型のボディ領域32が選択的に形成されている。ボディ領域32は、アイランド領域内に形成されている。エミッタ領域36は、絶縁膜42及びエミッタ電極40と接するように形成されている。ボディ領域32は、エミッタ領域36を覆うように形成されている。ボディ領域32によって、エミッタ領域36はドリフト層30から分離されている。ボディ領域32は、絶縁膜42及びエミッタ電極40と接するように形成されている。ボディ領域32のうちの絶縁膜42を介してゲート電極44と対向している範囲は、ゲート電極44にオン電圧が印加されたときに、チャネルが形成されるチャネル形成領域33である。ボディ領域32のうちエミッタ電極40と接する部分には、ボディ領域32の他部よりもp型不純物濃度が高いボディコンタクト領域34が形成されている。
図2は、図1のII−II線断面におけるドリフト層30内のn型不純物濃度Nの分布を示している。図示するように、第1ドリフト層24及び第3ドリフト層28内では、n型不純物は約1×1013/cmの略一定の濃度で存在している。また、第2ドリフト層26内では、n型不純物濃度が局所的に高くなっている。図示するように、第2ドリフト層26内では、n型不純物濃度が1×1015/cm以上の濃度となっている。
IGBT10のコレクタ電極20−エミッタ電極40間に順電圧を印加し、ゲート電極44にオン電圧を印加すると、IGBT10はオンする。すなわち、ボディ領域32中のチャネル形成領域33にチャネルが形成される。すると、電子が、エミッタ電極40からエミッタ領域36とボディ領域32のうちのチャネル形成領域33を通過してドリフト層30内に流入する。ドリフト層30内に流入した電子は、ドリフト層30とコレクタ層22を通過してコレクタ電極20へと流れる。
また、電子がドリフト層30内に流入すると、ホールがコレクタ電極20からコレクタ層22を通過して第1ドリフト層24内に流入する。第1ドリフト層24内に流入したホールは第2ドリフト層26内へと流れようとする。しかしながら、第1ドリフト層24と第2ドリフト層26の界面が障壁となってホールが第2ドリフト層26内へ流れることが抑制される。したがって、第2ドリフト層26内へ流れるホールは比較的少量となり、第1ドリフト層24内におけるホールの濃度が高くなる。すると、第1ドリフト層24内で伝導度変調現象が活発化して第1ドリフト層24の抵抗が非常に小さくなる。したがって、電子はほとんど損失を発生させることなく第1ドリフト層24内を流れることができる。
なお、第2ドリフト層26内へ流入した比較的少量のホールは、第3ドリフト層28とボディ領域32を通過してボディコンタクト領域34からエミッタ電極40へ流れる。
ゲート電極44に印加している電圧をオフすると、チャネル形成領域33に形成されていたチャネルが消失し、IGBT10がオフする。IGBT10がオフすると、ボディ領域32と第3ドリフト層28との界面に電圧が印加されるので、その界面近傍に空乏層が広がる。ボディ領域32に接している第3ドリフト層28のn型不純物濃度は低いので、空乏層は第3ドリフト層28内に十分に広がることができる。すなわち、空乏層の厚さが極端に薄くなることが無い。したがって、IGBT10は、十分な耐圧を有している。
以上に説明したように、IGBT10では、第2ドリフト層26のn型不純物濃度が第1ドリフト層24よりも高い。したがって、第1ドリフト層24に流入したホールが第2ドリフト層26内に流入し難く、第1ドリフト層24の抵抗をより低くすることができる。すなわち、IGBT10のオン電圧が低減されている。また、第2ドリフト層26とボディ領域32の間にn型不純物濃度が第2ドリフト層26より低い第3ドリフト層28が形成されている。したがって、IGBT10のオフ時にボディ領域32と第3ドリフト層28の界面から第3ドリフト層28内に空乏層が広がり、空乏層が薄くならない。したがって、IGBT10のオフ時の耐圧が高い。
なお、第2ドリフト層26のn型不純物濃度は、1×1015/cm以上であることが好ましく、第1ドリフト層24のn型不純物濃度は、1×1013/cm以下であることが好ましい。このような濃度でn型不純物が分布していると、IGBT10のオン時に第1ドリフト層24内のホールの濃度を十分に高くすることができる。
また、第3ドリフト層28のn型不純物濃度は、1×1013/cm以下であることが好ましい。このように第3ドリフト層28が形成されていると、空乏層が第3ドリフト層28内に十分に広がることができる。
なお、第1実施例のIGBT10においては、第2ドリフト層26は略同一深さに形成されていたが、図3に示すように、第2ドリフト層26が形成されている深さがシリコン基板12の平面方向の位置によって変化していても良い。また、図4に示すように、第2ドリフト層26の厚さがシリコン基板12の平面方向の位置によって変化していても良い。このように第2ドリフト層26が形成されていても、IGBT10のオン電圧を低減させることができる。
また、第1実施例のIGBT10においては、第1ドリフト層24がコレクタ層22と接していた。しかしながら、ドリフト層30が、第1ドリフト層24とコレクタ層22の間に形成されているとともにn型不純物濃度が高いバッファ層を有していてもよい。
(第2実施例)
次に第2実施例のIGBTについて説明する。第2実施例では、オン電圧が低減され、耐圧が向上されているとともに、ターンオフ速度が高速化されているIGBTについて説明する。
図5は、第2実施例のIGBT100の概略構成を示している。図5に示すように、第2実施例のIGBT100は、ドリフト層30を除いて第1実施例のIGBT10と同様に構成されている。
図5に示すように、IGBT100では、ボディコンタクト領域34の下部の範囲C1においては第2ドリフト層26が形成されていない。すなわち、範囲C1においては、第1ドリフト層24と第3ドリフト層28が直接、接しており、ホールがボディコンタクト領域34に流れることを妨げる高濃度領域26が形成されていない。その他の範囲においては、第2ドリフト層26が形成されており、ドリフト層30内のn型不純物の濃度分布は図2に示す分布となっている。
IGBT10のコレクタ電極20−エミッタ電極40間に順電圧を印加し、ゲート電極44にオン電圧を印加すると、電子が、エミッタ電極40からエミッタ領域36とボディ領域32のチャネル形成領域33を通過してドリフト層30内に流入する。ドリフト層30内に流入した電子は、ドリフト層30とコレクタ層22を通過してコレクタ電極20へと流れる。
また、電子がドリフト層30内に流入すると、ホールが、コレクタ電極20からコレクタ層22を通過して第1ドリフト層24内に流入する。第1ドリフト層24内に流入したホールは第3ドリフト層28側へ流れようとする。このとき、第2ドリフト層26が形成されている範囲(すなわち、範囲C1を除く範囲)では、第1ドリフト層24と第2ドリフト層26の界面が障壁となってホールが第3ドリフト層28側へ流れることが抑制される。したがって、第2ドリフト層26の下部の第1ドリフト層24内のホールの濃度が高くなる。したがって、その範囲の第1ドリフト層24内で伝導度変調現象が活発化して抵抗が下がる。ドリフト層30のうちチャネル形成領域33の下部は、最も多くの電子が流れる範囲である。チャネル形成領域33の下部には第2ドリフト層26が形成されているので、チャネル形成領域33の下部の第1ドリフト層24は抵抗が低くなっている。したがって、電子はほとんど損失を発生させることなく第1ドリフト層24内を流れることができる。
上述したように、ボディコンタクト領域34の下部の範囲C1には、第2ドリフト層26が形成されていない。したがって、範囲C1では、ホールが第1ドリフト層24から第3ドリフト層28へ容易に流れることができる。したがって、範囲C1の下部の第1ドリフト層24では、ホールの濃度があまり高くならず、抵抗が比較的高くなっている。しかしながら、範囲C1の下部の第1ドリフト層24には、電子がそれほど多く流れないので、抵抗が高くてもほとんど問題とならない。
ゲート電極44に印加する電圧をオフすると、チャネル形成領域33に形成されているチャネルが消失する。すると、シリコン基板12内の電子がコレクタ電極20へ排出され、ホールがエミッタ電極40へ排出される。
第1ドリフト層24内のホールは、第2ドリフト層26内へ流入し難い。しかしながら、IGBT100では、ボディコンタクト領域34の下部の範囲C1に第2ドリフト層26が形成されていない。したがって、第1ドリフト層24内のホールは、範囲C1を通過して第3ドリフト層28内へ流れることができる。第3ドリフト層28内へ流入したホールは、ボディ領域32を通過して、ボディコンタクト領域34からエミッタ電極40へ流れる。すなわち、IGBT100のターンオフ時に、第1ドリフト層24内のホールが素早くエミッタ電極40に排出される。特に、範囲C1がボディコンタクト領域34の下部(すなわち、ボディコンタクト領域34に最も近い位置)に形成されているので、第1ドリフト層24内のホールがより高速でエミッタ電極40へ排出される。したがって、IGBT100は、高速でターンオフすることができる。
以上に説明したように、第2実施例のIGBT100では、ボディコンタクト領域34の下部の範囲C1に第2ドリフト層26が形成されていない。したがって、IGBT100は高速でターンオフすることができる。
また、IGBT100では、チャネル形成領域33の下部に第2ドリフト層26が形成されている。したがって、IGBT100のオン時に、第1ドリフト層24のうちの多くの電子が流れる範囲の抵抗が低くなる。これによって、IGBT100のオン電圧が低減されている。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
第1実施例のIGBT10の概略断面図。 ドリフト層30の厚さ方向のn型不純物の濃度分布を示すグラフ。 変形例のIGBT10の概略断面図。 変形例のIGBT10の概略断面図。 第2実施例のIGBT100の概略断面図。
符号の説明
10:IGBT
12:シリコン基板
20:コレクタ電極
22:コレクタ層
24:第1ドリフト層
26:第2ドリフト層
28:第3ドリフト層
30:ドリフト層
32:ボディ領域
33:チャネル形成領域
34:ボディコンタクト領域
36:エミッタ領域
40:エミッタ電極
42:絶縁膜
44:ゲート電極
100:IGBT

Claims (4)

  1. IGBTであって、
    第1導電型のコレクタ領域と、
    コレクタ領域上に積層されている第2導電型のドリフト領域と、
    ドリフト領域によってコレクタ領域から分離されている第1導電型のボディ領域と、
    ボディ領域によってドリフト領域から分離されている第2導電型のエミッタ領域と、
    エミッタ領域とドリフト領域を分離している範囲のボディ領域に絶縁膜を介して対向しているゲート電極と、
    を備えており、
    前記ドリフト領域は、
    ボディ領域に接するとともに、不純物濃度が低い第1低濃度領域と、
    第1低濃度領域に接しており、第1低濃度領域によってボディ領域から分離されており、半導体基板の表面と平行な方向に層状に広がっているとともに、不純物濃度が高い高濃度領域と、
    高濃度領域に接しており、高濃度領域をコレクタ領域から分離しているとともに、不純物濃度が低い第2低濃度領域と、
    を有することを特徴とするIGBT。
  2. 前記ボディ領域は、アイランド領域内に形成されており、
    前記高濃度領域は、半導体基板の表面と平行な方向に層状に広がるとともに、ボディ領域下部の所定範囲内では形成されていないことを特徴とする請求項1に記載のIGBT。
  3. ボディ領域とエミッタ領域の上面にエミッタ電極が形成されており、
    ボディ領域のうちのエミッタ電極と接する範囲に、その範囲外のボディ領域より不純物濃度が高いボディコンタクト領域が形成されており、
    前記高濃度領域が形成されていない所定範囲が、ボディコンタクト領域の下部に形成されていることを特徴とする請求項2に記載のIGBT。
  4. 高濃度領域は、少なくとも、半導体基板を平面視したときに、IGBTのオン時にチャネルが形成される領域とドリフト領域が重なる範囲全体に形成されていることを特徴とする請求項2または3に記載のIGBT。
JP2007096434A 2007-04-02 2007-04-02 Igbt Pending JP2008258262A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096434A JP2008258262A (ja) 2007-04-02 2007-04-02 Igbt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096434A JP2008258262A (ja) 2007-04-02 2007-04-02 Igbt

Publications (1)

Publication Number Publication Date
JP2008258262A true JP2008258262A (ja) 2008-10-23

Family

ID=39981566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096434A Pending JP2008258262A (ja) 2007-04-02 2007-04-02 Igbt

Country Status (1)

Country Link
JP (1) JP2008258262A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109596A1 (ja) * 2009-03-24 2010-09-30 トヨタ自動車株式会社 半導体装置
JP2013089700A (ja) * 2011-10-14 2013-05-13 Fuji Electric Co Ltd 半導体装置
JP2013149798A (ja) * 2012-01-19 2013-08-01 Fuji Electric Co Ltd 炭化珪素半導体装置
JP2014007254A (ja) * 2012-06-22 2014-01-16 Sanken Electric Co Ltd 半導体装置及びその製造方法
US9577088B2 (en) 2013-07-17 2017-02-21 Fuji Electric Co., Ltd. Semiconductor device with high concentration region
US9882037B2 (en) 2016-01-29 2018-01-30 Denso Corporation IGBT-free wheeling diode combination with field stop layer in drift region
CN109065620A (zh) * 2018-08-22 2018-12-21 江苏中科君芯科技有限公司 一种具有低米勒电容的igbt器件

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109596A1 (ja) * 2009-03-24 2010-09-30 トヨタ自動車株式会社 半導体装置
US8604514B2 (en) 2009-03-24 2013-12-10 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP5447504B2 (ja) * 2009-03-24 2014-03-19 トヨタ自動車株式会社 半導体装置
JP2013089700A (ja) * 2011-10-14 2013-05-13 Fuji Electric Co Ltd 半導体装置
JP2013149798A (ja) * 2012-01-19 2013-08-01 Fuji Electric Co Ltd 炭化珪素半導体装置
JP2014007254A (ja) * 2012-06-22 2014-01-16 Sanken Electric Co Ltd 半導体装置及びその製造方法
US9577088B2 (en) 2013-07-17 2017-02-21 Fuji Electric Co., Ltd. Semiconductor device with high concentration region
US9882037B2 (en) 2016-01-29 2018-01-30 Denso Corporation IGBT-free wheeling diode combination with field stop layer in drift region
CN109065620A (zh) * 2018-08-22 2018-12-21 江苏中科君芯科技有限公司 一种具有低米勒电容的igbt器件
CN109065620B (zh) * 2018-08-22 2023-10-13 江苏中科君芯科技有限公司 一种具有低米勒电容的igbt器件

Similar Documents

Publication Publication Date Title
JP6022774B2 (ja) 半導体装置
JP6221974B2 (ja) 半導体装置
JP4265684B1 (ja) 半導体装置
JP6077380B2 (ja) 半導体装置
WO2016072144A1 (ja) 半導体装置
US10276654B2 (en) Semiconductor device with parallel PN structures
JP6606007B2 (ja) スイッチング素子
JP2013026534A (ja) 半導体装置
JP2008258262A (ja) Igbt
JP2008227238A (ja) 半導体装置
CN110034184B (zh) 半导体装置
JP6260605B2 (ja) 半導体装置
JP5055907B2 (ja) 半導体装置
JP2014103352A (ja) 半導体装置
JP2006032676A (ja) 半導体装置
JP6299658B2 (ja) 絶縁ゲート型スイッチング素子
JP2019161112A (ja) 半導体装置
JP2019153646A (ja) 半導体装置
JP2008283091A (ja) Igbt
JP6179468B2 (ja) 半導体装置
JP2008227240A (ja) 半導体装置とその製造方法
JP2021125681A (ja) 半導体装置
JP7147510B2 (ja) スイッチング素子
US20190280109A1 (en) Semiconductor device
JP5156238B2 (ja) 半導体装置