JP2008251757A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2008251757A
JP2008251757A JP2007090007A JP2007090007A JP2008251757A JP 2008251757 A JP2008251757 A JP 2008251757A JP 2007090007 A JP2007090007 A JP 2007090007A JP 2007090007 A JP2007090007 A JP 2007090007A JP 2008251757 A JP2008251757 A JP 2008251757A
Authority
JP
Japan
Prior art keywords
layer
guard ring
semiconductor layer
region
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007090007A
Other languages
English (en)
Inventor
Hidekazu Takeya
英一 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007090007A priority Critical patent/JP2008251757A/ja
Publication of JP2008251757A publication Critical patent/JP2008251757A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】簡便なプロセスにて高速スイッチングと耐圧を両立できる構造を有する半導体装置を提供する。
【解決手段】半導体基板の一方側の主面にショットキー接合領域部Sの主電極層55aとガードリング領域部Gの副電極層55bとを分離分割して形成し、主電極層55aと副電極層55bの間を層間絶縁膜54で隔て、主電極層55aがショットキー接合領域部Sで低濃度半導体層52とショットキー接合し、副電極層55bがガードリング領域部Gで低濃度半導体層52とショットキー接合するとともにガードリング層53と接合する。
【選択図】図1

Description

本発明は半導体装置に関し、特にショットキーダイオード(SBD)における高耐圧、高速スイッチングの向上に係る技術である。
従来、この種の半導体装置としては、例えば、図3に示すものがある。このショットキーバリアダイオードは、半導体基板がN型半導体基板1にN型半導体層(エピタキシャル層)2を積層してなり、N型半導体層2の表面にショットキー接合を形成する金属層(アノード電極)3を設けており、金属層3とN型半導体層2が接合する領域がショットキー接合領域となる。このショットキー接合領域の最外周にP型不純物を拡散したガードリング4を設けており、N型半導体層2の外周表面およびガードリング4の外周表面を覆って層間絶縁膜5を設け、半導体基板の裏面にはカソード電極6を設けている。
このショットキーバリアダイオードでは、逆バイアス印加時に、ショットキー接合領域からN型半導体層2に空乏層7が広がる。この際に、ショットキー接合領域の最外周のp+型のガードリング4の存在によって、空乏層が横(水平)方向に拡がり、その曲率が緩和されることで耐圧をもたせる。
この空乏層7が容量成分となり、ショットキーバリアダイオードは低容量とならない。また、ガードリング4とN型半導体層2はpN接合を形成し、順方向電圧印加時に所定の電圧を超えるとpN接合ダイオードとして動作し、オフ状態に切り替えるために逆方向電圧を印加すると、N型半導体2に蓄積されたキャリアの流出または再結合が行われた後に空乏層7が広がるので、逆回復時間(Trr)が発生する。このため、耐圧を確保するためのガードリングの存在が低容量化および高速動作の妨げとなる。
他の半導体装置としては、図4に示すものがある。このショットキーバリアダイオードは、半導体基板がN型半導体基板1にN型半導体層(エピタキシャル層)2を積層してなり、N型半導体層2の表面にショットキー接合を形成する金属層(アノード電極)3を設けており、金属層3とN型半導体層2が接合する領域がショットキー接合領域となる。N型半導体層2の外周表面およびトレンチ8の外周表面を覆って層間絶縁膜5を設け、半導体基板の裏面にカソード電極6を設けている。ショットキー接合領域を囲んで設けたトレンチ8はN型半導体層2を貫通してN型半導体基板1に達しており、トレンチ8には絶縁膜9を設けている。
この構成により、逆方向電圧印加時に空乏層7の水平方向の広がりはトレンチ8(絶縁膜9)で終端し、空乏層7は端部が曲率をもたずに半導体基板の深さ方向にのみ広がる。このため、ガードリング周囲に空乏層が発生しなくなり、その分の容量成分が低減されることになる。
他の半導体装置としては、図5に示すものがある。このショットキーバリアダイオードは、半導体基板がN型半導体基板1にN型半導体層(エピタキシャル層)2を積層してなり、N型半導体層2の表面にショットキー接合を形成する金属層(アノード電極)3を設けており、金属層3とN型半導体層2が接合する領域がショットキー接合領域となる。
このショットキー接合領域から隔てた位置にP型不純物を拡散したガードリング4を設けている。ショットキー接合領域の最外周に対応してN型半導体層2の外周表面を覆って設けた層間絶縁膜5はショットキー接合領域に対応する中央窓部とガードリング4に対応する環状窓部を有し、中央窓部においてN型半導体層2とショットキー接合する金属層3と環状窓部においてガードリング4と接合する環状金属層3aとが分離しており、半導体基板の裏面にカソード電極6を設けている。
この構成によれば、順方向バイアス印加時には環状金属層3aが金属層3から分離していることでガードリング4に正孔が注入されず、逆方向バイアス印加時にはショットキー接合領域とガードリング4の間が急速に空乏化し、電界が高い値に達する前に金属層3の端で電界を分散する。
特開2005−243717号公報 特開平10−178186号公報
ところで、上述したように、図3に示す構成では、ショットキーダイオードが多数キャリアデバイスであることから、低い順方向電圧をもち、高速スイッチングを行うことができる。また、周辺の環状領域にガードリングを設けることで、逆バイアス状態においてガードリング周辺に形成される空乏層が横方向(基板主面に沿った方向)へ伸びて耐圧が確保される。この耐圧確保のためには、ガードリングの幅、深さ、断面積、不純物濃度を所定の値に設定する必要がある。
しかしながら、耐圧確保を目的としてこのようなガードリングを設けると、デバイスのスイッチング特性に影響を及ぼすことが懸念されることは上述した通りである。すなわち、デバイスを順方向から逆方向へターンオフする際に、ガードリングから注入される少数キャリアが消滅する時間が必要となるために、逆回復時間が延びてしまい、スイッチング特性が低下するという懸念がある。
このような問題を回避するための二つのアプローチがあった。すなわち、図4に示す構成であり、ガードリングをトレンチ化することで耐圧を確保し、かつスイッチングを確保するという手法である。
以下に、図4の構成に係るショットキーバリアダイオードの製造方法を図6に示す。
1)マスク酸化膜成長
図6(a)に示すように、半導体基板はN型半導体基板1にN型半導体層(エピタキシャル層)2を積層し、N型半導体層2の主面にマスク酸化膜(層間絶縁膜)21を形成する。
2)TRマスク合わせ
図6(b)に示すように、マスク酸化膜21の上にトレンチを形成する部位に窓を有するTRマスク(レジスト)22を合わせる。
3)SiO2エッチング(TRハードマスク)
図6(c)に示すように、TRマスク22の窓においてマスク酸化膜21をエッチングしてTRハードマスクを形成する。
4)TRドライエッチング
図6(d)に示すように、TRマスク22のレジストを除去後にN型半導体層2をドライエッチングしてトレンチ8を形成する。この際に、深いトレンチ8をエッチングにより掘ることは原理的に難しく、トレンチ8が横に広がる等の問題があり、また高価な設備を必要とする。
5)TEOS成長
図6(e)に示すように、マスク酸化膜21の表面およびトレンチ8に高密度プラズマ化学気相成長(HDP−CVD)によりTEOS(tetraethoxysilane)の絶縁膜9を形成する。この際に、トレンチ8の形状に不具合があると絶縁膜9に空隙が生じ、信頼性に大きな影響を与える。
6)CW窓形成
図6(f)に示すように、絶縁膜9の上に、金属層3を形成するための窓を有するCWマスク(レジスト)23を合わせる。
7)CWエッチング
図6(g)に示すように、CWマスク23の窓において絶縁膜9をエッチングし、N型半導体層2を露出させる。
8)金属電極膜作成
図6(h)に示すように、CWマスク23のレジストを除去後に、N型半導体層2および絶縁膜9の上に金属電極膜としての金属層3を形成する。
9)MWマスク合わせ
図6(i)に示すように、金属層3の上に、金属層3の外周部を除去するための窓を有するMWマスク(レジスト)24を合わせる。
10)MWエッチング
図6(j)に示すように、MWマスク24の窓において金属層3をエッチングし、絶縁膜9を露出させる。
11)メタライズアニール
図6(k)に示すように、MWマスク24のレジストを除去後に、メタライズアニールする。
上述したように、トレンチ工程はプレーナ工程と比較して技術的、および設備的に高い難易度を持ち、具体的にはトレンチエッチングの均一性や良好なトレンチ形状の実現などが困難である。
次に、図5に示す構成では、ショットキー接合領域とガードリング領域を電気的に切り離しており、層間絶縁膜5の幅を適正な値とすることで、逆バイアス時においてショットキー接合領域から伸びる空乏層7aとガードリング4から伸びる空乏層7bが容易につながる構造を実現することができる。
以下に、図5の構成に係るショットキーバリアダイオードの製造方法を図7に示す。
1)マスク酸化膜成長
図7(a)に示すように、半導体基板はN型半導体基板1にN型半導体層(エピタキシャル層)2を積層し、N型半導体層2の主面にマスク酸化膜(層間絶縁膜5)31を形成する。
2)GRマスク合わせ
図7(b)に示すように、マスク酸化膜31の上にガードリング4を形成する部位に窓を有するGRマスク(レジスト)32を合わせる。
3)GRエッチング
図7(c)に示すように、GRマスク32の窓においてマスク酸化膜31をエッチングして窓を形成する。
4)GR注入(B
図7(d)に示すように、GRマスク32の窓およびマスク酸化膜31の窓を通してN型半導体層2にボロンを注入する。
5)ボロン拡散
図7(e)に示すように、GRマスク32のレジストを除去後にN型半導体層2のボロンを拡散させてガードリング4を形成する。
6)CW窓形成
図7(f)に示すように、マスク酸化膜31およびガードリング4の上に、金属層3を形成するための窓を有するCWマスク(レジスト)33を合わせる。
7)CWエッチング
図7(g)に示すように、CWマスク33の窓においてマスク酸化膜31をエッチングし、ショットキー接合領域に対応する部位のN型半導体層2を露出させるとともに、層間絶縁膜5となす。
8)金属電極膜作成
図7(h)に示すように、CWマスク33のレジストを除去後に、N型半導体層2および層間絶縁膜5の上に金属電極膜としての金属層3を形成する。
9)MWマスク合わせ
図7(i)に示すように、金属層3の上に、金属層3の外周部を除去するための窓およびショットキー接合領域とガードリング領域とを隔てる離間部を形成するための窓を有するMWマスク(レジスト)34を合わせる。
10)MWエッチング
図7(j)に示すように、MWマスク34の窓において金属層3をエッチングし、層間絶縁膜5を露出させる。
11)メタライズアニール
図7(k)に示すように、MWマスク34のレジストを除去後に、メタライズアニールする。
上述したように、ガードリング本来の目的となる耐圧を確保するためには、ガードリング4には所定の幅、深さ、断面積、不純物濃度が必要であるために、依然として静電容量は変わらない。
本発明は以上の問題点に鑑み、高速スイッチングと耐圧を両立させたショットキーバリアダイオードを形成するために、簡便なプロセスにて、ガードリングの断面積が小さく、かつ所定の耐圧を確保できる構造を有する半導体装置を提供することを目的とする。
上記課題を解決するために、本発明の半導体装置は、半導体基板の上に同じ導電型をなす低濃度半導体層が形成され、前記低濃度半導体層と異なる導電型をなすガードリング層が前記低濃度半導体層の表面から層内へ延在して環状に形成され、絶縁保護膜が前記半導体基板の一方側の主面にショットキー接合領域部およびガードリング領域部を除いて形成され、ショットキーメタルが前記半導体基板の一方側の主面に前記ショットキー接合領域部の主電極層と前記ガードリング領域部の副電極層とに分離分割して形成され、前記主電極層と前記副電極層の間を前記絶縁保護膜が隔て、前記主電極層が前記ショットキー接合領域部で前記低濃度半導体層とショットキー接合し、前記副電極層が前記ガードリング領域部で前記低濃度半導体層とショットキー接合するとともにガードリング層と接合することを特徴とする。
本発明の半導体装置の製造方法は、半導体基板の上にエピタキシャル成長にて同じ導電型をなす低濃度半導体層を形成し、前記低濃度半導体層の上に絶縁保護膜を形成する絶縁保護膜形成工程と、前記絶縁保護膜に選択的なエッチングを施して所定部分を窓開けして前記低濃度半導体層の表面を露出させ、前記絶縁保護膜をマスクとして前記低濃度半導体層と異なる導電型をなすドーパントを注入して拡散することにより、前記低濃度半導体層の表面から層内へ延在するガードリング層を形成するガードリング層形成工程と、前記絶縁保護膜に選択的なエッチングを施してショットキー接合領域部およびガードリング領域部を窓開けし、前記半導体基板の一方側の主面に前記絶縁保護膜をマスクとして露出した前記低濃度半導体層と前記ガードリング層および前記絶縁保護膜の上にショットキーメタルを形成するメタル形成工程と、前記ショットキーメタルの上にショットキー接合領域部とガードリング領域部との間を窓開けしたマスクを形成し、前記マスクの窓において前記ショットキーメタルにエッチングを施して前記絶縁保護膜を露出させることにより、前記ショットキーメタルを前記ショットキー接合領域部の主電極層と前記ガードリング領域部の副電極層とに分離分割するメタル分割工程とを含むことを特徴とする。
以上のように本発明によれば、ショットキーメタルの主電極層と低濃度半導体層とがショットキー接合するショットキー接合領域部の周辺に、絶縁保護膜(層間絶縁膜)で隔てたガードリング領域部を設け、ガードリング領域部においてショットキーメタルの副電極層と低濃度半導体層とがショットキー接合する領域と副電極層とガードリング層とが接合する領域を設ける構造とすることで、ガードリング領域部におけるガードリング層の幅を従来よりも狭く形成してもガードリング層によって従来と同等の耐圧構造を実現でき、かつガードリング層の幅が従来のガードリングより狭くなることで静電容量の低容量化を実現できる。さらに、本発明の半導体装置は、トレンチ工程のような3次元加工を必要とせずに、従来の簡便なプレーナ技術にて作成することが可能である。
以下、本発明の実施の形態を図面に基づいて説明する。図1において、ショットキーバリアダイオード(半導体装置)は、半導体基板がN型半導体基板51の上に同じ導電型をなす低濃度半導体層のN型半導体層(エピタキシャル層)52を積層し、N型半導体層52の表面から層内へ延在して環状にガードリング層53を形成してなり、ガードリング層53はN型半導体層52にP型不純物を拡散させてN型半導体層52と異なる導電型をなす。
半導体基板の一方側の主面をなすN型半導体層52の表面には、絶縁保護膜をなす層間絶縁膜54がショットキー接合領域部Sおよびガードリング領域部Gを除いて形成してある。
また、半導体基板の一方側の主面をなすN型半導体層52の表面には、ショットキーメタルの金属層55を設けており、金属層55は層間絶縁膜54で隔てる主電極層(アノード電極)55aと副電極層55bとに分離分割して形成している。
主電極層55aはショットキー接合領域部Sの全域においてN型半導体層2とショットキー接合しており、副電極層55bがガードリング領域部GでN型半導体層52とショットキー接合するとともに、ガードリング層53と接合している。
層間絶縁膜54の値およびガードリング領域部Gにおける領域G1、領域G2が占める割合いは必要な耐圧を得るために必要な適当な値に設定しており、ガードリング領域部Gにおいて、副電極層55bとN型半導体層2とのショットキー接合面の静電容量は、ガードリング層53とN型半導体層2とのpn接合面の静電容量に比べて僅かとなる。半導体基板の裏面にはカソード電極56を設けている。
本実施の形態においては、ガードリング領域部Gの内側域にショットキーメタルの副電極層55bとN型半導体層2とがショットキー接合する領域G1を設け、外側域に副電極層55bとガードリング層53とが接合する領域G2を設けているが、本発明は上述した構成に限定されるものではない。
例えば、ガードリング領域部Gの内側域に副電極層55bとガードリング層53とが接合する領域G2を設け、外側域にショットキーメタルの副電極層55bとN型半導体層2とがショットキー接合する領域G1を設けることも可能であるし、副電極層55bとガードリング層53とが接合する領域G2の両側域にショットキーメタルの副電極層55bとN型半導体層2とがショットキー接合する領域G1を設けることも可能である。
この構成により、副電極層55bが主電極層55aから分離していることで順方向バイアス印加時にガードリング層53に正孔が注入されず、逆方向バイアス印加時にはわずかな逆バイアスで主電極層55aのショットキー接合領域Sとガードリング層53のガードリング領域部Gの間が急速に空乏化し、ショットキー接合領域Sの空乏層57aとガードリング領域部Gの空乏層57bがつながり、電界が高い値に達する前にショットキー接合領域Sでの電界を分散する。
よって、ガードリング領域部Gにおけるガードリング層53の幅を従来よりも狭く形成してもガードリング層53によって従来と同等の耐圧構造を実現しつつ、ガードリング層53の幅を従来のガードリングより狭くなることで静電容量の低容量化を実現できる。
次に、本発明の半導体装置の製造方法を図2において説明する。
1)マスク酸化膜成長(絶縁保護膜形成工程)
図2(a)に示すように、半導体基板はN型半導体基板51にN型半導体層(エピタキシャル層)52を積層し、N型半導体層52の主面にマスク酸化膜(層間絶縁膜54)41を形成する。
2)GRマスク合わせ(ガードリング層形成工程)
図2(b)に示すように、マスク酸化膜41の上にガードリング層53を形成する部位に窓を有するGRマスク(レジスト)42を合わせる。
3)GRエッチング(ガードリング層形成工程)
図2(c)に示すように、GRマスク42の窓においてマスク酸化膜41をエッチングして窓を形成する。
4)GR注入(B)(ガードリング層形成工程)
図2(d)に示すように、GRマスク42の窓およびマスク酸化膜41の窓を通してN型半導体層52にボロンを注入する。
5)ボロン拡散(ガードリング層形成工程)
図2(e)に示すように、GRマスク42のレジストを除去後にN型半導体層52のボロンを拡散させてガードリング層53を形成する。
6)CW窓形成(メタル形成工程)
図2(f)に示すように、マスク酸化膜41の上に、ショットキーメタルの金属層55を形成するための窓を有するCWマスク(レジスト)43を合わせる。
7)CWエッチング(メタル形成工程)
図2(g)に示すように、CWマスク43の窓においてマスク酸化膜41をエッチングして層間絶縁膜54となすとともに、ショットキー接合領域Sに対応する部位のN型半導体層52を露出させ、ガードリング領域Gに対応する部位のN型半導体層52およびガードリング層53を露出させる。
8)金属電極膜作成(メタル形成工程)
図2(h)に示すように、CWマスク43のレジストを除去後に、N型半導体層52、ガードリング層53および層間絶縁膜54の上にショットキーメタルの金属層55を形成する。
9)MWマスク合わせ(メタル分割工程)
図2(i)に示すように、金属層55の上に、金属層55の外周部を除去するための窓およびショットキー接合領域Sとガードリング領域Gとを隔てる離間部を形成するための窓を有するMWマスク(レジスト)44を合わせる。
10)MWエッチング(メタル分割工程)
図2(j)に示すように、MWマスク44の窓において金属層55をエッチングし、層間絶縁膜54を露出させ、金属層55を主電極層55aと副電極層55bとに分離分割する。
11)メタライズアニール
図2(k)に示すように、MWマスク44のレジストを除去後に、メタライズアニールする。
上述したように、本発明の半導体装置は、トレンチ工程のような3次元加工を必要とせずに、従来の簡便なプレーナ技術にて作成することが可能である。
本発明は、ガードリング層の幅を狭くして耐圧構造と静電容量の低容量化を実現できるので半導体装置に有効である。
本発明の実施の形態における半導体装置を示す断面図 同半導体装置の製造工程を示す模式図 従来の半導体装置を示す断面図 他の従来の半導体装置を示す断面図 他の従来の半導体装置を示す断面図 従来の半導体装置の製造工程を示す模式図 他の従来の半導体装置の製造工程を示す模式図
符号の説明
S ショットキー接合領域部
G ガードリング領域部
G1、G2 領域
51 N型半導体基板
52 N型半導体層
53 ガードリング層
54 層間絶縁膜
55 金属層
55a 主電極層(アノード電極)
55b 副電極層
56 カソード電極

Claims (2)

  1. 半導体基板の上に同じ導電型をなす低濃度半導体層が形成され、前記低濃度半導体層と異なる導電型をなすガードリング層が前記低濃度半導体層の表面から層内へ延在して環状に形成され、絶縁保護膜が前記半導体基板の一方側の主面にショットキー接合領域部およびガードリング領域部を除いて形成され、ショットキーメタルが前記半導体基板の一方側の主面に前記ショットキー接合領域部の主電極層と前記ガードリング領域部の副電極層とに分離分割して形成され、前記主電極層と前記副電極層の間を前記絶縁保護膜が隔て、前記主電極層が前記ショットキー接合領域部で前記低濃度半導体層とショットキー接合し、前記副電極層が前記ガードリング領域部で前記低濃度半導体層とショットキー接合するとともにガードリング層と接合することを特徴とする半導体装置。
  2. 半導体基板の上にエピタキシャル成長にて同じ導電型をなす低濃度半導体層を形成し、前記低濃度半導体層の上に絶縁保護膜を形成する絶縁保護膜形成工程と、
    前記絶縁保護膜に選択的なエッチングを施して所定部分を窓開けして前記低濃度半導体層の表面を露出させ、前記絶縁保護膜をマスクとして前記低濃度半導体層と異なる導電型をなすドーパントを注入して拡散することにより、前記低濃度半導体層の表面から層内へ延在するガードリング層を形成するガードリング層形成工程と、
    前記絶縁保護膜に選択的なエッチングを施してショットキー接合領域部およびガードリング領域部を窓開けし、前記半導体基板の一方側の主面に前記絶縁保護膜をマスクとして露出した前記低濃度半導体層と前記ガードリング層および前記絶縁保護膜の上にショットキーメタルを形成するメタル形成工程と、
    前記ショットキーメタルの上にショットキー接合領域部とガードリング領域部との間を窓開けしたマスクを形成し、前記マスクの窓において前記ショットキーメタルにエッチングを施して前記絶縁保護膜を露出させることにより、前記ショットキーメタルを前記ショットキー接合領域部の主電極層と前記ガードリング領域部の副電極層とに分離分割するメタル分割工程とを含むことを特徴とする半導体装置の製造方法。
JP2007090007A 2007-03-30 2007-03-30 半導体装置 Withdrawn JP2008251757A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090007A JP2008251757A (ja) 2007-03-30 2007-03-30 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090007A JP2008251757A (ja) 2007-03-30 2007-03-30 半導体装置

Publications (1)

Publication Number Publication Date
JP2008251757A true JP2008251757A (ja) 2008-10-16

Family

ID=39976370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090007A Withdrawn JP2008251757A (ja) 2007-03-30 2007-03-30 半導体装置

Country Status (1)

Country Link
JP (1) JP2008251757A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079928A (ja) * 2010-10-01 2012-04-19 Mitsubishi Electric Corp 半導体装置
US8957461B2 (en) 2010-01-05 2015-02-17 Fuji Electric Co., Ltd. Schottky barrier diode having a trench structure
CN104576362A (zh) * 2014-12-08 2015-04-29 天水天光半导体有限责任公司 一种100v肖特基二极管制作工艺
WO2021246528A1 (ja) * 2020-06-05 2021-12-09 株式会社Flosfia 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957461B2 (en) 2010-01-05 2015-02-17 Fuji Electric Co., Ltd. Schottky barrier diode having a trench structure
JP2012079928A (ja) * 2010-10-01 2012-04-19 Mitsubishi Electric Corp 半導体装置
CN104576362A (zh) * 2014-12-08 2015-04-29 天水天光半导体有限责任公司 一种100v肖特基二极管制作工艺
WO2021246528A1 (ja) * 2020-06-05 2021-12-09 株式会社Flosfia 半導体装置

Similar Documents

Publication Publication Date Title
JP6666671B2 (ja) 半導体装置
EP1065710B1 (en) Semiconductor device having a trench gate and method of manufacturing the same
WO2016175152A1 (ja) 半導体装置および半導体装置の製造方法
JP6092749B2 (ja) 半導体装置及び半導体装置の製造方法
US20050218472A1 (en) Semiconductor device manufacturing method thereof
US7915705B2 (en) SiC semiconductor device having outer periphery structure
CN106463504A (zh) 半导体装置以及半导体装置的制造方法
US20130075814A1 (en) Semiconductor device with a semiconductor via
JP2005191227A (ja) 半導体装置
CN102694009A (zh) 半导体器件及其制造方法
JP2009117715A (ja) 半導体装置及びその製造方法
JP2006210392A (ja) 半導体装置およびその製造方法
JP5711646B2 (ja) ダイオード
JP2012009545A (ja) 半導体装置の製造方法
JP2009177087A (ja) 半導体装置
US20150069536A1 (en) Semiconductor element and method for producing the same
WO2016042955A1 (ja) 半導体装置および半導体装置の製造方法
JP2011176027A (ja) 半導体素子および半導体素子の製造方法
JP2005229071A (ja) ショットキーバリアダイオード
JP2008251757A (ja) 半導体装置
US20080087969A1 (en) Planar-type semiconductor device and method of manufacturing the same
JP2012004466A (ja) 半導体装置
JP4659490B2 (ja) ショットキバリアダイオードおよびその製造方法
JP6092680B2 (ja) 半導体装置及び半導体装置の製造方法
JP2010206096A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111116