JP2008255469A - Fatigue crack propagation delayed steel and its manufacturing method - Google Patents

Fatigue crack propagation delayed steel and its manufacturing method Download PDF

Info

Publication number
JP2008255469A
JP2008255469A JP2008014367A JP2008014367A JP2008255469A JP 2008255469 A JP2008255469 A JP 2008255469A JP 2008014367 A JP2008014367 A JP 2008014367A JP 2008014367 A JP2008014367 A JP 2008014367A JP 2008255469 A JP2008255469 A JP 2008255469A
Authority
JP
Japan
Prior art keywords
less
phase
steel
fatigue crack
vfh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008014367A
Other languages
Japanese (ja)
Other versions
JP5407144B2 (en
Inventor
Teruki Sadasue
照輝 貞末
Satoshi Iki
聡 伊木
Takahiro Kubo
高宏 久保
Misao Ishikawa
操 石川
Shinji Mitao
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008014367A priority Critical patent/JP5407144B2/en
Publication of JP2008255469A publication Critical patent/JP2008255469A/en
Application granted granted Critical
Publication of JP5407144B2 publication Critical patent/JP5407144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fatigue crack propagation delayed steel suitable for a welded structure or the like strongly requiring structural safety, and to provide its manufacturing method. <P>SOLUTION: The steel member having excellent suppression in the progression of fatigue cracks has a composition containing, by mass, 0.02 to 0.25% C, 0.01 to 0.50% Si, 0.5 to 2.0% Mn, ≤0.1% P, ≤0.05% S, and the balance substantially iron with inevitable impurities, and further comprising one or more kinds of specified components and has a microstructure composed of a hard phase and a soft phase, and in which the product between a structural fraction parameter by formula (1): VP and a difference in hardness between the hard phase/soft phase by formula (2) is ≥50: formula (1) is VP=VFH/50 in the case of 0<VFH≤50 and is VP=(100-VFH)/50 in the case of 50<VFH<100; wherein, VFH: the area fraction [%] of the hard phase, and ΔHv=HvH-HvS(2); wherein HvH: the average Vickers hardness of the hard phase; and HvS: the average Vickers hardness of the soft phase. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、橋梁、船舶、建築物、海洋構造物、タンク、パイプなど構造安全性が強く求められる溶接構造物や建設、輸送、採掘、掘削などの機器・機械に好適な疲労き裂進展を抑制する鋼材、およびその製造方法に関する。   The present invention provides fatigue crack growth suitable for welded structures such as bridges, ships, buildings, offshore structures, tanks, pipes, and other equipment / machines such as construction, transportation, mining, and excavation. The present invention relates to a steel material to be suppressed and a manufacturing method thereof.

橋梁、船舶、建築物、海洋構造物、タンク、パイプなどの構造物や機器に使用される鋼材は、強度、靭性などの機械的性質や溶接性に優れていることに加え、常時稼動における繰返し荷重や風、地震等による震動に起因する繰返しに対して構造物の構造安全性を確保しなければならない。   Steel materials used in structures and equipment such as bridges, ships, buildings, offshore structures, tanks, pipes, etc. are excellent in mechanical properties such as strength and toughness and weldability, and are also repeatedly operated at all times. The structural safety of the structure must be ensured against repetitive vibration caused by loads, winds, earthquakes, etc.

繰返し荷重は疲労破壊をもたらすため、上記用途に用いられる構造用鋼に対しては疲労特性に優れていることが要求される。一般的に、疲労き裂は溶接部位の止端やルートあるいはスカラップなどの応力集中部から発生し、それが鋼材へと進展して、部材の終局的な破断へと至る。   Since repeated loading causes fatigue failure, the structural steel used in the above applications is required to have excellent fatigue characteristics. In general, a fatigue crack is generated from a stress concentrated portion such as a toe, a root or a scallop at a welded site, and it progresses to a steel material, leading to a final fracture of the member.

疲労き裂の発生に対しては、応力集中を低減することが重要であり、そのような手法としては溶接止端形状の改善(付加溶接、ピーニング処理など)が効果的であることが広く知られている。   It is important to reduce stress concentration for the occurrence of fatigue cracks, and it is widely known that improvement of the weld toe shape (additional welding, peening treatment, etc.) is effective as such a method. It has been.

しかし、数百あるいは数千の溶接部にそのような処理を工業的な規模で実施することは施工時間やコストの観点から非現実的で、そのため、新設された溶接構造物は定期的に検査が行われ、疲労き裂が検出された際には、補修を繰り返して構造安全性を保持していくことが行われるが、このような検査や補修の手間、コストは莫大である。   However, it is impractical to perform such treatment on hundreds or thousands of welds on an industrial scale from the standpoint of construction time and cost, so new welded structures are regularly inspected. When a fatigue crack is detected, repairs are repeated to maintain structural safety. However, the labor and cost of such inspections and repairs are enormous.

そこで、疲労き裂が発生したとしてもそれが部材の破壊をもたらさぬように鋼材自身に疲労き裂進展を抑制する効果を持たせることが、検査や補修の観点からも極めて重要と考えられる。   Thus, it is considered that it is extremely important from the viewpoint of inspection and repair that the steel itself has an effect of suppressing the growth of fatigue cracks so that it does not cause destruction of the member even if a fatigue crack occurs.

一方、構造物の使用される環境には、風雨や飛来塩分に曝されたり、機器・機械の運転により温度上昇が生じることもある。例えば、前者は山間部や海岸付近で敷設された橋梁に相当し、後者はオイルサンドよりスチームインジェクション法によって原油を採取する機器・機械に相当する。   On the other hand, the environment in which the structure is used may be exposed to wind and rain or flying salt, or the temperature may increase due to the operation of equipment / machines. For example, the former corresponds to a bridge laid in a mountainous area or near the coast, and the latter corresponds to a device / machine that collects crude oil from the oil sand by the steam injection method.

このような構造物および機器の構成部材は疲労き裂進展抵抗だけでなく、耐候性や耐熱性も具備していることが望ましい。   It is desirable that such structural members and components of equipment have not only fatigue crack propagation resistance but also weather resistance and heat resistance.

非特許文献1は限られた成分の鋼でラボスケールの特殊な熱処理を繰り返して製造した2種類の鋼材の疲労き裂伝播挙動を論じたものである。   Non-Patent Document 1 discusses the fatigue crack propagation behavior of two types of steel materials manufactured by repeating special heat treatments on a lab scale with limited steel components.

軟質相(ビッカース硬度:148)中に硬質相(ビッカース硬度:565、分率:36.4%、平均サイズ:149μm)を均一分散させた鋼材:Aと硬質相(ビッカース硬度:546、分率:39.2%)で軟質相(ビッカース硬度:149)を網目状に取り囲んだ鋼材:Bの疲労き裂伝播特性を調べた結果、鋼材:Bの方が疲労き裂伝播速度が大きく低減することが詳細な考察とともに述べられている。   Steel material in which a hard phase (Vickers hardness: 565, fraction: 36.4%, average size: 149 μm) is uniformly dispersed in a soft phase (Vickers hardness: 148): A and a hard phase (Vickers hardness: 546, fraction) : 39.2%) Steel material surrounding the soft phase (Vickers hardness: 149) in a mesh shape: As a result of investigating the fatigue crack propagation characteristics of B: Steel material: B significantly reduces the fatigue crack propagation rate With detailed considerations.

特許文献1にはミクロ組織を硬質部の素地とこの素地に分散した軟質部とで構成し、両者の硬度差がビッカース硬度で150以上であることを特徴とする疲労き裂進展抑制効果を有する鋼板が記載されている。   In Patent Document 1, the microstructure is composed of a base of a hard part and a soft part dispersed in the base, and the hardness difference between the two has a Vickers hardness of 150 or more, and has a fatigue crack growth suppressing effect characterized by A steel sheet is described.

特許文献2にはミクロ組織が軟質相とそれを網目状に囲む硬質第二相からなり、軟質相はフェライト、焼戻しベイナイト、焼戻しマルテンサイトの一種または二種以上で構成され、ビッカース硬度150以下であり、硬質第二相は、ベイナイト、マルテンサイト、焼戻しベイナイト、焼戻しマルテンサイトの一種または二種以上で構成され、ビッカース硬度250以上であり、硬質第二相の粒界占有率(硬質第二相が占めている粒界長さの総和/総粒界長さ)が0.5以上であることを特徴とする耐疲労き裂伝播特性に優れた厚鋼材が記載されている。   In Patent Document 2, the microstructure is composed of a soft phase and a hard second phase surrounding it in a network, and the soft phase is composed of one or more of ferrite, tempered bainite, and tempered martensite, and has a Vickers hardness of 150 or less. Yes, the hard second phase is composed of one or more of bainite, martensite, tempered bainite, and tempered martensite, has a Vickers hardness of 250 or more, and the grain boundary occupancy of the hard second phase (hard second phase) Describes a thick steel material excellent in fatigue crack propagation resistance, characterized in that the sum of the grain boundary lengths occupied by (3 / total grain boundary length) is 0.5 or more.

特許文献3にはミクロ組織がフェライトと硬質第二相とを含む組織からなり、かつ、鋼板表面に平行な断面組織における硬質第二相が、面積分率:20〜80%、ビッカース硬度:250〜800、平均円相当径:10〜200μmで、且つ、硬質第二相間の最大間隔:500μm以下であることを特徴とする疲労強度に優れた厚鋼板が記載されている。
特許第2962134号公報 特許第3785392号公報 特許第3860763号公報 H.SUZUKI AND A.J.McEVILY Metallurgical Transactions A,Volume 10A,P475〜481,1979
In Patent Document 3, the microstructure is composed of a structure including ferrite and a hard second phase, and the hard second phase in a cross-sectional structure parallel to the steel sheet surface has an area fraction of 20 to 80% and a Vickers hardness of 250. There is described a thick steel plate having excellent fatigue strength, characterized in that it has a diameter of ˜800, an average equivalent circle diameter of 10 to 200 μm, and a maximum distance between hard second phases of 500 μm or less.
Japanese Patent No. 2962134 Japanese Patent No. 3785392 Japanese Patent No. 3860763 H. SUZUKI AND A. J. et al. McEVILY Metallurgical Transactions A, Volume 10A, P475-481, 1979

しかしながら、非特許文献1に記載された鋼は5段階の熱処理を必要とするものであり、工場・製品規模で工程生産を行うにはコストや期間の観点から不可能に近い。また、疲労き裂伝播特性と相反して延性が低下しており、このような鋼を構造物へと適用することはできない。   However, the steel described in Non-Patent Document 1 requires five stages of heat treatment, and it is almost impossible to perform process production at a factory / product scale in terms of cost and time. In addition, the ductility decreases in contrast to the fatigue crack propagation characteristics, and such steel cannot be applied to structures.

特許文献1、2記載の発明は非特許文献1と類似する内容で、特許文献1には詳細な製造条件が記載されておらず、特許文献1記載の発明に係る鋼板を製造することは困難を伴う。特許文献2記載の発明に係る鋼の硬質相の粒界占有率は非特許文献1に記述のマルテンサイト組織の連結性(connectivity)と同意語で、非特許文献1記載の鋼と同様の問題を有している。   The inventions described in Patent Documents 1 and 2 are similar to Non-Patent Document 1, and detailed manufacturing conditions are not described in Patent Document 1, and it is difficult to manufacture the steel sheet according to the invention described in Patent Document 1. Accompanied by. The grain boundary occupancy of the hard phase of the steel according to the invention described in Patent Document 2 is synonymous with the connectivity of the martensite structure described in Non-Patent Document 1, and the same problem as that of the steel described in Non-Patent Document 1 have.

特許文献3は実施例で示しているように鋼材の板厚方向のみでの疲労き裂進展特性を抑制するものであり、鋼板長手方向や幅方向での疲労き裂進展特性の劣化が懸念される。   Patent Document 3 suppresses fatigue crack growth characteristics only in the plate thickness direction of steel as shown in the examples, and there is concern about deterioration of fatigue crack growth characteristics in the longitudinal direction and width direction of the steel sheet. The

そこで、本発明は、上記課題を解決する、疲労き裂進展の抑制に優れる鋼およびその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the steel which is excellent in suppression of fatigue crack growth which solves the said subject, and its manufacturing method.

本発明者等は、疲労き裂進展特性におよぼすミクロ組織形態の影響について鋭意詳細に検討した。   The present inventors diligently examined the influence of the microstructure morphology on the fatigue crack growth characteristics.

図1は、種々の成分および方法で製造した鋼材において、硬質相の平均ビッカース硬度が250以上の鋼材を抽出し、硬質相面積分率と圧延直角方向での疲労き裂伝播速度を示したものである(成分、製造方法、試験方法等の詳細については実施例にて記述)。図より、硬質相の硬度と面積分率では、疲労き裂伝播速度は一義的に整理されない。   Fig. 1 shows steel materials produced with various components and methods, and steel materials with an average Vickers hardness of 250 or more in the hard phase extracted, and the hard phase area fraction and fatigue crack propagation rate in the direction perpendicular to the rolling direction are shown. (Details of components, production methods, test methods, etc. are described in the examples). From the figure, the fatigue crack propagation rate is not uniquely organized by the hardness and area fraction of the hard phase.

図2に、さらに図1の試験結果より硬質相と軟質相の平均ビッカース硬度差が100以上の鋼材を抽出し、硬質相の面積分率で整理を試みた結果を示す。図より、伝播速度は硬質相分率で50%をピークに凹型の傾向を示すことが認められるが、同一の組織分率においても疲労き裂伝播速度は大きくばらつき、このような指標をもって工程製造することは品質保証の観点からも好ましくない。   FIG. 2 shows a result of further extracting the steel materials having an average Vickers hardness difference of 100 or more between the hard phase and the soft phase from the test results of FIG. 1 and arranging them by the area fraction of the hard phase. From the figure, it can be seen that the propagation velocity shows a concave-shaped tendency with a peak of 50% in the hard phase fraction, but the fatigue crack propagation velocity varies greatly even with the same structure fraction. It is not preferable from the viewpoint of quality assurance.

そこで、本発明者等は、更に検討を進め、硬質相の面積分率[%]と硬質相/軟質相の硬度差:ΔHvとの積を用いた場合、疲労き裂伝播特性が整理されることを見出した。   Therefore, the present inventors have further studied and, when the product of the area fraction [%] of the hard phase and the hardness difference of the hard phase / soft phase: ΔHv is used, the fatigue crack propagation characteristics are arranged. I found out.

更に、上記知見を満足する鋼は成分組成を調整した場合、耐候性や耐熱性を具備できること、工業規模で工程生産しうることを見いだした。   Furthermore, it has been found that a steel satisfying the above-described knowledge can have weather resistance and heat resistance when the component composition is adjusted, and can be produced on an industrial scale.

本発明は、得られた知見に更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、C:0.02〜0.25%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.1%以下、S:0.05%以下、残部が実質的に鉄および不可避的不純物からなり、更に、鋼成分としてCu:0.01〜1.0%、Ni:0.01〜5.0%、Cr:0.01〜3.0%、Mo:0.01〜1.0%の一種または二種以上を含有し、ミクロ組織が硬質相と軟質相から構成され、(1)式による組織分率パラメータ:VPと、(2)式による硬質相/軟質相の硬度差:ΔHvとの積が50以上であることを特徴とする疲労き裂進展抑制に優れる鋼材。
The present invention has been made by further studying the obtained knowledge, that is, the present invention,
1. In mass%, C: 0.02 to 0.25%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, P: 0.1% or less, S: 0.05 %, The balance being substantially composed of iron and inevitable impurities, and further steel components of Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Cr: 0.01 to 3 0.0%, Mo: 0.01 to 1.0%, or one or two or more of them, the microstructure is composed of a hard phase and a soft phase, and the structure fraction parameter according to the formula (1): VP, ( 2) Hard material / soft phase hardness difference according to the formula: A steel material excellent in fatigue crack growth suppression, characterized in that the product of ΔHv is 50 or more.

VP=VFH/50 (1)
但し、(1)式は0<VFH≦50の場合で、50<VFH<100の場合は、
VP=(100−VFH)/50を(1)式とする。ここで、VFH:硬質相
の面積分率[%]。
VP = VFH / 50 (1)
However, equation (1) is for 0 <VFH ≦ 50, and for 50 <VFH <100,
Let VP = (100−VFH) / 50 be the expression (1). Where VFH: hard phase
The area fraction of [%].

ΔHv=HvH−HvS (2)
但し、HvH:硬質相の平均ビッカース硬度、HvS:軟質相の平均ビッカー
ス硬度
2.更に、質量%で、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.005%以下の一種または二種以上を含有する1に記載の疲労き裂進展抑制に優れる鋼材。
3.1又は2に記載の成分組成と、フェライトと、パーライト、ベイナイト、マルテンサイトの一種または二種以上からなるミクロ組織を有する鋼を、Ac点以上Ac点未満に加熱した後に5℃/s以上でMs点以下まで冷却することを特徴とする疲労き裂進展抑制に優れる鋼材の製造方法。
4.冷却した後に、更にAc点未満で焼戻すことを特徴とする3に記載の疲労き裂進展抑制に優れる鋼材の製造方法。
ΔHv = HvH−HvS (2)
However, HvH: Average Vickers hardness of hard phase, HvS: Average Vicker of soft phase
1. Hardness Further, according to 1 which contains one or two or more of Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less, and B: 0.005% or less in mass%. Steel material with excellent fatigue crack growth control.
3. After heating the steel having a microstructure composed of one or more of component composition, ferrite, pearlite, bainite, and martensite to Ac 1 point or more and less than Ac 3 point at 5 ° C. A method for producing a steel material that is excellent in suppressing fatigue crack growth, characterized by cooling to / Ms or less and not more than Ms point.
4). 3. The method for producing a steel material excellent in fatigue crack growth suppression according to 3, wherein the steel is further tempered at less than 1 Ac after cooling.

本発明によれば、疲労き裂進展を抑制した鋼材が得られ、構造物に用いて応力集中部や溶接部等から疲労き裂が発生したとしても、使用過程での疲労き裂進展を遅らせることが可能で、鋼構造物や機械・機器の寿命延伸や補修工程の省力化に繋がる点で、産業上極めて有用である。   According to the present invention, a steel material in which fatigue crack growth is suppressed can be obtained, and even if fatigue cracks are generated from a stress-concentrated part or a welded part in a structure, the fatigue crack propagation in the use process is delayed. This is extremely useful industrially in terms of extending the life of steel structures and machinery / equipment and saving labor in the repair process.

また、鋼成分を適切に調整することで耐候性や耐熱性を付与することも可能であり、鋼構造物や機械・機器の安全性をさらに高めることができる。また、そのような鋼材を、加熱速度、冷却速度、冷却温度、焼戻し温度を適切に制御することで工業規模で生産できる点で、産業発展への寄与が大きい。   In addition, weather resistance and heat resistance can be imparted by appropriately adjusting the steel components, and the safety of steel structures, machines and equipment can be further enhanced. Moreover, the contribution to industrial development is great in that such steel materials can be produced on an industrial scale by appropriately controlling the heating rate, cooling rate, cooling temperature, and tempering temperature.

以下、本発明の鋼材の成分組成と組織形態について詳細に説明する。
1 成分組成(含有量%は質量%とする。)

Cは強度ならびに疲労特性を向上させるための硬質相の面積率を確保するため0.02%以上添加する。0.25%を超えて添加すると溶接性が阻害され、延性や曲げ加工性に劣る。好ましくは0.05%以上0.20%以下を添加する。
Hereinafter, the component composition and structure of the steel material of the present invention will be described in detail.
1 component composition (content% is mass%)
C
C is added in an amount of 0.02% or more in order to ensure the area ratio of the hard phase for improving strength and fatigue characteristics. If added over 0.25%, weldability is hindered and the ductility and bending workability are poor. Preferably 0.05% or more and 0.20% or less are added.

Si
Siは脱酸と強度を確保するため0.01%以上添加する。0.50%を超えて添加すると溶接性、靭性が劣化する。好ましくは0.05%以上0.40%以下を添加する。
Si
Si is added in an amount of 0.01% or more to ensure deoxidation and strength. If added over 0.50%, weldability and toughness deteriorate. Preferably 0.05% or more and 0.40% or less are added.

Mn
Mnは焼入れ性の増加により、強度、靭性を確保するため、0.5%以上添加する。2.0%を超えると溶接性が劣化する。好ましくは0.5%以上1.8%以下を添加する。
Mn
Mn is added in an amount of 0.5% or more in order to ensure strength and toughness by increasing hardenability. If it exceeds 2.0%, the weldability deteriorates. Preferably, 0.5% to 1.8% is added.


Pは耐候性の向上に寄与する。しかし、極度の添加は靭性劣化に繋がるため、上限を0.1%とする。好ましくは0.05%以下とする。
P
P contributes to improvement of weather resistance. However, extreme addition leads to toughness deterioration, so the upper limit is made 0.1%. Preferably it is 0.05% or less.


Sは靭性を劣化させるため、上限を0.05%とする。好ましくは0.03%以下とする。
S
Since S deteriorates toughness, the upper limit is made 0.05%. Preferably it is 0.03% or less.

Cu
Cuは固溶を通じて強度を上昇させるとともに耐候性を向上させるので、0.01%以上添加する。1.0%を超えると溶接性が損なわれ、鋼材製造時に疵が生じやすくなる。好ましくは、0.01%以上0.8%以下を添加する。
Cu
Cu increases the strength through solid solution and improves the weather resistance, so 0.01% or more is added. If it exceeds 1.0%, the weldability is impaired, and flaws are likely to occur during the production of steel. Preferably, 0.01% or more and 0.8% or less are added.

Ni
Niは低温靭性や耐候性を向上させるとともに、Cuを添加した場合の熱間脆性を改善するため、0.01%以上添加する。添加量が5.0%を超えると溶接性が損なわれ、鋼材コストも上昇する。好ましくは、0.01%以上4.0%以下とする。
Ni
Ni is added in an amount of 0.01% or more in order to improve low temperature toughness and weather resistance and to improve hot brittleness when Cu is added. If the added amount exceeds 5.0%, the weldability is impaired, and the steel material cost also increases. Preferably, the content is 0.01% or more and 4.0% or less.

Cr
Crは焼入れ性の増加や焼戻し軟化抵抗を通じて強度を上昇させ、また耐候性や耐熱性を向上させるので、0.01%以上添加する。添加する場合、3.0%を超えると溶接性と靭性が損なわれる。好ましくは、0.01%以上2.5%以下とする。
Cr
Cr increases strength through hardenability and resistance to temper softening and improves weather resistance and heat resistance, so 0.01% or more is added. When adding, if it exceeds 3.0%, weldability and toughness are impaired. Preferably, it is 0.01% or more and 2.5% or less.

Mo
Moは焼入れ性の増加や焼戻し軟化抵抗を通じて強度を上昇させ、耐候性、耐熱性を向上させるので、0.01%以上添加する。添加量が1.0%を超えると溶接性と靭性が損なわれる。好ましくは、0.01%以上0.8%以下とする。
Mo
Mo increases strength through an increase in hardenability and resistance to temper softening and improves weather resistance and heat resistance, so 0.01% or more is added. If the added amount exceeds 1.0%, weldability and toughness are impaired. Preferably, it is 0.01% or more and 0.8% or less.

以上が本発明に係る鋼の基本成分組成であるが、更に強度、靭性、溶接性の向上などの目的でNb,V,Ti,Bの一種または二種以上を添加する。   The above is the basic component composition of the steel according to the present invention, and one or more of Nb, V, Ti and B are added for the purpose of improving the strength, toughness and weldability.

Nb
Nbは圧延・焼入れ時のオーステナイトの細粒化を図ると同時に、焼戻し時に析出し強度を上昇させるので、必要に応じて添加する。添加する場合、0.1%を超えると靭性が損なわれる。好ましくは0.05%以下とする。
Nb
Nb is intended to make austenite fine during rolling and quenching, and at the same time, precipitates during tempering and increases the strength. Therefore, Nb is added as necessary. When added, if it exceeds 0.1%, the toughness is impaired. Preferably it is 0.05% or less.


Vは、圧延・焼入れ時のオーステナイトの細粒化を図るとともに、焼戻し時の析出を通じて強度上昇が図れるため、必要に応じて添加する。0.1%を超えて添加すると溶接性と靭性が損なわれる。好ましくは0.05%以下とする。
V
V is intended to be fine as austenite during rolling and quenching, and can increase the strength through precipitation during tempering, so V is added as necessary. If added over 0.1%, weldability and toughness are impaired. Preferably it is 0.05% or less.

Ti
Tiは、強度を上昇させ、溶接部靭性を向上させるので、必要に応じて添加する。添加量が0.1%を超えると鋼材コストの上昇や靱性が劣化する。好ましくは0.05%以下とする。
Ti
Ti increases strength and improves weld toughness, so it is added as necessary. If the added amount exceeds 0.1%, the steel material cost increases and the toughness deteriorates. Preferably it is 0.05% or less.


Bは焼入れ性を高め、強度を上昇させるので、必要に応じて添加する。添加する場合、0.005%を超えると溶接性が低下する。好ましくは0.003%以下とする。
B
B increases hardenability and increases strength, so it is added as necessary. When adding, if it exceeds 0.005%, weldability will fall. Preferably it is 0.003% or less.

2.ミクロ組織形態
構成組織
鋼材のミクロ組織は、構成組織を硬質相と軟質相の複合組織とする。鋼材組織が硬質相単相あるいは軟質相単相の場合、疲労き裂進展を抑制することができない。
2. Microstructure Morphology Structure The microstructure of the steel material is a composite structure of a hard phase and a soft phase. When the steel structure is a hard phase single phase or a soft phase single phase, fatigue crack growth cannot be suppressed.

軟質相中に疲労き裂先端が存在し、その前方に硬質相が存在すると、塑性域の拘束などを通じ、疲労き裂が硬質相を避けて屈曲や分岐し進展するようになる。   If a fatigue crack tip is present in the soft phase and a hard phase is present in front of it, the fatigue crack will bend and branch away from the hard phase and propagate through restraint of the plastic region.

このようなき裂の屈曲や分岐は破面粗さ誘起き裂閉口や応力遮蔽効果をもたらして疲労き裂進展駆動力を低下させる。   Such bending or branching of the crack brings about fracture surface roughness-induced crack closure and a stress shielding effect, thereby reducing the fatigue crack growth driving force.

軟質相はフェライト、焼戻しベイナイト、焼戻しマルテンサイトのうち一種または二種以上である。硬質相はパーライト、焼戻しベイナイト、焼戻しマルテンサイト、ベイナイト、マルテンサイトのうち一種または二種以上である。   The soft phase is one or more of ferrite, tempered bainite, and tempered martensite. The hard phase is one or more of pearlite, tempered bainite, tempered martensite, bainite, and martensite.

組織分率および硬質相/軟質相硬度差
本発明では、組織分率パラメータ:VPと硬質相/軟質相の硬度差:ΔHvとの積を50以上とする。
In the present invention, the product of the tissue fraction parameter: VP and the hardness difference between the hard phase / soft phase: ΔHv is 50 or more.

組織分率パラメータ:VPは、前出の図2の傾向を基に以下のように定義し、硬質相の面積分率が50%に近づくほど1に近づく。
VP=VFH/50・・・・・・・・・0<VFH≦50の場合
=(100−VFH)/50・・・50<VFH<100の場合
但し、VFH:硬質相の面積分率[%]
また、硬質相/軟質相の硬度差:ΔHvを次式で定義する。
ΔHv =HvH−HvS
但し、HvH:硬質相の平均ビッカース硬度
HvS:軟質相の平均ビッカース硬度
図3に、組織分率パラメータ:VPと硬質相/軟質相の硬度差:ΔHvとの積をとり、疲労き裂伝播速度を整理した結果を示す。試験データは前出の図1、図2のものを用いた。
The tissue fraction parameter: VP is defined as follows based on the above-mentioned tendency of FIG. 2, and approaches 1 as the area fraction of the hard phase approaches 50%.
VP = VFH / 50... 0 <VFH ≦ 50 = (100−VFH) / 50... 50 <VFH <100 However, VFH: hard phase area fraction [ %]
Further, the hardness difference: ΔHv between the hard phase and the soft phase is defined by the following equation.
ΔHv = HvH−HvS
Where HvH: average Vickers hardness of the hard phase
HvS: Average Vickers Hardness of Soft Phase FIG. 3 shows the results of organizing the fatigue crack propagation rate by taking the product of the texture fraction parameter: VP and the hardness difference between the hard phase / soft phase: ΔHv. The test data shown in FIGS. 1 and 2 were used.

図より、VP×ΔHvにて疲労き裂伝播速度は一義的に整理可能で、VP×ΔHvが50以上で安定的に疲労き裂伝播速度が低くなっていることが認められる。   From the figure, it can be seen that the fatigue crack propagation rate can be uniquely arranged by VP × ΔHv, and that the fatigue crack propagation rate is stably reduced when VP × ΔHv is 50 or more.

上記指標で疲労き裂伝播速度が整理された原因としては、疲労き裂進展速度には(1)硬質相に遭遇する頻度と(2)硬質相に遭遇したときに局所的に伝播速度が低下する度合いが相乗的に関与していることが考えられる。   The reasons why fatigue crack propagation speed is organized by the above-mentioned index are as follows: (1) frequency of encountering the hard phase and (2) local decrease in propagation speed when the hard phase is encountered. It is thought that the degree to do is synergistically involved.

そして、それらの組織学的な特徴がそれぞれ(1)組織分率パラメータ:VPと(2)硬質相/軟質相の硬度差:ΔHvにより表現されたため、疲労き裂進展速度がこれまでにないほど整理できたものと考えられる。なお、鋼材組織が3相以上からなる場合、VFH、HvHは最も硬い相の分率と硬度、HvSは最も軟らかい相の硬度である。   Since these histological characteristics are expressed by (1) tissue fraction parameter: VP and (2) hardness difference between hard phase / soft phase: ΔHv, the fatigue crack growth rate is unprecedented. It is thought that it was organized. When the steel structure is composed of three or more phases, VFH and HvH are the fraction and hardness of the hardest phase, and HvS is the hardness of the softest phase.

2.製造方法
本発明に係る鋼材は上記に記載の成分の鋼を、熱間圧延や熱処理で調整し、前組織として、フェライトと、パーライト、ベイナイト、マルテンサイトの1種もしくは2種以上からなる鋼材とした後、Ac点以上Ac点未満に加熱し、5℃/s以上でMs点以下まで冷却することにより得られる。
2. Manufacturing method The steel material according to the present invention is prepared by adjusting the steel of the above-described components by hot rolling or heat treatment, and as a pre-structure, a steel material composed of one or more of ferrite, pearlite, bainite, and martensite. Then, it is obtained by heating to Ac 1 point or more and less than Ac 3 point and cooling to 5 ° C./s or more and Ms point or less.

強度、靭性を調整する場合は、更に、冷却後、Ac点未満で焼戻す。なお、上記温度は鋼材表面温度とし、冷却速度は鋼材の厚さ方向での平均値とする。以下、それらの詳細について記述する。 When adjusting the strength and toughness, the steel is further tempered after cooling at less than 1 Ac. The temperature is the steel surface temperature, and the cooling rate is the average value in the thickness direction of the steel. The details will be described below.

前組織
前組織はフェライトと硬質相からなる組織とし、その硬質相はパーライト、ベイナイト、マルテンサイトの1種もしくは2種以上とする。
Prestructure The prestructure is composed of ferrite and a hard phase, and the hard phase is one or more of pearlite, bainite, and martensite.

このような組織を有する鋼板を、Ac点以上Ac点未満に加熱することで、硬質相部分のみをオーステナイトへと逆変態させ、その後の冷却によって、フェライト部は残存したまま、オーステナイト部分のみをベイナイト、マルテンサイト等の硬質相へと変態させ、軟質相と硬質相との硬度差を大きくすることが可能となる。 By heating the steel sheet having such a structure to Ac 1 point or more and less than Ac 3 point, only the hard phase portion is reversely transformed into austenite, and the ferrite portion remains by the subsequent cooling, and only the austenite portion remains. Can be transformed into a hard phase such as bainite or martensite, and the hardness difference between the soft phase and the hard phase can be increased.

なお、本発明では前組織を得るための製造条件は特に規定しない。常法の熱間圧延やノルマ等の熱処理によって調整される。   In the present invention, the production conditions for obtaining the previous structure are not particularly defined. It is adjusted by heat treatment such as normal hot rolling or normal.

加熱・焼入れ
前記前組織を有する鋼をAc点以上Ac点未満に加熱した後に5℃/s以上でMs点以下まで冷却する。
Heating and quenching After heating the steel having the previous structure to Ac 1 point or more and less than Ac 3 point, it is cooled to 5 ° C./s or more and Ms point or less.

前組織としてフェライトと硬質相からなる鋼材をAc点以上に加熱することによって、硬質相をオーステナイトへと変態させる。 By heating a steel material composed of ferrite and a hard phase as a pre-structure to Ac 1 point or more, the hard phase is transformed into austenite.

加熱温度がAc点を超えると、組織全体がオーステナイトに変態するため、その後の冷却によって硬質相単一組織となる。加熱後にオーステナイト相を硬質相とするために5℃/s以上でMs点以下まで冷却する。 When the heating temperature exceeds Ac 3 points, the entire structure is transformed into austenite, and thus a hard phase single structure is formed by subsequent cooling. In order to make the austenite phase a hard phase after heating, it is cooled to a temperature not lower than 5 ° C./s and not higher than the Ms point.

冷却速度が5℃/s未満の場合、フェライトなどの軟質相の生成が多くなるとともに、硬質相が低硬度となり、疲労進展抑制に対し十分な効果が得られない。   When the cooling rate is less than 5 ° C./s, the generation of a soft phase such as ferrite increases and the hard phase has a low hardness, so that a sufficient effect for suppressing fatigue progress cannot be obtained.

また、冷却停止温度がMs点を上回る場合、硬質相が低硬度となり、疲労進展抑制効果が得られない。   Further, when the cooling stop temperature exceeds the Ms point, the hard phase has a low hardness, and the fatigue progress suppressing effect cannot be obtained.

なお、Ac点、Ac点、Ms点は例えば、Ac(℃)=854−180C+44Si−14Mn−17.8Ni−1.7Cr、Ac(℃)=723−14Mn+22Si−14.4Ni+23.3Cr、Ms(℃)=517−300C−33Mn−22Cr−17Ni−11Mo−11Si(但し、元素記号は鋼材中の各元素の質量%での含有量を表す)で表される関係式により鋼材の成分組成に基づいて導くことが出来る。 Ac 3 point, Ac 1 point, and Ms point are, for example, Ac 3 (° C.) = 854-180C + 44Si-14Mn-17.8Ni-1.7Cr, Ac 1 (° C.) = 723-14Mn + 22Si-14.4Ni + 23.3Cr , Ms (° C.) = 517-300C-33Mn-22Cr-17Ni-11Mo-11Si (wherein the symbol represents the content in mass% of each element in the steel) It can be derived based on the composition.

上記熱処理の後、鋼材の形状補正や延性、靱性の向上の観点から、必要に応じて、冷却後にAc点未満で焼戻すことができる。但し、焼戻し温度がAc点を超えると島状マルテンサイトが生成し、延性、靭性が劣化するためAc点以下とする。 After the heat treatment, from the viewpoint of correcting the shape of the steel material and improving ductility and toughness, it can be tempered after cooling at less than 1 point of Ac if necessary. However, when the tempering temperature exceeds Ac 1 point, island-shaped martensite is generated, and ductility and toughness deteriorate, so that it is set to Ac 1 point or less.

表1に示す成分組成の鋼片にて、表2に示す条件にて板厚12〜100mmの供試鋼板を作成し、組織観察、硬さ試験、強度・靭性試験、疲労き裂伝播試験を実施した。尚、一部の供試鋼については耐候性試験、高温引張試験を実施した。   A steel sheet having a thickness of 12 to 100 mm was prepared using the steel pieces having the composition shown in Table 1 under the conditions shown in Table 2, and the structure observation, hardness test, strength / toughness test, and fatigue crack propagation test were performed. Carried out. Some of the test steels were subjected to a weather resistance test and a high temperature tensile test.

組織観察は任意の箇所から採取した試料を研磨したサンプルを用いて、2%ナイタール腐食液によりエッチングした圧延方向に平行な断面の板厚/4位置にて実施した。光学顕微鏡観察により硬質相の面積分率を求めた。面積分率は5視野で実施し、それら総視野での平均値として求めた。   The structure observation was carried out at a thickness of / 4 position of the cross section parallel to the rolling direction etched with a 2% nital etchant using a sample obtained by polishing a sample collected from an arbitrary location. The area fraction of the hard phase was determined by observation with an optical microscope. The area fraction was measured with 5 fields of view, and was determined as an average value in these total fields of view.

硬さ試験は、軟質相と硬質相のビッカース硬度を、上記5視野の観察位置において、各相10点を荷重0.098N(10gf)にて測定した。それら測定値を平均して、軟質相および硬質相の平均ビッカース硬度とした。   In the hardness test, the Vickers hardness of the soft phase and the hard phase was measured at the observation position of the five visual fields with 10 points for each phase at a load of 0.098 N (10 gf). The measured values were averaged to obtain the average Vickers hardness of the soft phase and the hard phase.

強度は圧延方向に直角方向に採取したJIS Z2201 1A号の全厚試験片(板厚50mm以上は板厚/4位置でのJIS Z2201 4号丸棒試験片)により評価した。引張強度(σTS)で490MPa以上、かつ破断伸び(El)で15%以上を合格とした。 The strength was evaluated by a full thickness test piece of JIS Z2201 1A collected in a direction perpendicular to the rolling direction (JIS Z2201 No. 4 round bar test piece at a thickness of 4 mm for a plate thickness of 50 mm or more). The tensile strength (σ TS ) was 490 MPa or more, and the elongation at break (El) was 15% or more.

靭性は板厚/4位置(板厚25mm未満は板厚/2位置)で圧延方向と平行方向に採取したJIS Z 2202のVノッチシャルピー衝撃試験片により評価した。延性・脆性破面遷移温度(vTs)で−20℃以下を合格とした。   Toughness was evaluated by a V-notch Charpy impact test piece of JIS Z 2202 taken in a direction parallel to the rolling direction at a plate thickness / 4 position (plate thickness / 2 position is less than 25 mm). A ductile / brittle fracture surface transition temperature (vTs) of −20 ° C. or lower was regarded as acceptable.

疲労き裂伝播速度はき裂が圧延直角方向および圧延方向に進展する全厚(板厚25mmを超えるものは25mmtまで片面減厚)のCT試験片を採取し、応力比0.1、周波数20Hz、室温大気中でASTM E647に準拠して行った。応力拡大係数範囲(ΔK)で20MPa√mの時の疲労き裂伝播速度が5.0×10−8m/Cycle以下の場合を合格とした。 Fatigue crack propagation rate was obtained by taking CT specimens with full thickness (thickness reduced to 25mmt when the thickness exceeds 25mm) where the crack propagates in the direction perpendicular to the rolling direction and the rolling direction, stress ratio 0.1, frequency 20Hz. In accordance with ASTM E647 in room temperature atmosphere. The case where the fatigue crack propagation rate when the stress intensity factor range (ΔK) was 20 MPa√m was 5.0 × 10 −8 m / cycle or less was regarded as acceptable.

また、板厚方向への疲労き裂進展速度は全厚(板厚25mmを超えるものは25mmtまで片面減厚)の三点曲げ試験片により、応力比0.1、周波数10Hz、室温大気中にて実施した。応力拡大係数範囲(ΔK)で20MPa√mの時の疲労き裂伝播速度が5.0×10−8m/Cycle以下の場合を合格とした。 In addition, the fatigue crack growth rate in the plate thickness direction was measured at a stress ratio of 0.1, frequency of 10 Hz, and room temperature in the atmosphere using a three-point bending test piece of full thickness (thickness on one side was reduced to 25 mm when the plate thickness exceeded 25 mm). Carried out. The case where the fatigue crack propagation rate when the stress intensity factor range (ΔK) was 20 MPa√m was 5.0 × 10 −8 m / cycle or less was regarded as acceptable.

また、耐候性を向上させることを狙いとして製造した鋼材については、川崎湾岸工業地帯にて大気暴露試験を行った。試験片は150mm角×全厚の板状とし、南向きに30°傾斜させて暴露した。暴露期間は2年とし、回収した試験片の腐食減量を調査した。腐食減量はSS400のそれを1とした時に0.5以下である場合を合格とした。   In addition, steel products manufactured with the aim of improving weather resistance were subjected to an atmospheric exposure test in the Kawasaki Bay Industrial Area. The test piece was in the form of a plate of 150 mm square × total thickness, and was exposed by inclining 30 ° southward. The exposure period was 2 years, and the corrosion weight loss of the collected specimens was investigated. Corrosion weight loss was determined to be 0.5 or less when SS400 was taken as 1.

また、耐熱性を向上させることを狙いとして製造した鋼材については、600℃、大気中において引張試験を行い、耐力(0.2%オフセット耐力)を室温のそれと比較した。600℃の耐力/室温の耐力が0.5以上の場合を合格とした。   Moreover, about the steel materials manufactured aiming at improving heat resistance, the tension test was performed in 600 degreeC and the air | atmosphere, and the yield strength (0.2% offset yield strength) was compared with that of room temperature. A case where the proof stress at 600 ° C./proof stress at room temperature was 0.5 or more was regarded as acceptable.

組織観察結果を表2、引張、靭性、疲労き裂伝播試験結果を表3に示す。また、大気暴露試験結果・高温引張試験結果を表3にそれぞれ示す。   Table 2 shows the structure observation results, and Table 3 shows the tensile, toughness, and fatigue crack propagation test results. Table 3 shows the atmospheric exposure test results and the high temperature tensile test results.

成分、製造方法、組織を本発明規定範囲内とした板番No.1〜No.10の鋼板はいずれの方向においても優れた耐疲労き裂進展抵抗を示し、かつ、強度、延性、靭性にも優れていることが確認される。   The plate number No. in which the components, the production method and the structure are within the scope of the present invention. 1-No. It is confirmed that No. 10 steel sheet exhibits excellent fatigue crack growth resistance in any direction and is excellent in strength, ductility, and toughness.

また、No.3、4、9の鋼板については優れた耐候性を兼ね備えている。さらに、No.6、7、8、10の鋼板については耐熱性に優れていることがわかる。   No. The steel plates 3, 4, and 9 have excellent weather resistance. Furthermore, no. It can be seen that the steel sheets of 6, 7, 8, and 10 are excellent in heat resistance.

これに対し、C、Cu、Ni、Crが本発明範囲を下回るNo.11の鋼板は、前組織、熱処理後の組織がともにフェライト単相組織となり、低強度、かつ疲労き裂伝播速度が高い。C、P、Sが本発明範囲を超えるNo.12の鋼板は延性、靱性が低い。   On the other hand, C, Cu, Ni, and Cr are lower than the scope of the present invention. In Steel No. 11, both the pre-structure and the structure after heat treatment are ferrite single-phase structures, and have low strength and high fatigue crack propagation rate. No. C, P and S exceeding the scope of the present invention. No. 12 steel sheet has low ductility and toughness.

加熱温度がAc3点を超えるNo.13の鋼板は焼戻しベイナイト単相組織となり、疲労き裂進展抵抗が劣る。   No. with heating temperature exceeding Ac3 point. Steel plate No. 13 has a tempered bainite single-phase structure and is inferior in fatigue crack growth resistance.

加熱温度がAc1点を下回るNo.14の鋼板、焼入れ時の冷却速度が本発明下限値を下回るNo.15の鋼板、焼入れ時の停止温度が本発明上限値を上回るNo.16の鋼板は硬質相の硬度が低く、結果としてVP×ΔHvが50を下回る。このため、いずれも疲労き裂伝播速度が高い。   No. with heating temperature below Ac1 point. No. 14, the cooling rate during quenching is lower than the lower limit of the present invention. No. 15 steel plate, No. in which the stop temperature during quenching exceeds the upper limit of the present invention. Steel plate No. 16 has a low hardness of the hard phase, and as a result, VP × ΔHv is less than 50. For this reason, all have a high fatigue crack propagation rate.

焼戻し温度が本発明上限値を上回るNo.17の鋼板は島状マルテンサイトが生じたため延性および靱性が低く、さらにはVP×ΔHvが50を下回るために疲労き裂進展抵抗性に劣る。加熱前の組織がベイナイト単相であるNo.18の鋼板は硬質相と軟質相の硬度差がほとんどなく、VP×ΔHvが50を下回るために疲労き裂伝播速度が高い。   No. whose tempering temperature exceeds the upper limit of the present invention. Steel plate No. 17 has low ductility and toughness due to the formation of island-like martensite. Furthermore, since VP × ΔHv is less than 50, it is inferior in fatigue crack growth resistance. No. in which the structure before heating is a bainite single phase. Steel No. 18 has almost no hardness difference between the hard phase and the soft phase, and VP × ΔHv is less than 50, so that the fatigue crack propagation rate is high.

Figure 2008255469
Figure 2008255469

Figure 2008255469
Figure 2008255469

Figure 2008255469
Figure 2008255469

硬質相面積分率と疲労き裂伝播速度の関係(硬質相の平均ビッカース硬度:250以上)を示す図。The figure which shows the relationship (average Vickers hardness of a hard phase: 250 or more) of a hard phase area fraction and a fatigue crack propagation rate. 硬質相面積分率と疲労き裂伝播速度の関係(硬質相と軟質相の平均ビッカース硬度差:100以上)を示す図。The figure which shows the relationship (average Vickers hardness difference of a hard phase and a soft phase: 100 or more) of a hard phase area fraction and a fatigue crack propagation velocity. 組織分率パラメータ(VP)×硬質相と軟質相の平均ビッカース硬度差(ΔHv)と疲労き裂伝播速度の関係を示す図。The figure which shows the relationship between the structure fraction parameter (VP) x the average Vickers hardness difference (ΔHv) between the hard phase and the soft phase and the fatigue crack propagation rate.

Claims (4)

質量%で、C:0.02〜0.25%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.1%以下、S:0.05%以下、残部が実質的に鉄および不可避的不純物からなり、更に、鋼成分としてCu:0.01〜1.0%、Ni:0.01〜5.0%、Cr:0.01〜3.0%、Mo:0.01〜1.0%の一種または二種以上を含有し、ミクロ組織が硬質相と軟質相から構成され、(1)式による組織分率パラメータ:VPと、(2)式による硬質相/軟質相の硬度差:ΔHvとの積が50以上であることを特徴とする疲労き裂進展抑制に優れる鋼材。
VP=VFH/50 (1)
但し、(1)式は0<VFH≦50の場合で、50<VFH<100の場合は、
VP=(100−VFH)/50を(1)式とする。ここで、VFH:硬質相
の面積分率[%]。
ΔHv=HvH−HvS (2)
但し、HvH:硬質相の平均ビッカース硬度、HvS:軟質相の平均ビッカー
ス硬度
In mass%, C: 0.02 to 0.25%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, P: 0.1% or less, S: 0.05 %, The balance being substantially composed of iron and inevitable impurities, and further steel components of Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Cr: 0.01 to 3 0.0%, Mo: 0.01 to 1.0%, or one or two or more of them, the microstructure is composed of a hard phase and a soft phase, and the structure fraction parameter according to the formula (1): VP, ( 2) Hard material / soft phase hardness difference according to the formula: A steel material excellent in fatigue crack growth suppression, characterized in that the product of ΔHv is 50 or more.
VP = VFH / 50 (1)
However, equation (1) is for 0 <VFH ≦ 50, and for 50 <VFH <100,
Let VP = (100−VFH) / 50 be the expression (1). Where VFH: hard phase
The area fraction of [%].
ΔHv = HvH−HvS (2)
However, HvH: Average Vickers hardness of hard phase, HvS: Average Vicker of soft phase
Hardness
更に、質量%で、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.005%以下の一種または二種以上を含有する請求項1に記載の疲労き裂進展抑制に優れる鋼材。   Furthermore, in mass%, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less, B: 0.005% or less, one or two or more kinds are contained. Steel material excellent in suppressing fatigue crack growth as described. 請求項1又は2に記載の成分組成と、フェライトと、パーライト、ベイナイト、マルテンサイトの一種または二種以上からなるミクロ組織を有する鋼を、Ac点以上Ac点未満に加熱した後に5℃/s以上でMs点以下まで冷却することを特徴とする疲労き裂進展抑制に優れる鋼材の製造方法。 5 ° C. after heating steel having a microstructure composed of one or more of component composition, ferrite, pearlite, bainite and martensite according to claim 1 or 2 to Ac 1 point or more and less than Ac 3 point. A method for producing a steel material that is excellent in suppressing fatigue crack growth, characterized by cooling to / Ms or less and not more than Ms point. 冷却した後に、更にAc点未満で焼戻すことを特徴とする請求項3に記載の疲労き裂進展抑制に優れる鋼材の製造方法。 The method for producing a steel material excellent in fatigue crack growth suppression according to claim 3, wherein the steel material is further tempered after cooling at less than 1 Ac.
JP2008014367A 2007-03-09 2008-01-25 Steel material with excellent fatigue crack growth control Active JP5407144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014367A JP5407144B2 (en) 2007-03-09 2008-01-25 Steel material with excellent fatigue crack growth control

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007059799 2007-03-09
JP2007059799 2007-03-09
JP2008014367A JP5407144B2 (en) 2007-03-09 2008-01-25 Steel material with excellent fatigue crack growth control

Publications (2)

Publication Number Publication Date
JP2008255469A true JP2008255469A (en) 2008-10-23
JP5407144B2 JP5407144B2 (en) 2014-02-05

Family

ID=39979343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014367A Active JP5407144B2 (en) 2007-03-09 2008-01-25 Steel material with excellent fatigue crack growth control

Country Status (1)

Country Link
JP (1) JP5407144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102244A1 (en) * 2010-02-18 2011-08-25 住友金属工業株式会社 Steel material exhibiting excellent fatigue-crack progress resistance and corrosion resistance, and production method for same
WO2015099214A1 (en) * 2013-12-23 2015-07-02 주식회사 포스코 Quenched steel sheet having excellent strength and ductility and method for manufacturing same
RU2630916C1 (en) * 2016-10-28 2017-09-14 Открытое акционерное общество по проектированию строительства мостов "Институт Гипростроймост" Iron-based alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329848A (en) * 1991-05-02 1992-11-18 Kobe Steel Ltd High strength hot rolled steel sheet excellent in fatigue property and stretch-flanging property
JPH0813083A (en) * 1994-06-29 1996-01-16 Kobe Steel Ltd Refractory steel plate for architectural use, reduced in yield ratio and excellent in weldability, and production thereof
JPH09316593A (en) * 1996-05-30 1997-12-09 Nkk Corp Refractory steel material for construction use, excellent in gas cutting property
JPH1060575A (en) * 1996-08-22 1998-03-03 Sumitomo Metal Ind Ltd Thick steel plate excellent in fatigue crack arrest characteristic
JP2002121640A (en) * 2000-10-16 2002-04-26 Sumitomo Metal Ind Ltd Steel sheet having suppressing effect on fatigue crack propagation
JP2005320619A (en) * 2004-04-08 2005-11-17 Nippon Steel Corp Steel plate excellent in fatigue crack propagation characteristic and method for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329848A (en) * 1991-05-02 1992-11-18 Kobe Steel Ltd High strength hot rolled steel sheet excellent in fatigue property and stretch-flanging property
JPH0813083A (en) * 1994-06-29 1996-01-16 Kobe Steel Ltd Refractory steel plate for architectural use, reduced in yield ratio and excellent in weldability, and production thereof
JPH09316593A (en) * 1996-05-30 1997-12-09 Nkk Corp Refractory steel material for construction use, excellent in gas cutting property
JPH1060575A (en) * 1996-08-22 1998-03-03 Sumitomo Metal Ind Ltd Thick steel plate excellent in fatigue crack arrest characteristic
JP2002121640A (en) * 2000-10-16 2002-04-26 Sumitomo Metal Ind Ltd Steel sheet having suppressing effect on fatigue crack propagation
JP2005320619A (en) * 2004-04-08 2005-11-17 Nippon Steel Corp Steel plate excellent in fatigue crack propagation characteristic and method for production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013009189; 横幕俊典、他3名: '熱延高張力鋼板の疲労限度に及ぼす第二相の影響(複合組織鋼の疲労特性に関する研究-1)' 日本材料学会学術講演会前刷 Vol.40th, 1991, Page.16-18 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102244A1 (en) * 2010-02-18 2011-08-25 住友金属工業株式会社 Steel material exhibiting excellent fatigue-crack progress resistance and corrosion resistance, and production method for same
JP4924774B2 (en) * 2010-02-18 2012-04-25 住友金属工業株式会社 Steel material having excellent fatigue crack growth resistance and corrosion resistance and method for producing the same
CN102639737A (en) * 2010-02-18 2012-08-15 住友金属工业株式会社 Steel material exhibiting excellent fatigue-crack progress resistance and corrosion resistance, and production method for same
KR101261744B1 (en) 2010-02-18 2013-05-07 신닛테츠스미킨 카부시키카이샤 Steel material exhibiting excellent fatigue-crack progress resistance and corrosion resistance, and production method for same
WO2015099214A1 (en) * 2013-12-23 2015-07-02 주식회사 포스코 Quenched steel sheet having excellent strength and ductility and method for manufacturing same
CN105849293A (en) * 2013-12-23 2016-08-10 Posco公司 Quenched steel sheet having excellent strength and ductility and method for manufacturing same
CN105849293B (en) * 2013-12-23 2017-10-17 Posco公司 Intensity and the excellent heat treatment hardening shape steel plate of ductility and its manufacture method
US10294541B2 (en) 2013-12-23 2019-05-21 Posco Quenched steel sheet having excellent strength and ductility
RU2630916C1 (en) * 2016-10-28 2017-09-14 Открытое акционерное общество по проектированию строительства мостов "Институт Гипростроймост" Iron-based alloy

Also Published As

Publication number Publication date
JP5407144B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP5070744B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP4858221B2 (en) High-tensile steel with excellent ductile crack initiation characteristics
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP5407143B2 (en) Fatigue crack propagation retarding steel and its manufacturing method
JP6064896B2 (en) Steel material with excellent fatigue crack propagation characteristics, method for producing the same, and method for determining steel materials with excellent fatigue crack propagation characteristics
JP5182642B2 (en) High strength thick steel plate with excellent delayed fracture resistance and weldability and method for producing the same
JP6036616B2 (en) Steel sheet for welded structure excellent in fatigue crack resistance and method for producing the same
KR20090028449A (en) Welding joint exellent in toughness and control of fatigue crack initiation property
JP2007327087A (en) Thick steel plate excellent in toughness and fatigue crack propagating property of base metal
JP6064897B2 (en) High-strength steel material with excellent fatigue crack propagation resistance and its determination method
JP4770235B2 (en) Manufacturing method of steel with excellent ductility and fatigue crack propagation characteristics
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP5151079B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP2007039795A (en) Method for producing high strength steel having excellent fatigue crack propagation resistance and toughness
JP5369585B2 (en) Thick steel material with excellent fatigue crack resistance and its manufacturing method
JP2009041073A (en) High-tensile strength steel weld joint having excellent resistivity to generation of ductile crack from weld zone, and method for producing the same
JP5407144B2 (en) Steel material with excellent fatigue crack growth control
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP6036615B2 (en) Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP5369584B2 (en) Thick steel material with excellent fatigue crack resistance and its manufacturing method
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250