JP2012216532A - Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery - Google Patents

Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery Download PDF

Info

Publication number
JP2012216532A
JP2012216532A JP2012075347A JP2012075347A JP2012216532A JP 2012216532 A JP2012216532 A JP 2012216532A JP 2012075347 A JP2012075347 A JP 2012075347A JP 2012075347 A JP2012075347 A JP 2012075347A JP 2012216532 A JP2012216532 A JP 2012216532A
Authority
JP
Japan
Prior art keywords
carbon material
negative electrode
graphite
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012075347A
Other languages
Japanese (ja)
Inventor
Takashi Kameda
隆 亀田
Shunsuke Yamada
俊介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012075347A priority Critical patent/JP2012216532A/en
Publication of JP2012216532A publication Critical patent/JP2012216532A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a mixed carbon material used in an electrode of a nonaqueous secondary battery exhibiting excellent characteristics in terms of both rapid charge/discharge characteristics and high cycle characteristics.SOLUTION: A negative electrode material for a nonaqueous secondary battery employs a mixed carbon material containing the following carbon materials A and B. (Carbon material A) Graphite having an aspect ratio of 5 or lower, the aspect ratio being a ratio of the length of the major diameter of a particle with respect to that of the minor diameter thereof. (Carbon material B) Scale-like graphite having an aspect ratio of 6 or higher, the aspect ratio being a ratio of the length of the major diameter of a particle with respect to that of the minor diameter thereof, and an 80% particle size (d80) which is 1.7 times or more of the average particle size (d50) of the carbon material A.

Description

本発明は非水系二次電池の負極用の炭素材料に関するものである。また本発明はこの炭素材料を用いた電極、及びこの電極を備えた非水系二次電池に関するものである。   The present invention relates to a carbon material for a negative electrode of a non-aqueous secondary battery. Moreover, this invention relates to the electrode using this carbon material, and a non-aqueous secondary battery provided with this electrode.

リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPF6やLiBF4などのリチウム塩を溶解させた非水電解液からなる非水系リチウム二次電池が開発され、実用に供されている。この電池の負極材料としては種々のものが提案されているが、高容量であること及び放電電位の平坦性に優れていることなどから、天然黒鉛、コークス等の黒鉛化で得られる人造黒鉛、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素材料が用いられている。 A non-aqueous lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions and a non-aqueous electrolyte solution in which a lithium salt such as LiPF 6 or LiBF 4 is dissolved has been developed and put into practical use. Various materials have been proposed as negative electrode materials for this battery. From the high capacity and excellent discharge potential flatness, natural graphite, artificial graphite obtained by graphitization of coke, etc., Graphite carbon materials such as graphitized mesophase pitch and graphitized carbon fiber are used.

また、一部の電解液に対して比較的安定しているなどの理由で非晶質の炭素材料も用いられている。更には、黒鉛質炭素粒子の表面に非晶質炭素を被覆あるいは付着させ、黒鉛と非晶質炭素の特性を併せもたせた炭素材料も用いられている。また、特許文献1では、本来は鱗片状、鱗状、板状である黒鉛質炭素粒子に力学的エネルギー処理を与えて、黒鉛質粒子表面にダメージを与えるとともに粒子形状を球形にすることで急速充放電特性を向上させた球形化黒鉛質炭素材料が用いられ、更に、球形化黒鉛質炭素粒子の表面に非晶質炭素を被覆あるいは付着させることで、黒鉛と非晶質炭素の特性、そして急速充放電性を併せ持った複層構造の球形化炭素材料を用いることが提案されている。   Amorphous carbon materials are also used because they are relatively stable with respect to some electrolyte solutions. Furthermore, a carbon material is also used in which amorphous carbon is coated or adhered on the surface of graphitic carbon particles to combine the characteristics of graphite and amorphous carbon. In Patent Document 1, mechanical energy treatment is applied to graphitic carbon particles that are originally scaly, scaly, or plate-like to damage the surface of the graphite particles and to make the particle shape spherical. Spherical graphitic carbon material with improved discharge characteristics is used, and furthermore, amorphous carbon is coated or adhered on the surface of spheroidized graphitic carbon particles, and the characteristics of graphite and amorphous carbon It has been proposed to use a spherical carbon material having a multi-layer structure that has both charge and discharge characteristics.

しかし、昨今非水系リチウム二次電池の用途展開が図られ、従来のノート型パソコンや、移動通信機器、携帯型カメラ、携帯型ゲーム機など向けに加え、電動工具、電気自動車向けなど、従来にも増した急速充放電性を持ち同時に高サイクル特性を併せ持つ非水系リチウム二次電池が望まれている。
サイクル特性の改善には、例えば、特許文献2で、ラマンスペクトルから得られるR値が0.2以上である多層構造を有する炭素質物粒子とX線面間隔d002が0.36〜0.360nmにある結晶性の低い非晶質炭素質粒子を負極材に用いた非水系リチウム二次電池が提案されている。
However, the application of non-aqueous lithium secondary batteries has been developed recently, and in addition to conventional notebook computers, mobile communication devices, portable cameras, portable game machines, etc. A non-aqueous lithium secondary battery having increased rapid charge / discharge characteristics and high cycle characteristics is also desired.
To improve cycle characteristics, for example, in Patent Document 2, the carbonaceous material particles having a multilayer structure having an R value of 0.2 or more obtained from a Raman spectrum and the X-ray plane spacing d002 are set to 0.36 to 0.360 nm. A non-aqueous lithium secondary battery using an amorphous carbonaceous particle having low crystallinity as a negative electrode material has been proposed.

また、特許文献3では、表面が非晶質炭素で被覆された被覆黒鉛粒子と、表面が非晶質炭素で被覆されていない非被覆黒鉛粒子とが混合された負極材が提案されており、より具体的には、該被覆黒鉛粒子の核黒鉛と該非被覆黒鉛粒子とは同種の黒鉛粒子であり、更に被覆黒鉛粒子と該非被覆黒鉛粒子の粒径は同じであることが開示されている。   Patent Document 3 proposes a negative electrode material in which coated graphite particles whose surface is coated with amorphous carbon and uncoated graphite particles whose surface is not coated with amorphous carbon are mixed. More specifically, it is disclosed that the core graphite and the uncoated graphite particles of the coated graphite particles are the same kind of graphite particles, and that the coated graphite particles and the uncoated graphite particles have the same particle size.

特許第3534391号公報Japanese Patent No. 3534391 特許第3291756号公報Japanese Patent No. 3291756 特開2005−294011号公報JP 2005-294011 A

本発明者らの検討によると、特許文献2に記載の技術では、非晶質炭素粒子に由来する不可逆容量の増加の問題があり、更には最近のリチウム二次電池要望されるサイクル特性及び急速充放電特性には更なる改善が必要であることがわかった。また、特許文献3に記載の技術では、高容量で急速充放電性、高サイクル特性を満足する負極材料には至ってい
ないことがわかった。
According to the study by the present inventors, the technique described in Patent Document 2 has a problem of an increase in irreversible capacity derived from amorphous carbon particles, and moreover, recent lithium secondary batteries have required cycle characteristics and rapidity. It was found that the charge / discharge characteristics need further improvement. In addition, it has been found that the technique described in Patent Document 3 has not led to a negative electrode material that has high capacity, rapid charge / discharge characteristics, and high cycle characteristics.

つまり、従来から知られている粒子形状が球状となっている球形化黒鉛は、炭素が被覆されているか否かに関わらず、粒子間空隙の電解液中をリチウムイオンがスムースに移動できるため、板状、或いは角形状の粒子より急速充電性に優れているが、球形化粒子の場合、粒子間の接触が点接触に近い状態であるため、充放電にともなって生じる粒子の膨張や収縮を繰り返すうちに、粒子間の接触が離れて粒子間の導電パスがとれなくなっていき、サイクル特性の悪化をきたすことがわかった(図1参照)。
そのメカニズムとして、球形化黒鉛粒子は、本来鱗片状である黒鉛粒子に機械的荷重を加えて、粒子を折り曲げたり粒子表面を削ったりして球状としているために粒子内に応力が残っており、充放電の繰り返しで、折り曲がった粒子の戻りも生じるため粒子の膨張収縮が大きくなり粒子間接触の離れがより加速されることが原因となり、その結果、導電パス切れが大きくなり、サイクル特性の悪化がより顕著となると本発明者らは考えた。
In other words, since the conventionally known spheroidized graphite particle shape is spherical, lithium ions can move smoothly in the electrolyte solution in the interparticle void, regardless of whether or not carbon is coated, It has better rapid chargeability than plate-shaped or square-shaped particles, but in the case of spheroidized particles, the contact between the particles is close to point contact, so the expansion and contraction of the particles caused by charging and discharging is not possible. As it was repeated, it was found that the contact between the particles was separated and the conductive path between the particles could not be taken, and the cycle characteristics deteriorated (see FIG. 1).
As its mechanism, the spheroidized graphite particles are mechanically applied to the graphite particles that are originally flaky, and the particles remain in a spherical shape by bending or scraping the particle surface. Repeated charging / discharging also causes the return of bent particles, which causes the expansion and contraction of the particles to increase and the separation of the inter-particle contact to be accelerated. The present inventors considered that the deterioration became more remarkable.

そこで、本発明は、かかる背景技術に鑑みてなされたものであり、その課題は、特に近年の電動工具や、電気自動車の用途にも適した、高容量で、急速充放電特性、高サイクル特性を併せ持つ非水系二次電池用の負極材料を提供することにある。   Therefore, the present invention has been made in view of the background art, and its problem is particularly high capacity, rapid charge / discharge characteristics, and high cycle characteristics, which are suitable for use in recent power tools and electric vehicles. It is providing the negative electrode material for non-aqueous secondary batteries which has these.

本発明者らは、前記課題を解決すべく鋭意検討を行った結果、急速充放電性に優れた炭素材料Aに、炭素材料Aの粒子間を跨がって接触できる炭素材料Bを混合することで、導電パス切れを防止でき、上記課題を解決できることを見出した。
具体的には、特定の条件を満たす炭素材料Aと炭素材料Bを混合することにより、充電放電の繰り返しサイクルにより炭素材料Aの膨張収縮で炭素材料A同士の接触が離れても、炭素材料Bが炭素材料Aに跨って接触していることで、炭素材料A同士は炭素材料Bを通して導電性を確保できることがわかった(図2参照)。また、意外にも、炭素材料Bは黒鉛であるため、炭素材料B自身も充放電に寄与できるため、炭素材料Bを混合しても電池容量の低下が生じないという効果が得られたのである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors mix a carbon material B that can be brought into contact with the carbon material A having excellent rapid charge / discharge properties across the particles of the carbon material A. Thus, it has been found that the conductive path can be prevented from being cut and the above-mentioned problems can be solved.
Specifically, by mixing the carbon material A and the carbon material B satisfying specific conditions, even if the carbon materials A are separated from each other due to expansion and contraction of the carbon material A due to repeated charging and discharging cycles, the carbon material B It has been found that the carbon materials A are in contact with each other across the carbon material A, so that the carbon materials A can ensure conductivity through the carbon material B (see FIG. 2). Surprisingly, since the carbon material B is graphite, the carbon material B itself can also contribute to charging and discharging, so that the effect that the battery capacity does not decrease even when the carbon material B is mixed is obtained. .

すなわち、本発明の趣旨は、次の炭素材料Aと次の炭素材料Bとが含有されてなる非水系二次電池用負極材料に存する。
(炭素材料A)
粒子の短径に対する長径の長さの比であるアスペクト比が5以下である炭素材料
(炭素材料B)
粒子の短径に対する長径の長さの比であるアスペクト比が6以上且つ80%粒子径(d80)が炭素材料Aの平均粒子径(d50)の1.7倍以上である鱗片状黒鉛
That is, the gist of the present invention resides in a negative electrode material for a non-aqueous secondary battery in which the following carbon material A and the following carbon material B are contained.
(Carbon material A)
Carbon material whose aspect ratio, which is the ratio of the length of the major axis to the minor axis of the particle, is 5 or less (carbon material B)
Scale-like graphite having an aspect ratio, which is the ratio of the length of the major axis to the minor axis of the particle, of 6 or more and an 80% particle size (d80) of 1.7 times or more the average particle size (d50) of the carbon material A

本発明で得られた炭素材料Aと炭素材料Bを混合した混合炭素材料である非水系二次電池用負極材料は、それを用いて非水系二次電池用負極を製造し電池に適用することにより、急速充放電特性と高サイクル特性を併せ持った優れた特性を有する非水系二次電池を提供することができる。   The negative electrode material for a non-aqueous secondary battery, which is a mixed carbon material obtained by mixing the carbon material A and the carbon material B obtained in the present invention, is used to manufacture a negative electrode for a non-aqueous secondary battery and apply it to the battery. Thus, it is possible to provide a non-aqueous secondary battery having excellent characteristics having both rapid charge / discharge characteristics and high cycle characteristics.

従来の炭素材料のイメージ図。The image figure of the conventional carbon material. 本発明の負極材料を用いた電極のイメージ図。The image figure of the electrode using the negative electrode material of this invention. 炭素材料Aの一例の電子顕微鏡写真(図面代用写真)。The electron micrograph of an example of the carbon material A (drawing substitute photograph). 炭素材料Bの一例の電子顕微鏡写真(図面代用写真)。The electron micrograph of an example of carbon material B (drawing substitute photograph). 炭素材料Bのd80粒径/炭素材料Aのd50粒径=1のイメージ図。The image figure of d80 particle size of carbon material B / d50 particle size of carbon material A = 1. 炭素材料Bのd80粒径/炭素材料Aのd50粒径=2のイメージ図。The image figure of d80 particle size of carbon material B / d50 particle size of carbon material A = 2. 本発明の負極材料を用いた電極の断面の電子顕微鏡写真(図面代用写真)。The electron microscope photograph (drawing substitute photograph) of the cross section of the electrode using the negative electrode material of this invention.

本発明に係る非水系二次電池用負極材料は、次の炭素材料Aと次の炭素材料Bとが含有されてなる炭素材料を用いることを特徴とする。
<炭素材料A>
炭素材料Aは、粒子の短径に対する長径の長さの比であるアスペクト比が5以下である黒鉛であれば、特に種類、物性に制限されないが、好ましい態様を以下に示す。
The negative electrode material for a non-aqueous secondary battery according to the present invention is characterized by using a carbon material containing the following carbon material A and the next carbon material B.
<Carbon material A>
The carbon material A is not particularly limited in type and physical properties as long as the aspect ratio, which is the ratio of the length of the major axis to the minor axis of the particle, is 5 or less, but preferred modes are shown below.

・炭素材料Aの形状及び種類本発明で定義される炭素材料Aは、アスペクト比が上記規定を満たす黒鉛であれば、具体的な形状及び種類は特に制限されない。形状の例としては、球状、楕円状、塊状などが挙げられる。中でも粒子が球に近い形状であることが好ましく、本明細書では球形化黒鉛ともいう。
また、炭素材料Aの種類としては、天然黒鉛、ピッチ原料を高温熱処理して製造した、メソカーボンマイクロビーズ、炭素繊維、コークス、ニードルコークス、高密度炭素材料等の人造黒鉛などが挙げられ、好ましくは天然黒鉛である。この中でも後述する球形化処理を施した球形化天然黒鉛であることがより好ましい。
-Shape and type of carbon material A The specific shape and type of carbon material A defined in the present invention are not particularly limited as long as the aspect ratio is graphite satisfying the above-mentioned regulations. Examples of the shape include a spherical shape, an elliptical shape, and a lump shape. In particular, it is preferable that the particles have a shape close to a sphere, which is also referred to as spheroidized graphite in this specification.
Examples of the carbon material A include natural graphite, artificial graphite such as mesocarbon microbeads, carbon fibers, coke, needle coke, and high-density carbon material produced by high-temperature heat treatment of pitch raw materials. Is natural graphite. Among these, it is more preferable to use spheroidized natural graphite that has been subjected to spheroidizing treatment described later.

・炭素材料Aの物性
以下に、炭素材料Aの代表的な物性を記載する。
(a)アスペクト比
炭素材料Aの粒子の短径に対する長径の長さの比であるアスペクト比は、5以下、より好ましくは4以下、更に好ましくは3.5以下である。アスペクト比が大きすぎると、粒子形状が球状や楕円形ではなく、円盤状、板状になっていき、鱗片状黒鉛に近いものになる。粒子形状が円盤状、板状であると、電極とした時の粒子間の空隙が屈曲した形状となりリチウムイオンの移動性が悪く、急速充放電特性が劣る傾向になる。一方アスペクト比が小さくなると、粒子形状が楕円形、球形に近い状態になり、電極にした時の粒子間の空隙の連続性が確保されリチウムイオンの移動性が高まり、急速充放電特性に優れた傾向を示す。なお、アスペクト比は、粒子の短径に対する長径の長さの比であり、最小値は1となるので、アスペクト比の下限は通常1である。
なお、アスペクト比の測定は以下のように行った。炭素材料を電子顕微鏡で写真撮影し、任意選んだ領域内の20個の粒子について、それぞれの粒子の最長径をa(μm)、最短径をb(μm)としてa/bを求め、a/bの20個の粒子の平均値をアスペクト比とする。
-Physical property of carbon material A The typical physical property of the carbon material A is described below.
(A) Aspect ratio The aspect ratio, which is the ratio of the length of the major axis to the minor axis of the particles of the carbon material A, is 5 or less, more preferably 4 or less, and even more preferably 3.5 or less. If the aspect ratio is too large, the particle shape is not spherical or elliptical, but discoid or plate-like, and becomes close to scale-like graphite. When the particle shape is a disk shape or a plate shape, the gap between the particles when it is used as an electrode becomes a bent shape, the mobility of lithium ions is poor, and the rapid charge / discharge characteristics tend to be inferior. On the other hand, when the aspect ratio is small, the particle shape becomes elliptical or spherical, and the continuity of the voids between the particles when used as an electrode is secured, the mobility of lithium ions is increased, and the rapid charge / discharge characteristics are excellent. Show the trend. The aspect ratio is the ratio of the length of the major axis to the minor axis of the particle, and the minimum value is 1. Therefore, the lower limit of the aspect ratio is usually 1.
The aspect ratio was measured as follows. The carbon material is photographed with an electron microscope, and for 20 particles in an arbitrarily selected region, a / b is obtained with the longest diameter of each particle being a (μm) and the shortest diameter being b (μm). The average value of 20 particles of b is defined as the aspect ratio.

(b)002面の面間隔(d002)及びLc
炭素材料AのX線広角回折法による002面の面間隔(d002)は通常0.337nm以下である。d002値が大きすぎるということは結晶性が低いことを示し、初期不可逆容量が増加する場合がある。一方黒鉛の002面の面間隔の理論値は0.335nmであるため、通常0.335nm以上である。
(B) 002 plane spacing (d002) and Lc
The interplanar spacing (d002) of the 002 plane according to the X-ray wide angle diffraction method of the carbon material A is usually 0.337 nm or less. If the d002 value is too large, it indicates that the crystallinity is low, and the initial irreversible capacity may increase. On the other hand, the theoretical value of the interplanar spacing of the 002 plane of graphite is 0.335 nm and is usually 0.335 nm or more.

また、炭素材料AのX線広角回折法によるLcは通常90nm以上、好ましくは95nm以上である。X線広角回折法による002面の面間隔(d002)、及びLcは実施例で後述する方法により測定する。002面の面間隔(d002)が大きすぎる場合は、複層構造炭素材粒子の表面被覆部以外のほとんどの部分の結晶性が低いということを示す傾向があり、非晶質炭素材に見られる不可逆容量が大きいことによる容量の低下をきたす傾向がある。また、Lcは小さすぎると結晶性が低くなることを示しており、やはり不可逆容量の増加による容量低下をまねく傾向がある。   Moreover, Lc by the X-ray wide angle diffraction method of the carbon material A is 90 nm or more normally, Preferably it is 95 nm or more. The inter-surface distance (d002) of 002 surface by the X-ray wide angle diffraction method and Lc are measured by the method described later in Examples. When the interplanar spacing (d002) of the 002 plane is too large, it tends to indicate that the crystallinity of most portions other than the surface coating portion of the multilayer structure carbon material particles is low, and is found in the amorphous carbon material. There is a tendency for the capacity to decrease due to the large irreversible capacity. Moreover, when Lc is too small, it has shown that crystallinity will become low, and there exists a tendency which also leads to the capacity | capacitance fall by the increase in an irreversible capacity | capacitance.

(c)タップ密度
炭素材料Aのタップ密度は、通常0.8g/cm3以上であり、0.85g/cm3以上であることが好ましい。また、通常1.5g/cm3以下である。タップ密度は実施例で後述する方法により測定する。タップ密度が小さすぎると、炭素材料Aが充分な球形粒子となっていない傾向にあり、電極内での連続した空隙が充分確保されず、空隙に保持された電解液内のLiイオンの移動性が落ちることで、急速充放電特性が低下してしまう傾向がある。
(C) Tap density The tap density of the carbon material A is usually 0.8 g / cm 3 or more, and preferably 0.85 g / cm 3 or more. Further, it is usually 1.5 g / cm 3 or less. The tap density is measured by the method described later in the examples. If the tap density is too small, the carbon material A tends not to be sufficiently spherical particles, and sufficient continuous voids in the electrode cannot be secured, and the mobility of Li ions in the electrolyte held in the voids. As a result, the rapid charge / discharge characteristics tend to deteriorate.

(d)平均粒径
炭素材料Aの平均粒径(d50)は通常4μm以上、好ましくは6μm以上、より好ましくは8μm以上であり、通常40μm以下、好ましくは35μm以下、より好ましくは30μm以下である。平均粒径は、後述する実施例の方法により測定する。平均粒径が小さすぎると、比表面積が大きくなることによる不可逆容量の増加を防ぐことが困難になる傾向がある。また、大きすぎると電解液と炭素材の粒子との接触面積が減ることによる急速充放電性の低下を防ぐことが困難になる傾向がある。
(D) Average particle diameter The average particle diameter (d50) of the carbon material A is usually 4 μm or more, preferably 6 μm or more, more preferably 8 μm or more, and usually 40 μm or less, preferably 35 μm or less, more preferably 30 μm or less. . An average particle diameter is measured by the method of the Example mentioned later. If the average particle size is too small, it tends to be difficult to prevent an increase in irreversible capacity due to an increase in specific surface area. Moreover, when too large, there exists a tendency for it to become difficult to prevent the rapid charge / discharge property fall by the contact area of electrolyte solution and the particle | grains of carbon material reducing.

(e)BET法による比表面積
炭素材料AのBET法による比表面積の上限は通常6m2/g以下、好ましくは5m2/g以下である。下限は通常限定されないが、好ましくは0.5m2/g以上、より好ましくは1m2/g以上である。BET法による比表面積は後述する実施例の方法により測定する。炭素材料Aの比表面積が大きすぎると不可逆容量の増加による電池容量の減少を防ぐことが困難になる傾向がある。小さすぎると、Liイオンの受け入れ性が悪くなる傾向が生じる場合もある。
(E) Specific surface area by BET method The upper limit of the specific surface area by the BET method of the carbon material A is usually 6 m 2 / g or less, preferably 5 m 2 / g or less. Although a lower limit is not normally limited, Preferably it is 0.5 m < 2 > / g or more, More preferably, it is 1 m < 2 > / g or more. The specific surface area by BET method is measured by the method of the Example mentioned later. If the specific surface area of the carbon material A is too large, it tends to be difficult to prevent a decrease in battery capacity due to an increase in irreversible capacity. If it is too small, the acceptability of Li ions may tend to deteriorate.

(f)ラマンR値
炭素材料Aのアルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が通常0.2以上、好ましくは0.25以上、より好ましくは0.28以上であり、また通常0.6以下、好ましくは0.5以下、より好ましくは0.4以下である。
(F) a Raman R value is the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the argon ion laser Raman spectrum of the Raman R value of carbon material A is usually 0.2 or more, preferably 0.25 or more More preferably 0.28 or more, and usually 0.6 or less, preferably 0.5 or less, more preferably 0.4 or less.

ラマンR値は実施例で後述する方法により測定する。ラマンR値が小さすぎるということは、炭素材料Aの表面の被覆層の炭素の量が少ない、及び/又は、炭素材料Aの表面の被覆層の炭素の結晶性が大きいことを示し、そのことにより、Liの受け入れ性が悪くなる傾向にある。また、炭素材のラマンR値が大きすぎる場合は、黒鉛質粒子を被覆している非晶質炭素の量が多いことを表し、非晶質炭素量の持つ不可逆容量の大きさの影響が大きくなり、その結果電池容量が小さくなってしまう傾向がある。   The Raman R value is measured by the method described later in the examples. That the Raman R value is too small indicates that the amount of carbon in the coating layer on the surface of the carbon material A is small and / or the crystallinity of carbon in the coating layer on the surface of the carbon material A is large, which Therefore, the acceptability of Li tends to deteriorate. Further, when the Raman R value of the carbon material is too large, it indicates that the amount of amorphous carbon covering the graphite particles is large, and the influence of the irreversible capacity of the amorphous carbon amount is large. As a result, the battery capacity tends to decrease.

(g)平均円形度
炭素材料Aの平均円形度は通常0.85以上、好ましくは0.88以上である。平均円形度の最大値は理論上1となるため、通常1以下である。円形度が小さすぎる場合、炭素材料Aが充分な球形粒子となっていない状態にあり、電極内での連続した空隙が十分には確保されず、空隙に保持された電解液内のLiイオンの移動性が落ちることで、急速充放電特性が低下してしまう傾向にある。
(G) Average circularity The average circularity of the carbon material A is usually 0.85 or more, preferably 0.88 or more. Since the maximum value of the average circularity is 1 theoretically, it is usually 1 or less. When the circularity is too small, the carbon material A is not in a state of sufficient spherical particles, the continuous voids in the electrode are not sufficiently secured, and the Li ions in the electrolytic solution held in the voids are not secured. When the mobility is lowered, the rapid charge / discharge characteristics tend to deteriorate.

平均円形度は、液中に分散させた数千個の粒子を、CCDカメラを用いて1個ずつ撮影し、その平均的な形状パラメータを算出することが可能なフロー式粒子解析計において、10〜40μmの範囲の粒子を対象として、後述する実施例の方法により測定する。平均円形度は、粒子面積相当円の周囲長を分子とし、撮影された粒子投影像の周囲長を分母とした比率で、粒子像が真円に近いほど1に近づき、粒子像が細長い或いはでこぼこしている程小さい値になる。   The average circularity is 10 in a flow type particle analyzer capable of photographing several thousand particles dispersed in a liquid one by one using a CCD camera and calculating the average shape parameter. Measurement is carried out by the method of the examples described later, targeting particles in the range of -40 μm. The average circularity is a ratio in which the circumference of a circle equivalent to the particle area is the numerator and the circumference of the photographed particle projection image is the denominator. The closer the particle image is to a perfect circle, the closer it is to 1 and the particle image is elongated or bumpy. The smaller the value, the smaller the value.

<炭素材料Aの製造>
炭素材料Aは、前述の性状を具備していれば、どのような製法で作製しても問題ないが、例えば、前述の特許第3534391号公報(特許文献1)で提案されている、球形化黒鉛又はその黒鉛を用いた電極用複層構造炭素材料を用いることができる。本明細書では、核黒鉛に球形化黒鉛を用いている場合、別途定義しない限り、例えば、球形化黒鉛を用いた複層構造炭素材料も球形化黒鉛に含まれるものとする。
具体的には、球形化黒鉛は、天然で産出される鱗片、鱗状、板状、塊状の黒鉛、或いは、例えば石油コークス、石炭ピッチコークス、石炭ニードルコークス、メソフェーズピッチなどを2500℃以上に加熱して製造した人造黒鉛に、力学的エネルギー処理(球形化処理)を与えることで製造することができる。
<Manufacture of carbon material A>
The carbon material A can be produced by any manufacturing method as long as it has the above-mentioned properties. For example, the carbon material A is formed into a spheroid proposed in the above-mentioned Japanese Patent No. 3534391 (Patent Document 1). Graphite or a multilayer structure carbon material for electrodes using the graphite can be used. In this specification, when spheroidized graphite is used as the nuclear graphite, unless otherwise defined, for example, a multilayered carbon material using spheroidized graphite is also included in the spheroidized graphite.
Specifically, spheroidized graphite is obtained by heating naturally produced scale, scale-like, plate-like, massive graphite, or petroleum coke, coal pitch coke, coal needle coke, mesophase pitch, etc. to 2500 ° C. or higher. Manufactured artificial graphite can be produced by applying mechanical energy treatment (spheronization treatment).

力学的エネルギー処理は、例えば、ケーシング内部に多数のブレードを設置したローターを有する装置を用い、そのローターを高速回転することにより、その内部に導入した前記天然黒鉛、人造黒鉛に対し、衝撃圧縮、摩擦、せん断力等の機械的作用を繰り返し与えることで製造できる。また、必要により篩分けや分級処理を行って粒度分布を調整し、より球形度の高い粒子を選択して用いる方法をとることもできる。このうち、天然で産出される鱗片、鱗状、板状、塊状の黒鉛などに上記球形化処理を施した球形化天然黒鉛が好ましい。
なお、SEM写真等で球形化黒鉛を観察できる場合もある。例えば、図7に代表されるように球形化黒鉛は、衝撃圧縮、摩擦、せん断力等の機械的作用を繰り返し与えることにより黒鉛が折り畳まれた構造をとることが特徴である。
Mechanical energy treatment, for example, using a device having a rotor with a large number of blades installed inside the casing, by rotating the rotor at high speed, the natural graphite and artificial graphite introduced into the interior are subjected to impact compression, It can be produced by repeatedly applying mechanical action such as friction and shearing force. Further, if necessary, it is possible to adjust the particle size distribution by performing sieving or classification, and select and use particles having higher sphericity. Of these, spheroidized natural graphite obtained by subjecting naturally produced scales, scales, plates, and lump graphite to the above spheronization treatment is preferable.
In some cases, spheroidized graphite can be observed with SEM photographs. For example, as represented by FIG. 7, spheroidized graphite is characterized in that it has a structure in which graphite is folded by repeatedly applying mechanical actions such as impact compression, friction, and shearing force.

更に好ましい炭素材料Aとしては、球形化黒鉛の表面に炭素が被覆された複層構造炭素材料である。複層構造炭素材料は、例えば上述に記載の製造方法で得られた球形化黒鉛に石油系や石炭系のタールやピッチ、ポリビニルアルコール、ポリアクリルニトリル、フェノール樹脂、セルロース等の樹脂を必要により溶媒等を使い混合し、非酸化性雰囲気で500℃〜2500℃、好ましくは700℃〜2000℃、より好ましくは800〜1500℃で焼成することで得られる。焼成後必要により粉砕分級を行うこともある。球形化黒鉛粒子を被覆している非晶質炭素の量である被覆率は、通常0.1〜20%の範囲、好ましくは0.2〜15%の範囲、より好ましくは0.4〜10%の範囲である。被覆非晶質炭素量が少なすぎると非晶質炭素の持つLiイオンの高受けいれ性を充分利用することができず、急速充電性が低くなってしまう。被覆非晶質炭素の量が多いと非晶質炭素量の持つ不可逆容量の大きさの影響が大きくなり、結果容量が小さくなる傾向がある。   More preferable carbon material A is a multi-layer structure carbon material in which carbon is coated on the surface of spheroidized graphite. The multi-layer structure carbon material is, for example, a resin such as petroleum-based or coal-based tar or pitch, polyvinyl alcohol, polyacrylonitrile, phenol resin, cellulose, etc., in the spheroidized graphite obtained by the above-described production method. Etc., and is fired at 500 ° C. to 2500 ° C., preferably 700 ° C. to 2000 ° C., more preferably 800-1500 ° C. in a non-oxidizing atmosphere. If necessary, pulverization and classification may be performed after firing. The coverage, which is the amount of amorphous carbon coating the spheroidized graphite particles, is usually in the range of 0.1 to 20%, preferably in the range of 0.2 to 15%, more preferably 0.4 to 10%. % Range. If the amount of the coated amorphous carbon is too small, the high acceptability of Li ions possessed by the amorphous carbon cannot be fully utilized, and the rapid chargeability is lowered. When the amount of the coated amorphous carbon is large, the influence of the irreversible capacity of the amorphous carbon amount is increased, and the resulting capacity tends to be reduced.

<炭素材料Bの物性>
炭素材料Bは、粒子の短径に対する長径の長さの比であるアスペクト比が5以上且つ80%粒子径(d80)が炭素材料Aの平均粒子径(d50)の2倍以上である鱗片状黒鉛である。また、別の形態としては、炭素材料Bは、粒子の短径に対する長径の長さの比であるアスペクト比が6以上且つ80%粒子径(d80)が炭素材料Aの平均粒子径(d50)の1.7倍以上である鱗片状黒鉛である。鱗片状黒鉛は鱗状黒鉛とも呼ばれている。天然に産出するものと、人工的に作られるものがある。この中でも天然に産出するものが好ましい。代表的な物性を以下に記載する。
<Physical properties of carbon material B>
The carbon material B has a scale-like shape in which the aspect ratio, which is the ratio of the length of the major axis to the minor axis of the particle, is 5 or more and the 80% particle size (d80) is at least twice the average particle size (d50) of the carbon material A. Graphite. As another form, the carbon material B has an aspect ratio which is a ratio of the length of the major axis to the minor axis of the particle of 6 or more and an 80% particle size (d80) is an average particle size (d50) of the carbon material A. It is a flaky graphite that is 1.7 times or more. Scaly graphite is also called scaly graphite. Some are naturally produced and others are made artificially. Of these, those naturally occurring are preferred. Typical physical properties are described below.

(h)アスペクト比
粒子の短径に対する長径の長さの比であるアスペクト比は6以上、好ましくは8以上、より好ましくは10以上、更に好ましくは16以上、特に好ましくは21以上であり、また通常100以下、好ましくは80以下、より好ましくは60以下、更に好ましくは50以下、特に好ましくは30以下である。アスペクト比が小さすぎると、炭素材料Aの粒子間を充分跨いで接触することが困難となり、充放電の繰り返しで炭素材料A同士が離れたときに導電パスを確保することができにない傾向がある。アスペクト比が大きすぎると、
炭素材料を用いて電極とする工程でフィルターや塗布用スリットに詰まる傾向がある。
なお、アスペクト比の測定は以下のように行った。炭素材料を電子顕微鏡で写真撮影し、任意選んだ領域内の20個の粒子について、それぞれの粒子の最長径をa(μm)、最短径をb(μm)としてa/bを求め、a/bの20個の粒子の平均値をアスペクト比とした。
(H) Aspect ratio The aspect ratio, which is the ratio of the length of the major axis to the minor axis of the particle, is 6 or more, preferably 8 or more, more preferably 10 or more, still more preferably 16 or more, and particularly preferably 21 or more. Usually, it is 100 or less, preferably 80 or less, more preferably 60 or less, still more preferably 50 or less, and particularly preferably 30 or less. If the aspect ratio is too small, it becomes difficult to make contact across the particles of the carbon material A, and there is a tendency that a conductive path cannot be secured when the carbon materials A are separated by repeated charge and discharge. is there. If the aspect ratio is too large,
In the process of using a carbon material as an electrode, the filter and the slit for coating tend to be clogged.
The aspect ratio was measured as follows. The carbon material is photographed with an electron microscope, and for 20 particles in an arbitrarily selected region, a / b is obtained with the longest diameter of each particle being a (μm) and the shortest diameter being b (μm). The average value of 20 particles of b was defined as the aspect ratio.

(i)80%粒子径(d80)
炭素材料Bのd80は、通常8μm以上、好ましくは12μm以上、より好ましくは16μm以上、更に好ましくは20μm以上、より更に好ましくは30μm以上、特に好ましくは39μm以上であり、通常200μm以下、好ましくは150μm以下、より好ましくは100μm以下、更に好ましくは70μm以下、特に好ましくは60μm以下である。d80が大きすぎると炭素材料を用いて電極とする工程でフィルターや塗布用スリットに詰まる傾向が見られることがある。d80が小さすぎると、炭素材料Bが炭素材料Aの粒子間に跨って接触することが困難になり、充放電の繰り返しで炭素材料A同士の接触が離れていた場合でも、炭素材料A間に跨って接触できず、その結果、炭素材料Bによる導電パスの確保がなされず、サイクル特性の悪化を防止することが難しくなる傾向がある。なお、炭素材料Bの80%粒子径(d80)は、炭素材料Aの平均粒子径(d50)に対して1.7倍以上、好ましくは2倍以上、より好ましくは2.5倍以上、更に好ましくは2.7倍以上、より更に好ましくは3.3倍以上、特に好ましくは4倍以上であり、通常20倍以下、好ましくは15倍以下、より好ましくは10倍以下、更に好ましくは7倍以下、特に好ましくは5倍以下である。
(I) 80% particle size (d80)
The d80 of the carbon material B is usually 8 μm or more, preferably 12 μm or more, more preferably 16 μm or more, still more preferably 20 μm or more, still more preferably 30 μm or more, particularly preferably 39 μm or more, and usually 200 μm or less, preferably 150 μm. Hereinafter, it is more preferably 100 μm or less, further preferably 70 μm or less, and particularly preferably 60 μm or less. If d80 is too large, a filter or a coating slit may tend to be clogged in the process of using a carbon material as an electrode. If d80 is too small, it becomes difficult for the carbon material B to contact between the particles of the carbon material A, and even when the carbon materials A are separated from each other by repeated charging and discharging, As a result, the conductive path cannot be secured by the carbon material B, and it tends to be difficult to prevent deterioration of cycle characteristics. The 80% particle size (d80) of the carbon material B is 1.7 times or more, preferably 2 times or more, more preferably 2.5 times or more, more than the average particle size (d50) of the carbon material A. Preferably it is 2.7 times or more, more preferably 3.3 times or more, particularly preferably 4 times or more, usually 20 times or less, preferably 15 times or less, more preferably 10 times or less, more preferably 7 times. Hereinafter, it is particularly preferably 5 times or less.

炭素材料Bの80%粒子径(d80)が炭素材料Aの平均粒子径(d50)に対して大きすぎると、結果、炭素材料Bの粒子径が大きくなり、炭素材料を用いて電極とする工程でフィルターや塗布用スリットに詰まる傾向が見られることがある。炭素材料Bの80%粒子径(d80)が炭素材料Aの平均粒子径(d50)に対して小さすぎると、炭素材料Bが炭素材料Aの粒子間に跨って接触する構造を取り難くなり、充放電の繰り返しで炭素材料A同士の接触が離れた場合、炭素材料Bにより導電パスが確保されず、サイクル特性の悪化を防ぐことが難しくなる傾向がある。このような傾向があるため、炭素材料Bの80%粒子径(d80)は、炭素材料Aの平均粒子径(d50)に対して、1.7倍以上であることが、本発明では重要な条件の一つである(図5及び図6参照)。
なお、80%粒子径(d80)の測定は以下のように行う。ポリオキシエチレン(20)ソルビタンモノラウレートの2(容量)%水溶液約1mlに、炭素材料を約20mgを加え、これをイオン交換水約200mlに分散させて、レーザー回折式粒度分布計(堀場製作所製 LA−920)を用いて体積基準粒度分布を測定し、累積80%部の粒径(μm)を80%粒子径(d80)とする。
If the 80% particle diameter (d80) of the carbon material B is too large with respect to the average particle diameter (d50) of the carbon material A, as a result, the particle diameter of the carbon material B becomes large, and the step of using the carbon material as an electrode There may be a tendency to clog the filter and the slit for coating. When the 80% particle size (d80) of the carbon material B is too small with respect to the average particle size (d50) of the carbon material A, it becomes difficult to take a structure in which the carbon material B straddles between the carbon material A particles, When the contact between the carbon materials A is separated by repeated charge / discharge, the conductive path is not secured by the carbon material B, and it tends to be difficult to prevent deterioration of cycle characteristics. Because of this tendency, it is important in the present invention that the 80% particle diameter (d80) of the carbon material B is 1.7 times or more than the average particle diameter (d50) of the carbon material A. One of the conditions (see FIGS. 5 and 6).
The 80% particle diameter (d80) is measured as follows. About 20 mg of a carbon material is added to about 1 ml of a 2% (volume) aqueous solution of polyoxyethylene (20) sorbitan monolaurate, and this is dispersed in about 200 ml of ion-exchanged water. The volume-based particle size distribution is measured using LA-920), and the 80% cumulative particle size (μm) is defined as 80% particle size (d80).

同時に、平均粒径(d50=累積50%部の粒径)も求めることができる。測定条件は超音波分散1分間、超音波強度2、循環速度2、相対屈折率1.50で実施する。
レーザー回折式粒度分布計は、スリット状の透明な測定セル内に粒子分散液を通過循環させ、そのセルに対し一方向からレーザー光を照射して粒子に当て、その散乱光により粒子径を測定する。この粒子径は、測定原理上、粒子の周囲長に比例した値となる。液中に分散された粒子はスリット状のセル内を流動通過するが、このとき粒子はレーザー照射方向に対し様々な方向を向いて通過する。しかし、レーザー光は一方向のみからの照射であるため、短径と長径の長さの異なる扁平な粒子の場合、長径側がレーザー光に向いて通過した場合は長径の長さを粒子径として表示する傾向にあるが、短径側がレーザー光に向いて通過した場合は実際の長径の長さより小さい値を粒子径として表示してしまう傾向がある。その結果、本発明で用いる扁平な粒子形状を呈した鱗片状黒鉛粒子のレーザー解析式粒度分布形での粒径は炭素材料Bの長径より小さい値として測定される虞がある。これらのことから、扁平形状の粒子の長径を表す指標としては80%粒子径(d80)を用いる
のが適当であると判断できる。
本発明の炭素材料Bは、球状である炭素材料A同士に跨って接触することが好ましいため、長径側の大きさが重要な指標の一つとなる。そのため、本発明では80%粒子径(d80)は炭素材料Bを表す指標として用いている。
At the same time, the average particle size (d50 = particle size of 50% cumulative) can also be determined. Measurement conditions are ultrasonic dispersion for 1 minute, ultrasonic intensity 2, circulation speed 2, and relative refractive index 1.50.
The laser diffraction particle size distribution meter circulates the particle dispersion in a slit-shaped transparent measurement cell, irradiates the cell with laser light from one direction and applies it to the particle, and measures the particle diameter using the scattered light. To do. This particle diameter is a value proportional to the peripheral length of the particle on the measurement principle. The particles dispersed in the liquid flow and pass through the slit-shaped cell, and at this time, the particles pass in various directions with respect to the laser irradiation direction. However, since the laser beam is emitted from only one direction, in the case of flat particles with different minor axis and major axis lengths, the major axis length is displayed as the particle diameter when the major axis side passes toward the laser beam. However, when the minor axis side passes toward the laser beam, a value smaller than the actual major axis tends to be displayed as the particle diameter. As a result, the particle size of the scale-like graphite particles having the flat particle shape used in the present invention in the laser analysis type particle size distribution may be measured as a value smaller than the major axis of the carbon material B. From these facts, it can be judged that it is appropriate to use the 80% particle diameter (d80) as an index representing the long diameter of the flat particles.
Since the carbon material B of the present invention is preferably in contact with the carbon materials A having a spherical shape, the size on the long diameter side is one of the important indexes. Therefore, in the present invention, the 80% particle diameter (d80) is used as an index representing the carbon material B.

(j)粒子短径の長さ
炭素材料Bの短径の長さは、通常10μm以下、好ましくは7μm以下、より好ましくは6μm以下、更に好ましくは4μm以下であり、通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1.1μm以上である。短径の長さが大きすぎると、炭素材料B自身の充放電による膨張収縮も顕著になっていき、炭素材料Aとの接触が保たれず、導電パス切れを起こす可能性が発現する。なお、粒子の短径の長さは、炭素材料を電子顕微鏡で写真撮影し、任意選んだ領域内の20個の粒子について、それぞれの粒子の最短方向の径を測定し、その平均値を用いた。
(J) Length of particle minor axis The length of the minor axis of the carbon material B is usually 10 μm or less, preferably 7 μm or less, more preferably 6 μm or less, still more preferably 4 μm or less, and usually 0.1 μm or more, preferably Is 0.5 μm or more, more preferably 1.1 μm or more. If the length of the minor axis is too large, the expansion and contraction due to the charging / discharging of the carbon material B itself becomes remarkable, the contact with the carbon material A is not maintained, and there is a possibility that the conductive path is broken. The length of the minor axis of the particle is obtained by photographing a carbon material with an electron microscope, measuring the diameter in the shortest direction of each of 20 particles in an arbitrarily selected region, and using the average value. It was.

(k)002面の面間隔(d002)及びLc
炭素材料BのX線広角回折法による002面の面間隔(d002)は通常0.337nm以下である。一方黒鉛の002面の面間隔の理論値は0.335nmであるため、通常0.335nm以上である。また炭素材料BのX線広角回折法によるLcは通常90nm以上、好ましくは95nm以上である。X線広角回折法による002面の面間隔(d002)、及びLcは実施例で後述する方法により測定する。002面の面間隔(d002)が大きすぎる場合は、炭素材料Bの結晶性が低いということであり容量の低下をきたす傾向がある。また、Lcは小さすぎると結晶性が低くなることを示しており、やはり容量低下をまねく傾向がある。
(K) 002 plane spacing (d002) and Lc
The interplanar spacing (d002) of the 002 plane according to the X-ray wide angle diffraction method of the carbon material B is usually 0.337 nm or less. On the other hand, the theoretical value of the interplanar spacing of the 002 plane of graphite is 0.335 nm and is usually 0.335 nm or more. Further, Lc of the carbon material B according to the X-ray wide angle diffraction method is usually 90 nm or more, preferably 95 nm or more. The inter-surface distance (d002) of 002 surface by the X-ray wide angle diffraction method and Lc are measured by the method described later in Examples. When the interplanar spacing (d002) of the 002 plane is too large, the crystallinity of the carbon material B is low, and the capacity tends to decrease. Further, when Lc is too small, it indicates that the crystallinity is lowered, and there is a tendency to decrease the capacity.

(l)タップ密度
炭素材料Bのタップ密度の下限は、通常0.2g/cm3以上であり、0.25g/cm3以上であることが好ましい。タップ密度の上限は、通常0.7g/cm3以下であり、好ましくは0.6g/cm3以下、更に好ましくは0.5g/cm3以下である。タップ密度は実施例で後述する方法により測定する。タップ密度が小さすぎると、炭素材料Bを混合した炭素材料の電極の強度が弱くなる傾向がある。炭素材料Bのタップ密度が大きすぎると、炭素材料Bが鱗片状から球形状に近付くことになり、充放電での粒子の膨張収縮が大きくなり、粒子間の接触が保たれなくなる傾向がある。
(L) Tap density The lower limit of the tap density of the carbon material B is usually 0.2 g / cm 3 or more, and preferably 0.25 g / cm 3 or more. The upper limit of the tap density is usually 0.7 g / cm 3 or less, preferably 0.6 g / cm 3 or less, more preferably 0.5 g / cm 3 or less. The tap density is measured by the method described later in the examples. If the tap density is too small, the strength of the carbon material electrode mixed with the carbon material B tends to be weak. When the tap density of the carbon material B is too large, the carbon material B approaches a spherical shape from a scaly shape, and the expansion and contraction of particles during charge / discharge increases, and there is a tendency that contact between the particles cannot be maintained.

(m)ラマンR値
炭素材料Bは、鱗片状黒鉛であり、形状が板状であることで、球状である炭素材料Aの粒子間を跨いで接触することができる。鱗片状黒鉛であるということは、球形化処理を受けてないということで、ラマンR値は小さい値となる。球形化処理は鱗片状黒鉛に機械的処理を与えることで、該鱗片状黒鉛が折り曲げ、角削り、粒子巻き込み、結合等により球形化される。そのため、球形化黒鉛粒子全体は鱗片状黒鉛由来の高結晶性を維持しているが、球形化黒鉛粒子の表面は結晶性が乱れその結果、粒子の表面から10nm程度の深さまでの結晶性を表すラマンR値は大きな値となる。すなわちラマンR値が小さいということは、球形化処理を受けていない、板状を呈した鱗片状黒鉛であることを示している。ラマンR値は通常0.21以下、好ましくは0.15以下、より好ましくは0.14以下、更に好ましくは0.13以下、より更に好ましくは0.1以下、特に好ましくは0.09以下である。完全結晶黒鉛のラマンR値は理論的に0なので、ラマンR値の下限は0以上であり、好ましくは0.03以上、更に好ましくは0.05以上である。ラマンR値は実施例で後述する方法により測定する。
(M) Raman R value The carbon material B is scaly graphite, and since the shape is a plate shape, it can contact across the particle | grains of the carbon material A which is spherical. The fact that it is flaky graphite means that it has not been subjected to the spheroidizing treatment, and the Raman R value becomes a small value. In the spheroidizing treatment, the scaly graphite is mechanically processed so that the scaly graphite is spheroidized by bending, shaving, particle entrainment, bonding, or the like. Therefore, the entire spheroidized graphite particles maintain high crystallinity derived from scaly graphite, but the surface of the spheroidized graphite particles is disturbed in crystallinity, and as a result, the crystallinity from the particle surface to a depth of about 10 nm is obtained. The expressed Raman R value is a large value. In other words, a small Raman R value indicates that the graphite is in the form of a plate that has not undergone the spheroidization treatment. The Raman R value is usually 0.21 or less, preferably 0.15 or less, more preferably 0.14 or less, further preferably 0.13 or less, still more preferably 0.1 or less, and particularly preferably 0.09 or less. is there. Since the Raman R value of completely crystalline graphite is theoretically 0, the lower limit of the Raman R value is 0 or more, preferably 0.03 or more, more preferably 0.05 or more. The Raman R value is measured by the method described later in the examples.

(n)BET法による比表面積
炭素材料BのBET法による比表面積は通常7m2/g以下、好ましくは6m2/g以下
、より好ましくは5m2/g以下、更に好ましくは4.1m2/g以下、特に好ましくは3.6m2/g以下である。下限は通常限定されないが、好ましくは0.5m2/g以上、より好ましくは1m2/g以上である。BET法による比表面積は後述する実施例の方法により測定する。炭素材Bの比表面積が大きすぎると不可逆容量の増加による電池容量の減少をきたす傾向がある。小さすぎると、Liイオンの受け入れ性が悪くなる傾向を生じる傾向がある。
(N) The specific surface area by BET method of the BET method according to the specific surface area of carbon material B is generally 7m 2 / g or less, preferably 6 m 2 / g or less, more preferably 5 m 2 / g or less, more preferably 4.1 m 2 / g or less, particularly preferably 3.6 m 2 / g or less. Although a lower limit is not normally limited, Preferably it is 0.5 m < 2 > / g or more, More preferably, it is 1 m < 2 > / g or more. The specific surface area by BET method is measured by the method of the Example mentioned later. If the specific surface area of the carbon material B is too large, the battery capacity tends to decrease due to an increase in irreversible capacity. If it is too small, the acceptability of Li ions tends to be poor.

(o)平均粒径
炭素材料Bの平均粒径(d50)は通常5μm以上、好ましくは10μm以上、より好ましくは20μm以上であり、更に好ましくは23μm以上、特に好ましくは29μm以上であり、通常50μm以下、好ましくは45μm以下、より好ましくは40μm以下である。平均粒径は、後述する実施例の方法により測定する。平均粒径が小さすぎると比表面積が大きくなる傾向にあり、不可逆容量の増加をきたすことがある。また、 炭素材料Bの平均粒径(d50)が大きすぎると、該炭素材料Bを混合した電極用炭素材料をバインダーや水、或いは有機溶媒を加えてスラリー状として塗布する電極作製工程で、大粒子に起因したスジ引きや凹凸を生じることがある。
(O) Average particle diameter The average particle diameter (d50) of the carbon material B is usually 5 μm or more, preferably 10 μm or more, more preferably 20 μm or more, further preferably 23 μm or more, particularly preferably 29 μm or more, and usually 50 μm. Hereinafter, it is preferably 45 μm or less, more preferably 40 μm or less. An average particle diameter is measured by the method of the Example mentioned later. If the average particle size is too small, the specific surface area tends to increase, and the irreversible capacity may increase. If the average particle diameter (d50) of the carbon material B is too large, the electrode carbon material mixed with the carbon material B is applied in a slurry form by adding a binder, water, or an organic solvent, It may cause streaking or unevenness due to particles.

(p)真密度
炭素材料Bの真密度(測定法は後述の実施例のとおり)は通常2.21g/cm3以上、好ましくは2.23g/cm3以上、より好ましくは2.25g/cm3以上である。真密度は2.21g/cm3以上であるということは、結晶性の高い黒鉛粒子であるということで、不可逆容量の少ない高容量の炭素材料であるとことを示す指標の一つとなる。
True density of (p) true density carbon material B (measuring method as in Example described later) is usually 2.21 g / cm 3 or higher, preferably 2.23 g / cm 3 or more, more preferably 2.25 g / cm 3 or more. The fact that the true density is 2.21 g / cm 3 or more is a highly crystalline carbon particle having a high crystallinity, which is one index indicating that the carbon material has a high capacity and a low irreversible capacity.

<炭素材料Bの製造>
炭素材料Bは、前述の性状であれば、どのような製法で作製しても問題なく、前述の特許第3534391号公報(特許文献1)で提案されている方法を用いても製造できる。例えば、天然で産出される鱗片、鱗状、板状、塊状の黒鉛、或いは、例えば石油コークス、石炭ピッチコークス、石炭ニードルコークス、メソフェーズピッチなどを2500℃以上に加熱して製造した人造黒鉛を、必要により、不純物除去、粉砕、篩い分けや分級処理を行うことで得ることができる。
<Manufacture of carbon material B>
The carbon material B can be manufactured by any method as long as it has the above-described properties, and can be manufactured using the method proposed in the above-mentioned Japanese Patent No. 3534391 (Patent Document 1). For example, naturally produced scale, scale-like, plate-like, massive graphite, or artificial graphite produced by heating petroleum coke, coal pitch coke, coal needle coke, mesophase pitch, etc. to 2500 ° C. or higher is necessary. Thus, it can be obtained by performing impurity removal, pulverization, sieving and classification.

<非水系二次電池用負極材料>
本発明の非水系二次電池用負極材料は、炭素材料Aと炭素材料Bとが含有されてなる非水系二次電池用負極材料(本発明では混合炭素材料ともいう)である。
炭素材料Aと炭素材料Bを混合する技術思想について説明する。
図1に示す従来の負極は、充放電の繰り返しにより球形炭素材料A(図中表記a)の膨張収縮により、炭素材料A同士の接触が離れて、電子の移動がしにくくなる傾向がある。一方、図2に示す炭素材料Aと炭素材料Bを混合した非水系二次電池負極用炭素材料では、板状の炭素材料B(図中表記b)が球形炭素である炭素材料A間に跨って接触することが可能となり、炭素材料A同士が充放電の繰り返しにより離れても、炭素材料Bを通して電子が流れることで、導電パス切れが、抑制される効果が得られると考えられる。
<Non-aqueous secondary battery anode material>
The negative electrode material for a non-aqueous secondary battery of the present invention is a negative electrode material for a non-aqueous secondary battery (also referred to as a mixed carbon material in the present invention) containing the carbon material A and the carbon material B.
The technical idea of mixing the carbon material A and the carbon material B will be described.
The conventional negative electrode shown in FIG. 1 tends to make it difficult for electrons to move due to separation and contact between the carbon materials A due to expansion and contraction of the spherical carbon material A (notation a in the figure) due to repeated charge and discharge. On the other hand, in the carbon material for a non-aqueous secondary battery negative electrode in which the carbon material A and the carbon material B shown in FIG. 2 are mixed, the plate-like carbon material B (indicated by b in the figure) straddles between the carbon materials A that are spherical carbon. Even if the carbon materials A are separated from each other by repetition of charge and discharge, it is considered that the effect of suppressing the disconnection of the conductive path is obtained by the electrons flowing through the carbon material B.

混合した負極用炭素材料中の炭素材料Bの割合は、特定の条件を満たす炭素材料A及び炭素材料Bが含有されていれば、本発明の効果を発揮することができるので、特に制限はないが、より効果を発揮するためには、非水系二次電池用負極材料に対して炭素材料Bが、通常5質量%以上、好ましくは10質量%以上、更に好ましくは20質量%以上である。また、通常70質量%以下、好ましくは60質量%以下、更に好ましくは50質量%以下である。炭素材料Bの混合割合が小さすぎると、炭素材料Aの粒子間を跨いで接触する量が少なくなり、炭素材料同士が充放電の繰り返しで炭素材料A同士が離れたときの導電性の確保量が十分ではなくなる傾向にある。炭素材料Bの混合割合が多すぎると、球形をしている炭素材料Aに由来した急速充放電特性が低下する傾向にある。炭素材料Aに起因した急速充放電特性を維持したまま、充放電の繰り返しによる炭素材料A間の導電パス切れを炭素材料Bにより防止するには、上記の範囲での混合量であることが望ましい。   The ratio of the carbon material B in the mixed carbon material for negative electrode is not particularly limited because the effects of the present invention can be exhibited if the carbon material A and the carbon material B satisfying specific conditions are contained. However, in order to exhibit more effects, the carbon material B is usually 5% by mass or more, preferably 10% by mass or more, and more preferably 20% by mass or more with respect to the negative electrode material for non-aqueous secondary batteries. Moreover, it is 70 mass% or less normally, Preferably it is 60 mass% or less, More preferably, it is 50 mass% or less. If the mixing ratio of the carbon material B is too small, the amount of contact between the carbon material A particles is reduced, and the amount of conductivity ensured when the carbon materials A are separated from each other by repeated charge and discharge. Tend not to be enough. When the mixing ratio of the carbon material B is too large, the rapid charge / discharge characteristics derived from the spherical carbon material A tend to be lowered. In order to prevent the carbon material B from breaking the conductive path between the carbon materials A due to repeated charge / discharge while maintaining the rapid charge / discharge characteristics due to the carbon material A, the mixed amount is preferably within the above range. .

混合する際に用いる装置としては、特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機、固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmill型混合機、流動化型混合機等を用いることができる。   There are no particular restrictions on the apparatus used for mixing, but for example, in the case of a rotary mixer: a cylindrical mixer, a twin cylindrical mixer, a double cone mixer, a regular cubic mixer, a saddle type mixer Machine, stationary mixer: spiral mixer, ribbon mixer, Muller mixer, Helical Flight mixer, Pugmill mixer, fluidized mixer, etc. can be used.

<非水系二次電池用負極>
本発明に係る混合炭素材料を用いて負極を作製するには、負極材料に結着樹脂を配合したものを水性若しくは、有機系溶剤でスラリーとし、必要によりこれに増粘材を加えて集電体に塗布し、乾燥すればよい。結着樹脂としては、非水電解液に対して安定で、かつ非水溶性のものを用いるのが好ましい。例えばスチレン、ブタジエンゴム、イソプレンゴム、エチレン・プロピレンゴム等のゴム状高分子;ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド等の合成樹脂;スチレン・ブタジエン・スチレンブロック共重合体やその水素添加物、スチレン・エチレン・ブタジエン、スチレン共重合体、スチレン・イソプレン、スチレンブロック共重合体やその水素化物等の熱可塑性エラストマー;シンジオタクチック−1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、エチレンと炭素数3〜12のα−オレフィンとの共重合体等の軟質樹脂状高分子;ポリテトラフルオロエチレン・エチレン共重合体、ポリビニデンフルオライド、ポリペンタフルオロプロピレン、ポリヘキサフルオロプロピレン等のフッ素化高分子などを用いることができる。有機系媒体としては、例えばN−メチルピロリドンや、ジメチルホルムアミドを挙げることができる。
<Negative electrode for non-aqueous secondary battery>
In order to produce a negative electrode using the mixed carbon material according to the present invention, a negative electrode material blended with a binder resin is made into a slurry with an aqueous or organic solvent, and if necessary, a thickener is added thereto to collect current. Apply to the body and dry. As the binder resin, it is preferable to use a resin that is stable with respect to the non-aqueous electrolyte and water-insoluble. For example, rubbery polymers such as styrene, butadiene rubber, isoprene rubber, ethylene / propylene rubber; synthetic resins such as polyethylene, polypropylene, polyethylene terephthalate, and aromatic polyamide; styrene / butadiene / styrene block copolymers and hydrogenated products thereof, Thermoplastic elastomers such as styrene / ethylene / butadiene, styrene copolymer, styrene / isoprene, styrene block copolymer and hydride thereof; syndiotactic-1,2-polybutadiene, ethylene / vinyl acetate copolymer, ethylene Soft resinous polymers such as copolymers with α-olefins having 3 to 12 carbon atoms; fluorine such as polytetrafluoroethylene / ethylene copolymers, polyvinylidene fluoride, polypentafluoropropylene, and polyhexafluoropropylene It can be used as the polymer. Examples of the organic medium include N-methylpyrrolidone and dimethylformamide.

結着樹脂は負極材料100質量部に対して通常は0.1質量部以上、好ましくは0.2質量部以上用いる。結着樹脂の割合が小さすぎると、負極材料相互間や負極材料と集電体との結着力が弱く、負極から負極材料が剥離して電池容量が減少したリサイクル特性が悪化したりする。逆に結着樹脂の割合が大きすぎると負極の容量が減少し、かつリチウムイオンの負極材料への出入が妨げられるなどの問題が生ずる。従って結着樹脂は負極材料100質量部に対して多くても10質量部、通常は7質量部以下となるように用いるのが好ましい。
スラリーに添加する増粘材としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の水溶性セルロース類やポリビニルアルコール、ポリエチレングリコール等を用いればよい。なかでも好ましいのはカルボキシメチルセルロースである。増粘材は負極材料100質量部に対して通常は0.1質量部以上、好ましくは0.2質量部以上、通常10質量部以下、好ましくは7質量部以下となるように用いる。
The binder resin is usually used in an amount of 0.1 parts by mass or more, preferably 0.2 parts by mass or more with respect to 100 parts by mass of the negative electrode material. When the ratio of the binder resin is too small, the binding force between the negative electrode materials or between the negative electrode material and the current collector is weak, and the negative electrode material is peeled off from the negative electrode to deteriorate the recycle characteristics in which the battery capacity is reduced. On the other hand, when the ratio of the binder resin is too large, the capacity of the negative electrode is reduced, and problems such as the entry and exit of lithium ions into the negative electrode material are hindered. Accordingly, the binder resin is preferably used so that it is at most 10 parts by mass, usually 7 parts by mass or less, with respect to 100 parts by mass of the negative electrode material.
As the thickener added to the slurry, water-soluble celluloses such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose, polyvinyl alcohol, polyethylene glycol, and the like may be used. Of these, carboxymethylcellulose is preferred. The thickener is usually used in an amount of 0.1 parts by mass or more, preferably 0.2 parts by mass or more, usually 10 parts by mass or less, preferably 7 parts by mass or less with respect to 100 parts by mass of the negative electrode material.

負極集電体としては従来からこの用途に用い得ることが知られている銅、銅合金、ステンレス鋼、ニッケル、チタン、炭素などを用いればよい。集電体の形状は通常はシート状であり、その表面に凹凸をつけたものや、ネット、パンチングメタルなどを用いるものも好ましい。
集電体に負極材料と結着樹脂のスラリーを塗布・乾燥したのちは、加圧して集電体上に形成された電極の密度を大きくし、もって負極層単位体積当たりの電池容量を大きくするのが好ましい。電極の密度は通常1.2g/cm3以上、好ましくは1.3g/cm3以上、また、通常1.9g/cm3以下、好ましくは1.8g/cm3以下である。電極密度が小さすぎると、電極の厚みが大きくなり、一定サイズの電池の中に収めることのできる量が減ることで、電池の容量が小さくなってしまう。電極密度が大きすぎると、電極内の粒子間空隙が減少し、空隙に保持される電解液量が減り、Liイオンの移動性が悪くなることで、急速充放電特性が小さくなる。
As the negative electrode current collector, copper, copper alloy, stainless steel, nickel, titanium, carbon, or the like that is conventionally known to be used for this purpose may be used. The shape of the current collector is usually a sheet shape, and those having an uneven surface, or using a net, punching metal or the like are also preferable.
After applying a slurry of negative electrode material and binder resin to the current collector and drying, pressurize to increase the density of the electrode formed on the current collector, thereby increasing the battery capacity per unit volume of the negative electrode layer Is preferred. The density of the electrode is usually 1.2 g / cm 3 or more, preferably 1.3 g / cm 3 or more, and usually 1.9 g / cm 3 or less, preferably 1.8 g / cm 3 or less. If the electrode density is too small, the thickness of the electrode increases, and the amount that can be accommodated in a battery of a certain size decreases, resulting in a decrease in battery capacity. When the electrode density is too large, the interparticle voids in the electrode are reduced, the amount of the electrolyte solution retained in the voids is reduced, and the mobility of Li ions is deteriorated, thereby reducing the rapid charge / discharge characteristics.

このように作製された本発明の非水系二次電池用負極は、負極を集電体に垂直方向に切断して得られる負極断面を電子顕微鏡で観察した画像において、負極活物質層の任意に選択した負極厚み方向(集電体と垂直方向)50μm、負極長さ方向(集電体と平行方向)100μmからなる範囲内に、鱗片状黒鉛が1個以上存在し、且つ球形化黒鉛が鱗片状黒鉛の周囲に接点を2つ以上持っているという特徴を有する。球形化黒鉛が鱗片状黒鉛の片方の端面に接点を2つ以上持っていることが好ましい。このような特徴を有する本発明の非水系二次電池用負極は、急速充放電特性と高サイクル特性を併せ持った優れた特性を有する非水系二次電池を提供することができる。これは上述した技術思想に基づくものである。
鱗片状黒鉛の存在は、1個以上、好ましくは2個以上、より好ましくは3個以上、特に好ましくは10個以上である。鱗片状黒鉛の存在の上限は、通常30個以下、好ましくは20個以下、より好ましくは15個以下である。
また、球形化黒鉛が該鱗片状黒鉛の周囲に、好ましくは片方の端面に接点を2つ以上、好ましくは3つ以上、より好ましくは4つ以上持っている。鱗片状黒鉛の粒子数が少なすぎる、そして球形化黒鉛と鱗片状黒鉛の接点を1つしかもたないということは、本発明の負極を構成する炭素材料Bの数が少ない及び小さな鱗片状黒鉛であるということで、炭素材料Aの粒子間を跨いで接触する量が少なくなり、炭素材料同士が充放電の繰り返しで炭素材料A同士が離れたときの導電性の確保量が十分ではなくなる傾向にある。一方、鱗片状黒鉛の粒子数が多すぎるということは、本発明の負極を構成する炭素材料Bの数が多いということで、球形をしている炭素材料Aに由来した急速充放電特性が低下する傾向にある。炭素材料Aに起因した急速充放電特性を維持したまま、充放電の繰り返しによる炭素材料A間の導電パス切れを炭素材料Bにより防止するには、上記の範囲であることが望ましい。
加えて、上記鱗片状黒鉛の長径と、上記球形化黒鉛の長径の比が1.7倍以上であるという特徴を有する。このように作製した負極において、鱗片状黒鉛の長径が球形化黒鉛の長径よりも長いことで、炭素材料Aの粒子間を跨いで接触する炭素材料Bの量が十分であり、炭素材料A同士が充放電の繰り返しにより離れても、炭素材料Bを通して電子が流れることで、導電パス切れが抑制される効果が得られると考えられる。好ましくは2倍以上、より好ましくは2.5倍以上、更に好ましくは2.7倍以上、より更に好ましくは3.3倍以上、特に好ましくは4倍以上であり、通常20倍以下、好ましくは15倍以下、より好ましくは10倍以下、更に好ましくは7倍以下、特に好ましくは5倍以下である。
なお、鱗片状黒鉛の長径と球形化黒鉛の長径の比は、互いに接触しているものについて比較することが好ましい。また、鱗片状黒鉛の長径と球形化黒鉛の長径は、電子顕微鏡写真から測定することが可能である。
電子顕微鏡としてはSEMやTEMを使用することができる。
本発明で得られた実施例1の負極断面を電子顕微鏡で観察した写真を図7に示す。
The negative electrode for a non-aqueous secondary battery of the present invention thus produced is an arbitrary image of the negative electrode active material layer in an image obtained by observing a negative electrode cross section obtained by cutting the negative electrode in a direction perpendicular to the current collector with an electron microscope. One or more flaky graphite exists in the range of 50 μm in the selected negative electrode thickness direction (perpendicular to the current collector) and 100 μm in the negative electrode length direction (parallel to the current collector), and the spheroidized graphite is flaky. It has the feature of having two or more contacts around the graphite. The spheroidized graphite preferably has two or more contacts on one end face of the scale-like graphite. The negative electrode for a non-aqueous secondary battery of the present invention having such characteristics can provide a non-aqueous secondary battery having excellent characteristics having both rapid charge / discharge characteristics and high cycle characteristics. This is based on the technical idea described above.
The presence of flake graphite is 1 or more, preferably 2 or more, more preferably 3 or more, and particularly preferably 10 or more. The upper limit of the scale-like graphite is usually 30 or less, preferably 20 or less, more preferably 15 or less.
Further, the spheroidized graphite has two or more, preferably three or more, more preferably four or more contacts around the scale-like graphite, preferably on one end face. The fact that the number of particles of flaky graphite is too small and that there is only one contact point between spheroidized graphite and flaky graphite means that the number of carbon materials B constituting the negative electrode of the present invention is small and small flaky graphite. That is, the amount of contact between the carbon material A particles is reduced, and the carbon material A tends to be insufficient in securing the conductivity when the carbon materials A are separated from each other by repeated charge and discharge. is there. On the other hand, the fact that the number of particles of flake graphite is too large means that the number of carbon materials B constituting the negative electrode of the present invention is large, and the rapid charge / discharge characteristics derived from the spherical carbon material A are reduced. Tend to. In order to prevent the carbon material B from breaking the conductive path between the carbon materials A due to repeated charge and discharge while maintaining the rapid charge / discharge characteristics due to the carbon material A, the above range is desirable.
In addition, the ratio of the major axis of the flake graphite and the major axis of the spheroidized graphite is 1.7 times or more. In the negative electrode produced in this way, the long diameter of the scaly graphite is longer than the long diameter of the spheroidized graphite, so that the amount of the carbon material B in contact across the particles of the carbon material A is sufficient. Even if they are separated by repeated charge / discharge, the flow of electrons through the carbon material B is considered to have the effect of suppressing the disconnection of the conductive path. Preferably it is 2 times or more, more preferably 2.5 times or more, more preferably 2.7 times or more, even more preferably 3.3 times or more, particularly preferably 4 times or more, usually 20 times or less, preferably 15 times or less, more preferably 10 times or less, still more preferably 7 times or less, and particularly preferably 5 times or less.
In addition, it is preferable to compare the ratio of the major axis of scaly graphite to the major axis of spheroidized graphite for those in contact with each other. Moreover, the major axis of scale-like graphite and the major axis of spheroidized graphite can be measured from an electron micrograph.
As the electron microscope, SEM or TEM can be used.
The photograph which observed the negative electrode cross section of Example 1 obtained by this invention with the electron microscope is shown in FIG.

測定は次のように行う。
負極を約8mm×5mmに切り出して試料台に貼り付け、日本電子(株)製クロスセクションポリッシャー(SM−09010)で負極を断面方向に切断する。この切断した負極を、HITACHI製 走査型電子顕微鏡(SU−70)で、電子銃加速電圧3kV、下方検出器像観察モードで、負極の断面像を観察し、任意に負極厚み方向(集電体と垂直方向)50μm、負極長さ方向(集電体と平行方向)100μmの範囲を決めて、この範囲内の上記条件を満たすような黒鉛粒子を観察することで特定は可能である。
なお、本測定方法に用いる負極は、電池を作成する前のプレスした後の負極を用いてもよいし、電池を作成した後、充放電を繰り返した電池から取り出した負極を用いてもよい。
また、電子顕微鏡により、負極の断面像を観察した場合に、鮮明な粒子全体の像が撮影できない場合もある。そのような場合には、負極断面における粒子の空間存在位置を当業者の常識の範囲で推測し、仮想の断面像を描き、それをもとに粒子の形状を測定することとしてもよい。
The measurement is performed as follows.
The negative electrode is cut out to about 8 mm × 5 mm and attached to a sample table, and the negative electrode is cut in the cross-sectional direction with a cross section polisher (SM-09010) manufactured by JEOL. The cut negative electrode was observed with a scanning electron microscope (SU-70) manufactured by HITACHI in an electron gun acceleration voltage of 3 kV and a lower detector image observation mode, and a cross-sectional image of the negative electrode was arbitrarily observed in the negative electrode thickness direction (current collector). It is possible to specify the range by determining the range of 50 μm in the vertical direction and 100 μm in the negative electrode length direction (parallel to the current collector) and observing the graphite particles satisfying the above conditions within this range.
Note that the negative electrode used in this measurement method may be a negative electrode after being pressed before producing the battery, or a negative electrode taken out from a battery that has been repeatedly charged and discharged after the battery has been produced.
In addition, when a cross-sectional image of the negative electrode is observed with an electron microscope, a clear image of the entire particle may not be captured. In such a case, the spatial position of the particles in the negative electrode cross section may be estimated within the range of common knowledge of those skilled in the art, a virtual cross sectional image may be drawn, and the particle shape may be measured based on the virtual cross sectional image.

<非水系二次電池>
本発明に係る非水系二次電池は、上記の負極を用いる以外は、常法に従って作成することができる。正極材料としては基本組成がLiCoO2で表されるリチウムコバルト複合酸化物、LiNiO2で表されるリチウムニッケル複合酸化物、LiMnO2やLiMn24で表されるリチウムマンガン複合酸化物等のリチウム遷移金属複合酸化物、二酸化マンガン等の遷移金属酸化物、及びこれらの複合酸化物混合物、さらにはTiS2、FeS2、Nb34、Mo34、CoS2、V25、CrO3、V33、FeO2、GeO2、LiNi0.33Mn0.33Co0.332等を用いればよい。これらの正極材料に結着樹脂を配合したものを適当な溶媒でスラリー化して集電体に塗布・乾燥することにより正極を作製できる。なおスラリー中にはアセチレンブラックやケッチェンブラック等の導電材を含有させるのが好ましい。また所望により増粘材を含有させてもよい。増粘材や結着樹脂としてはこの用途に周知のもの、例えば負極の作成に用いるものとして例示したものを用いればよい。正極材料100質量部に対する配合比率は、導電剤は通常0.5質量部以上、好ましくは1質量部以上、また、通常20質量部以下、好ましくは15質量部以下である。増粘材は通常0.2質量部以上、好ましくは0.5質量部以上、また、通常10質量部以下、好ましくは7質量部以下である。結着樹脂は水でスラリー化するときは通常0.2質量部以上、好ましくは0.5質量部以上、また、通常10質量部以下、好ましくは7質量部以下であり、N−メチルピロリドンなどの結着樹脂を溶解する有機溶媒でスラリー化するときには通常0.5質量部以上、好ましくは1質量部以上、また、通常20質量部以下、好ましくは15質量部以下である。正極集電体としては、アルミニウム、チタン、ジルコニウム、ハフニウム、ニオブ、タンタルなどやこれらの合金を用いればよい。なかでもアルミニウム、チタン、タンタルやその合金を用いるのが好ましく、アルミニウムないしはその合金を用いるのが最も好ましい。
<Non-aqueous secondary battery>
The non-aqueous secondary battery according to the present invention can be prepared according to a conventional method except that the above negative electrode is used. As the positive electrode material, lithium such as lithium cobalt composite oxide whose basic composition is represented by LiCoO 2 , lithium nickel composite oxide represented by LiNiO 2 , lithium manganese composite oxide represented by LiMnO 2 or LiMn 2 O 4 Transition metal complex oxides, transition metal oxides such as manganese dioxide, and mixtures of these complex oxides, as well as TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 O 5 , CrO 3 , V 3 O 3 , FeO 2 , GeO 2 , LiNi 0.33 Mn 0.33 Co 0.33 O 2 or the like may be used. A positive electrode can be produced by slurrying a mixture of these positive electrode materials with a binder resin with an appropriate solvent, and applying and drying to a current collector. The slurry preferably contains a conductive material such as acetylene black or ketjen black. Moreover, you may contain a thickener as desired. As the thickener and the binder resin, those well-known for this application, for example, those exemplified as those used for the production of the negative electrode may be used. The compounding ratio with respect to 100 parts by mass of the positive electrode material is usually 0.5 parts by mass or more, preferably 1 part by mass or more, and usually 20 parts by mass or less, preferably 15 parts by mass or less. The thickener is usually 0.2 parts by mass or more, preferably 0.5 parts by mass or more, and usually 10 parts by mass or less, preferably 7 parts by mass or less. When the binder resin is slurried with water, it is usually 0.2 parts by mass or more, preferably 0.5 parts by mass or more, and usually 10 parts by mass or less, preferably 7 parts by mass or less, such as N-methylpyrrolidone. When it is slurried with an organic solvent that dissolves the binder resin, it is usually 0.5 parts by mass or more, preferably 1 part by mass or more, and usually 20 parts by mass or less, preferably 15 parts by mass or less. As the positive electrode current collector, aluminum, titanium, zirconium, hafnium, niobium, tantalum, or an alloy thereof may be used. Of these, aluminum, titanium, tantalum or an alloy thereof is preferably used, and aluminum or an alloy thereof is most preferably used.

電解液も従来周知の非水溶媒に種々のリチウム塩を溶解させたものを用いることができる。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート、γ−ブチロラクトンなどの環状エステル、クラウンエーテル、2−メチルテトラヒドロフラン、テトラヒドロフラン、1,2−ジメチルテトラヒドロフラン、1,3−ジオキソラン等の環状エーテル、1,2−ジメトキシエタン等の鎖状エーテルなどを用いればよい。通常はこれらをいくつか併用する。なかでも環状カーボネートと鎖状カーボネート、又はこれに更に他の溶媒を併用するのが好ましい。   As the electrolytic solution, a solution in which various lithium salts are dissolved in a conventionally known non-aqueous solvent can be used. Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate, chain carbonates such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, cyclic esters such as γ-butyrolactone, crown ethers, 2- Cyclic ethers such as methyltetrahydrofuran, tetrahydrofuran, 1,2-dimethyltetrahydrofuran, 1,3-dioxolane, chain ethers such as 1,2-dimethoxyethane, etc. may be used. Usually some of these are used together. Of these, it is preferable to use a cyclic carbonate and a chain carbonate, or another solvent in combination.

またビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の化合物やジフルオロリン酸リチウムのようなジフルオロリン酸塩等が添加されていても良い。更に、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていても良い。
非水溶媒に溶解させる電解質としては、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23などを用いればよい。電解液中の電解質の濃度は通常は0.5モル/リットル以上、好ましくは0.6モル/リットル以上、また、通常2モル/リットル以下、好ましくは1.5モル/リットル以下である。
Further, compounds such as vinylene carbonate, vinyl ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethyl sulfone, difluorophosphate such as lithium difluorophosphate, and the like may be added. Furthermore, an overcharge inhibitor such as diphenyl ether or cyclohexylbenzene may be added.
Examples of the electrolyte dissolved in the non-aqueous solvent include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3, or the like may be used. The concentration of the electrolyte in the electrolytic solution is usually 0.5 mol / liter or more, preferably 0.6 mol / liter or more, and usually 2 mol / liter or less, preferably 1.5 mol / liter or less.

正極と負極との間に介在させるセパレータには、ポリエチレンやポリプロピレン等のポ
リオレフィンの多孔性シートや不織布を用いるのが好ましい。
本発明に係る非水系二次電池は、負極/正極の容量比を1.01以上、1.5以下に設計することが好ましく1.2以上、1.4以下に設計することがより好ましい。
The separator interposed between the positive electrode and the negative electrode is preferably a porous sheet or non-woven fabric of polyolefin such as polyethylene or polypropylene.
In the non-aqueous secondary battery according to the present invention, the capacity ratio of the negative electrode / positive electrode is preferably designed to be 1.01 or more and 1.5 or less, more preferably 1.2 or more and 1.4 or less.

次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。
なお、本明細書における粒径、タップ密度、BET法比表面積、真密度、X線回折、複層構造炭素粉材料の被覆率、ラマンR、アスペクト比、粒子の短径の長さなどの測定は次記により行った。
EXAMPLES Next, specific embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In this specification, measurement of particle size, tap density, BET specific surface area, true density, X-ray diffraction, multi-layer structure carbon powder material coverage, Raman R, aspect ratio, length of short axis of particle, etc. Was performed as follows.

粒径:ポリオキシエチレン(20)ソルビタンモノラウレートの2(容量)%水溶液約1mlに、炭素粉末約20mgを加え、これをイオン交換水約200mlに分散させたものを、レーザー回折式粒度分布計(堀場製作所製 LA−920)を用いて体積基準粒度分布を測定し、平均粒径(メジアン径)、10%積算部のd10粒径、80%積算粒子径のd80、90%積算部のd90粒径を求めた。測定条件は超音波分散1分間、超音波強度2、循環速度2、相対屈折率1.50である。   Particle size: Laser diffraction particle size distribution obtained by adding about 20 mg of carbon powder to about 1 ml of 2% (volume) aqueous solution of polyoxyethylene (20) sorbitan monolaurate and dispersing this in about 200 ml of ion-exchanged water. The volume-based particle size distribution is measured using a meter (LA-920, manufactured by Horiba Seisakusho), and the average particle size (median diameter), d10 particle size of 10% integrated part, d80 of 80% integrated particle diameter, and 90% integrated part The d90 particle size was determined. The measurement conditions are ultrasonic dispersion for 1 minute, ultrasonic intensity 2, circulation speed 2, and relative refractive index 1.50.

タップ密度:粉体密度測定器タップデンサーKYT−3000((株)セイシン企業社製)を用いて測定した。目開き300μmの篩から20ccのタップセルに炭素粉末を落下させ、セルに満杯に充填したのち、ストローク長10mmのタップを1000回行って、そのときの密度をタップ密度とした。
平均円形度:フロー式粒子像分析装置(東亜医療電子社製FPIA−2000)を使用し、円相当径による粒径分布の測定および円形度の算出を行った。分散媒としてイオン交換水を使用し、界面活性剤としてポリオキシエチレン(20)モノラウレートを使用した。円相当径とは、撮影した粒子像と同じ投影面積を持つ円(相当円)の直径であり、円形度とは、相当円の周囲長を分子とし、撮影された粒子投影像の周囲長を分母とした比率である。測定した10〜40μmの範囲の粒子の円形度を平均し、平均円形度とした。
Tap density: It measured using the powder density measuring device tap denser KYT-3000 (made by Seishin Enterprise Co., Ltd.). Carbon powder was dropped into a 20 cc tap cell from a sieve having a mesh opening of 300 μm, and the cell was fully filled, and then a tap with a stroke length of 10 mm was performed 1000 times, and the density at that time was defined as the tap density.
Average circularity: A flow type particle image analyzer (FPIA-2000 manufactured by Toa Medical Electronics Co., Ltd.) was used to measure the particle size distribution by the equivalent circle diameter and calculate the circularity. Ion exchange water was used as a dispersion medium, and polyoxyethylene (20) monolaurate was used as a surfactant. The equivalent circle diameter is the diameter of a circle (equivalent circle) having the same projected area as the photographed particle image, and the circularity is the circumference of the equivalent particle as a molecule and the circumference of the photographed particle projection image. The ratio is the denominator. The measured circularity of particles in the range of 10 to 40 μm was averaged to obtain an average circularity.

BET法比表面積:大倉理研社製 AMS−8000を用いて測定した。250℃で予備乾燥し、更に30分間窒素ガスを流したのち、窒素ガス吸着によるBET1点法により測定した。
真密度:ピクノメーターを用い、媒体として界面活性剤の0.1%水溶液を用いて測定した。
BET specific surface area: Measured using AMS-8000 manufactured by Okura Riken Co., Ltd. After pre-drying at 250 ° C. and flowing nitrogen gas for 30 minutes, the BET one-point method by nitrogen gas adsorption was used for measurement.
True density: Measured using a pycnometer and a 0.1% aqueous solution of a surfactant as the medium.

X線回折:炭素粉末に約15%のX線標準高純度シリコン粉末を加えて混合したものを材料とし、グラファイトモノクロメーターで単色化したCuKα線を線源とし、反射式ディフラクトメーター法で広角X線回折曲線を測定し、学振法を用いて面間隔(d002)及び結晶子の大きさ(Lc)を求めた。
複素構造炭素材料の被覆率:次式により求めた。
被覆率(質量%)=100−(K×D)/((K+T)×N)×100
この式において、Kはタールピッチとの混合に供した球形黒鉛質炭素の重量(Kg)、Tは球形黒鉛質炭素との混合に供した被覆原料であるタールピッチの重量(kg)、DはKとTの混合物のうち実際に焼成に供した混合物量、Nは焼成後の被覆球形黒鉛質炭素材料の重量をしめす。
X-ray diffraction: Carbon powder mixed with approximately 15% X-ray standard high-purity silicon powder is used as a material. CuKα ray monochromatized with a graphite monochromator is used as a radiation source, and a wide angle is measured by a reflective diffractometer method. The X-ray diffraction curve was measured, and the interplanar spacing (d002) and crystallite size (Lc) were determined using the Gakushin method.
Coverage of complex structure carbon material: determined by the following formula.
Coverage (mass%) = 100− (K × D) / ((K + T) × N) × 100
In this equation, K is the weight (Kg) of spherical graphitic carbon subjected to mixing with tar pitch, T is the weight (kg) of tar pitch which is a coating raw material subjected to mixing with spherical graphitic carbon, and D is Of the mixture of K and T, the amount of the mixture actually subjected to firing, N is the weight of the coated spherical graphitic carbon material after firing.

ラマン測定:日本分光社製NR−1800を用い、波長514.5nmのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580cm-1の付近のピークPAの強度IA、1360cm-1の範囲のピークPBの強度IBを測定し、その強度の比R=IB/IAを求めた。試料の調製にあたっては、粉末状態のものを自然落下によりセル
に充填し、セル内のサンプル表面にレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させて測定を行った。
Raman measurements: using JASCO Corp. NR-1800, in the Raman spectrum analysis using an argon ion laser beam having a wavelength of 514.5 nm, intensity IA of peak PA near the 1580 cm -1, a peak in the range of 1360 cm -1 PB The strength ratio IB was measured, and the strength ratio R = IB / IA was determined. In the preparation of the sample, the powder was charged into the cell by natural dropping, and the measurement was performed by rotating the cell in a plane perpendicular to the laser beam while irradiating the sample surface in the cell with the laser beam.

アスペクト比:炭素材料を電子顕微鏡で写真撮影し、任意選んだ領域内の20個の粒子について、それぞれの粒子の最長径をa(μm)、最短径をb(μm)としてa/bを求め、a/bの20個の粒子の平均値をアスペクト比とした。
粒子短径の長さ:炭素材料を電子顕微鏡で写真撮影し、任意選んだ領域内の20個の粒子について、それぞれの粒子の最短方向の径を測定し、その平均値を粒子短径の長さとした。
Aspect ratio: A carbon material is photographed with an electron microscope, and for 20 particles in an arbitrarily selected region, a / b is obtained by setting the longest diameter of each particle to a (μm) and the shortest diameter to b (μm). The average value of 20 particles of a / b was defined as the aspect ratio.
Length of particle short axis: Carbon material is photographed with an electron microscope, and 20 particles in an arbitrarily selected region are measured for the diameter in the shortest direction of each particle, and the average value is calculated as the length of the particle short axis. Say it.

実施例1
(炭素材料Aの作製)
天然に産出する黒鉛で、X線広角回折法による002面の面間隔(d002)が0.336nmでLcが100nm以上、タップ密度が0.46g/cm3、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.13、平均粒径28.7μm、真密度2.27g/cm3にある鱗片状黒鉛粒子を、(株)奈良機械製作所製社製ハイブリダイゼーションシステムを用いて、ローターの周速度60m/秒、10分の条件で20kg/hrの処理速度で鱗片状黒鉛粒子を連続的に処理することで、黒鉛粒子表面にダメージを与えながら球形化処理を行い、その後更に分級処理により微粉の除去を行った。得られた球形化黒鉛粒子は、X線広角回折法による002面の面間隔(d002)が0.336nmでLcが100nm以上、タップ密度が0.83g/cm3、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.24、平均粒径(d50)が11.6μm、BET法比表面積が7.7m2/g、真密度が2.27g/cm3、平均円形度が0.909であった。
Example 1
(Production of carbon material A)
Naturally produced graphite with a 002 plane spacing (d002) of 0.336 nm by X-ray wide angle diffraction method, Lc of 100 nm or more, tap density of 0.46 g / cm 3 , and 1580 cm −1 in an argon ion laser Raman spectrum. A scale-like graphite particle having a Raman R value, which is a peak intensity ratio in the vicinity of 1360 cm −1 to a peak intensity in the vicinity, of 0.13, an average particle diameter of 28.7 μm, and a true density of 2.27 g / cm 3 , Damage to the graphite particle surface by continuously processing the scaly graphite particles at a processing speed of 20 kg / hr under conditions of a rotor peripheral speed of 60 m / second and 10 minutes using a hybridization system manufactured by Kikai Seisakusho. The spheroidizing process was performed while giving a fine powder, and then the fine powder was removed by a classification process. The obtained spheroidized graphite particles had an 002 plane spacing (d002) of 0.336 nm by X-ray wide angle diffraction method, Lc of 100 nm or more, a tap density of 0.83 g / cm 3 , and 1580 cm in an argon ion laser Raman spectrum. The Raman R value, which is the peak intensity ratio near 1360 cm −1 to the peak intensity near −1 , is 0.24, the average particle diameter (d50) is 11.6 μm, the BET specific surface area is 7.7 m 2 / g, the true density Of 2.27 g / cm 3 and an average circularity of 0.909.

次に、この球形化黒鉛質炭素100質量部と石油由来の重質油20質量部を捏合機で加熱混合行い、次いで非酸化性雰囲気1300℃まで焼成し、その後室温まで冷却し、更に粉砕分級を行うことで、複層構造球形化炭素材料を得た。炭素材料Aは、X線広角回折法による002面の面間隔(d002)が0.336nmでLcが100nm以上、タップ密度が0.96g/cm3、平均粒径(d50)が11.8μm、d10粒径7.6μm、d90粒径18.1μm、BET法比表面積は4.0m2/g、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.34、アスペクト比が3、被覆率は3%であった。炭素材料Aの電子顕微鏡写真を図3に示す。 Next, 100 parts by mass of the spheroidized graphitic carbon and 20 parts by mass of petroleum-derived heavy oil are mixed by heating in a compounding machine, then calcined to a non-oxidizing atmosphere 1300 ° C., then cooled to room temperature, and further pulverized and classified. As a result, a multi-layered spherical carbon material was obtained. The carbon material A has an 002 plane spacing (d002) of 0.336 nm, an Lc of 100 nm or more, a tap density of 0.96 g / cm 3 , an average particle size (d50) of 11.8 μm, according to an X-ray wide angle diffraction method. d10 particle size 7.6 [mu] m, d90 particle size 18.1μm, BET method specific surface area is 4.0 m 2 / g, the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the argon ion laser Raman spectrum The Raman R value was 0.34, the aspect ratio was 3, and the coverage was 3%. An electron micrograph of the carbon material A is shown in FIG.

(炭素材料B)
天然に産出する黒鉛を、不純物除去、粉砕、分級して得られた鱗片状黒鉛を炭素材料Bとして用いた。この炭素材料Bは、アスペクト比が20、X線広角回折法による002面の面間隔(d002)が0.336nm,Lcが100nm以上、d80粒径が50μm、平均粒径(d50)が28μm、d10粒径11μm、d90粒径71μm、タップ密度が0.39g/cc、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.11であった。
また、炭素材料Bの80%粒子径(d80)は、炭素材料Aの平均粒径(d50)の4.3倍であった。炭素材料Bの電子顕微鏡写真を図4に示す。
(Carbon material B)
Scale-like graphite obtained by removing, crushing, and classifying naturally occurring graphite was used as the carbon material B. This carbon material B has an aspect ratio of 20, an interplanar spacing (d002) of 002 plane of 0.336 nm by X-ray wide angle diffraction method, Lc of 100 nm or more, a d80 particle size of 50 μm, an average particle size (d50) of 28 μm, d10 particle size 11 [mu] m, d90 particle size 71 .mu.m, a tap density of 0.39 g / cc, the Raman R value is the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the argon ion laser Raman spectrum is 0.11 Met.
The 80% particle size (d80) of the carbon material B was 4.3 times the average particle size (d50) of the carbon material A. An electron micrograph of the carbon material B is shown in FIG.

(混合炭素材料の作製)
炭素材料Aに炭素材料Bを、混合後の全炭素材料中の炭素材料Bの割合が30質量%に
なるように混合し、負極用の混合炭素材料を得た。
(Production of mixed carbon materials)
Carbon material B was mixed with carbon material A so that the ratio of carbon material B in all the carbon materials after mixing was 30% by mass to obtain a mixed carbon material for a negative electrode.

(性能評価用電池の作製)
上記混合炭素材料100質量部に、カルボキシメチルセルロースの1%水溶液100質量部、及びをスチレンブタジエンゴムの50%水分散液2質量部を加えて混練し、スラリーとした。銅箔上にこのスラリーをドクターブレード法で目付け12mg/cm2に塗布した。110℃で乾燥したのちロールプレスにより密度が1.63g/ccとなるように圧密化し32mm×22mm角に切り出し、190℃で減圧乾燥して負極とした。
(Production of battery for performance evaluation)
To 100 parts by mass of the mixed carbon material, 100 parts by mass of a 1% aqueous solution of carboxymethyl cellulose and 2 parts by mass of a 50% aqueous dispersion of styrene butadiene rubber were added and kneaded to obtain a slurry. This slurry was applied to a copper foil with a basis weight of 12 mg / cm 2 by a doctor blade method. After drying at 110 ° C., it was consolidated by a roll press so that the density was 1.63 g / cc, cut into 32 mm × 22 mm square, and dried under reduced pressure at 190 ° C. to obtain a negative electrode.

リチウムニッケルマンガンコバルト系複合酸化物粉体85質量部に、カーボンブラック4質量部、ポリビニレデンフルオロライド3.5質量部となるようにポリビニレデンフルオロライド12%N−メチルピロリドン溶液、及びN−メチルピロリドンを加え混練し、スラリーとした。アルミニウム箔にこのスラリーをドクターブレード法で目付け24.3mg/cm2に塗布した。110℃で乾燥し、更に正極層の密度が2.6g/cm3となるようにロールプレスで圧密化した。これを30mm×20mm角に切り出し、140℃で乾燥して正極とした。 85 parts by mass of lithium nickel manganese cobalt based composite oxide powder, 4 parts by mass of carbon black and 3.5% by mass of polyvinylidene fluoride 12% N-methylpyrrolidone solution of polyvinylidene fluoride and N -Methylpyrrolidone was added and kneaded to form a slurry. This slurry was applied to an aluminum foil with a basis weight of 24.3 mg / cm 2 by the doctor blade method. The film was dried at 110 ° C. and further consolidated by a roll press so that the density of the positive electrode layer was 2.6 g / cm 3 . This was cut into a 30 mm × 20 mm square and dried at 140 ° C. to obtain a positive electrode.

上記の負極と正電解液としてはエチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=3:5:2(質量比)混合液にビニレンカーボネートを2%添加し、LiPF6を1.2モル/リットルとなるように溶解させたものを用いた。
この電池に、先ず0.2Cで4.1Vまで充電し、さらに4.1Vで0.1mAとなるまで充電したのち、0.2Cで3.0Vまで放電、次いで、0.2Cで4.2Vまで充電し、さらに4.2Vで0.1mAとなるまで充電したのち、0.2Cで3.0Vまで放電を2回繰り返し、初期調整とした。
As the negative electrode and the positive electrolyte, 2% vinylene carbonate is added to a mixed solution of ethylene carbonate: dimethyl carbonate: ethyl methyl carbonate = 3: 5: 2 (mass ratio), and LiPF 6 becomes 1.2 mol / liter. What was dissolved in this way was used.
The battery is first charged to 4.1V at 0.2C, further charged to 4.1mA at 4.1V, discharged to 3.0V at 0.2C, and then 4.2V at 0.2C. After further charging to 4.2 mA at 4.2 V, discharging was repeated twice to 3.0 V at 0.2 C for initial adjustment.

(急速放電性評価)
それぞれ充電は、0.2C(5hrで充電)で4.2Vまで充電し更に4.2Vで2h充電し(0.2C−CCCV)、0.2C(5hrで放電)、1C(1hrで放電),2C(0.5hrで放電、3C(0.33hrで放電)で3.0Vまでの放電試験を実施し、0.2C(5hrで放電)の放電容量に対する各レートでの放電容量を%で表した結果を表1に記した。なお、それぞれの放電試験の後、0.2Cで3.0Vまでの追放電を行っている。
(Rapid discharge evaluation)
Recharge to 0.2V (charge at 5hr) to 4.2V, then charge at 4.2V for 2h (0.2C-CCCV), 0.2C (discharge at 5hr), 1C (discharge at 1hr) , 2C (discharge at 0.5 hr, discharge test at 3C (discharge at 0.33 hr) up to 3.0V, discharge capacity at each rate with respect to discharge capacity of 0.2C (discharge at 5 hr) in% The expressed results are shown in Table 1. In addition, after each discharge test, additional discharge up to 3.0 V was performed at 0.2 C.

(急速充電性評価)
0.2C(5hrで充電)で4.2Vまで充電し更に4.2Vで2hr充電(0.2C−CCCV)、及び、1C(1hrで充電)、2C(0.5hrで充電)、3C(0.33hrで充電)で4.2Vまでの充電試験を実施し、0.2C(5hrで充電)で4.2Vまで充電し更に4.2Vで2hr充電(0.2C−CCCV)した時の充電容量に対する各充電試験での充電容量を%で表した結果を表1に記した。なお、それぞれの充電の後、0.2Cで3.0Vまでの放電を行っている。
(Rapid chargeability evaluation)
Charged to 4.2V at 0.2C (charged at 5hr), then charged at 4.2V for 2hr (0.2C-CCCV), 1C (charged at 1hr), 2C (charged at 0.5hr), 3C ( Charge test up to 4.2V at 0.33hr), charge up to 4.2V at 0.2C (charge at 5hr), and further charge at 4.2V for 2hr (0.2C-CCCV) Table 1 shows the result of expressing the charge capacity in% in each charge test with respect to the charge capacity. In addition, after each charge, it discharges to 3.0V at 0.2C.

(サイクル特性評価)
上記電池で、1Cで4.2Vまで充電、0.5C(2hrで放電)で3.0Vまでの放電を繰り返し、1サイクル目の放電容量に対する300サイクル目、500サイクル目の放電容量をそれぞれ300サイクル維持率、500サイクル維持率として%で表し、表−1に記した。
(Cycle characteristic evaluation)
The battery was charged up to 4.2V at 1C and discharged up to 3.0V at 0.5C (discharged at 2hr). The discharge capacity at 300th cycle and the discharge capacity at 500th cycle was 300 for each discharge capacity at the first cycle. The cycle maintenance ratio and the 500 cycle maintenance ratio are expressed in% and are shown in Table-1.

(負極板の評価)
実施例1で得られた負極の断面を電子顕微鏡で観察した写真を図7に示す。
測定は次のように行った。
負極を約8mm×5mmに切り出して試料台に貼り付け、日本電子(株)製クロスセクションポリッシャー(SM−09010)で負極を断面方向に切断した。この切断した負極を、HITACHI製 走査型電子顕微鏡(SU−70)で、電子銃加速電圧3kV、下方検出器像観察モードで、負極の断面像を観察し、任意に負極厚み方向(集電体と垂直方向)50μm、負極長さ方向(集電体と平行方向)100μmの範囲を決めて、この範囲内の黒鉛粒子を観察した。
その結果、実施例1で得られた負極の断面には、少なくとも鱗片状黒鉛と球形化黒鉛が確認でき、その中でも鱗片状黒鉛に球形化黒鉛が接触している像が観察された(図7参照)。この鱗片状黒鉛のアスペクト比を下記方法で測定すると10であり、同様な方法で測定すると球形化黒鉛のアスペクト比は1.5と2.1であった。また、(鱗片状黒鉛の長径)/(球形化黒鉛の長径)の比は2倍であった。なお、この鱗片状黒鉛を含め、図7の断面写真には、アスペクト比6以上の鱗片状黒鉛が4個以上存在された。
アスペクト比は最長径をa(μm)、最短径をb(μm)としてa/bを求め、a/bをアスペクト比とした。
最長径の長さ:炭素材料粒子の最長方向の径を測定し、それを最長径の長さとした。
最短径の長さ:炭素材料粒子の最短方向の径を測定し、それを最短径の長さとした。
(Evaluation of negative electrode plate)
The photograph which observed the cross section of the negative electrode obtained in Example 1 with the electron microscope is shown in FIG.
The measurement was performed as follows.
The negative electrode was cut out to about 8 mm × 5 mm and attached to a sample stage, and the negative electrode was cut in the cross-sectional direction with a cross section polisher (SM-09010) manufactured by JEOL. The cut negative electrode was observed with a scanning electron microscope (SU-70) manufactured by HITACHI in an electron gun acceleration voltage of 3 kV and a lower detector image observation mode, and a cross-sectional image of the negative electrode was arbitrarily observed in the negative electrode thickness direction (current collector). A range of 50 μm and a negative electrode length direction (parallel to the current collector) of 100 μm were determined, and graphite particles within this range were observed.
As a result, at least the flaky graphite and the spheroidized graphite were confirmed in the cross section of the negative electrode obtained in Example 1, and among them, an image in which the spheroidized graphite was in contact with the flaky graphite was observed (FIG. 7). reference). When the aspect ratio of the flaky graphite was measured by the following method, it was 10, and when measured by the same method, the aspect ratio of spheroidized graphite was 1.5 and 2.1. The ratio of (major axis of flake graphite) / (major axis of spheroidized graphite) was twice. In addition, in the cross-sectional photograph of FIG. 7 including the flake graphite, four or more flake graphite having an aspect ratio of 6 or more existed.
As for the aspect ratio, a / b was determined with the longest diameter a (μm) and the shortest diameter b (μm), and a / b was defined as the aspect ratio.
Length of longest diameter: The diameter of the carbon material particles in the longest direction was measured, and was defined as the length of the longest diameter.
Length of the shortest diameter: The diameter of the carbon material particles in the shortest direction was measured, and it was defined as the length of the shortest diameter.

実施例2
炭素材料Bを、表−1の実施例2の欄に記載した性状の鱗片状黒鉛とした以外は、実施例1と同様に実施した。結果を表−1に記す。
Example 2
It implemented like Example 1 except having used carbon material B as the scale-like graphite of the property described in the column of Example 2 of Table-1. The results are shown in Table-1.

実施例3
炭素材料Bを、表−1の実施例3の欄に記載した性状の鱗片状黒鉛とした以外は、実施例1と同様に実施した。結果を表−1に記す。
Example 3
It implemented like Example 1 except having used carbon material B as the scale-like graphite of the property described in the column of Example 3 of Table-1. The results are shown in Table-1.

比較例1
炭素材料Bを、表−1の比較例1の欄に記載した性状の鱗片状黒鉛とした以外は、実施例1と同様に実施した。結果を表−1に記す。
Comparative Example 1
It implemented like Example 1 except having used carbon material B as the scale-like graphite of the property described in the column of the comparative example 1 of Table-1. The results are shown in Table-1.

比較例2
炭素材料Bを、表−1の比較例2の欄に記載した性状の球形黒鉛とした以外は、実施例1と同様に実施した。結果を表−1に記す。
Comparative Example 2
It implemented like Example 1 except having used carbon material B as the spherical graphite of the property described in the column of the comparative example 2 of Table-1. The results are shown in Table-1.

比較例3
炭素材料Bを、表−1の比較例3の欄に記載した性状の球形黒鉛とした以外は、実施例1と同様に実施した。結果を表−1に記す。
Comparative Example 3
The same operation as in Example 1 was performed except that the carbon material B was made into spherical graphite having the properties described in the column of Comparative Example 3 in Table-1. The results are shown in Table-1.

比較例4
炭素材料Aのみを負極用炭素材料として用いた以外は実施例1と同様に実施した。結果を表−1に記す。
Comparative Example 4
It implemented similarly to Example 1 except having used only the carbon material A as a carbon material for negative electrodes. The results are shown in Table-1.

実施例4
(炭素材料Aの作製)
天然に産出する黒鉛で、X線広角回折法による002面の面間隔(d002)が3.36ÅでLcが100nm以上、タップ密度が0.46g/cm3、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.13、平均粒径28.7μm、真密度2.27g/cm3にある鱗片状黒鉛粒子を、(株)奈良機械製作所製社製ハイブリダイゼーションシステムを用いて、ローターの周速度60m/秒、5分の条件で20kg/hrの処理速度で鱗片状黒鉛粒子を連続的に処理することで、黒鉛粒子表面にダメージを与えながら球形化処理を行い、その後更に分級処理により微粉の除去を行った。得られた球形化黒鉛粒子は、X線広角回折法による002面の面間隔(d002)が3.36ÅでLcが100nm以上、タップ密度が1.0g/cm3、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.24、平均粒径16.6μm、BET法比表面積7.0m2/g、真密度2.27g/cm3、平均円形度が、0.958であった。
Example 4
(Production of carbon material A)
Naturally produced graphite with a 002 plane spacing (d002) of 3.36 mm by X-ray wide angle diffraction method, Lc of 100 nm or more, tap density of 0.46 g / cm 3 , and 1580 cm −1 in an argon ion laser Raman spectrum. A scale-like graphite particle having a Raman R value, which is a peak intensity ratio in the vicinity of 1360 cm −1 to a peak intensity in the vicinity, of 0.13, an average particle diameter of 28.7 μm, and a true density of 2.27 g / cm 3 , Damage to the graphite particle surface by continuously treating scaly graphite particles at a processing speed of 20 kg / hr under conditions of a rotor peripheral speed of 60 m / second and 5 minutes using a hybridization system manufactured by Kikai Seisakusho. The spheroidizing process was performed while giving a fine powder, and then the fine powder was removed by a classification process. The obtained spheroidized graphite particles had an 002 plane spacing (d002) of 3.36 mm by an X-ray wide angle diffraction method, an Lc of 100 nm or more, a tap density of 1.0 g / cm 3 , and 1580 cm in an argon ion laser Raman spectrum. The Raman R value, which is the peak intensity ratio near 1360 cm −1 to the peak intensity near −1 , is 0.24, the average particle diameter is 16.6 μm, the BET specific surface area is 7.0 m 2 / g, and the true density is 2.27 g / cm. 3 and the average circularity was 0.958.

次に、この球形化黒鉛質炭素100質量部と石油由来の重質油20質量部を捏合機で加熱混合行い、次いで非酸化性雰囲気1300℃まで焼成し、その後室温まで冷却し、更に粉砕分級を行うことで、球形化黒鉛を核黒鉛とし、その表面が非晶質炭素により被覆された複層構造球形化炭素材料を得た。炭素材料Aは、X線広角回折法による002面の面間隔(d002)が0.336nmでLcが100nm以上、タップ密度が1.15g/cm3、平均粒径(d50)が16.6μm、d10粒径11.7μm、d90粒径24.7μm、BET法比表面積は3.2m2/g、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.29、アスペクト比が1.5、被覆率は3%であった。これ以外は、実施例1と同様に実施した。結果を表−1に記す。 Next, 100 parts by mass of the spheroidized graphitic carbon and 20 parts by mass of petroleum-derived heavy oil are mixed by heating in a compounding machine, then calcined to a non-oxidizing atmosphere 1300 ° C., then cooled to room temperature, and further pulverized and classified. As a result, a multi-layer structure spheroidized carbon material was obtained in which spheroidized graphite was used as nuclear graphite and the surface thereof was coated with amorphous carbon. The carbon material A has an 002 plane spacing (d002) of 0.336 nm, an Lc of 100 nm or more, a tap density of 1.15 g / cm 3 , an average particle size (d50) of 16.6 μm, according to an X-ray wide angle diffraction method. d10 particle size 11.7, d90 particle size 24.7μm, BET method specific surface area is 3.2 m 2 / g, the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the argon ion laser Raman spectrum The Raman R value was 0.29, the aspect ratio was 1.5, and the coverage was 3%. Except this, the same procedure as in Example 1 was performed. The results are shown in Table-1.

比較例5
実施例4記載の炭素材料Aのみを負極用炭素材料として用いた以外は実施例4と同様に実施した。結果を表−1に記す。
Comparative Example 5
The same operation as in Example 4 was carried out except that only the carbon material A described in Example 4 was used as the carbon material for the negative electrode. The results are shown in Table-1.

比較例6
炭素材料Bを、表−1の比較例6の欄に記載した性状の鱗片状黒鉛とした以外は、実施例1と同様に実施した。結果を表−1に記す。
Comparative Example 6
It implemented like Example 1 except having used carbon material B as the scale-like graphite of the property described in the column of the comparative example 6 of Table-1. The results are shown in Table-1.

比較例7
実施例3記載の炭素材料B100質量部に、カルボキシメチルセルロースの1%水溶液100質量部、及びをスチレンブタジエンゴムの50%水分散液2質量部を加えて混練し、スラリーとしたが、このスラリーは沈降性がみられた。また、銅箔上にこのスラリーをドクターブレード法で塗布したが、目付けが安定せず、電極として用いるには適さない電極となった。
Comparative Example 7
To 100 parts by mass of the carbon material B described in Example 3, 100 parts by mass of a 1% aqueous solution of carboxymethyl cellulose and 2 parts by mass of a 50% aqueous dispersion of styrene butadiene rubber were added and kneaded to obtain a slurry. Sedimentation was observed. Moreover, although this slurry was apply | coated by the doctor blade method on copper foil, the fabric weight became unstable and it became an electrode unsuitable for using as an electrode.

実施例5、6、7
炭素材料Aと炭素材料Bの混合割合を、表−2の実施例5、6、7の欄に記載した割合とした以外は、実施例1と同様に実施した。結果を表−2に記す。
Examples 5, 6, and 7
It implemented similarly to Example 1 except having made the mixing ratio of the carbon material A and the carbon material B into the ratio described in the column of Example 5, 6, 7 of Table-2. The results are shown in Table-2.

比較例8
(炭素材料Aの作製)
X線広角回折法による002面の面間隔(d002)が0.336nmでLcが100nm以上、タップ密度が0.52g/cm3、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.14、平均粒径19.5μm、真密度2.27g/cm3にある鱗片状黒鉛粒子100質量部と石油由来の重質油33質量部を捏合機で加熱混合行い、次いで非酸化性雰囲気1300℃まで焼成し、その後室温まで冷却し、更に粉砕分級を行うことで、複層構造鱗片状炭素材料を得た。炭素材料Aは、X線広角回折法による002面の面間隔(d002)が0.336nmでLcが100nm以上、タップ密度が0.84g/cm3、平均粒径(d50)が25.3μm、d10粒径10.6μm、d90粒径50.7μm、BET法比表面積は2.7m2/g、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.33、アスペクト比が20、被覆率は5%であった。
上記製造した炭素材料Aと、実施例3で用いた炭素材料Bとを、混合後の全炭素材料中の炭素材料Bの割合が30質量%になるように混合し、負極用の混合炭素材料を得た以外は実施例3と同様に電極を作製しようとしたが、比較例7と同様、電極として用いるには適さない電極となった。
Comparative Example 8
(Production of carbon material A)
002 plane spacing (d002) by X-ray wide angle diffraction method is 0.336 nm, Lc is 100 nm or more, tap density is 0.52 g / cm 3 , and 1360 cm − with respect to the peak intensity near 1580 cm −1 in the argon ion laser Raman spectrum. Raman R value is the peak intensity ratio of around 1 0.14, an average particle diameter 19.5Myuemu, heavy oil 33 parts by weight of 100 parts by weight of flake graphite particles and petroleum in true density 2.27 g / cm 3 The mixture was heated and mixed in a compounding machine, then fired to 1300 ° C. in a non-oxidizing atmosphere, then cooled to room temperature, and further pulverized to obtain a multi-layered scaly carbon material. The carbon material A has an 002 plane spacing (d002) of 0.336 nm and an Lc of 100 nm or more, a tap density of 0.84 g / cm 3 , an average particle size (d50) of 25.3 μm, according to an X-ray wide angle diffraction method. d10 particle size 10.6 [mu] m, d90 particle size 50.7μm, BET method specific surface area is 2.7 m 2 / g, the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the argon ion laser Raman spectrum The Raman R value was 0.33, the aspect ratio was 20, and the coverage was 5%.
The produced carbon material A and the carbon material B used in Example 3 were mixed so that the ratio of the carbon material B in the total carbon material after mixing was 30% by mass, and the mixed carbon material for the negative electrode An electrode was prepared in the same manner as in Example 3 except that the electrode was obtained. As in Comparative Example 7, the electrode was not suitable for use as an electrode.

以上のことから、実施例1〜4では、炭素材料Aのみを用いた場合と比較して、急速放電特性、急速充電特性が高い値を示すだけではなく、サイクル特性においても、比較例では急速充放電特性は高いものの、サイクル特性が、300サイクル維持率70%以下、500サイクル維持率62%以下と低い特性であるのに対して、実施例では300サイクル維持率、500サイクル維持率とも70%以上であり優れた電池となっている。このように、本発明の炭素材料を非水系二次電池用負極として用いることで、急速充放電特性とサイクル特性を合わせ持つ優れた電池が初めて製造できることが分かった。
また、炭素材料Aと炭素材料Bとの混合割合を変化させた実施例5〜7では、いずれも500サイクル維持率が良好な値を示しているものの、特に炭素材料Bの含有量が非水系二次電池用負極材料中に10質量%以上70質量%以下である場合に、優れたサイクル特性を示すことが分かった。
加えて、炭素材料Bのアスペクト比が6未満である比較例6では、炭素材料Bが炭素材料Aの粒子間を跨いで接触する量が少なく、炭素材料同士が充放電を繰り返した際の導電性の確保量が十分ではなくなる。炭素材料Bのみを用いた比較例7では電極の表面が凹凸状となり、目付けも不安定となり、電池評価に用いられる電極が作製できず、また、炭素材料Aとしてアスペクト比の高い鱗片状黒鉛を用いた比較例8でも同様に電極の作製ができなかった。
From the above, in Examples 1 to 4, compared with the case where only the carbon material A is used, not only the rapid discharge characteristic and the rapid charge characteristic are high, but also in the cycle characteristic, the comparative example is rapid. Although the charge / discharge characteristics are high, the cycle characteristics are as low as 300 cycle maintenance rate 70% or less and 500 cycle maintenance rate 62% or less, whereas in the examples, both 300 cycle maintenance rate and 500 cycle maintenance rate are 70%. %, It is an excellent battery. Thus, it was found that by using the carbon material of the present invention as a negative electrode for a non-aqueous secondary battery, an excellent battery having both rapid charge / discharge characteristics and cycle characteristics can be produced for the first time.
Further, in Examples 5 to 7 in which the mixing ratio of the carbon material A and the carbon material B was changed, all of the 500 cycle maintenance rates showed good values, but the content of the carbon material B was particularly non-aqueous. It was found that when the content of the negative electrode material for secondary batteries was 10% by mass or more and 70% by mass or less, excellent cycle characteristics were exhibited.
In addition, in Comparative Example 6 in which the aspect ratio of the carbon material B is less than 6, the amount of contact of the carbon material B across the particles of the carbon material A is small, and the conductivity when the carbon materials are repeatedly charged and discharged. The amount of sex is not sufficient. In Comparative Example 7 using only the carbon material B, the surface of the electrode becomes uneven, the basis weight becomes unstable, an electrode used for battery evaluation cannot be produced, and scaly graphite having a high aspect ratio is used as the carbon material A. Similarly, in Comparative Example 8 used, no electrode could be produced.

本発明で得られた混合炭素材料を電極として用いた非水系二次電池は、急速充放電特性と高サイクル特性を併せ持った優れた特性を示すものである。    The nonaqueous secondary battery using the mixed carbon material obtained by the present invention as an electrode exhibits excellent characteristics having both rapid charge / discharge characteristics and high cycle characteristics.

a:炭素材料A(アスペクト比が5以下である炭素材料)
b:炭素材料B(鱗片状黒鉛)
c:炭素材料Aの平均(d50)粒径
d:炭素材料Bのd80粒径
e:炭素材料Aの粒子間距離
f:負極断面の電子顕微鏡写真
g:負極厚み方向50μm、負極長さ方向100μmの範囲
h:鱗片状黒鉛粒子(炭素材料B)
i:球形化黒鉛(炭素材料A)
a: Carbon material A (carbon material having an aspect ratio of 5 or less)
b: Carbon material B (flaky graphite)
c: Average (d50) particle size of carbon material A d: d80 particle size of carbon material B e: Distance between particles of carbon material A f: Electron micrograph of negative electrode cross section g: Negative electrode thickness direction 50 μm, negative electrode length direction 100 μm Range h: scaly graphite particles (carbon material B)
i: Spheroidized graphite (carbon material A)

Claims (16)

下記条件を満たす炭素材料Aと炭素材料Bとが含有されてなる非水系二次電池用負極材料。
(炭素材料A)
粒子の短径に対する長径の長さの比であるアスペクト比が5以下である炭素材料
(炭素材料B)
粒子の短径に対する長径の長さの比であるアスペクト比が6以上且つ80%粒子径(d80)が炭素材料Aの平均粒子径(d50)の1.7倍以上である鱗片状黒鉛
A negative electrode material for a non-aqueous secondary battery comprising carbon material A and carbon material B satisfying the following conditions.
(Carbon material A)
Carbon material whose aspect ratio, which is the ratio of the length of the major axis to the minor axis of the particle, is 5 or less (carbon material B)
Scale-like graphite having an aspect ratio, which is the ratio of the length of the major axis to the minor axis of the particle, of 6 or more and an 80% particle size (d80) of 1.7 times or more the average particle size (d50) of the carbon material A
炭素材料Bの短径の長さが10μm以下であることを特徴とする請求項1に記載の非水系二次電池用負極材料。   2. The negative electrode material for a non-aqueous secondary battery according to claim 1, wherein the length of the minor axis of the carbon material B is 10 μm or less. 炭素材料Bのタップ密度が0.2g/cm3以上0.7g/cm3以下であることを特徴とする請求項1又は2に記載の非水系二次電池用負極材料。 3. The negative electrode material for a non-aqueous secondary battery according to claim 1, wherein the tap density of the carbon material B is 0.2 g / cm 3 or more and 0.7 g / cm 3 or less. 炭素材料Bのアルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.15以下であることを特徴とする請求項1〜3いずれか1項に記載の非水系二次電池用負極材料。 Any one of claims 1-3, wherein the Raman R value is the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the argon ion laser Raman spectrum of the carbon material B is 0.15 or less The negative electrode material for non-aqueous secondary batteries according to Item 1. 炭素材料Bの平均粒径(d50)が5μm以上50μm以下であることを特徴とする請求項1〜4いずれか1項に記載の非水系二次電池用負極材料。   5. The negative electrode material for a non-aqueous secondary battery according to claim 1, wherein an average particle diameter (d50) of the carbon material B is 5 μm or more and 50 μm or less. 炭素材料Aが、球形化天然黒鉛であることを特徴とする請求項1〜5いずれか1項に記載の非水系二次電池用負極材料。   The negative electrode material for a non-aqueous secondary battery according to any one of claims 1 to 5, wherein the carbon material A is spheroidized natural graphite. 炭素材料Aが、球形化黒鉛の表面に炭素が被覆された複層構造炭素材料であることを特徴とする請求項1〜6いずれか1項に記載の非水系二次電池用負極材料。   The negative electrode material for a non-aqueous secondary battery according to any one of claims 1 to 6, wherein the carbon material A is a multilayer structure carbon material in which carbon is coated on the surface of spheroidized graphite. 炭素材料Aが、X線広角回折法によるLcが90nm以上、且つ平均円形度が0.85以上であることを特徴とする請求項1〜7いずれか1項に記載の非水系二次電池用負極材料。   The non-aqueous secondary battery according to any one of claims 1 to 7, wherein the carbon material A has an Lc by an X-ray wide angle diffraction method of 90 nm or more and an average circularity of 0.85 or more. Negative electrode material. 炭素材料Aのアルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値が0.2以上0.6以下であることを特徴とする請求項1〜8いずれか1項に記載の非水系二次電池用負極材料。 Claim, characterized in that the Raman R value is the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the argon ion laser Raman spectrum of the carbon material A is 0.2 to 0.6 1 The negative electrode material for nonaqueous secondary batteries of any one of -8. 炭素材料Aのタップ密度が0.8g/cm3以上であることを特徴とする請求項1〜9いずれか1項に記載の非水系二次電池用負極材料。 The tap density of the carbon material A is 0.8 g / cm 3 or more, The negative electrode material for a non-aqueous secondary battery according to any one of claims 1 to 9. 炭素材料AのBET比表面積が6m2/g以下であることを特徴とする請求項1〜10いずれか1項に記載の非水系二次電池用負極材料。 The negative electrode material for a non-aqueous secondary battery according to any one of claims 1 to 10, wherein the carbon material A has a BET specific surface area of 6 m 2 / g or less. 炭素材料Bの含有量が、非水系二次電池用負極材料中に10質量%以上70質量%以下であることを特徴とする請求項1〜11いずれか1項に記載の非水系二次電池用負極材料。   The content of the carbon material B is 10 mass% or more and 70 mass% or less in the negative electrode material for non-aqueous secondary batteries, The non-aqueous secondary battery of any one of Claims 1-11 characterized by the above-mentioned. Negative electrode material. 集電体と、該集電体上に形成された活物質層とを備え、該活物質層が、請求項1〜12いずれか1項に非水系二次電池用負極材料を含有することを特徴とする非水系二次電池用
負極。
A current collector and an active material layer formed on the current collector, wherein the active material layer contains a negative electrode material for a non-aqueous secondary battery according to any one of claims 1 to 12. A negative electrode for a non-aqueous secondary battery.
集電体と、該集電体上に形成された活物質層とを備え、
該活物質層が、少なくとも球形化黒鉛と鱗片状黒鉛の混合物を含む非水系二次電池用負極であって、該活物質層断面の電子顕微鏡画像において任意に選択される負極厚み方向50μm、負極長さ方向100μmからなる範囲内に、以下の3要件を満たす視野を1つ以上含むことを特徴とする非水系二次電池用負極。
(1)鱗片状黒鉛が1個以上存在し、
(2)鱗片状黒鉛の周囲に球形化黒鉛が2個以上接触し、
(3)(鱗片状黒鉛の長径)/(球形化黒鉛の長径)の比が1.7倍以上である。
A current collector, and an active material layer formed on the current collector,
The active material layer is a negative electrode for a non-aqueous secondary battery containing at least a mixture of spheroidized graphite and scaly graphite, and the negative electrode thickness direction is arbitrarily selected in an electron microscopic image of the cross section of the active material layer, the negative electrode A negative electrode for a non-aqueous secondary battery comprising one or more visual fields satisfying the following three requirements within a range of 100 μm in the length direction.
(1) One or more scale-like graphite exists,
(2) Two or more spheroidized graphites are in contact with the flaky graphite,
(3) The ratio of (major axis of scaly graphite) / (major axis of spheroidized graphite) is 1.7 times or more.
球形化黒鉛が、アスペクト比が5以下であり、鱗片状黒鉛が、アスペクト比が6以上であることを特徴とする請求項14に記載の非水系二次電池用負極。   The negative electrode for a non-aqueous secondary battery according to claim 14, wherein the spheroidized graphite has an aspect ratio of 5 or less, and the flaky graphite has an aspect ratio of 6 or more. リチウムイオンを吸蔵・放出可能な正極及び負極、並びに、電解質を備えると共に、該負極が、請求項13から15のいずれか1項に記載の非水系二次電池用負極であることを特徴とする、リチウムイオン二次電池。   A positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte, wherein the negative electrode is a negative electrode for a non-aqueous secondary battery according to any one of claims 13 to 15. , Lithium ion secondary battery.
JP2012075347A 2011-03-29 2012-03-29 Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery Pending JP2012216532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075347A JP2012216532A (en) 2011-03-29 2012-03-29 Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011073097 2011-03-29
JP2011073097 2011-03-29
JP2012075347A JP2012216532A (en) 2011-03-29 2012-03-29 Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2012216532A true JP2012216532A (en) 2012-11-08

Family

ID=46931313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075347A Pending JP2012216532A (en) 2011-03-29 2012-03-29 Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery

Country Status (2)

Country Link
JP (1) JP2012216532A (en)
WO (1) WO2012133611A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125467A1 (en) * 2012-02-22 2013-08-29 株式会社 豊田自動織機 Electrode and power storage device comprising said electrode
JP5297565B1 (en) * 2013-02-06 2013-09-25 住友ベークライト株式会社 Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
KR101354765B1 (en) * 2012-08-29 2014-01-22 스미토모 베이클리트 컴퍼니 리미티드 Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
JP2014165018A (en) * 2013-02-25 2014-09-08 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2015045259A1 (en) * 2013-09-24 2015-04-02 株式会社豊田自動織機 Negative electrode active substance and electric storage device
JP2015185443A (en) * 2014-03-25 2015-10-22 三菱化学株式会社 Carbon material for nonaqueous secondary battery and nonaqueous secondary battery
EP3113254A1 (en) * 2015-06-30 2017-01-04 Samsung SDI Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR20200084591A (en) * 2019-01-03 2020-07-13 주식회사 엘지화학 Negative electrode active material for secondary battery, negative electrode including same and manufacturing method thereof
EP4071860A4 (en) * 2020-10-15 2023-05-03 Contemporary Amperex Technology Co., Limited Negative electrode active material, preparation method therefor, secondary battery, battery module comprising secondary battery, battery pack, and device
WO2023204215A1 (en) * 2022-04-18 2023-10-26 Apb株式会社 Electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, method for producing coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952672B (en) * 2016-11-14 2022-06-24 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7236532B2 (en) * 2020-04-10 2023-03-09 寧徳新能源科技有限公司 Negative electrode active material, and electrochemical device and electronic device using the same
GB2609985A (en) * 2021-08-20 2023-02-22 Amte Power Plc Electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (en) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd Organic electrolyte secondary battery
JPH10241683A (en) * 1997-02-26 1998-09-11 Mitsubishi Cable Ind Ltd Negative electrode active material for lithium secondary battery
JP2000138061A (en) * 1998-08-27 2000-05-16 Nec Corp Nonaqueous electrolyte secondary battery, and its manufacture and carbon material composition
JP2002175810A (en) * 2000-09-26 2002-06-21 Mitsubishi Chemicals Corp Lithium secondary battery and anode
JP2003238135A (en) * 2002-02-19 2003-08-27 Mitsui Mining Co Ltd Method for manufacturing spheroidal graphite particle
JP2008251403A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291756B2 (en) * 1992-04-28 2002-06-10 三菱化学株式会社 Non-aqueous solvent secondary battery and its electrode material
JP3534391B2 (en) * 1998-11-27 2004-06-07 三菱化学株式会社 Carbon material for electrode and non-aqueous secondary battery using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (en) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd Organic electrolyte secondary battery
JPH10241683A (en) * 1997-02-26 1998-09-11 Mitsubishi Cable Ind Ltd Negative electrode active material for lithium secondary battery
JP2000138061A (en) * 1998-08-27 2000-05-16 Nec Corp Nonaqueous electrolyte secondary battery, and its manufacture and carbon material composition
JP2002175810A (en) * 2000-09-26 2002-06-21 Mitsubishi Chemicals Corp Lithium secondary battery and anode
JP2003238135A (en) * 2002-02-19 2003-08-27 Mitsui Mining Co Ltd Method for manufacturing spheroidal graphite particle
JP2008251403A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125467A1 (en) * 2012-02-22 2013-08-29 株式会社 豊田自動織機 Electrode and power storage device comprising said electrode
JP2013171791A (en) * 2012-02-22 2013-09-02 Toyota Industries Corp Positive electrode, power storage device, vehicle
US9318747B2 (en) 2012-02-22 2016-04-19 Kabushiki Kaisha Toyota Jidoshokki Electrode and power storage device comprising said electrode
KR101354765B1 (en) * 2012-08-29 2014-01-22 스미토모 베이클리트 컴퍼니 리미티드 Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
JP5297565B1 (en) * 2013-02-06 2013-09-25 住友ベークライト株式会社 Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
JP2014165018A (en) * 2013-02-25 2014-09-08 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2015064936A (en) * 2013-09-24 2015-04-09 株式会社豊田自動織機 Negative electrode active material and power storage device
WO2015045259A1 (en) * 2013-09-24 2015-04-02 株式会社豊田自動織機 Negative electrode active substance and electric storage device
JP2015185443A (en) * 2014-03-25 2015-10-22 三菱化学株式会社 Carbon material for nonaqueous secondary battery and nonaqueous secondary battery
EP3113254A1 (en) * 2015-06-30 2017-01-04 Samsung SDI Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
US9887422B2 (en) 2015-06-30 2018-02-06 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR20200084591A (en) * 2019-01-03 2020-07-13 주식회사 엘지화학 Negative electrode active material for secondary battery, negative electrode including same and manufacturing method thereof
KR102347000B1 (en) 2019-01-03 2022-01-05 주식회사 엘지에너지솔루션 Negative electrode active material for secondary battery, negative electrode including same and manufacturing method thereof
EP4071860A4 (en) * 2020-10-15 2023-05-03 Contemporary Amperex Technology Co., Limited Negative electrode active material, preparation method therefor, secondary battery, battery module comprising secondary battery, battery pack, and device
WO2023204215A1 (en) * 2022-04-18 2023-10-26 Apb株式会社 Electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, method for producing coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery

Also Published As

Publication number Publication date
WO2012133611A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5943052B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2012133611A1 (en) Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery
JP5589489B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US11605810B2 (en) Method to prepare composite graphite particles for nonaqueous secondary battery negative electrode, active material for nonaqueous secondary battery negative electrode, and nonaqueous secondary battery
KR102412700B1 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP6060506B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7102868B2 (en) Artificial graphite-based negative electrode material, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP2010009951A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing it, anode, and nonaqueous secondary battery
JP2013200984A (en) Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014060124A (en) Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2018088404A (en) Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
JP5724199B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP7248019B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP2016184534A (en) Carbon material for nonaqueous secondary battery negative electrode and nonaqueous secondary battery
JP2013179101A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP7077721B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP7388109B2 (en) Negative electrode materials for non-aqueous secondary batteries, negative electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
JP7099005B2 (en) Negative electrode material for non-aqueous secondary batteries and its manufacturing method, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906