JP2008227126A - Fine coaxial wire, its manufacturing method, and semiconductor device - Google Patents

Fine coaxial wire, its manufacturing method, and semiconductor device Download PDF

Info

Publication number
JP2008227126A
JP2008227126A JP2007063103A JP2007063103A JP2008227126A JP 2008227126 A JP2008227126 A JP 2008227126A JP 2007063103 A JP2007063103 A JP 2007063103A JP 2007063103 A JP2007063103 A JP 2007063103A JP 2008227126 A JP2008227126 A JP 2008227126A
Authority
JP
Japan
Prior art keywords
fine coaxial
wire
coaxial wire
insulating layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007063103A
Other languages
Japanese (ja)
Inventor
Tokihiko Yokoshima
時彦 横島
Hiroshi Nakagawa
博 仲川
Masahiro Aoyanagi
昌宏 青柳
Katsuya Kikuchi
克弥 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007063103A priority Critical patent/JP2008227126A/en
Publication of JP2008227126A publication Critical patent/JP2008227126A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6616Vertical connections, e.g. vias
    • H01L2223/6622Coaxial feed-throughs in active or passive substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/4382Applying permanent coating, e.g. in-situ coating
    • H01L2224/43825Plating, e.g. electroplating, electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/4382Applying permanent coating, e.g. in-situ coating
    • H01L2224/43826Physical vapour deposition [PVD], e.g. evaporation, sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/4382Applying permanent coating, e.g. in-situ coating
    • H01L2224/43827Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/4557Plural coating layers
    • H01L2224/45572Two-layer stack coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45647Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45655Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/4569Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01037Rubidium [Rb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine coaxial wire that effectively reduces noise as a conduction wiring between electrodes of a fine semiconductor device while having a high characteristic impedance, its manufacturing method, and a semiconductor device using the fine coaxial wire. <P>SOLUTION: The fine coaxial wire is composed of a conductive wire made of a metal conductor, an insulating layer covering the peripheral face of the conductive wire, and a metal conductor layer covering the outer peripheral face of the insulating layer. The insulating layer of the fine coaxial wire is formed by an electrodeposition process. The semiconductor device is formed by using the fine coaxial wire. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体チップと配線板との電極間の導電接続に好適な微細同軸ワイヤー、その製造方法、及びこの微細同軸ワイヤーを用いた半導体装置に関する。   The present invention relates to a fine coaxial wire suitable for conductive connection between electrodes of a semiconductor chip and a wiring board, a manufacturing method thereof, and a semiconductor device using the fine coaxial wire.

近年の半導体装置においては、チップをパッケージ基板等に配線するために、導電ワイヤーを用いたワイヤーボンディング法が広く用いられている。しかし、信号周波数が増加すると、導電ワイヤー配線部分が互いに信号干渉を起こしやすくなり、これがノイズの原因となる。   In recent semiconductor devices, a wire bonding method using a conductive wire is widely used to wire a chip to a package substrate or the like. However, when the signal frequency increases, the conductive wire wiring portions easily cause signal interference with each other, which causes noise.

そこで、導電ワイヤーから出るノイズをシールド電極で閉じこめてしまえば、配線間、更には外来の雑音耐性を飛躍的に高めることができるため、近年の半導体装置の微細化に対応し、有効にノイズを低減できる微細な同軸ワイヤーが求められている。   Therefore, by confining the noise from the conductive wire with the shield electrode, it is possible to dramatically increase the noise resistance between the wires and also to the external noise. There is a need for fine coaxial wires that can be reduced.

また、同軸配線の特性インピーダンスを調整し、装置全体で(特に同軸配線が)、同じ特性インピーダンスを有するものとできれば、非常に高い信号周波数(例えば数十〜数百GHz)においても安定した信号伝送が得られることから、装置全体で(特に同軸配線が)、同軸配線が同じ特性インピーダンスを有するように、同軸配線の構成(例えば径や厚さ)を設定できることが望まれる。   If the characteristic impedance of the coaxial wiring is adjusted and the entire device (especially the coaxial wiring) has the same characteristic impedance, stable signal transmission even at very high signal frequencies (for example, several tens to several hundreds GHz) Therefore, it is desirable that the configuration (for example, the diameter and thickness) of the coaxial wiring can be set so that the coaxial wiring has the same characteristic impedance throughout the apparatus (especially the coaxial wiring).

特性インピーダンスが50Ωとなる同軸構造の例を、表1に示す。

Figure 2008227126
Table 1 shows an example of a coaxial structure with a characteristic impedance of 50Ω.
Figure 2008227126

エレクトロニクス分野では、一般的に特性インピーダンスを50Ωとすることが多いが、例えば、特開平5−211194号公報(特許文献1)で提案されている同軸ワイヤーでは、ノイズシールド特性は得られるが、この場合の特性インピーダンスを誘電率、心線径及び絶縁層厚さから計算すると、4.5〜6.5Ω程度と、現在求められている50Ωに比べて1桁程度小さい値となっている。そのため、高速信号伝送では信号の減衰が大きく、高い信号周波数では問題が生じてしまう。   In the electronics field, the characteristic impedance is generally set to 50Ω. For example, in the coaxial wire proposed in Japanese Patent Laid-Open No. 5-21194 (Patent Document 1), noise shielding characteristics can be obtained. When the characteristic impedance in this case is calculated from the dielectric constant, the core wire diameter, and the insulating layer thickness, it is about 4.5 to 6.5 Ω, which is about one digit smaller than the currently required 50 Ω. Therefore, signal attenuation is large in high-speed signal transmission, and problems occur at high signal frequencies.

現行で広く用いられている25μm径の心線を用いて同軸構造を作製するために、一般的な有機樹脂の誘電率である3〜5の材料を用いると、40〜70μmと非常に厚くすることが必要であり、ワイヤー全体の径が太くなってしまう上、このような厚さの有機樹脂を精度よく均一に成膜することは難しいものであったため、従来は、上記のような1桁程度小さい特性インピーダンスしか達成できていなかった。   In order to produce a coaxial structure using a core wire having a diameter of 25 μm which is widely used at present, when a material of 3 to 5 which is a dielectric constant of a general organic resin is used, it becomes very thick as 40 to 70 μm. In addition, the diameter of the entire wire becomes large, and it has been difficult to form an organic resin with such a thickness accurately and uniformly. Only a small characteristic impedance could be achieved.

また、逆に、同軸ワイヤー全体の径を、現行で半導体装置のワイヤーボンディングに用いられている25μm程度にするためには、心線を5μm程度とし、絶縁層の厚さを10μm程度とする必要があるが、5μmの心線に安定して10μmの絶縁層を形成することも難しかった。   Conversely, in order to make the diameter of the entire coaxial wire about 25 μm, which is currently used for wire bonding of semiconductor devices, it is necessary to make the core wire about 5 μm and the thickness of the insulating layer about 10 μm. However, it is difficult to stably form a 10 μm insulating layer on a 5 μm core wire.

そのため、従来、現状で一般に求められている50Ωという特性インピーダンスを、微細な同軸ワイヤーで達成することはできていなかった。   Therefore, conventionally, the characteristic impedance of 50Ω generally required at present cannot be achieved with a fine coaxial wire.

特開平5−211194号公報Japanese Patent Laid-Open No. 5-21194 特開平6−120286号公報JP-A-6-120286 特開2005−26251号公報JP-A-2005-26251 特開昭49−52252号公報Japanese Patent Laid-Open No. 49-52252 特開昭52−32943号公報JP 52-32943 A 特開昭63−111199号公報JP-A-63-1111199 特開平9−104839号公報JP-A-9-104839 特開2003−327905号公報JP 2003-327905 A 特開2003−327907号公報JP 2003-327907 A

本発明は、上記事情に鑑みなされたもので、特に微細な半導体装置の電極間の導通配線として、有効にノイズを低減することができると共に、高い特性インピーダンスを備える微細同軸ワイヤー、その製造方法、及びこの微細同軸ワイヤーを用いた半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in particular, as a conductive wiring between electrodes of a fine semiconductor device, noise can be effectively reduced, and a fine coaxial wire having high characteristic impedance, a manufacturing method thereof, And it aims at providing the semiconductor device using this fine coaxial wire.

本発明者は、上記目的を達成するため鋭意検討を行った結果、金属導体からなる導電ワイヤー、該導電ワイヤーの周面を被覆する絶縁層、及び該絶縁層の外周面を被覆する金属導体層からなる微細同軸ワイヤーの絶縁層を電着法にて、好ましくはポリイミドを電着することによって形成することにより、微小化された半導体装置に必要な、例えば、径が5〜50μmの微細な導電ワイヤーに対しても、絶縁層を広い厚さ範囲で精度よく均一に成膜することができること、また、所望の径の導電ワイヤーを用い、これに必要な厚さの絶縁層をその厚さを制御して形成して、所望の特性インピーダンスに設定することができ、例えば10〜300Ωの範囲、特に現状で要求されている50Ω前後(例えば40〜60Ω)の特性インピーダンスを備える微細同軸ワイヤーを製造することができることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that a conductive wire made of a metal conductor, an insulating layer covering the peripheral surface of the conductive wire, and a metal conductive layer covering the outer peripheral surface of the insulating layer The fine coaxial wire insulating layer is formed by electrodeposition, preferably by electrodeposition of polyimide, so that it is necessary for a miniaturized semiconductor device, for example, fine conductive material having a diameter of 5 to 50 μm. It is possible to form an insulating layer accurately and uniformly over a wide range of thicknesses on the wire, and use a conductive wire of a desired diameter, and adjust the thickness of the insulating layer to the required thickness. It can be controlled and set to a desired characteristic impedance, for example, with a characteristic impedance in the range of 10 to 300Ω, particularly around 50Ω (eg 40 to 60Ω) currently required. It found that it is possible to produce a fine coaxial wire, leading to the completion of the present invention.

即ち、本発明は下記の微細同軸ワイヤー、その製造方法、及び半導体装置を提供する。
[1] 金属導体からなる導電ワイヤー、該導電ワイヤーの周面を被覆する絶縁層、及び該絶縁層の外周面を被覆する金属導体層からなる微細同軸ワイヤーであって、上記絶縁層が電着法により形成されてなることを特徴とする微細同軸ワイヤー。
[2] 上記導電ワイヤーを構成する金属導体が金であることを特徴とする[1]記載の微細同軸ワイヤー。
[3] 上記絶縁層が電着ポリイミドで形成されていることを特徴とする[1]又は[2]記載の微細同軸ワイヤー。
[4] 上記導電ワイヤーの径が5〜50μmであることを特徴とする[1]乃至[3]のいずれかに記載の微細同軸ワイヤー。
[5] 特性インピーダンスが10〜300Ωであることを特徴とする[1]乃至[4]のいずれかに記載の微細同軸ワイヤー。
[6] 特性インピーダンスが40〜60Ωであることを特徴とする[1]乃至[4]のいずれかに記載の微細同軸ワイヤー。
[7] 金属導体からなる導電ワイヤーの周面上に電着法により絶縁層を形成し、更に、該絶縁層の外周面上に湿式又は乾式めっき法により金属導体層を形成することを特徴とする[1]記載の微細同軸ワイヤーの製造方法。
[8] 上記導電ワイヤーを構成する金属導体が金であることを特徴とする[7]記載の微細同軸ワイヤーの製造方法。
[9] 上記絶縁層として電着ポリイミドを形成することを特徴とする[7]又は[8]記載の微細同軸ワイヤーの製造方法。
[10] 上記金属導体層の一部又は全部を、無電解めっき法にて形成することを特徴とする[7]乃至[9]のいずれかに記載の微細同軸ワイヤーの製造方法。
[11] 上記導電ワイヤーの径が5〜50μmであることを特徴とする[7]乃至[10]のいずれかに記載の微細同軸ワイヤーの製造方法。
[12] 微細同軸ワイヤーの特性インピーダンスが10〜300Ωであることを特徴とする[7]乃至[11]のいずれかに記載の微細同軸ワイヤーの製造方法。
[13] 微細同軸ワイヤーの特性インピーダンスが40〜60Ωであることを特徴とする[7]乃至[11]のいずれかに記載の微細同軸ワイヤーの製造方法。
[14] 上記導電ワイヤーの径に応じて上記絶縁層の厚さを制御して、所定の特性インピーダンスを有する微細同軸ワイヤーを製造することを特徴とする[7]乃至[13]のいずれかに記載の微細同軸ワイヤーの製造方法。
[15] [1]乃至[6]のいずれかに記載の微細同軸ワイヤーを電極間の導通配線として用いてなることを特徴とする半導体装置。
[16] 上記導電ワイヤーを信号電極の導通配線とし、上記金属導体層を接地電極の導通配線として用いてなることを特徴とする[15]記載の半導体装置。
That is, this invention provides the following fine coaxial wire, its manufacturing method, and a semiconductor device.
[1] A fine coaxial wire comprising a conductive wire made of a metal conductor, an insulating layer covering the peripheral surface of the conductive wire, and a metal conductor layer covering the outer peripheral surface of the insulating layer, the insulating layer being electrodeposited A fine coaxial wire formed by a method.
[2] The fine coaxial wire according to [1], wherein the metal conductor constituting the conductive wire is gold.
[3] The fine coaxial wire according to [1] or [2], wherein the insulating layer is formed of electrodeposited polyimide.
[4] The fine coaxial wire according to any one of [1] to [3], wherein the conductive wire has a diameter of 5 to 50 μm.
[5] The fine coaxial wire according to any one of [1] to [4], wherein the characteristic impedance is 10 to 300Ω.
[6] The fine coaxial wire according to any one of [1] to [4], wherein the characteristic impedance is 40 to 60Ω.
[7] An insulating layer is formed on the peripheral surface of a conductive wire made of a metal conductor by electrodeposition, and further, a metal conductor layer is formed on the outer peripheral surface of the insulating layer by a wet or dry plating method. The method for producing a fine coaxial wire according to [1].
[8] The method for producing a fine coaxial wire according to [7], wherein the metal conductor constituting the conductive wire is gold.
[9] The method for producing a fine coaxial wire according to [7] or [8], wherein an electrodeposited polyimide is formed as the insulating layer.
[10] The method for producing a fine coaxial wire according to any one of [7] to [9], wherein a part or all of the metal conductor layer is formed by an electroless plating method.
[11] The method for producing a fine coaxial wire according to any one of [7] to [10], wherein a diameter of the conductive wire is 5 to 50 μm.
[12] The method for producing a fine coaxial wire according to any one of [7] to [11], wherein the characteristic impedance of the fine coaxial wire is 10 to 300Ω.
[13] The method for producing a fine coaxial wire according to any one of [7] to [11], wherein the characteristic impedance of the fine coaxial wire is 40 to 60Ω.
[14] In any one of [7] to [13], the thickness of the insulating layer is controlled according to the diameter of the conductive wire to produce a fine coaxial wire having a predetermined characteristic impedance. The manufacturing method of the fine coaxial wire of description.
[15] A semiconductor device using the fine coaxial wire according to any one of [1] to [6] as a conductive wiring between electrodes.
[16] The semiconductor device according to [15], wherein the conductive wire is used as a conductive wiring for a signal electrode, and the metal conductor layer is used as a conductive wiring for a ground electrode.

本発明の微細同軸ワイヤーを、微細な半導体装置の電極間の導通配線として用いることにより、有効にノイズを低減することができると共に、高い特性インピーダンスを備える微細同軸ワイヤーを用いれば、高い信号周波数(例えば数十〜数百GHz)における高速信号伝送も可能となる。   By using the fine coaxial wire of the present invention as a conductive wiring between the electrodes of a fine semiconductor device, noise can be effectively reduced, and if a fine coaxial wire having high characteristic impedance is used, a high signal frequency ( For example, high-speed signal transmission at tens to hundreds of GHz) is also possible.

以下、本発明について更に詳しく説明する。
本発明の微細同軸ワイヤーは、金属導体からなる導電ワイヤー、導電ワイヤーの周面を被覆する絶縁層、及び絶縁層の外周面を被覆する金属導体層からなる。図1は、本発明の微細同軸ワイヤーの一例の径方向の断面図であり、微細同軸ワイヤー1は、その中心軸部の金属導体からなる導電ワイヤー2の周面を被覆して絶縁層3が設けられ、更に、この絶縁層3の外周面を被覆して金属導体層3が設けられた構造となっている。図1の場合、断面が円形状のワイヤーの場合を示しているが、これに限定されるものではなく、断面が楕円状、矩形状等の多角形状のものであってもよい。
Hereinafter, the present invention will be described in more detail.
The fine coaxial wire of the present invention includes a conductive wire made of a metal conductor, an insulating layer covering the peripheral surface of the conductive wire, and a metal conductor layer covering the outer peripheral surface of the insulating layer. FIG. 1 is a sectional view in the radial direction of an example of a fine coaxial wire of the present invention. The fine coaxial wire 1 covers a peripheral surface of a conductive wire 2 made of a metal conductor at the center axis portion, and an insulating layer 3 is formed. Further, the metal conductor layer 3 is provided so as to cover the outer peripheral surface of the insulating layer 3. In the case of FIG. 1, although the case where the cross section is a circular wire is shown, the present invention is not limited to this, and the cross section may be an elliptical or rectangular polygonal shape.

導電ワイヤー(心線)は、金属導体からなり、金、銀、銅、アルミニウムなど、抵抗が比較的低い金属であればよく、柔軟性や、半導体装置に用いる際にワイヤーボンディングをすることを考慮した場合は、金が好ましい。また、コストの観点からは、銅が優れている。導電ワイヤーの径は、適宜選択すればよいが、5〜50μm程度、特に18〜25μm程度が、ワイヤーボンディングするためにはよく、これを超える径では、微細構造の半導体装置に対応できなくなるおそれがある。   The conductive wire (core wire) is made of a metal conductor and may be a metal having a relatively low resistance, such as gold, silver, copper, and aluminum. Flexibility and wire bonding when used in a semiconductor device are considered. If so, gold is preferred. From the viewpoint of cost, copper is excellent. The diameter of the conductive wire may be selected as appropriate, but about 5 to 50 μm, particularly about 18 to 25 μm is sufficient for wire bonding, and if the diameter exceeds this, there is a possibility that the semiconductor device with a fine structure may not be supported. is there.

絶縁層の厚さは、絶縁がとれればよいので1μm以上あればよいが、半導体装置において、高速信号伝送を実現するためには、特性インピーダンスを制御する必要があるために、一定の厚さにすることが重要である。また、インピーダンスを高くするためには、比較的厚い絶縁層が必要である。そのため、本発明の微細同軸ワイヤーにおいては、絶縁層は、電着法により成膜された電着有機薄膜で形成されている。絶縁層の厚さは、特に限定されないが、通常1〜100μmであることが好ましい。   The thickness of the insulating layer may be 1 μm or more so long as it can be insulated. However, in order to realize high-speed signal transmission in a semiconductor device, it is necessary to control the characteristic impedance. It is important to. In order to increase the impedance, a relatively thick insulating layer is required. Therefore, in the fine coaxial wire of the present invention, the insulating layer is formed of an electrodeposited organic thin film formed by an electrodeposition method. Although the thickness of an insulating layer is not specifically limited, Usually, it is preferable that it is 1-100 micrometers.

この場合、電着する膜としては、エポキシやポリイミドなどの樹脂薄膜が挙げられるが、電着ポリイミド薄膜が耐電圧性、厚い絶縁膜を形成可能なことから非常に優れている。   In this case, the electrodeposited film may be a resin thin film such as epoxy or polyimide, but the electrodeposited polyimide thin film is extremely excellent because it can withstand voltage and can form a thick insulating film.

ポリイミド薄膜は、カルボキシル基を分子構造内に有するアニオン性ポリイミドの水と有機溶媒との混合溶媒溶液を電着液(電着用組成物)として成膜することができるが、このような電着液としては、電着によるポリイミド薄膜の成膜に用いられる公知の電着液を用いることができる。   The polyimide thin film can be formed as an electrodeposition liquid (electrodeposition composition) using a mixed solvent solution of an anionic polyimide having a carboxyl group in its molecular structure and an organic solvent as an electrodeposition liquid. For example, a known electrodeposition solution used for forming a polyimide thin film by electrodeposition can be used.

ポリイミド電着液としては、例えば、特開昭49−52252号公報(特許文献4)、特開昭52−32943号公報(特許文献5)、特開昭63−111199号公報(特許文献6)等に記載されているポリイミド前駆体を用いるもの、例えば、ポリアミック酸を、水、又は水と極性有機溶媒等の有機溶媒とに溶解させた溶液を電着液として用いるものが挙げられる。   As the polyimide electrodeposition liquid, for example, JP-A-49-52252 (Patent Document 4), JP-A-52-32943 (Patent Document 5), JP-A-63-111199 (Patent Document 6). And the like, for example, those using a solution obtained by dissolving a polyamic acid in water or water and an organic solvent such as a polar organic solvent as an electrodeposition solution.

また、アニオン性ポリイミド、例えば、特開平9−104839号公報(特許文献7)等に記載されているランダム共重合アニオン性ポリイミドを用いるもの、特開2003−327905号公報(特許文献8)、特開2003−327907号公報(特許文献9)等に記載されているブロック共重合ポリイミドを用いる電着液を挙げることもできるが、得られる電着ポリイミド膜の密着性が良好となる観点から、ブロック共重合アニオン性ポリイミドを用いるものが特に好ましい。   Further, anionic polyimides, for example, those using a random copolymerized anionic polyimide described in JP-A-9-104839 (Patent Document 7) and the like, JP-A 2003-327905 (Patent Document 8), Although the electrodeposition liquid using the block copolymerization polyimide described in the open patent publication 2003-327907 (patent document 9) etc. can also be mentioned, it is a block from a viewpoint from which the adhesiveness of the electrodeposition polyimide film obtained becomes favorable. Those using a copolymerized anionic polyimide are particularly preferred.

この電着液としては、ジアミンと酸二無水物との反応生成物からなるランダム共重合アニオン性ポリイミド又はブロック共重合アニオン性ポリイミドを含むものが挙げられる。   As this electrodeposition liquid, what contains the random copolymerization anionic polyimide or the block copolymerization anionic polyimide which consists of a reaction product of diamine and an acid dianhydride is mentioned.

上記ジアミンとしては、芳香族ジアミンを含むことが好ましく、芳香族ジアミンとしては、o−,m−,p−フェニレンジアミン、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ジアミノキシレン、ジアミノジュレン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、ベンジジン、4,4’−ジアミノターフェニル、4,4’−ジアミノクォーターフェニル、4,4’−ジアミノジフェニルメタン、1,2−ビス(アニリノ)エタン、4,4’−ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、2,2−ビス(p−アミノフェニル)プロパン、3,3’−ジメチルベンジジン、3,3’−ジメチル−4,4’−ジアミノジフェニルエーテル、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、ジアミノトルエン、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4’−ビス−(p−アミノフェノキシ)ビフェニル、2,2−ビス{4−(p−アミノフェノキシ)フェニル}プロパン、4,4’−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、2,2−ビス{4−(p−アミノフェノキシ)フェニル}ヘキサフルオロプロパンなどが挙げられる。また、2,6−ジアミノピリジンなどの芳香族ジアミン以外のジアミンを含んでいてもよい。2,6−ジアミノピリジンを含むポリイミドは、分子内に酸基と塩基とを持ち、ポリマー相互作用によって、良好なポリイミド薄膜を成膜する。更には、水に対する親和性を増し、水溶性電着液として安定となり、得られた電着膜が平滑で緻密になる利点がある。   The diamine preferably includes an aromatic diamine, and examples of the aromatic diamine include o-, m-, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, and 2,4-diamino. Xylene, diaminodurene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, benzidine, 4,4′-diaminoterphenyl, 4,4′-diaminoquaterphenyl, 4,4′-diaminodiphenylmethane, 1, 2-bis (anilino) ethane, 4,4′-diaminodiphenyl ether, diaminodiphenyl sulfone, 2,2-bis (p-aminophenyl) propane, 3,3′-dimethylbenzidine, 3,3′-dimethyl-4, 4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminodiphenyl Tan, diaminotoluene, 1,4-bis (p-aminophenoxy) benzene, 4,4′-bis- (p-aminophenoxy) biphenyl, 2,2-bis {4- (p-aminophenoxy) phenyl} propane 4,4′-bis (3-aminophenoxyphenyl) diphenylsulfone, 2,2-bis {4- (p-aminophenoxy) phenyl} hexafluoropropane, and the like. Further, it may contain a diamine other than an aromatic diamine such as 2,6-diaminopyridine. Polyimide containing 2,6-diaminopyridine has an acid group and a base in the molecule, and forms a good polyimide thin film by polymer interaction. Furthermore, there is an advantage that the affinity for water is increased, the water-soluble electrodeposition solution is stabilized, and the obtained electrodeposition film is smooth and dense.

また、酸二無水物としては、ピロメリット酸二無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(2,3−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(2,3−ジカルボキシフェニル)スルホン二無水物、4,4’−{2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン}ビス(1,2−ベンゼンジカルボン酸無水物)、9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレン二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物を挙げることができる。   Examples of the acid dianhydride include pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 2,3,2 ′, 3′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxy) Phenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (2,3-dicarboxyphenyl) sulfone 4,4 ′-{2,2,2-trifluoro-1- (trifluoromethyl) ethylidene} bis (1,2-benzenedicarboxylic anhydride), 9,9-bis {4- (3 4-dicarboxyphenoxy) phenyl} fluorene dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 1,4,5 , 8-Naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, bicyclo [2.2.2 And aromatic tetracarboxylic dianhydrides such as octo-7-ene-2,3,5,6-tetracarboxylic dianhydride.

ジアミンと酸二無水物との反応生成物からなるランダム共重合アニオン性ポリイミド又はブロック共重合アニオン性ポリイミドでアニオンになる基は、テトラカルボン酸二無水物成分が有していてもよいが、アニオン性基を有するジアミンをジアミン成分の1つとして用いることも好ましい。ポリイミドの耐熱性、被電着物との密着性、重合度向上のため、このようなアニオン性基含有ジアミンは、芳香族ジアミンであることが好ましい。アニオン基はカルボキシル基が望ましく、ジアミノカルボン酸が好ましい。このようなアニオン性基含有芳香族ジアミンの例として、3,5−ジアミノ安息香酸、2,4−ジアミノフェニル酢酸、2,5−ジアミノテレフタル酸、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルメタン、3,5−ジアミノパラトルイル酸、3,5−ジアミノ−2−ナフタレンカルボン酸、1,4−ジアミノ−2−ナフタレンカルボン酸等の芳香族ジアミノカルボン酸を挙げることができ、3,5−ジアミノ安息香酸が特に好ましい。このようなアニオン性基含有芳香族ジアミンは、単独で用いることもできるし、複数種類を組み合わせて用いることもできる。また、アニオン基を有さないジアミンと組み合わせてもよい。   Random copolymerized anionic polyimide consisting of a reaction product of diamine and acid dianhydride or a group that becomes an anion in a block copolymerized anionic polyimide may have a tetracarboxylic dianhydride component, It is also preferable to use a diamine having a functional group as one of the diamine components. Such an anionic group-containing diamine is preferably an aromatic diamine in order to improve the heat resistance of the polyimide, the adhesion to the electrodeposit, and the degree of polymerization. The anionic group is preferably a carboxyl group, and is preferably a diaminocarboxylic acid. Examples of such anionic group-containing aromatic diamines include 3,5-diaminobenzoic acid, 2,4-diaminophenylacetic acid, 2,5-diaminoterephthalic acid, 3,3′-dicarboxy-4,4 ′. And aromatic diaminocarboxylic acids such as -diaminodiphenylmethane, 3,5-diaminoparatoluic acid, 3,5-diamino-2-naphthalenecarboxylic acid, 1,4-diamino-2-naphthalenecarboxylic acid, and the like. , 5-diaminobenzoic acid is particularly preferred. Such anionic group-containing aromatic diamines can be used alone or in combination of a plurality of types. Moreover, you may combine with the diamine which does not have an anion group.

ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドは、これらのジアミンと酸二無水物とをほぼ等量用いて、加熱、脱水することにより得られる。ブロック共重合アニオン性ポリイミドの場合は、逐次添加反応によって製造され、第一段階で、酸二無水物とジアミンからポリイミドオリゴマーとし、第二段階で、更に酸二無水物及び/又はジアミンを添加して、重縮合してブロック共重合アニオン性ポリイミドとする。本発明において、ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドの分子量(ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算値)は50,000〜100,000、特に60,000〜80,000が好適である。   Random copolymerized anionic polyimide and block copolymerized anionic polyimide can be obtained by heating and dehydrating using approximately equal amounts of these diamines and acid dianhydrides. In the case of a block copolymerized anionic polyimide, it is produced by a sequential addition reaction. In the first stage, a polyimide oligomer is formed from acid dianhydride and diamine, and in the second stage, acid dianhydride and / or diamine is further added. Then, polycondensation is performed to obtain a block copolymerized anionic polyimide. In the present invention, the molecular weight of the random copolymerized anionic polyimide and the block copolymerized anionic polyimide (polystyrene conversion value by gel permeation chromatography (GPC)) is 50,000 to 100,000, particularly 60,000 to 80,000. Is preferred.

このランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドは、通常、塩基性化合物で中和したものとして電着液に用いられる。この塩基性化合物としては、N−ジメチルエタノール、トリエチルアミン、トリエタノールアミン、N−ジメチルベンジルアミン、N−メチルモルホリンが用いられるが、N−ジメチルエタノールやN−メチルモルホリンが好適である。中和剤(塩基性化合物)の使用量はポリイミドが溶液中で溶解または安定に分散する程度であって、通常は化学量論中和量の30モル%以上、特に30〜200モル%であることが好ましい。また、電着液中の中和されたポリイミドの固形分濃度は5〜15質量%であることが好ましい。   This random copolymerized anionic polyimide and block copolymerized anionic polyimide are usually used in an electrodeposition solution as neutralized with a basic compound. As the basic compound, N-dimethylethanol, triethylamine, triethanolamine, N-dimethylbenzylamine, and N-methylmorpholine are used, and N-dimethylethanol and N-methylmorpholine are preferable. The amount of the neutralizing agent (basic compound) used is such that the polyimide is dissolved or stably dispersed in the solution, and is usually 30 mol% or more, particularly 30 to 200 mol% of the stoichiometric neutralization amount. It is preferable. Moreover, it is preferable that the solid content density | concentration of the neutralized polyimide in an electrodeposition liquid is 5-15 mass%.

一方、電着液の溶媒としては、水と有機溶媒とが用いられ、有機溶媒としては、このランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドを溶解する水溶性極性有機溶媒、例えば、N−メチルピロリドン、N,N’−ジメチルアセトアミド、N,N’−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、テトラヒドロチオフェン−1,1−オキシド等が用いられる。好ましくは毒性の少ないN−メチルピロリドン、テトラヒドロチオフェン−1,1−オキシドが好ましい。これら水溶性極性有機溶媒は、上述したブロック共重合アニオン性ポリイミドを製造する際の反応溶媒として用いたものでもよい。   On the other hand, water and an organic solvent are used as the solvent for the electrodeposition solution, and the organic solvent is a water-soluble polar organic solvent that dissolves the random copolymerized anionic polyimide and the block copolymerized anionic polyimide, for example, N -Methylpyrrolidone, N, N'-dimethylacetamide, N, N'-dimethylformamide, dimethyl sulfoxide, tetramethylurea, tetrahydrothiophene-1,1-oxide, etc. are used. N-methylpyrrolidone and tetrahydrothiophene-1,1-oxide, which are less toxic, are preferred. These water-soluble polar organic solvents may be those used as a reaction solvent when the above-described block copolymerized anionic polyimide is produced.

また、電着液に含まれる有機溶媒としては、ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドを溶解する油溶性溶媒を用いてもよい。油溶性溶媒は、電着後の被着物に析出したポリイミド樹脂のフロー性を高め、塗膜の平滑性を向上させる点で効果がある。またその結果として、電着液の貯蔵安定性を高めることができる。ここで油溶性溶媒とは、実質的に水に不溶性か又は難溶性の有機溶媒を意味する。ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドを溶解する油溶性溶媒としては、1−アセトナフトン、アセトフェノン、ベンジルアセトン、メチルアセトフェノン、ジメチルアセトフェノン、プロピオフェノン、バレロフェノン、アニソール、安息香酸メチル、安息香酸ベンジルなどが挙げられる。   Moreover, as the organic solvent contained in the electrodeposition liquid, an oil-soluble solvent that dissolves the random copolymerized anionic polyimide and the block copolymerized anionic polyimide may be used. The oil-soluble solvent is effective in that it improves the flowability of the polyimide resin deposited on the adherend after electrodeposition and improves the smoothness of the coating film. As a result, the storage stability of the electrodeposition liquid can be enhanced. Here, the oil-soluble solvent means an organic solvent that is substantially insoluble or hardly soluble in water. Examples of the oil-soluble solvent for dissolving the random copolymerized anionic polyimide and the block copolymerized anionic polyimide include 1-acetonaphthone, acetophenone, benzylacetone, methylacetophenone, dimethylacetophenone, propiophenone, valerophenone, anisole, methyl benzoate, benzoic acid Examples include benzyl acid.

更に、電着液に含まれる有機溶媒としては、フェニル基、フルフリル基又はナフチル基を有するアルコール等のポリイミドに対する貧溶媒を併用することが好ましく、このようなものとしては、例えばベンジルアルコール、置換ベンジルアルコール、フルフリルアルコールなどを挙げることができる。   Further, as the organic solvent contained in the electrodeposition liquid, it is preferable to use a poor solvent for polyimide such as an alcohol having a phenyl group, a furfuryl group or a naphthyl group, and examples thereof include benzyl alcohol and substituted benzyl. Examples thereof include alcohol and furfuryl alcohol.

電着液中の溶媒の濃度は85〜95質量%であるが、有機溶媒の濃度は15〜85質量%、特に20〜70質量%であり、溶媒として水を併用する場合、これと上述した中和されたポリイミドの固形分濃度との残部が水の濃度となる。なお、上記油溶性溶媒を用いる場合、電着液中の油溶性溶媒の濃度は10〜30質量%であることが好ましく、また、上記ポリイミドに対する貧溶媒を用いる場合、電着液中の貧溶媒の濃度は5〜15質量%であることが好ましい。電着液のpHは、ほぼ中性乃至弱塩基性(例えばpH=7〜9、好ましくは7.5〜8)であることが好ましい。   Although the concentration of the solvent in the electrodeposition liquid is 85 to 95% by mass, the concentration of the organic solvent is 15 to 85% by mass, particularly 20 to 70% by mass. The balance with the solid content concentration of the neutralized polyimide is the concentration of water. In addition, when using the said oil-soluble solvent, it is preferable that the density | concentration of the oil-soluble solvent in an electrodeposition liquid is 10-30 mass%, and when using the poor solvent with respect to the said polyimide, the poor solvent in an electrodeposition liquid The concentration of is preferably 5 to 15% by mass. It is preferable that the pH of the electrodeposition liquid is approximately neutral to weakly basic (for example, pH = 7 to 9, preferably 7.5 to 8).

上述した電着液としては、株式会社ピーアイ技術研究所製の可溶型ブロック共重合ポリイミド電着液Q−EDシリーズ(例えば、Q−ED−21−129等)などの市販品を用いることができる。   As the electrodeposition liquid described above, a commercially available product such as a soluble block copolymerized polyimide electrodeposition liquid Q-ED series (for example, Q-ED-21-129, etc.) manufactured by PI Engineering Laboratory Co., Ltd. may be used. it can.

電着条件は、従来公知の条件をそのまま採用することができる。例えば、ランダム共重合アニオン性ポリイミド又はブロック共重合アニオン性ポリイミドを用いる場合、導電性被着物を温度15〜35℃にて電着液に浸漬し、陰極としてCu、Pt等の電極を用い、電圧20〜400V、好ましくは50〜200Vで、通電時間30秒〜10分間、好ましくは1〜5分間通電することにより導電性被着物の表面に溶媒を含むポリイミド薄膜が成膜される。なお、電着環境下で溶出する可能性がある金属を用いる場合、心線にNiめっき等で電着時に金属の溶出がないような処理を施すことが好ましい。   Conventionally known conditions can be adopted as electrodeposition conditions. For example, when using a random copolymerized anionic polyimide or a block copolymerized anionic polyimide, the conductive adherend is immersed in an electrodeposition solution at a temperature of 15 to 35 ° C., and an electrode such as Cu or Pt is used as a cathode. A polyimide thin film containing a solvent is formed on the surface of the conductive deposit by energizing at 20 to 400 V, preferably 50 to 200 V, and energizing time 30 seconds to 10 minutes, preferably 1 to 5 minutes. In addition, when using the metal which may be eluted in an electrodeposition environment, it is preferable to perform the process which does not elute a metal at the time of electrodeposition by Ni plating etc. to a core wire.

更に、洗浄、風乾後、90〜220℃、好ましくは90〜180℃で、10分〜2時間、好ましく30分〜1時間加熱して溶媒を揮発させることにより乾燥され、固化したポリイミド薄膜が得られる。また、溶媒を揮発させ乾燥させる方法としては、基材を減圧雰囲気に置いてもよい。このときの圧力は1/2気圧以下、処理時間としては30分以上が望ましい。更に、加熱処理と減圧雰囲気に置くことを組み合わせても別途に実施してもよい。   Furthermore, after washing and air drying, the polyimide thin film is obtained by drying and solidifying by heating at 90 to 220 ° C., preferably 90 to 180 ° C., for 10 minutes to 2 hours, preferably 30 minutes to 1 hour to volatilize the solvent. It is done. Moreover, as a method of evaporating and drying the solvent, the substrate may be placed in a reduced pressure atmosphere. The pressure at this time is preferably ½ atm or less and the treatment time is preferably 30 minutes or more. Further, the heat treatment and placing in a reduced pressure atmosphere may be combined or performed separately.

金属導体層(シールド層)は、金属導体からなり、金、銀、銅、アルミニウム、ニッケルなど抵抗が比較的低い金属であればよく、湿式めっき法で成膜する場合は、金、銀、銅、ニッケルが好ましい。金属導体層は、絶縁層上に密着性よく、均一に形成されている必要がある。成膜方法は、どのような方法でもよく、例えば、蒸着法やスパッタリング法などの乾式めっき法、電気めっき、無電解めっきなどの湿式めっき法などが適用できるが、ワイヤー全体に均一に成膜しなければならないことから、湿式成膜法(湿式めっき法)が望ましい。この場合、絶縁層には電気が流れないため、無電解めっき又はダイレクトプレーティングが望ましい。なお、無電解めっき皮膜の膜厚は、通常20nm〜5μmである。無電解めっきで形成しためっき皮膜の膜厚が薄い場合は、無電解めっきで成膜しためっき皮膜を通電層として、更に電気めっきを行ってもよい。金属導体層の厚さは、100nm〜10μm、特に、500nm〜5μmが望ましい。   The metal conductor layer (shield layer) is made of a metal conductor and may be a metal having a relatively low resistance such as gold, silver, copper, aluminum, nickel, etc. When forming a film by a wet plating method, gold, silver, copper Nickel is preferred. The metal conductor layer needs to be uniformly formed on the insulating layer with good adhesion. Any method may be used, for example, dry plating methods such as vapor deposition and sputtering, and wet plating methods such as electroplating and electroless plating. Therefore, a wet film formation method (wet plating method) is desirable. In this case, since no electricity flows through the insulating layer, electroless plating or direct plating is desirable. In addition, the film thickness of the electroless plating film is usually 20 nm to 5 μm. When the film thickness of the plating film formed by electroless plating is thin, electroplating may be further performed using the plating film formed by electroless plating as an energization layer. The thickness of the metal conductor layer is preferably 100 nm to 10 μm, particularly 500 nm to 5 μm.

無電解めっきを行うためには、下地を形成しなければならないが、この下地の形成は、ポリイミド等の有機物上への無電解めっきに用いる従来公知の手法を適用することができる。このような方法としては、例えば、ポリイミドにUVランプを照射することで、C−C結合、C−O結合などを切断し、マイクロアンカーを形成させ、絶縁層の表面に数10nmのラフネスを形成させて、ナノアンカー効果を利用する方法(UV法)、強アルカリを用いてポリイミドのイミド結合を開裂させ、内部にPdイオンを浸透させ、その後、還元によりポリイミド表層に無電解めっきのためのPd触媒化層を形成する方法(アルカリ法)、ポリイミド表面を酸素アッシングすることで水酸基を形成し、その後にシランカップリング剤をポリイミド上に塗布して、アミノ基を形成後に触媒化する方法(有機シラン自己組織化単分子膜法)などがある。   In order to perform electroless plating, a base must be formed. For this base formation, a conventionally known method used for electroless plating on an organic substance such as polyimide can be applied. As such a method, for example, by irradiating a polyimide with a UV lamp, a C—C bond, a C—O bond, etc. are cut to form a microanchor, and a roughness of several tens of nm is formed on the surface of the insulating layer. The method using the nano-anchor effect (UV method), the polyimide imide bond is cleaved using strong alkali, the Pd ions are infiltrated into the inside, and then Pd for electroless plating on the polyimide surface layer by reduction A method of forming a catalyzed layer (alkali method), a method of forming a hydroxyl group by oxygen ashing the polyimide surface, and then applying a silane coupling agent on the polyimide to form an amino group and then catalyzing (organic) Silane self-assembled monolayer method).

また、下地の形成方法として、ポリイミドの表面を、互いに離間する分子鎖両末端にアミノ基を各々一つ以上有する有機アミン化合物を含有する水溶液で表面処理し、次いで、金属を含む活性化溶液で触媒化処理することにより、上記アミン化合物分子の他方の末端のアミノ基に金属触媒を付与する方法を用いることもできる。   In addition, as a method for forming a base, the surface of polyimide is surface-treated with an aqueous solution containing an organic amine compound having one or more amino groups at both ends of molecular chains separated from each other, and then an activation solution containing a metal. A method of imparting a metal catalyst to the amino group at the other end of the amine compound molecule by carrying out the catalysis treatment can also be used.

この場合、まず、電着ポリイミド表面を、有機アミン化合物を含有する水溶液で表面処理することにより、ポリイミド表面上のカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO(Rは3級アミニウム等の有機カチオン基又はLi、Na、K、Rb、Cs、Fr等の無機カチオンを示す)と、有機アミン化合物のアミノ基とを反応させて、カルボキシル基及び/又はカルボキシル誘導基をアミン化合物分子で修飾する。 In this case, first, the electrodeposited polyimide surface is subjected to a surface treatment with an aqueous solution containing an organic amine compound, whereby a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO - R + (R + Represents an organic cation group such as tertiary aminium or an inorganic cation such as Li + , Na + , K + , Rb + , Cs + , Fr + ), and an amino group of an organic amine compound to react with a carboxyl group And / or the carboxyl derivative group is modified with an amine compound molecule.

このような有機アミン化合物としては、例えば、エチレンジアミン、プロピレンジアミン等のアルキルジアミン、ジエチレントリアミン等の好ましくは炭素数2以上、好ましくは2〜5のアルキルポリアミン化合物を挙げることができる。アミノ基は、互いに離間する分子鎖両末端にアミノ基を各々一つ以上有していればよく、アミノ基を3個以上有する場合は、上記分子鎖両末端以外のアミノ基は、分子鎖末端に位置していても、分子鎖末端以外に位置していてもよい。   Examples of such organic amine compounds include alkyl polyamine compounds having preferably 2 or more carbon atoms, preferably 2 to 5 carbon atoms, such as alkyl diamines such as ethylene diamine and propylene diamine, and diethylene triamine. The amino group only needs to have one or more amino groups at both ends of the molecular chain that are separated from each other. When the amino group has three or more amino groups, the amino groups other than the molecular chain both ends are It may be located at other than the molecular chain end.

この表面処理は、有機アミン化合物を含有する水溶液中にポリイミドを浸漬させるなどの方法で接触させればよい。有機アミン化合物水溶液中の有機アミン化合物の濃度は0.001〜10mol/L、特に0.01〜1mol/Lとすることができる。浸漬は、有機アミン化合物の濃度にもよるが、室温(例えば20℃)〜90℃で、5秒〜30分、特に1〜10分とすることができる。表面処理後、必要により水洗により過剰の有機アミン化合物を除去すればよい。   This surface treatment may be performed by a method such as immersing polyimide in an aqueous solution containing an organic amine compound. The concentration of the organic amine compound in the aqueous organic amine compound solution can be 0.001 to 10 mol / L, particularly 0.01 to 1 mol / L. Immersion can be performed at room temperature (for example, 20 ° C.) to 90 ° C. for 5 seconds to 30 minutes, particularly 1 to 10 minutes, depending on the concentration of the organic amine compound. After the surface treatment, if necessary, excess organic amine compound may be removed by washing with water.

次に、金属を含む活性化溶液で触媒化処理(活性化処理)することにより、アミン化合物分子のカルボキシル基及びカルボキシル誘導基と反応していない他方の末端のアミノ基に金属触媒を付与する。この触媒化は、Au、Ni、Pd、Ag、Cuなど無電解めっきを行うための触媒となるものならば、いずれの金属を用いてもよいが、通常、活性の高いPd、Agが用いられ、Pdが一般的である。このような触媒化処理に用いられる活性化溶液は、市販の活性化溶液を用いることができ、例えば、浸漬処理等の方法で、アミノ基に対する触媒化処理の公知の条件で処理することができる。また、必要に応じて、触媒化処理後に、ジメチルアミンボラン水溶液等のアクセラレーション処理液に浸漬することによりアクセラレーション処理を施してもよい。なお、触媒化処理後及びアクセラレーション処理後は、いずれも水洗により過剰の触媒化溶液、アクセラレーション処理液を除去すればよい。   Next, a metal catalyst is imparted to the amino group at the other end that has not reacted with the carboxyl group and carboxyl derivative group of the amine compound molecule by performing a catalyst treatment (activation treatment) with an activation solution containing a metal. For this catalysis, any metal such as Au, Ni, Pd, Ag, and Cu can be used as long as it becomes a catalyst for electroless plating, but usually highly active Pd and Ag are used. , Pd is common. A commercially available activation solution can be used as the activation solution used for such a catalyst treatment. For example, the solution can be treated under a known condition of a catalyst treatment for amino groups by a method such as immersion treatment. . Moreover, you may perform an acceleration process by immersing in an acceleration process liquid, such as a dimethylamine borane aqueous solution, after a catalyzing process as needed. It should be noted that after the catalyzing treatment and the acceleration treatment, both the excess catalyzing solution and the acceleration treating solution may be removed by washing with water.

そして、金属触媒を核として無電解めっき皮膜が積層される。この無電解めっきには従来公知の無電解めっき浴を用いることができ、例えば、無電解NiPめっき浴や無電解NiBめっき浴を用いて無電解ニッケル皮膜、無電解Cuめっきを用いて無電解Cuめっき薄膜を形成することが可能である。   Then, an electroless plating film is laminated using the metal catalyst as a nucleus. For this electroless plating, a conventionally known electroless plating bath can be used. For example, an electroless NiP plating bath or an electroless NiB plating bath is used, an electroless nickel film, and an electroless Cu plating is used. It is possible to form a plating thin film.

本発明の微細同軸ワイヤーの径は適宜選定され、導電ワイヤーの径、絶縁層の誘電率及び厚さ、並びに金属導体層の厚さによって決まるが、10〜200μm、特に25〜100μm程度であることが好ましい。また、本発明の微細同軸ワイヤーにおいては、絶縁層は、比較的広い厚さ範囲において均一に形成されることから、所望の径の導電ワイヤーを用い、導電ワイヤーの径に応じて、これに必要な厚さの絶縁層をその厚さを制御して、例えば、表1に示されるような導電ワイヤー径と絶縁層厚さを適用して、所望の特性インピーダンスに設定することができ、例えば10〜300Ωの範囲にとすることができる。特に、特性インピーダンスが40〜60Ωの範囲ならば、現状で要求されている50Ω前後の特性インピーダンスを備える微細同軸ワイヤーとすることが可能である。更に特性インピーダンスが45〜55Ωの範囲ならば、高い周波数においても非常に安定して信号を伝送できる。   The diameter of the fine coaxial wire of the present invention is appropriately selected and is determined by the diameter of the conductive wire, the dielectric constant and thickness of the insulating layer, and the thickness of the metal conductor layer, but is about 10 to 200 μm, particularly about 25 to 100 μm. Is preferred. In the fine coaxial wire of the present invention, since the insulating layer is uniformly formed in a relatively wide thickness range, a conductive wire having a desired diameter is used, and this is necessary depending on the diameter of the conductive wire. By controlling the thickness of the insulating layer having a proper thickness, for example, the conductive wire diameter and the insulating layer thickness as shown in Table 1 can be applied to set the desired characteristic impedance. It can be in the range of ~ 300Ω. In particular, when the characteristic impedance is in the range of 40 to 60Ω, it is possible to obtain a fine coaxial wire having a characteristic impedance of around 50Ω that is currently required. Furthermore, if the characteristic impedance is in the range of 45 to 55Ω, signals can be transmitted very stably even at high frequencies.

また、本発明の微細同軸ワイヤーを、半導体装置の導通配線としてワイヤーボンディングに用いると、微細同軸ワイヤーを、小径で、従来に比べて高い特性インピーダンスを有するものとすることができることから、微細な半導体装置の電極間の導通配線として、有効にノイズを低減することができると共に、高い信号周波数(例えば数十〜数百GHz)においても安定した信号伝送を得ることができる。   In addition, when the fine coaxial wire of the present invention is used for wire bonding as a conductive wiring of a semiconductor device, the fine coaxial wire can be made to have a small diameter and a higher characteristic impedance than the conventional one. Noise can be effectively reduced as the conductive wiring between the electrodes of the device, and stable signal transmission can be obtained even at a high signal frequency (for example, several tens to several hundreds GHz).

このような半導体装置としては、例えば、図2に示されるような半導体装置を挙げることができる。図2の半導体装置10は、配線板11にチップ接続樹脂(アンダーフィル)13を介して半導体チップ12が接続され、配線板11上に設けられた信号用電極21及び接地用電極41と、半導体チップ12上に設けられた信号用電極22及び接地用電極42とが本発明の微細同軸ワイヤー1で電気的に接続されている。そして、この場合、信号用電極21と信号用電極22との間は、微細同軸ワイヤー1の導電ワイヤー(心線)2にて、接地用電極41と接地用電極42との間は、微細同軸ワイヤー1の金属導体層(シールド層)4にて各々接続されて、導電ワイヤー2と金属導体層4とが各々の導通配線をなしている。   An example of such a semiconductor device is a semiconductor device as shown in FIG. The semiconductor device 10 of FIG. 2 has a semiconductor chip 12 connected to a wiring board 11 via a chip connection resin (underfill) 13, a signal electrode 21 and a ground electrode 41 provided on the wiring board 11, a semiconductor The signal electrode 22 and the ground electrode 42 provided on the chip 12 are electrically connected by the fine coaxial wire 1 of the present invention. In this case, the conductive electrode (core wire) 2 of the fine coaxial wire 1 is between the signal electrode 21 and the signal electrode 22, and the fine coaxial is between the ground electrode 41 and the ground electrode 42. The conductive wire 2 and the metal conductor layer 4 are connected to each other by a metal conductor layer (shield layer) 4 of the wire 1 to form a conductive wiring.

微細同軸ワイヤーを電極に接続する際、上述した方法で得られた微細同軸ワイヤーは、通常は、末端部の導電ワイヤーも絶縁層及び金属導体層で被覆された状態であるため、これを、適当な方法で剥離する必要がある。この剥離は、刃物等により物理的に剥離することも可能であるが、導電ワイヤーが小径であるため、絶縁層及び金属導体層を溶解させて化学的に剥離することが有効である。例えば、導電ワイヤーに、金を用いた場合には、まず、金属導体層及び絶縁層を、酸溶液やアルカリ溶液で溶解し、その後N−メチル−2−ピロリドン、硫酸過水(硫酸4:過酸化水素水1)の加熱溶液により、分解除去する方法などが採用できる。   When connecting the fine coaxial wire to the electrode, the fine coaxial wire obtained by the above-described method is usually in a state where the conductive wire at the end is also covered with the insulating layer and the metal conductor layer. It is necessary to peel off by a simple method. Although this peeling can be physically peeled off with a blade or the like, since the conductive wire has a small diameter, it is effective to dissolve the insulating layer and the metal conductor layer and chemically peel off. For example, when gold is used for the conductive wire, first, the metal conductor layer and the insulating layer are dissolved with an acid solution or an alkali solution, and then N-methyl-2-pyrrolidone, sulfuric acid / hydrogen peroxide (sulfuric acid 4: excess water). A method of decomposing and removing with a heated solution of hydrogen oxide water 1) can be employed.

以下、実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to the following Example.

[実施例1]
導電ワイヤーとして直径25μm、長さ約8cmの金ワイヤーを用い、これを10容量%硫酸水溶液中で揺動させながら60秒間浸漬することにより酸洗浄を施し、水洗した。
[Example 1]
A gold wire having a diameter of 25 μm and a length of about 8 cm was used as the conductive wire, and this was immersed in a 10% by volume sulfuric acid aqueous solution for 60 seconds while being acid-washed and washed with water.

次に、酸洗浄を施した金ワイヤーに、以下の前処理(プレディップ1及び2)を施した。
プレディップ1:市販の電着液用希釈液(株式会社ピーアイ技術研究所製)中で揺動させながら15秒間浸漬。
プレディップ2:市販の電着液(株式会社ピーアイ技術研究所製 Q−ED−21−129)中で揺動させながら15秒間浸漬。
Next, the following pretreatments (pre-dips 1 and 2) were applied to the acid-washed gold wire.
Pre-dip 1: Immersion for 15 seconds while rocking in a commercially available diluent for electrodeposition (made by PI Engineering Laboratory Co., Ltd.).
Pre-dip 2: Immersion for 15 seconds while rocking in a commercially available electrodeposition solution (Q-ED-21-129 manufactured by PI Engineering Laboratory Co., Ltd.).

次に、上記前処理を施した金ワイヤーを市販の電着液(株式会社ピーアイ技術研究所製 Q−ED−21−129)に室温で浸漬し、対極をPt線とし、印加電圧60V(電圧制御)、通電時間2分として、金ワイヤーの表面上にポリイミド薄膜(厚さ60μm)を絶縁層として電着した。   Next, the pretreated gold wire is immersed in a commercially available electrodeposition solution (Q-ED-21-129, manufactured by PI Engineering Laboratory) at room temperature, the counter electrode is a Pt wire, and an applied voltage of 60 V (voltage) Control), with an energization time of 2 minutes, a polyimide thin film (thickness 60 μm) was electrodeposited on the surface of the gold wire as an insulating layer.

電着後、ポリイミド薄膜を成膜した金ワイヤーを、市販の電着液用希釈液(株式会社ピーアイ技術研究所製)中で揺動させながら15秒間浸漬し、その後、90℃で30分間、大気中で加熱乾燥し、更に、1日間真空乾燥した。   After electrodeposition, the gold wire on which the polyimide thin film was formed was immersed for 15 seconds while being swung in a commercially available diluent for electrodeposition liquid (manufactured by PI Technical Laboratory Co., Ltd.), and then at 90 ° C. for 30 minutes. It was heat-dried in the air, and further vacuum-dried for 1 day.

次に、得られたポリイミド薄膜を水洗し、表2に示される有機アミン化合物を含む表面処理液(水溶液)に、表2に示される条件で浸漬してポリイミド薄膜の表面を処理し、水洗した。   Next, the obtained polyimide thin film was washed with water, immersed in a surface treatment solution (aqueous solution) containing an organic amine compound shown in Table 2 under the conditions shown in Table 2, the surface of the polyimide thin film was treated, and washed with water. .

Figure 2008227126
Figure 2008227126

次に、表面処理後のポリイミド薄膜を、表3に示される活性化溶液(水溶液)に、表3に示される条件で浸漬して触媒化処理を施して水洗し、更に、表4に示されるアクセラレーション処理液(水溶液)に、表4に示される条件で浸漬してアクセラレーション処理を施して水洗した。   Next, the polyimide thin film after the surface treatment is immersed in an activation solution (aqueous solution) shown in Table 3 under the conditions shown in Table 3, and subjected to a catalytic treatment, followed by washing with water. It was immersed in an acceleration treatment liquid (aqueous solution) under the conditions shown in Table 4 for acceleration treatment and washed with water.

Figure 2008227126
Figure 2008227126

Figure 2008227126
Figure 2008227126

次に、アクセラレーション処理後のポリイミド薄膜に、無電解NiPめっき浴(ニムデンHDX(上村工業株式会社製))を用い、表5に示される条件で無電解NiPめっきして、無電解NiPめっき皮膜(膜厚100nm)を成膜した。めっき皮膜の成膜後、水洗後、乾燥して、微細同軸ワイヤーを得た。この場合の特性インピーダンスは約50Ωとなる。   Next, an electroless NiP plating bath (Nimden HDX (manufactured by Uemura Kogyo Co., Ltd.)) is used for the polyimide thin film after the acceleration treatment, and electroless NiP plating is performed under the conditions shown in Table 5. (Film thickness 100 nm) was formed. After the plating film was formed, washed with water, and dried to obtain a fine coaxial wire. In this case, the characteristic impedance is about 50Ω.

Figure 2008227126
Figure 2008227126

得られた微細同軸ワイヤーのポリイミド薄膜(絶縁層)及びめっき皮膜(金属導体層)の状態を顕微鏡により観察したところ、共に平坦性よく均一に被覆されていることが確認された。   When the state of the polyimide thin film (insulating layer) and the plating film (metal conductor layer) of the obtained fine coaxial wire was observed with a microscope, it was confirmed that both were uniformly coated with good flatness.

なお、得られた微細同軸ワイヤーの両端部を100℃の硫酸過水(硫酸:過酸化水素水=4:1(容量比))に60秒浸漬後、更に10容量%硝酸に10分浸漬することにより、微細同軸ワイヤーの両端部の金ワイヤー(導電ワイヤー)が露出し、更にシールド部(金属導体層)と心線(導電ワイヤー)とが短絡していない構造を得ることが出来た。   In addition, both ends of the obtained fine coaxial wire are immersed in 100 ° C. sulfuric acid / hydrogen peroxide (sulfuric acid: hydrogen peroxide solution = 4: 1 (volume ratio)) for 60 seconds, and further immersed in 10% by volume nitric acid for 10 minutes. As a result, a gold wire (conductive wire) at both ends of the fine coaxial wire was exposed, and a structure in which the shield portion (metal conductor layer) and the core wire (conductive wire) were not short-circuited could be obtained.

これを、例えば、図2に示されるように半導体装置の電極間の導通配線とし、両端部の導電ワイヤーをワイヤーボンディングにて信号電極に、金属導体層を導電性ペーストで接地電極に接続すれば、多数のワイヤーが設けられた半導体装置において、有効にノイズが低減されると共に、非常に高い信号周波数(例えば数十〜数百GHz)においても安定した信号伝送が可能となる。   For example, as shown in FIG. 2, if the conductive wiring between the electrodes of the semiconductor device is used, the conductive wires at both ends are connected to the signal electrode by wire bonding, and the metal conductor layer is connected to the ground electrode by a conductive paste. In a semiconductor device provided with a large number of wires, noise is effectively reduced and stable signal transmission is possible even at a very high signal frequency (for example, several tens to several hundreds GHz).

本発明の微細同軸ワイヤーの一例を示す断面図である。It is sectional drawing which shows an example of the fine coaxial wire of this invention. 本発明の半導体装置の一例を示す側面図である。It is a side view which shows an example of the semiconductor device of this invention.

符号の説明Explanation of symbols

1 微細同軸ワイヤー
2 導電ワイヤー(心線)
3 絶縁層
4 金属導体層(シールド層)
10 半導体装置
11 配線板
12 半導体チップ
13 チップ接続樹脂(アンダーフィル)
21,22 信号用電極
41,42 接地用電極
1 Fine coaxial wire 2 Conductive wire (core wire)
3 Insulating layer 4 Metal conductor layer (shield layer)
10 Semiconductor Device 11 Wiring Board 12 Semiconductor Chip 13 Chip Connection Resin (Underfill)
21, 22 Signal electrodes 41, 42 Ground electrodes

Claims (16)

金属導体からなる導電ワイヤー、該導電ワイヤーの周面を被覆する絶縁層、及び該絶縁層の外周面を被覆する金属導体層からなる微細同軸ワイヤーであって、上記絶縁層が電着法により形成されてなることを特徴とする微細同軸ワイヤー。   A fine coaxial wire comprising a conductive wire made of a metal conductor, an insulating layer covering the peripheral surface of the conductive wire, and a metal conductor layer covering the outer peripheral surface of the insulating layer, wherein the insulating layer is formed by an electrodeposition method A fine coaxial wire characterized by being made. 上記導電ワイヤーを構成する金属導体が金であることを特徴とする請求項1記載の微細同軸ワイヤー。   The fine coaxial wire according to claim 1, wherein the metal conductor constituting the conductive wire is gold. 上記絶縁層が電着ポリイミドで形成されていることを特徴とする請求項1又は2記載の微細同軸ワイヤー。   3. The fine coaxial wire according to claim 1, wherein the insulating layer is made of electrodeposited polyimide. 上記導電ワイヤーの径が5〜50μmであることを特徴とする請求項1乃至3のいずれか1項記載の微細同軸ワイヤー。   The diameter of the said conductive wire is 5-50 micrometers, The fine coaxial wire of any one of Claim 1 thru | or 3 characterized by the above-mentioned. 特性インピーダンスが10〜300Ωであることを特徴とする請求項1乃至4のいずれか1項記載の微細同軸ワイヤー。   5. The fine coaxial wire according to claim 1, wherein the characteristic impedance is 10 to 300Ω. 特性インピーダンスが40〜60Ωであることを特徴とする請求項1乃至4のいずれか1項記載の微細同軸ワイヤー。   5. The fine coaxial wire according to claim 1, wherein the characteristic impedance is 40 to 60Ω. 金属導体からなる導電ワイヤーの周面上に電着法により絶縁層を形成し、更に、該絶縁層の外周面上に湿式又は乾式めっき法により金属導体層を形成することを特徴とする請求項1記載の微細同軸ワイヤーの製造方法。   An insulating layer is formed by an electrodeposition method on a peripheral surface of a conductive wire made of a metal conductor, and further a metal conductor layer is formed on the outer peripheral surface of the insulating layer by a wet or dry plating method. A method for producing a fine coaxial wire according to 1. 上記導電ワイヤーを構成する金属導体が金であることを特徴とする請求項7記載の微細同軸ワイヤーの製造方法。   8. The method of manufacturing a fine coaxial wire according to claim 7, wherein the metal conductor constituting the conductive wire is gold. 上記絶縁層として電着ポリイミドを形成することを特徴とする請求項7又は8記載の微細同軸ワイヤーの製造方法。   9. The method for producing a fine coaxial wire according to claim 7, wherein electrodeposited polyimide is formed as the insulating layer. 上記金属導体層の一部又は全部を、無電解めっき法にて形成することを特徴とする請求項7乃至9のいずれか1項記載の微細同軸ワイヤーの製造方法。   The method for producing a fine coaxial wire according to any one of claims 7 to 9, wherein a part or all of the metal conductor layer is formed by an electroless plating method. 上記導電ワイヤーの径が5〜50μmであることを特徴とする請求項7乃至10のいずれか1項記載の微細同軸ワイヤーの製造方法。   The diameter of the said conductive wire is 5-50 micrometers, The manufacturing method of the fine coaxial wire of any one of Claims 7 thru | or 10 characterized by the above-mentioned. 微細同軸ワイヤーの特性インピーダンスが10〜300Ωであることを特徴とする請求項7乃至11のいずれか1項記載の微細同軸ワイヤーの製造方法。   The method for producing a fine coaxial wire according to any one of claims 7 to 11, wherein the characteristic impedance of the fine coaxial wire is 10 to 300Ω. 微細同軸ワイヤーの特性インピーダンスが40〜60Ωであることを特徴とする請求項7乃至11のいずれか1項記載の微細同軸ワイヤーの製造方法。   The method for producing a fine coaxial wire according to any one of claims 7 to 11, wherein the characteristic impedance of the fine coaxial wire is 40 to 60Ω. 上記導電ワイヤーの径に応じて上記絶縁層の厚さを制御して、所定の特性インピーダンスを有する微細同軸ワイヤーを製造することを特徴とする請求項7乃至13のいずれか1項記載の微細同軸ワイヤーの製造方法。   14. The fine coaxial wire according to claim 7, wherein the fine coaxial wire having a predetermined characteristic impedance is manufactured by controlling the thickness of the insulating layer according to the diameter of the conductive wire. Manufacturing method of wire. 請求項1乃至6のいずれか1項記載の微細同軸ワイヤーを電極間の導通配線として用いてなることを特徴とする半導体装置。   A semiconductor device comprising the fine coaxial wire according to claim 1 as a conductive wiring between electrodes. 上記導電ワイヤーを信号電極の導通配線とし、上記金属導体層を接地電極の導通配線として用いてなることを特徴とする請求項15記載の半導体装置。
16. The semiconductor device according to claim 15, wherein the conductive wire is used as a conductive wiring for a signal electrode, and the metal conductor layer is used as a conductive wiring for a ground electrode.
JP2007063103A 2007-03-13 2007-03-13 Fine coaxial wire, its manufacturing method, and semiconductor device Pending JP2008227126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063103A JP2008227126A (en) 2007-03-13 2007-03-13 Fine coaxial wire, its manufacturing method, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063103A JP2008227126A (en) 2007-03-13 2007-03-13 Fine coaxial wire, its manufacturing method, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2008227126A true JP2008227126A (en) 2008-09-25

Family

ID=39845397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063103A Pending JP2008227126A (en) 2007-03-13 2007-03-13 Fine coaxial wire, its manufacturing method, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2008227126A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160029035A (en) * 2013-07-03 2016-03-14 로젠버거 호흐프리쿠벤츠테흐닉 게엠베하 운트 코. 카게 A substrate less die package having wires with dielectric and metal coatings and the method of manufacturing the same
JP2016524338A (en) * 2013-07-03 2016-08-12 ローゼンベルガー ホーフフレクベンツテクニーク ゲーエムベーハー ウント ツェーオー カーゲー Die package with low electromagnetic interference wiring
JP2016526793A (en) * 2013-07-03 2016-09-05 ローゼンベルガー ホーフフレクベンツテクニーク ゲーエムベーハー ウント ツェーオー カーゲー Mixed impedance bond wire bonding and manufacturing method thereof
JP2016526792A (en) * 2013-07-03 2016-09-05 ローゼンベルガー ホーフフレクベンツテクニーク ゲーエムベーハー ウント ツェーオー カーゲー Coated bond wire for die package and method of manufacturing coated bond wire
WO2018067205A1 (en) * 2016-10-04 2018-04-12 The Charles Stark Draper Laboratory, Inc. Method and apparatus for manufacturing a miniature coaxial wire and as well as the connection method of said miniature coaxial wire
WO2019104297A1 (en) * 2017-11-27 2019-05-31 Lewis Peter Houghton Method of micro-coaxial wire bonding and corresponding apparatus
WO2019236551A3 (en) * 2018-06-04 2020-01-16 Meinhold Mitchell W Apparatus and method for wire preparation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267380A (en) * 1991-03-27 1993-10-15 Nippon Steel Corp Bonding thin wire for semiconductor
JPH0766236A (en) * 1993-08-31 1995-03-10 Tanaka Denshi Kogyo Kk Multilayer-coated bonding wire for semiconductor element and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267380A (en) * 1991-03-27 1993-10-15 Nippon Steel Corp Bonding thin wire for semiconductor
JPH0766236A (en) * 1993-08-31 1995-03-10 Tanaka Denshi Kogyo Kk Multilayer-coated bonding wire for semiconductor element and semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160029035A (en) * 2013-07-03 2016-03-14 로젠버거 호흐프리쿠벤츠테흐닉 게엠베하 운트 코. 카게 A substrate less die package having wires with dielectric and metal coatings and the method of manufacturing the same
JP2016524338A (en) * 2013-07-03 2016-08-12 ローゼンベルガー ホーフフレクベンツテクニーク ゲーエムベーハー ウント ツェーオー カーゲー Die package with low electromagnetic interference wiring
JP2016526793A (en) * 2013-07-03 2016-09-05 ローゼンベルガー ホーフフレクベンツテクニーク ゲーエムベーハー ウント ツェーオー カーゲー Mixed impedance bond wire bonding and manufacturing method thereof
JP2016526792A (en) * 2013-07-03 2016-09-05 ローゼンベルガー ホーフフレクベンツテクニーク ゲーエムベーハー ウント ツェーオー カーゲー Coated bond wire for die package and method of manufacturing coated bond wire
JP2016531416A (en) * 2013-07-03 2016-10-06 ローゼンベルガー ホーフフレクベンツテクニーク ゲーエムベーハー ウント ツェーオー カーゲー Substrateless die package having wire coated with dielectric and metal and method of manufacturing the same
US9824997B2 (en) 2013-07-03 2017-11-21 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Die package with low electromagnetic interference interconnection
US10340209B2 (en) 2013-07-03 2019-07-02 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Mixed impedance leads for die packages and method of making the same
KR102035777B1 (en) 2013-07-03 2019-10-24 로젠버거 호흐프리쿠벤츠테흐닉 게엠베하 운트 코. 카게 A substrate less die package having wires with dielectric and metal coatings and the method of manufacturing the same
WO2018067205A1 (en) * 2016-10-04 2018-04-12 The Charles Stark Draper Laboratory, Inc. Method and apparatus for manufacturing a miniature coaxial wire and as well as the connection method of said miniature coaxial wire
WO2019104297A1 (en) * 2017-11-27 2019-05-31 Lewis Peter Houghton Method of micro-coaxial wire bonding and corresponding apparatus
WO2019236551A3 (en) * 2018-06-04 2020-01-16 Meinhold Mitchell W Apparatus and method for wire preparation

Similar Documents

Publication Publication Date Title
JP2008227126A (en) Fine coaxial wire, its manufacturing method, and semiconductor device
JP5971242B2 (en) Method for producing conductive coating film and conductive coating film
CN107073915A (en) Method for manufacturing flexible substrates
CN102666096A (en) Laminated body comprising porous layer and functional laminate using same
TW200904866A (en) Surface processing method of polyimide resin and manufacturing method of metal clad laminated body
TWI458855B (en) Method of forming a conductor layer, method of manufacturing a circuit board, method of manufacturing conductive fine particles, and composition for forming a conductor layer
JP2008227147A (en) Conduction line path structure, its production method, and wiring substrate
US6893681B2 (en) Surface conductive resin, a coaxial cable, a wiring board, and process for manufacturing the same
JP4654647B2 (en) Polyamideimide film with metal for circuit board and method for producing the same
CN105027232B (en) The manufacture method and conductive coating of conductive coating
JP5240812B2 (en) Plating film-polyimide laminate and method for producing the same
JP4998871B2 (en) Electrodeposited polyimide thin film and method for forming the same
US7081304B2 (en) Surface conductive resin, process for forming the same and wiring board
TWI449482B (en) Manufacturing method for circuit wiring board
WO2001038086A1 (en) Member having metallic layer, its manufacturing method, and its application
JP5129111B2 (en) LAMINATE MANUFACTURING METHOD AND CIRCUIT WIRING BOARD MANUFACTURING METHOD
JP2007073388A (en) Anisotropic conductive film and its manufacturing method
JP3691952B2 (en) Wiring board and manufacturing method thereof
JP2008050635A (en) Cu-Ni-ORGANIC ELECTRODEPOSITED THIN FILM STACKED STRUCTURE AND METHOD FOR FORMING THE SAME
JP4956702B2 (en) Cu-Ni-organic electrodeposition thin film laminated structure and method for forming the same
JP2008258293A (en) Forming method of patterned conductor layer, manufacturing method of circuit board and circuit board
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JP4204352B2 (en) Wiring formation method using electrolytically deposited organic insulating film
TW499501B (en) Member having metallic layer, its manufacturing method
JP2003105084A (en) Resin with electroconductive surface, manufacturing method therefor and wiring substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703