JP2008251403A - Electrode and electrochemical device - Google Patents

Electrode and electrochemical device Download PDF

Info

Publication number
JP2008251403A
JP2008251403A JP2007092867A JP2007092867A JP2008251403A JP 2008251403 A JP2008251403 A JP 2008251403A JP 2007092867 A JP2007092867 A JP 2007092867A JP 2007092867 A JP2007092867 A JP 2007092867A JP 2008251403 A JP2008251403 A JP 2008251403A
Authority
JP
Japan
Prior art keywords
carbon particles
electrode
carbon
active material
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007092867A
Other languages
Japanese (ja)
Other versions
JP5157222B2 (en
Inventor
Atsushi Sano
篤史 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007092867A priority Critical patent/JP5157222B2/en
Publication of JP2008251403A publication Critical patent/JP2008251403A/en
Application granted granted Critical
Publication of JP5157222B2 publication Critical patent/JP5157222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode and an electrochemical device using this in which rapid charge is possible and which are superior in cycle characteristics, while density of the electrode is sufficiently increased. <P>SOLUTION: The electrode is provided with a current collector 12 and an active material containing layer 14 installed on the current collector 12, and the active material containing layer 14 contains a first carbon particle 5 and a second carbon particle 6 of which the average particle size is smaller than the first carbon particle 5. When the ratio (P101/P100) of a peak intensity P101 of (101) surface and the peak intensity P100 of (100) surface in the X-ray diffraction pattern of each carbon particle is made a graphitization degree of each carbon particle respectively, the graphitization degree of the first carbon particle is 1.5-3.1, and the graphitization degree of the second carbon particle is 0.5-0.8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電極及び電気化学デバイスに関する。   The present invention relates to an electrode and an electrochemical device.

リチウム二次電池等の電気化学デバイスの電極としては、集電体上に活物質含有層が設けられたものが知られている。このような電極は、集電体上に、活物質粒子、バインダー、導電助剤及び溶剤を含むペーストを塗布し、溶剤を乾燥させ、その後塗布膜をプレスして製造される。このプレスの目的のひとつは、電極の体積エネルギー密度を高めることである。
特開平05−307957号公報 特開平05−307958号公報 特開平07−37618号公報 特開平08−287952号公報 特開平09−213372号公報 特開平10−92414号公報 特開2004−178819号公報 特開2004−127913号公報 特開2000−133267号公報 特開2004−210634号公報 特開2003−323896号公報 特開2002−8655号公報
As an electrode of an electrochemical device such as a lithium secondary battery, an electrode in which an active material-containing layer is provided on a current collector is known. Such an electrode is manufactured by applying a paste containing active material particles, a binder, a conductive additive and a solvent on a current collector, drying the solvent, and then pressing the coating film. One purpose of this press is to increase the volumetric energy density of the electrode.
JP 05-307957 A Japanese Patent Laid-Open No. 05-307958 Japanese Patent Laid-Open No. 07-37618 Japanese Patent Application Laid-Open No. 08-287952 JP 09-213372 A JP-A-10-92414 JP 2004-178819 A JP 2004-127913 A JP 2000-133267 A Japanese Patent Laid-Open No. 2004-210634 JP 2003-323896 A JP 2002-8655 A

ところで、近年ではより一層の体積エネルギーの向上と、充電時間の短縮とが求められている。電極の活物質の密度を上げるためには、天然黒鉛等の黒鉛化度の高い粒子を用い、ロールプレスで十分に高圧でプレスする方法が考えられる。ところが、天然黒鉛は軟らかいためか細孔が閉塞しやすく、このような方法により電極の活物質の密度は高くなるが、電解液の浸透性が悪化して充電に長時間を要することとなる。   Incidentally, in recent years, further improvement in volume energy and reduction in charging time have been demanded. In order to increase the density of the active material of the electrode, a method of using particles having a high degree of graphitization such as natural graphite and pressing with a roll press at a sufficiently high pressure is conceivable. However, since natural graphite is soft, the pores are likely to be clogged, and the density of the active material of the electrode is increased by such a method, but the permeability of the electrolytic solution is deteriorated and it takes a long time for charging.

一方、特許文献12に記載されているように、黒鉛の小粒子と大粒子とを混合して充填率を高めることも考えられる。しかしながら、この場合、黒鉛の表面積の増大により、サイクル特性の悪化やレート特性を十分に高められないという問題がある。   On the other hand, as described in Patent Document 12, it is conceivable to increase the filling rate by mixing small particles and large particles of graphite. However, in this case, there is a problem that cycle characteristics are deteriorated and rate characteristics cannot be sufficiently improved due to an increase in the surface area of graphite.

本発明は上記課題に鑑みてなされたものであり、電極の密度を十分に高めつつ、急速充電が可能かつサイクル特性に優れた電極及びこれを用いた電気化学デバイスを提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide an electrode capable of rapid charging and having excellent cycle characteristics while sufficiently increasing the density of the electrode and an electrochemical device using the same. .

本発明に係る電極は、集電体と、集電体上に設けられた活物質含有層と、を備える。活物質含有層は、第一炭素粒子、及び、第一炭素粒子よりも平均粒径が小さい第二炭素粒子を含む。さらに、各炭素粒子のX線回折パターンにおける(101)面のピーク強度P101と(100)面のピーク強度P100との比(P101/P100)を各炭素粒子の黒鉛化度としたときに、第一炭素粒子の黒鉛化度が1.5〜3.1であり、第二炭素粒子の黒鉛化度が0.5〜0.8である。   The electrode according to the present invention includes a current collector and an active material-containing layer provided on the current collector. The active material-containing layer includes first carbon particles and second carbon particles having an average particle size smaller than that of the first carbon particles. Furthermore, when the ratio (P101 / P100) between the peak intensity P101 of the (101) plane and the peak intensity P100 of the (100) plane in the X-ray diffraction pattern of each carbon particle is the degree of graphitization of each carbon particle, The graphitization degree of one carbon particle is 1.5 to 3.1, and the graphitization degree of the second carbon particle is 0.5 to 0.8.

異なる粒径の炭素粒子を混合することにより電極の活物質の充填密度を上げられる。また、黒鉛化度の小さい粒子は硬いためか、プレスしても電解液の浸透に適した微細な細孔が第二炭素粒子間に形成されるため、電解液が浸透しやすい。さらに、平均粒径の小さい炭素材料を用いると表面積が大きくなって電解液の分解が顕著となるが、粒径の小さい炭素粒子として黒鉛化度の小さい粒子を使用しているので、電解液の分解を起こしにくい。また、第二炭素粒子の黒鉛化度が0でないことから、第二炭素粒子も電解質イオンの十分な吸蔵放出を行うことができる。特に、黒鉛化度が上記の範囲にある2種の炭素粒子を用いることによって、リチウムイオンの挿入脱離反応を低減させることなく、また、電解液の分解反応を生じさせることなく、電極の密度を十分に高めつつ、急速充電が可能かつサイクル特性に優れた電極を得ることができる。   The packing density of the active material of the electrode can be increased by mixing carbon particles having different particle diameters. In addition, the particles having a low graphitization degree are hard, or even when pressed, fine pores suitable for the penetration of the electrolytic solution are formed between the second carbon particles, so that the electrolytic solution is likely to penetrate. Further, when a carbon material having a small average particle diameter is used, the surface area becomes large and the decomposition of the electrolytic solution becomes remarkable. However, since carbon particles with a small particle diameter have a low degree of graphitization, It is difficult to cause decomposition. Further, since the degree of graphitization of the second carbon particles is not 0, the second carbon particles can also perform sufficient occlusion and release of electrolyte ions. In particular, by using two types of carbon particles having a graphitization degree in the above range, the density of the electrode can be reduced without reducing the insertion / desorption reaction of lithium ions and without causing the decomposition reaction of the electrolytic solution. It is possible to obtain an electrode that can be rapidly charged and has excellent cycle characteristics while sufficiently increasing the resistance.

ここで黒鉛化度は、X線回折パターンにおける(101)面のピーク強度P101と(100)面のピーク強度P100との比(P101/P100)により定義されるものであり、この(P101/P100)が大きいほど黒鉛化度が高いことを意味する。   Here, the degree of graphitization is defined by the ratio (P101 / P100) of the peak intensity P101 of the (101) plane and the peak intensity P100 of the (100) plane in the X-ray diffraction pattern, and this (P101 / P100 ) Means that the degree of graphitization is higher.

また、第一炭素粒子の平均粒径を1とした時に、第二炭素粒子の平均粒径が0.002〜0.05であることが好ましい。第二炭素粒子の平均粒径が0.002よりも小さい場合、第二炭素粒子の表面積が大きくなるため電解液の分解反応が生じやすくなる傾向がある。また、0.05よりも大きい場合、電極の空隙が大きくなって電極密度が低下する傾向がある。   Further, when the average particle diameter of the first carbon particles is 1, it is preferable that the average particle diameter of the second carbon particles is 0.002 to 0.05. When the average particle diameter of the second carbon particles is smaller than 0.002, the surface area of the second carbon particles increases, so that the decomposition reaction of the electrolytic solution tends to occur. Moreover, when larger than 0.05, the space | gap of an electrode becomes large and there exists a tendency for an electrode density to fall.

また、第一炭素粒子の平均粒径が7〜25μmであり、第二炭素粒子の平均粒径が0.08〜0.3μmであることが好ましい。第一炭素粒子の平均粒径が7μmよりも小さい場合、第一炭素粒子の表面で電解液の分解が生じやすくなる傾向がある。第一炭素粒子の平均粒径が25μmよりも大きい場合、電極の空隙が大きくなって電極密度が低下する傾向がある。また、第二炭素粒子の平均粒径が0.08μmよりも小さい場合、第二炭素粒子の表面で電解液の分解が生じやすくなる傾向がある。第二炭素粒子の平均粒径が0.3μmよりも大きい場合、電極の空隙が大きくなって電極密度が低下する傾向がある。   Moreover, it is preferable that the average particle diameter of a 1st carbon particle is 7-25 micrometers, and the average particle diameter of a 2nd carbon particle is 0.08-0.3 micrometer. When the average particle diameter of the first carbon particles is smaller than 7 μm, the electrolytic solution tends to be decomposed on the surface of the first carbon particles. When the average particle diameter of the first carbon particles is larger than 25 μm, the voids of the electrodes become large and the electrode density tends to decrease. Moreover, when the average particle diameter of the second carbon particles is smaller than 0.08 μm, the electrolytic solution tends to be decomposed on the surface of the second carbon particles. When the average particle diameter of the second carbon particles is larger than 0.3 μm, the gap between the electrodes becomes large and the electrode density tends to decrease.

また、第一炭素粒子は鱗片状黒鉛を含むことが好ましい。鱗片状黒鉛を用いることで、第一炭素粒子における充放電効率を向上させることができる。   Moreover, it is preferable that a 1st carbon particle contains scaly graphite. By using scaly graphite, the charge / discharge efficiency of the first carbon particles can be improved.

また、第二炭素粒子の形状は球状であることが好ましい。第二炭素粒子の形状を球状とすることで、第一炭素粒子の隙間に第二炭素粒子が入りやすくなるため、電極密度を向上させることができる。   The shape of the second carbon particles is preferably spherical. By making the shape of the second carbon particles spherical, the second carbon particles can easily enter the gaps between the first carbon particles, so that the electrode density can be improved.

また、第一粒子を100重量部としたときに第二炭素粒子を5〜200重量部含むことが好ましい。第二炭素粒子が5重量部よりも少ない場合、第一炭素粒子が形成する空隙の充填が不十分となるため、電極の空隙が大きくなって電極密度が低下する傾向がある。第二炭素粒子が200重量部よりも多い場合、電解液分解の要因が増大するため電解液の分解が生じやすくなる傾向がある。   Moreover, it is preferable that 5-200 weight part of 2nd carbon particles are included when a 1st particle is 100 weight part. When the amount of the second carbon particles is less than 5 parts by weight, the filling of the voids formed by the first carbon particles becomes insufficient, so that the voids of the electrodes become large and the electrode density tends to decrease. When the amount of the second carbon particles is more than 200 parts by weight, there is a tendency that the electrolytic solution is easily decomposed because the factor of the electrolytic solution decomposition increases.

また、本発明に係る電気化学デバイスは、上述の電極を備える電気化学デバイスである。   Moreover, the electrochemical device which concerns on this invention is an electrochemical device provided with the above-mentioned electrode.

本発明によれば、電極の密度を十分に高めつつ、急速充電が可能かつサイクル特性に優れた電極及びこれを用いた電気化学デバイスを提供できる。   According to the present invention, it is possible to provide an electrode capable of rapid charging and having excellent cycle characteristics while sufficiently increasing the density of the electrode and an electrochemical device using the electrode.

以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。また、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratio in each drawing does not necessarily match the actual dimensional ratio.

(電極)
まず、図1を参照して本実施形態にかかる電極について説明する。電極10は、集電体12上に活物質含有層14が設けられた物である。
(electrode)
First, the electrode according to the present embodiment will be described with reference to FIG. The electrode 10 is a product in which an active material-containing layer 14 is provided on a current collector 12.

集電体12としては、例えば、銅箔、ニッケル箔等を使用できる。   As the current collector 12, for example, a copper foil, a nickel foil, or the like can be used.

活物質含有層14は、活物質粒子、バインダー(不図示)、及び必要に応じて配合される導電助剤(不図示)を含む層である。   The active material-containing layer 14 is a layer containing active material particles, a binder (not shown), and a conductive additive (not shown) blended as necessary.

本実施形態において、活物質粒子として、第一炭素粒子5、及び、第一炭素粒子5よりも平均粒径が小さい第二炭素粒子6を含む。第一炭素粒子5の黒鉛化度が1.5〜3.1であり、第二炭素粒子6の黒鉛化度が0.5〜0.8である。   In the present embodiment, the active material particles include the first carbon particles 5 and the second carbon particles 6 having an average particle size smaller than that of the first carbon particles 5. The first carbon particles 5 have a graphitization degree of 1.5 to 3.1, and the second carbon particles 6 have a graphitization degree of 0.5 to 0.8.

ここで、黒鉛化度は、各炭素粒子のX線回折パターンにおける(101)面のピーク強度P101と(100)面のピーク強度P100との比(P101/P100)により定義される。この(P101/P100)が大きいほど黒鉛化度が高いことを意味する。   Here, the degree of graphitization is defined by the ratio (P101 / P100) between the peak intensity P101 of the (101) plane and the peak intensity P100 of the (100) plane in the X-ray diffraction pattern of each carbon particle. The larger this (P101 / P100), the higher the degree of graphitization.

平均粒径は、例えば、体積基準粒径分布における50%径であるD50として定義できる。粒径分布はレーザー回折散乱法等により容易に取得することができる。   An average particle diameter can be defined as D50 which is a 50% diameter in a volume reference | standard particle size distribution, for example. The particle size distribution can be easily obtained by a laser diffraction scattering method or the like.

第一炭素粒子5としては、具体的には、人造黒鉛粒子、天然黒鉛粒子が挙げられる。特に、鱗片状構造を有する天然黒鉛粒子が好ましい。第一炭素粒子の平均粒径としては、7〜25μmが好ましい。   Specific examples of the first carbon particles 5 include artificial graphite particles and natural graphite particles. In particular, natural graphite particles having a scaly structure are preferred. The average particle diameter of the first carbon particles is preferably 7 to 25 μm.

第二炭素粒子6としては、未黒鉛化炭素粉末と呼ばれる炭素粉末をもちいることが好ましい。第二炭素粒子6の平均粒径(D50)としては、0.08〜0.3μmが好ましい。特に、第二炭素粒子6は、平均粒径D50が0.3μm以下、Lc<30nm、La<50nm、3.365<d002<3.395、BET面積が20m/g以下であることが好ましい。このような炭素粉末は、例えば、トルエン等の炭化水素ガスを水素ガスと共に熱分解することにより得ることができる。 As the second carbon particles 6, it is preferable to use carbon powder called non-graphitized carbon powder. The average particle diameter (D50) of the second carbon particles 6 is preferably 0.08 to 0.3 μm. In particular, the second carbon particles 6 have an average particle diameter D50 of 0.3 μm or less, Lc <30 nm, La <50 nm, 3.365 <d 002 <3.395, and a BET area of 20 m 2 / g or less. preferable. Such carbon powder can be obtained, for example, by thermally decomposing hydrocarbon gas such as toluene together with hydrogen gas.

このような第二炭素粒子6の外形形状は、略球状であることが好ましい。また、第一炭素粒子5の平均粒径を1とした時に、第二炭素粒子6の平均粒径が0.002〜0.05であることが好ましい。さらに、第一炭素粒子5を100重量部としたときに第二炭素粒子6を5〜200重量含むことが好ましい。   The outer shape of the second carbon particles 6 is preferably substantially spherical. Moreover, when the average particle diameter of the first carbon particles 5 is 1, the average particle diameter of the second carbon particles 6 is preferably 0.002 to 0.05. Furthermore, it is preferable that 5 to 200 weight of the 2nd carbon particle 6 is included when the 1st carbon particle 5 is 100 weight part.

図1に示すように、活物質含有層14において、第一炭素粒子5の周りを第二炭素粒子6が取り囲んでいる。第二炭素粒子6が充填された部分においては、第二炭素粒子はそれほど緻密化されておらず、微細な細孔が形成されている。   As shown in FIG. 1, in the active material containing layer 14, the second carbon particles 6 surround the first carbon particles 5. In the portion filled with the second carbon particles 6, the second carbon particles are not so dense, and fine pores are formed.

バインダーは、上記の活物質粒子と導電助剤とを集電体に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、スチレン−ブタジエンゴム(SBR)と水溶性高分子(カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸ナトリウム、デキストリン、グルテンなど)との混合物等が挙げられる。   The binder is not particularly limited as long as it can bind the active material particles and the conductive additive to the current collector, and a known binder can be used. For example, fluororesin such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR) and water-soluble polymers (carboxymethylcellulose, polyvinyl alcohol, sodium polyacrylate, dextrin, gluten, etc. ) And the like.

導電助剤としては、例えば、カーボンブラック類、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。導電助剤は、活物質含有層14の電子伝導性を高めるために添加される材料である。導電助剤としては、アセチレンブラックあるいはカーボンブラックを好適に用いることができる。これらは、アグリゲートあるいはストラクチャと称される炭素凝集体が数珠状に連結した外観を有しており、30m/g以上の大きな比表面積を有する。これらのアセチレンブラックあるいはカーボンブラックは、黒鉛化度がほぼゼロであることから、本発明にいう第二炭素粒子とは明確に区別される。また、アセチレンブラックあるいはカーボンブラックは、実質的に充放電特性を有しないという点も異なる。したがって、本発明においては、通常のカーボンブラックやアセチレンブラックを第二炭素粒子として用いることは困難である。 Examples of the conductive aid include carbon blacks, fine metal powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and fine metal powders, and conductive oxides such as ITO. The conductive assistant is a material added to increase the electronic conductivity of the active material-containing layer 14. As the conductive assistant, acetylene black or carbon black can be suitably used. These have an appearance in which carbon aggregates called aggregates or structures are connected in a beaded manner, and have a large specific surface area of 30 m 2 / g or more. Since these acetylene blacks or carbon blacks have almost zero graphitization degree, they are clearly distinguished from the second carbon particles referred to in the present invention. Another difference is that acetylene black or carbon black has substantially no charge / discharge characteristics. Therefore, in the present invention, it is difficult to use ordinary carbon black or acetylene black as the second carbon particles.

活物質含有層10の厚みは特に限定されないが、30〜100μmであることが好ましい。   Although the thickness of the active material content layer 10 is not specifically limited, It is preferable that it is 30-100 micrometers.

(電極の製造方法)
このような電極は、以下のようにして製造できる。まず、活物質粒子混合物、バインダー、及び必要な量の導電助剤を、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の溶媒に添加したスラリーを、集電体12の表面に塗布し、乾燥させる。ここでは、活物質粒子混合物として、上述の第一炭素粒子5及び第二炭素粒子6を供給するのである。乾燥後、活物質含有層が形成された電極をロールプレス等のプレス機でプレスする。プレス時の線圧は例えば、100〜1000kgf/cmとすることができる。
(作用・効果)
(Method for manufacturing electrode)
Such an electrode can be manufactured as follows. First, a slurry in which an active material particle mixture, a binder, and a necessary amount of a conductive additive are added to a solvent such as N-methyl-2-pyrrolidone or N, N-dimethylformamide is applied to the surface of the current collector 12. And dry. Here, the above-mentioned first carbon particles 5 and second carbon particles 6 are supplied as the active material particle mixture. After drying, the electrode on which the active material-containing layer is formed is pressed with a press such as a roll press. The linear pressure during pressing can be set to 100 to 1000 kgf / cm, for example.
(Action / Effect)

本実施形態によれば、活物質含有層14におい第一炭素粒子5、及び、第一炭素粒子5よりも平均粒径が小さくかつ黒鉛化度が小さい第二炭素粒子6を含んでいる。異なる粒径の炭素粒子を混合することにより電極の活物質含有層14における活物質の充填密度を上げられる。また、黒鉛化度の小さい粒子は硬いためか、プレスしても電解液の浸透に適した微細な細孔が第二炭素粒子6間に形成されるため、電解液が浸透しやすい。さらに、平均粒径の小さい第二炭素粒子を用いると表面積が大きくなって電解液の分解が顕著となるが、粒径の小さい第二炭素粒子として黒鉛化度の小さい粒子を使用しているので、電解液の分解を起こしにくい。   According to the present embodiment, the active material-containing layer 14 includes the first carbon particles 5 and the second carbon particles 6 having an average particle size smaller than that of the first carbon particles 5 and having a lower graphitization degree. By mixing carbon particles having different particle diameters, the packing density of the active material in the active material-containing layer 14 of the electrode can be increased. In addition, the particles having a low graphitization degree are hard, or even if pressed, fine pores suitable for the penetration of the electrolyte solution are formed between the second carbon particles 6, so that the electrolyte solution easily penetrates. Furthermore, when the second carbon particles having a small average particle diameter are used, the surface area becomes large, and the decomposition of the electrolytic solution becomes remarkable. However, since the second carbon particles having a small particle diameter have small graphitization degree, It is hard to cause decomposition of the electrolyte.

(電気化学デバイス)
続いて、本発明にかかる電気化学デバイスの一例を説明する。図2は、リチウムイオン二次電池の一例である。
(Electrochemical device)
Then, an example of the electrochemical device concerning this invention is demonstrated. FIG. 2 is an example of a lithium ion secondary battery.

このリチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.

積層体30は、一対の電極10、20がセパレータ18を挟んで対向配置されたものである。各活物質含有層14がセパレータ18の両側にそれぞれ接触している。集電体12の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。一方の電極10が負極となり、他方の電極20が正極となる。負極10は、上述の電極である。   The laminated body 30 is configured such that a pair of electrodes 10 and 20 are arranged to face each other with the separator 18 interposed therebetween. Each active material-containing layer 14 is in contact with both sides of the separator 18. Leads 60 and 62 are connected to the ends of the current collector 12, and the ends of the leads 60 and 62 extend to the outside of the case 50. One electrode 10 becomes a negative electrode and the other electrode 20 becomes a positive electrode. The negative electrode 10 is the electrode described above.

正極20は、集電体22上に活物質含有層24が設けられた物である。活物質含有層24は、活物質粒子、バインダー(不図示)、及び必要に応じて配合される導電助剤(不図示)を含む層である。   The positive electrode 20 is a product in which an active material containing layer 24 is provided on a current collector 22. The active material-containing layer 24 is a layer containing active material particles, a binder (not shown), and a conductive additive (not shown) blended as necessary.

正極活物質粒子としては、例えば、LiMO(Mは、Co、Ni又はMnを示す)、LiCoNi1−x、LiMn、LiCoNiMn1−x−y(ここで、x、yは0を超え1未満である)等のCo、Ni及びMnからなる群から選択される少なくとも1つの金属を含むリチウム酸化物が上げられ、特に、LiCoNiMn1−x−yが一層好ましい。 Examples of the positive electrode active material particles include LiMO 2 (M represents Co, Ni, or Mn), LiCo x Ni 1-x O 2 , LiMn 2 O 4 , LiCo x Ni y Mn 1-xy O 2. Lithium oxide containing at least one metal selected from the group consisting of Co, Ni and Mn, such as (where x and y are greater than 0 and less than 1), such as LiCo x Ni y Mn 1-xy O 2 is more preferred.

これら活物質粒子の粒径Raは特に限定されないが、例えば、通常0.05〜20μmとすることができる。
活物質粒子以外のバインダーや導電助剤は、負極10と同様のものを使用できる。
Although the particle size Ra of these active material particles is not particularly limited, for example, it can usually be 0.05 to 20 μm.
As the binder and the conductive additive other than the active material particles, the same materials as those of the negative electrode 10 can be used.

電解質溶液は、各活物質含有層14、24、及び、セパレータ18の内部に含有させるものである。電解質溶液としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiCF3SO3、LiCF3、CF2SO3、LiC(CF3SO23、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiN(CF3CF2CO)2、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。 The electrolyte solution is contained in each of the active material-containing layers 14 and 24 and the separator 18. The electrolyte solution is not particularly limited. For example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level. As the electrolyte solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , A salt such as LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB or the like can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Moreover, as an organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.

なお、本実施形態において、電解質溶液は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。   In the present embodiment, the electrolyte solution may be a gel electrolyte obtained by adding a gelling agent in addition to liquid. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.

また、セパレータ18も、電気絶縁性の多孔体から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 18 may be formed of an electrically insulating porous material, for example, a single layer of a film made of polyethylene, polypropylene, or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, Examples thereof include a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polyester and polypropylene.

ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からの電気化学デバイス100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、合成樹脂膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン、ポリプロピレン等が好ましい。   The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electrochemical device 100 from the outside. For example, as the case 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the synthetic resin film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is preferably polyethylene or polypropylene.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

なお、本発明に係る電極は、リチウムイオン2次電池に限らず、例えば、電気化学キャパシタの電極としても適用できる。例えば、炭素粒子を用いる電気二重層キャパシタの電極として好適に利用することができる。   The electrode according to the present invention is not limited to a lithium ion secondary battery, and can be applied as an electrode of an electrochemical capacitor, for example. For example, it can be suitably used as an electrode of an electric double layer capacitor using carbon particles.

(実施例1)
第一炭素粒子としてのアモルファスカーボンコート天然黒鉛(平均粒径20μm、(P101/P100)=2.66、45重量部)、第二炭素粒子としての未黒鉛化球状炭素粉末(平均粒径D50=0.2μm、(P101/P100)=0.63、45重量部)と、セバインダとしてのPVDF(8重量部)と、導電助剤としてのアセチレンブラック(2重量部)と、溶媒としてのN−メチル−2−ピロリドン(NMP)とを2軸混錬機により混合した。ここでは、60rpm/minにおいて7kgmのトルクがかかるように溶媒の量を調節し、1時間混練した。その後、さらに、溶媒を加えて粘度を調整してスラリーとし、ドクターブレード法により負極集電体としての銅箔(厚さ:10μm)上に塗布し、乾燥させて活物質含有層を形成した。乾燥後の電極厚みが37μmとなるように塗布量を調整した。その後、負極を、熱ロールでプレスすることにより正極を製造した。
Example 1
Amorphous carbon coated natural graphite (average particle size 20 μm, (P101 / P100) = 2.66, 45 parts by weight) as first carbon particles, ungraphitized spherical carbon powder (average particle size D50 = 0.2 μm, (P101 / P100) = 0.63, 45 parts by weight), PVDF as a binder (8 parts by weight), acetylene black (2 parts by weight) as a conductive auxiliary agent, and N− as a solvent Methyl-2-pyrrolidone (NMP) was mixed with a biaxial kneader. Here, the amount of the solvent was adjusted so that a torque of 7 kgm was applied at 60 rpm / min, and the mixture was kneaded for 1 hour. Thereafter, a solvent was further added to adjust the viscosity to form a slurry, which was applied onto a copper foil (thickness: 10 μm) as a negative electrode current collector by a doctor blade method and dried to form an active material-containing layer. The coating amount was adjusted so that the electrode thickness after drying was 37 μm. Then, the positive electrode was manufactured by pressing the negative electrode with a hot roll.

LiMn0.33Ni0.33Co0.34(但し、式中の数字は原子比である。)を92重量部、導電助剤であるアセチレンブラックを2重量部、バインダーとしてポリフッ化ビニリデン(PVdF)を3重量部、プラネタリーミキサによってNMP中に混合し、スラリー状の塗布液を得た。得られた塗布液を、集電体であるアルミニウム箔(15μm)の上にドクターブレード法により塗布して乾燥させた。その後ロールプレスして、活物質の担持量が3.2g/cmと成るように調製した。 92 parts by weight of LiMn 0.33 Ni 0.33 Co 0.34 O 2 (wherein the numbers are atomic ratios), 2 parts by weight of acetylene black as a conductive aid, and polyvinylidene fluoride as a binder 3 parts by weight of (PVdF) was mixed into NMP by a planetary mixer to obtain a slurry-like coating solution. The obtained coating solution was applied onto an aluminum foil (15 μm) as a current collector by a doctor blade method and dried. Thereafter, it was roll-pressed so that the amount of the active material supported was 3.2 g / cm 3 .

セパレータとして、ポリエチレン製の多孔シートを用い、電解液として、プロピレンカーボネート(PC)とエチレンカーボネート(EC)、ジエチルカーボネート(DEC)の体積比2対1対7を溶媒とし、LiPF6を1.5mol dm-3の割合で溶質とした非水電解液と、アルミラミネートフィルムをケースとして用い、図2に示すようなリチウムイオン二次電池を作成した。 The separator is a polyethylene porous sheet, and the electrolyte is propylene carbonate (PC), ethylene carbonate (EC), and diethyl carbonate (DEC) in a volume ratio of 2 to 1: 7, and 1.5 mol of LiPF 6 A lithium ion secondary battery as shown in FIG. 2 was prepared using a nonaqueous electrolyte solution soluted at a ratio of dm −3 and an aluminum laminate film as a case.

(実施例2)
第一炭素粒子を60重量部とし、第二炭素粒子を30重量部とする以外は実施例1と同様にして電池を製造した。
(Example 2)
A battery was produced in the same manner as in Example 1 except that the first carbon particles were 60 parts by weight and the second carbon particles were 30 parts by weight.

(実施例3)
第一炭素粒子を70重量部とし、第二炭素粒子を20重量部とする以外は実施例1と同様にして電極を製造した。
(Example 3)
An electrode was produced in the same manner as in Example 1 except that 70 parts by weight of the first carbon particles and 20 parts by weight of the second carbon particles were used.

(比較例1)
第一炭素粒子を90重量部とし、第二炭素粒子を用いない以外は実施例1と同様にして電極を製造した。
(Comparative Example 1)
An electrode was produced in the same manner as in Example 1 except that the first carbon particle was 90 parts by weight and the second carbon particle was not used.

(比較例2)
第一炭素粒子を用いず、第二炭素粒子を90重量部用いる以外は実施例1と同様にして電極を製造した。
(比較例3〜5)
第一炭素粒子の平均粒径を40μm、第二炭素粒子の平均粒径を0.5μm、黒鉛化度(P101/P100)を1.5とした以外は実施例1から3と同様にして電極を製造した。
(Comparative Example 2)
An electrode was produced in the same manner as in Example 1 except that 90 parts by weight of the second carbon particles were used without using the first carbon particles.
(Comparative Examples 3-5)
The electrodes were the same as in Examples 1 to 3, except that the average particle diameter of the first carbon particles was 40 μm, the average particle diameter of the second carbon particles was 0.5 μm, and the degree of graphitization (P101 / P100) was 1.5. Manufactured.

〔特性の測定〕
電極密度は、マイクロメーターによって測定した電極厚みと電極重量とから算出した。なお、この電極密度には、導電助剤と、バインダーとが含まれている。充電時間は、30Cの定電流定電圧充電(CCCV)によって4.2Vまで充電をおこない、定格容量の80%まで充電するために要した時間として求めた。サイクル特性は、10CのCCCV充電と、10CのCC放電とを500回繰り返し、カットオフ電圧を4.2V−2.5Vとして測定した。結果を図3に示す。
[Measurement of characteristics]
The electrode density was calculated from the electrode thickness and electrode weight measured with a micrometer. Note that the electrode density includes a conductive additive and a binder. The charging time was determined as the time required to charge up to 4.2 V by 30 C constant current constant voltage charging (CCCV) and to charge up to 80% of the rated capacity. The cycle characteristics were measured by repeating 10 C CCCV charge and 10 C CC discharge 500 times and setting the cut-off voltage to 4.2 V-2.5 V. The results are shown in FIG.

実施例では、電極の高密度化と、充電時間の短縮化と、サイクル特性の向上とをバランスよく実現できた。   In the example, the high density of the electrode, the shortening of the charging time, and the improvement of the cycle characteristics were realized in a balanced manner.

実施例1の負極のSEM写真を図4に、図4の活物質含有層の拡大SEM写真を図5に示す。   FIG. 4 shows an SEM photograph of the negative electrode of Example 1, and FIG. 5 shows an enlarged SEM photograph of the active material-containing layer of FIG.

図1は、本実施形態に係る電極の概略断面図である。FIG. 1 is a schematic cross-sectional view of an electrode according to this embodiment. 図2は、本実施形態に係るリチウムイオン二次電池の概略断面図である。FIG. 2 is a schematic cross-sectional view of the lithium ion secondary battery according to the present embodiment. 図3は、実施例及び比較例の条件及び結果を示す表である。FIG. 3 is a table showing conditions and results of Examples and Comparative Examples. 図4は、実施例1の負極のSEM写真である。FIG. 4 is a SEM photograph of the negative electrode of Example 1. 図5は、図4の活物質含有層の拡大SEM写真である。FIG. 5 is an enlarged SEM photograph of the active material-containing layer of FIG.

符号の説明Explanation of symbols

5…第一炭素粒子、6…第二炭素粒子、10…電極(負極)、14…活物質含有層、100…リチウムイオン二次電池。   5 ... 1st carbon particle, 6 ... 2nd carbon particle, 10 ... Electrode (negative electrode), 14 ... Active material content layer, 100 ... Lithium ion secondary battery.

Claims (7)

集電体と、
前記集電体上に設けられた活物質含有層と、を備え、
前記活物質含有層は、第一炭素粒子、及び、前記第一炭素粒子よりも平均粒径が小さい第二炭素粒子を含み、
前記各炭素粒子のX線回折パターンにおける(101)面のピーク強度P101と(100)面のピーク強度P100との比(P101/P100)をそれぞれ前記各炭素粒子の黒鉛化度としたときに、
前記第一炭素粒子の黒鉛化度が1.5〜3.1であり、
前記第二炭素粒子の黒鉛化度が0.5〜0.8である電極。
A current collector,
An active material-containing layer provided on the current collector,
The active material-containing layer includes first carbon particles and second carbon particles having an average particle size smaller than that of the first carbon particles,
When the ratio (P101 / P100) between the peak intensity P101 of the (101) plane and the peak intensity P100 of the (100) plane in the X-ray diffraction pattern of each carbon particle is the degree of graphitization of each carbon particle,
The degree of graphitization of the first carbon particles is 1.5 to 3.1,
An electrode in which the second carbon particles have a graphitization degree of 0.5 to 0.8.
前記第一炭素粒子の平均粒径を1とした時に、前記第二炭素粒子の平均粒径が0.002〜0.05である請求項1記載の電極。   2. The electrode according to claim 1, wherein when the average particle diameter of the first carbon particles is 1, the average particle diameter of the second carbon particles is 0.002 to 0.05. 前記第一炭素粒子の平均粒径が7〜25μmであり、前記第二炭素粒子の平均粒径が0.08〜0.3μmである請求項1又は2記載の電極。   The electrode according to claim 1 or 2, wherein the average particle diameter of the first carbon particles is 7 to 25 µm, and the average particle diameter of the second carbon particles is 0.08 to 0.3 µm. 前記第一炭素粒子は鱗片状黒鉛を含む請求項1〜3のいずれか記載の電極   The electrode according to claim 1, wherein the first carbon particles include flaky graphite. 前記第二炭素粒子の形状は球状である請求項1〜4のいずれか記載の電極。   The electrode according to claim 1, wherein the second carbon particles have a spherical shape. 前記第一炭素粒子を100重量部としたときに前記第二炭素粒子を5〜200重量部含む請求項1〜5のいずれか記載の電極。   The electrode according to any one of claims 1 to 5, comprising 5 to 200 parts by weight of the second carbon particles when the first carbon particles are 100 parts by weight. 請求項1〜6のいずれか記載の電極を備える電気化学デバイス。   An electrochemical device comprising the electrode according to claim 1.
JP2007092867A 2007-03-30 2007-03-30 Electrode and electrochemical device Active JP5157222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007092867A JP5157222B2 (en) 2007-03-30 2007-03-30 Electrode and electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007092867A JP5157222B2 (en) 2007-03-30 2007-03-30 Electrode and electrochemical device

Publications (2)

Publication Number Publication Date
JP2008251403A true JP2008251403A (en) 2008-10-16
JP5157222B2 JP5157222B2 (en) 2013-03-06

Family

ID=39976101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007092867A Active JP5157222B2 (en) 2007-03-30 2007-03-30 Electrode and electrochemical device

Country Status (1)

Country Link
JP (1) JP5157222B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081553A1 (en) * 2010-12-17 2012-06-21 エリーパワー株式会社 Negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and production method for negative electrode for non-aqueous electrolyte secondary battery
JP2012129169A (en) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012129167A (en) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2012129168A (en) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012129170A (en) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012216532A (en) * 2011-03-29 2012-11-08 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery
JP2013065440A (en) * 2011-09-16 2013-04-11 Toshiba Corp Electrode for battery, nonaqueous electrolyte battery, and battery pack
JP2013089327A (en) * 2011-10-14 2013-05-13 Hitachi Ltd Secondary battery negative electrode and nonaqueous electrolyte secondary battery including secondary battery negative electrode
JP2013161542A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Secondary battery manufacturing method
WO2015037451A1 (en) * 2013-09-12 2015-03-19 日本電気株式会社 Lithium ion secondary battery
JP2017103322A (en) * 2015-12-01 2017-06-08 積水化学工業株式会社 Electrode sheet and electric double layer capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161778A (en) * 1995-12-06 1997-06-20 Hitachi Maxell Ltd Organic electrolyte secondary battery
JPH09171814A (en) * 1995-01-25 1997-06-30 Ricoh Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery using the negative electrode
JP2002008655A (en) * 2000-06-20 2002-01-11 Sony Corp Negative electrode and non-aqueous electrolyte cell
JP2004511073A (en) * 2000-10-05 2004-04-08 エイイーエイ テクノロジー バッテリー システムズ リミテッド Electrolyte for secondary batteries
JP2005032593A (en) * 2003-07-07 2005-02-03 Matsushita Battery Industrial Co Ltd Non-aqueous electrolytic solution secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171814A (en) * 1995-01-25 1997-06-30 Ricoh Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery using the negative electrode
JPH09161778A (en) * 1995-12-06 1997-06-20 Hitachi Maxell Ltd Organic electrolyte secondary battery
JP2002008655A (en) * 2000-06-20 2002-01-11 Sony Corp Negative electrode and non-aqueous electrolyte cell
JP2004511073A (en) * 2000-10-05 2004-04-08 エイイーエイ テクノロジー バッテリー システムズ リミテッド Electrolyte for secondary batteries
JP2005032593A (en) * 2003-07-07 2005-02-03 Matsushita Battery Industrial Co Ltd Non-aqueous electrolytic solution secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081553A1 (en) * 2010-12-17 2012-06-21 エリーパワー株式会社 Negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and production method for negative electrode for non-aqueous electrolyte secondary battery
JP2012129169A (en) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012129167A (en) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2012129168A (en) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012129170A (en) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012216532A (en) * 2011-03-29 2012-11-08 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery
JP2013065440A (en) * 2011-09-16 2013-04-11 Toshiba Corp Electrode for battery, nonaqueous electrolyte battery, and battery pack
US9601749B2 (en) 2011-09-16 2017-03-21 Kabushiki Kaisha Toshiba Electrode for battery, nonaqueous electrolyte battery, and battery pack
JP2013089327A (en) * 2011-10-14 2013-05-13 Hitachi Ltd Secondary battery negative electrode and nonaqueous electrolyte secondary battery including secondary battery negative electrode
JP2013161542A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Secondary battery manufacturing method
WO2015037451A1 (en) * 2013-09-12 2015-03-19 日本電気株式会社 Lithium ion secondary battery
JPWO2015037451A1 (en) * 2013-09-12 2017-03-02 日本電気株式会社 Lithium ion secondary battery
US9991561B2 (en) 2013-09-12 2018-06-05 Nec Corporation Lithium ion secondary battery
JP2017103322A (en) * 2015-12-01 2017-06-08 積水化学工業株式会社 Electrode sheet and electric double layer capacitor

Also Published As

Publication number Publication date
JP5157222B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5157222B2 (en) Electrode and electrochemical device
JP4513822B2 (en) Electrode and electrochemical device
JP4466674B2 (en) Electrode and electrochemical device
JP4665931B2 (en) Anode and lithium ion secondary battery
JP6903260B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN101276900B (en) Anode and lithium-ion secondary battery
US20180294514A1 (en) Lithium ion secondary battery and method for manufacturing the same
KR20130129110A (en) Electrode active material, electrode and electrical storage device
JP2009004139A (en) Lithium secondary battery
JP2011175739A (en) Lithium secondary battery, and manufacturing method therefor
JP5359444B2 (en) Lithium ion secondary battery
JP5302646B2 (en) Pre-doping power storage device
KR20130070651A (en) Secondary battery
JP2011192543A (en) Lithium ion secondary battery
JP2019164967A (en) Negative electrode active material, negative electrode abd lithium ion secondary battery
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
JP2018170113A (en) Positive electrode and lithium ion secondary battery
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JP2022144122A (en) Nonaqueous alkali metal power storage element
JP2017183048A (en) Positive electrode active material, positive electrode arranged by use thereof, and lithium ion secondary battery
CN113097447A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
EP3358652B1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP2019220357A (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6992579B2 (en) Active material particles and lithium-ion secondary batteries using them
JP6992580B2 (en) Active material and lithium-ion secondary battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5157222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3