JP2008215445A - Double tube damper - Google Patents

Double tube damper Download PDF

Info

Publication number
JP2008215445A
JP2008215445A JP2007052122A JP2007052122A JP2008215445A JP 2008215445 A JP2008215445 A JP 2008215445A JP 2007052122 A JP2007052122 A JP 2007052122A JP 2007052122 A JP2007052122 A JP 2007052122A JP 2008215445 A JP2008215445 A JP 2008215445A
Authority
JP
Japan
Prior art keywords
rubber member
power transmission
torque
damper
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007052122A
Other languages
Japanese (ja)
Inventor
Shigeo Kurata
茂雄 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synztec Co Ltd
Original Assignee
Synztec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synztec Co Ltd filed Critical Synztec Co Ltd
Priority to JP2007052122A priority Critical patent/JP2008215445A/en
Publication of JP2008215445A publication Critical patent/JP2008215445A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double tube damper without imparting even driven side rotational failure to the engine side, by smoothly transmitting engine rotation to the driven side without generating vibration and an abnormal sound up to a steady state from starting. <P>SOLUTION: This double tube damper is installed in a power transmission tube 2 of a power transmission mechanism, and slips in the power transmission tube 2 by predetermined torque or more, and is formed by arranging a stopper 7 between an inner cylinder 3 and an outer cylinder 5 by being arranged on the same axis L on the outside from the inside in order of the inner cylinder 3, an inside rubber member 4, the outer cylinder 5 and an outside rubber member 6, and transmits low torque by the inside rubber member 4 until the inner cylinder 3 and the outer cylinder 4 rotate up to a predetermined angle, and transmits steady torque by the outside rubber member 6 after stopping rotation by the stopper 7, by setting a spring characteristic in the torsional direction of the inside rubber member 4 lower than the outside rubber member 6, and prevents even damage of itself without generating the vibration and the abnormal sound in the power transmission of an engine without transmitting large torque by its slip torque or more by slipping in the power transmission tube 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、小型船舶の船外機などの動力伝達機構における動力伝達管内に装着して使用する2重管ダンパーに関するものであって、より詳しくは、内筒、内側ゴム部材、外筒及び外側ゴム部材の順に内側から外側に同じ軸線上に配設し、これら内筒と外筒との間にストッパーを設け、このストッパーにより内筒及び外筒が所定角度以上回転しないようにした2重管ダンパーに関する。   The present invention relates to a double pipe damper that is used by being installed in a power transmission pipe in a power transmission mechanism such as an outboard motor of a small boat. More specifically, the present invention relates to an inner cylinder, an inner rubber member, an outer cylinder, and an outer cylinder. A double pipe which is arranged on the same axis from the inside to the outside in the order of the rubber members, and a stopper is provided between the inner cylinder and the outer cylinder so that the inner cylinder and the outer cylinder do not rotate more than a predetermined angle by the stopper. Regarding dampers.

小型船舶の船外機などの動力伝達機構内にはダンパーが圧入されて装着され、このダンパーは、エンジンのトルクが直接伝わり、そのダンパーの有するねじりバネ成分をプロペラに伝えて、プロペラを回転させて船舶を推進させる。一方、浅瀬などにプロペラが触れて回転障害が起きたとき、ダンパーに設けてあるゴム部材が動力伝達機構内で滑り、エンジンに与えるダメージを軽減する。すなわち、このダンパーのねじりバネ成分の伝達は、図7の特性線Fに示すように、トルクと角度との関係が初期のトルクからスリップトルクTに至るまで、ほぼ直線となる特性を有するのである。このようなダンパーは、図8に示すように、内筒50上にゴム部材51を成形した後一次加硫し、それを外筒52に圧入して、さらに、二次加硫にて接着して製作する。   A damper is press-fitted into a power transmission mechanism such as an outboard motor of a small vessel, and this damper transmits the torque of the engine directly and transmits the torsion spring component of the damper to the propeller to rotate the propeller. To propel the ship. On the other hand, when a propeller touches shallow water and a rotation failure occurs, the rubber member provided in the damper slides in the power transmission mechanism, reducing damage to the engine. That is, the transmission of the torsion spring component of the damper has a characteristic that the relationship between the torque and the angle is substantially linear from the initial torque to the slip torque T as shown by the characteristic line F in FIG. . As shown in FIG. 8, such a damper is formed by first vulcanizing the rubber member 51 on the inner cylinder 50, press-fitting it into the outer cylinder 52, and further bonding by secondary vulcanization. To make.

ところが、上記のダンパーは、エンジンの動力をプロペラに伝えるために、アイドリング状態からギアーを入れたりなどのエンジンのトルク変動の際、ゴム部材51のねじりバネ方向特性が高いから振動や異音が発生し、人に不快感を感じさせる。そこで、このような振動や異音の発生を軽減するものとして、以下のようなダンパーが知られている。
特開2006−183694号公報
However, in order to transmit the engine power to the propeller, the damper described above generates vibrations and noises due to the high torsion spring direction characteristics of the rubber member 51 when the engine torque varies from idling to gearing. And make people feel uncomfortable. Therefore, the following dampers are known as means for reducing the occurrence of such vibration and abnormal noise.
JP 2006-183694 A

この特許文献1のダンパーは、図9に示すように、上部カップリング60、下部カップリング61、ブッシュ62、圧縮コイルバネ63、ねじりバネ64を主要構成要素とし、上部カップリング60にエンジン側ドライブシャフト65をつなげ、下部カップリング61にプロペラ側ドライブシャフト66をつなげている。これにより、エンジンの低回転時の回転変動はねじりバネ64のねじり変形によって吸収され、エンジンの出力トルクが増大すると、ねじりバネ64がさらに大きくねじり変形して、上部カップリング60の突起部67が下部カップリング61の突起部68に当接して、エンジンの高出力トルクはエンジン側ドライブシャフト65からプロペラ側ドライブシャフト66に伝達されて、プロペラの回転変動による船舶の振動、騒音の発生を防止するものである。   As shown in FIG. 9, the damper of Patent Document 1 includes an upper coupling 60, a lower coupling 61, a bush 62, a compression coil spring 63, and a torsion spring 64 as main components, and the upper coupling 60 includes an engine side drive shaft. The propeller side drive shaft 66 is connected to the lower coupling 61. Thereby, the rotational fluctuation at the time of low engine rotation is absorbed by the torsional deformation of the torsion spring 64, and when the output torque of the engine increases, the torsion spring 64 is further torsionally deformed, and the protrusion 67 of the upper coupling 60 Abutting against the protrusion 68 of the lower coupling 61, the high output torque of the engine is transmitted from the engine side drive shaft 65 to the propeller side drive shaft 66 to prevent the vibration and noise of the ship due to the propeller rotation fluctuation. Is.

しかしながら、特許文献1のダンパーは、構造が複雑であり、その上、プロペラ側に回転障害が起きたとき、エンジンのトルクは上部カップリング60の突起部67が下部カップリング61の突起部68に当接して、エンジン側ドライブシャフト65からプロペラ側ドライブシャフト66に伝達している構造であるため、エンジンに与えるダメージを軽減することが出来ないという問題がある。また、他の部位にて対応可能であるとしても、それではさらに構造が複雑となる。   However, the damper of Patent Document 1 has a complicated structure. Moreover, when a rotation failure occurs on the propeller side, the torque of the engine causes the protrusion 67 of the upper coupling 60 to move to the protrusion 68 of the lower coupling 61. There is a problem in that damage to the engine cannot be reduced because the structure is in contact with and transmitted from the engine side drive shaft 65 to the propeller side drive shaft 66. Further, even if other parts can be used, the structure becomes more complicated.

そこで、本発明の目的は、エンジンの回転動力を開始時から定常状態に至るまで、振動や異音を発生させることなくスムーズに従動側に伝達し、且つ従動側に回転障害が生じてもエンジン側に与えるダメージを最小限に留めることができ、しかも構造が単純な2重管ダンパーを提供することにある。   Therefore, an object of the present invention is to transmit the rotational power of the engine smoothly from the start to the steady state without generating vibrations or abnormal noises to the driven side, and even if a rotational failure occurs on the driven side, the engine An object of the present invention is to provide a double pipe damper that can minimize damage to the side and that has a simple structure.

本発明は、上記目的を達成するために提案されたものであって、下記の構成からなることを特徴とするものである。
すなわち、本発明によれば、動力伝達機構における動力伝達管内に装着して、所定トルク以上で動力伝達管内でスリップする2重管ダンパーであって、内筒、内側ゴム部材、外筒及び外側ゴム部材の順に内側から外側に同じ軸線上に配設し、且つ前記内筒と前記外筒との間にストッパーを設けてなり、前記内側ゴム部材のねじり方向バネ特性は前記外側ゴム部材よりも低く設定して、内筒及び外筒のいずれか一方がいずれか他方に対して、前記軸線上で所定角度以上回転した際、前記ストッパーによってその回転を止めるようにしたことを特徴とする2重管ダンパーを提供するものである。
The present invention has been proposed in order to achieve the above object, and is characterized by having the following configuration.
That is, according to the present invention, a double pipe damper that is mounted in a power transmission pipe in a power transmission mechanism and slips in the power transmission pipe at a predetermined torque or more, the inner cylinder, the inner rubber member, the outer cylinder, and the outer rubber The members are arranged on the same axis from the inside to the outside in the order of the members, and a stopper is provided between the inner cylinder and the outer cylinder, and the torsional direction spring characteristic of the inner rubber member is lower than that of the outer rubber member. The double pipe is characterized in that, when either one of the inner cylinder and the outer cylinder rotates more than a predetermined angle on the axis with respect to the other, the rotation is stopped by the stopper. A damper is provided.

また、本発明によれば、前記内側ゴム部材のねじり方向バネ特性は、ゴム硬度及び/またはゴム量により設定する2重管ダンパーを提供するものである。   Further, according to the present invention, a torsion direction spring characteristic of the inner rubber member provides a double pipe damper that is set according to rubber hardness and / or rubber amount.

また、本発明によれば、前記外側ゴム部材のねじり方向バネ特性は、ゴム硬度及び/またはゴム量により設定する2重管ダンパーを提供するものである。   In addition, according to the present invention, there is provided a double pipe damper in which the torsional direction spring characteristic of the outer rubber member is set according to rubber hardness and / or rubber amount.

本発明の2重管ダンパーは、エンジンの回転動力の初期入力時に、ねじり方向バネ特性の低い内側ゴム部材が働き、低トルクを伝達することで対応し、エンジンの入力がその内側ゴム部材の限界に近づくと、ストッパーにより内側ゴム部材のねじりを強制的に止め、ねじり方向バネ特性の高い外側ゴム部材が働き、エンジンの通常入力時におけるトルクを伝達することで対応し、通常入力を大きく越えた大入力時に、動力伝達管内で外側ゴム部材がスリップすることで、それ以上のトルクが伝達されないようにすることで対応する。したがって、エンジンの回転動力を開始時から通常状態に至るまで、振動や異音を発生させることなくスムーズに従動側に伝達し、且つ従動側に回転障害が生じたりして大入力があっても、スリップしてエンジン側並びに従動側に対してもダメージを最小限にくい止め、且つ2重管ダンパー自体の損傷も防ぐことができるという効果が得られる。   The double pipe damper according to the present invention responds to the fact that the inner rubber member having a low torsional spring characteristic works and transmits a low torque at the initial input of the rotational power of the engine, and the engine input is limited by the inner rubber member. When approaching, the stopper forcibly stops the torsion of the inner rubber member, the outer rubber member with high torsional spring characteristics works, and it responds by transmitting torque at the normal input of the engine, greatly exceeding the normal input When the input is large, the outer rubber member slips in the power transmission pipe, so that no more torque is transmitted. Therefore, even if there is a large input due to the rotation power of the engine being smoothly transmitted to the driven side without generating vibration or abnormal noise from the start to the normal state and the rotation side is obstructed. Thus, it is possible to obtain an effect that it is possible to prevent damage to the engine side and the driven side by slipping, and to prevent damage to the double pipe damper itself.

また、本発明の2重管ダンパーは、内側ゴム部材のねじり方向バネ特性は、状況に応じてゴム硬度及び/またはゴム量を変えることで設定するために、上記効果に加えて、ゴム硬度及び/またはゴム量により、必要とする内側ゴム部材のねじり方向バネ特性を自在に得ることができる。   In addition, in the double pipe damper of the present invention, in addition to the above effects, the torsion direction spring characteristics of the inner rubber member are set by changing the rubber hardness and / or the rubber amount according to the situation. Depending on the amount of rubber, the required torsional spring characteristics of the inner rubber member can be freely obtained.

さらに、本発明の2重管ダンパーは、外側ゴム部材のねじり方向バネ特性が、状況に応じてゴム硬度及び/またはゴム量を変えることで任意に設定することができるため、上記効果に加えて、ゴム硬度及び/またはゴム量により、必要とする外側ゴム部材のねじり方向バネ特性を自在に得ることができる。また、ゴム硬度及び/またはゴム量を変えることによりスリップトルクを任意に設定することもできる。   Furthermore, in the double pipe damper of the present invention, the torsion direction spring characteristics of the outer rubber member can be arbitrarily set by changing the rubber hardness and / or the rubber amount according to the situation. Depending on the rubber hardness and / or the amount of rubber, the required torsional spring characteristics of the outer rubber member can be freely obtained. Further, the slip torque can be arbitrarily set by changing the rubber hardness and / or the rubber amount.

以下に、図面を参照して本発明を実施するための最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の実施形態の2重管ダンパーを示す斜視図、図2はストッパー側から見た2重管ダンパーの側面図、図3は図2のII−II線に沿う断面図、図4は反ストッパー側から見た2重管ダンパーの側面図である。
図面において、2重管ダンパー1は、動力伝達機構における動力伝達管2内に圧入し装
着して、所定トルク以上で動力伝達管2内でスリップするものである。この2重管ダンパー1は、内筒3、内側ゴム部材4、外筒5及び外側ゴム部材6の順に内側から外側に同じ軸線L上に配設し、且つ内筒3と外筒5との間にストッパー7を設けてなり、内側ゴム部材4のねじり方向バネ特性は外側ゴム部材6よりも低く設定して、内筒3及び外筒4のいずれか一方がいずれか他方に対して、軸線L上で所定角度以上回転した際、ストッパー7によってその回転を止めるようにしたものである。
1 is a perspective view showing a double pipe damper according to an embodiment of the present invention, FIG. 2 is a side view of the double pipe damper viewed from the stopper side, and FIG. 3 is a cross-sectional view taken along line II-II in FIG. 4 is a side view of the double-tube damper as seen from the side opposite to the stopper.
In the drawing, a double pipe damper 1 is press-fitted into and mounted in a power transmission pipe 2 in a power transmission mechanism, and slips in the power transmission pipe 2 at a predetermined torque or more. The double pipe damper 1 is disposed on the same axis L from the inner side to the outer side in the order of the inner cylinder 3, the inner rubber member 4, the outer cylinder 5 and the outer rubber member 6. A stopper 7 is provided between the inner rubber member 4 and the torsional direction spring characteristic of the inner rubber member 4 is set lower than that of the outer rubber member 6. When rotating on L by a predetermined angle or more, the rotation is stopped by the stopper 7.

前記内筒3は、一端に鍔10がついている円筒体であり、比較的厚肉のアルミダイキャスト、真鍮、鉄などの金属により構成されており、前記外筒5は、比較的薄肉の金属により構成され、円筒体を成している。そして、これら内筒3及び外筒5の間には、ストッパー7が設けられ、このストッパー7は、内筒3の鍔10を切り欠くことで形成した軸線L上で90度ずつずれた4本の内歯11と、外筒5の一端から軸線L上で90度ずつずらし延出させて形成した4本の外歯12と、で構成する。これら内歯11と外歯12との間は、前記軸線Lを中心として回転方向に20度ずつ離れている。したがって、内筒3及び外筒5がどちらの方向に回転しても、20度回転すると内歯11と外歯12とが当接し、すなわち、ストッパー7が作用してそれ以上内筒3及び外筒5が回転することはない。なお、ストッパー7は20度で作用するようにしたが特に限定はなく、内側ゴム部材4のねじり方向バネ特性に応じて、ストッパー7の作用角度を設定することが出来る。   The inner cylinder 3 is a cylindrical body with a flange 10 at one end and is made of a relatively thick metal such as aluminum die-cast, brass, or iron, and the outer cylinder 5 is a relatively thin metal. And is a cylindrical body. A stopper 7 is provided between the inner cylinder 3 and the outer cylinder 5, and these stoppers 7 are shifted by 90 degrees on the axis L formed by cutting out the flange 10 of the inner cylinder 3. The inner teeth 11 and the four outer teeth 12 formed by shifting from one end of the outer cylinder 5 on the axis L by 90 degrees and extending. The inner teeth 11 and the outer teeth 12 are separated from each other by 20 degrees in the rotation direction around the axis L. Therefore, no matter which direction the inner cylinder 3 and the outer cylinder 5 rotate, the inner teeth 11 and the outer teeth 12 come into contact with each other when the inner cylinder 3 and the outer cylinder 5 rotate by 20 degrees. The cylinder 5 does not rotate. Although the stopper 7 acts at 20 degrees, there is no particular limitation, and the working angle of the stopper 7 can be set according to the torsion direction spring characteristics of the inner rubber member 4.

前記内側ゴム部材4は、上記の内筒3及び外筒5の間に介在するものであり、リング状に3つに分かれているが、構成は特にこれに限定されるものではない。内側ゴム部材4のねじり方向バネ特性f1は、外側ゴム部材6のねじり方向バネ特性f2よりも低く(図7参照)、且つそのねじり角度が20度になっても破断しないことが条件となる。そして、この内側ゴム部材4のねじり方向バネ特性は、そのゴム硬度及び/またはゴム量により設定されるが、ゴム硬度が主体的に働き、それを補うものとして、厚みや長さにより決定されるゴム量がある。内側ゴム部材4は、その硬度がJIS A 40度ないし70度の範囲を確保でき、例えば50度近辺のものであり、20度ねじれても破断しない材質のものである。その具体的な材質は、NR(ネオプレンゴム)、SBR(スチレン−ブタジエンゴム)、NBR(ニトリルゴム)、NR+SBRのブレンド品が主に使用される。他のゴム材質であっても、その硬度がJIS A 40度ないし70度の範囲を確保でき、且つ20度ねじれても破断しないものであれば、内側ゴム部材4として採用できる。   The inner rubber member 4 is interposed between the inner cylinder 3 and the outer cylinder 5 and is divided into three rings, but the configuration is not particularly limited thereto. The torsional direction spring characteristic f1 of the inner rubber member 4 is lower than the torsional direction spring characteristic f2 of the outer rubber member 6 (see FIG. 7), and it is a condition that the inner rubber member 4 does not break even when the torsion angle becomes 20 degrees. The torsional direction spring characteristics of the inner rubber member 4 are set by the rubber hardness and / or the rubber amount, but the rubber hardness mainly works and is determined by the thickness and length as a supplement. There is a rubber amount. The inner rubber member 4 can secure a hardness in the range of 40 degrees to 70 degrees according to JIS A, for example, near 50 degrees, and is made of a material that does not break even when twisted by 20 degrees. As the specific material, NR (neoprene rubber), SBR (styrene-butadiene rubber), NBR (nitrile rubber), and a blend of NR + SBR are mainly used. Any other rubber material can be used as the inner rubber member 4 as long as the hardness is in the range of JIS A 40 degrees to 70 degrees and does not break even if twisted by 20 degrees.

そして、この内側ゴム部材4は、エンジンの回転動力の初期入力時に、その低いねじり方向バネ特性を発揮して、低トルクにして振動や異音を発生させないでスムーズに従動側に伝達するものである。そのエンジンの入力が内側ゴム部材4の強度の限界に近づくと、内側ゴム部材4はストッパー7によりそのねじりを強制的に止められるから、破断などの損傷が発生しない。   The inner rubber member 4 exhibits its low torsional spring characteristics when the rotational power of the engine is initially input, and smoothly transmits the torque to the driven side without generating vibration or noise. is there. When the input of the engine approaches the limit of the strength of the inner rubber member 4, the inner rubber member 4 is forcibly stopped by the stopper 7, so that damage such as breakage does not occur.

前記外側ゴム部材6は、上記の外筒5の外周面に貼られているものであり、上述の動力伝達機構における動力伝達管2内に、完成品である2重管ダンパー1が圧入により装着されることで、その機能を果たすものである。すなわち、内側ゴム部材4がねじり方向に20度回転した後、ストッパー7が作用して、内側ゴム部材4のねじり方向バネが止まった後、外側ゴム部材6がねじり方向にさらに所定角度、例えば、20度まで回転するのを担当し、エンジンの通常入力時に、そのねじり方向バネ特性f2を発揮して、そのトルクを振動や異音を発生させないでスムーズに従動側に伝達し続けるものである。その限界を越える大入力になると、外側ゴム部材6は動力伝達管2内を滑り(スリップトルクT)、それ以上のトルクがかからず、エンジン側並びに従動側に対してもダメージを最小限にくい止めることができ、且つ外側ゴム部材6自体、ひいては2重管ダンパー1の破断などの損傷も防ぐことができる。   The outer rubber member 6 is affixed to the outer peripheral surface of the outer cylinder 5, and a double pipe damper 1 as a finished product is fitted into the power transmission pipe 2 of the power transmission mechanism by press fitting. By doing so, it fulfills its function. That is, after the inner rubber member 4 is rotated 20 degrees in the twisting direction, the stopper 7 is actuated and the torsional spring of the inner rubber member 4 is stopped, and then the outer rubber member 6 is further rotated by a predetermined angle in the twisting direction, for example, It takes charge of rotating up to 20 degrees, exhibits its torsional spring characteristics f2 during normal input of the engine, and continues to smoothly transmit the torque to the driven side without generating vibration or abnormal noise. When the input exceeds the limit, the outer rubber member 6 slides in the power transmission pipe 2 (slip torque T), and no more torque is applied, minimizing damage to the engine side and the driven side. In addition, the outer rubber member 6 itself and thus the double pipe damper 1 can be prevented from being damaged.

この外側ゴム部材6は、そのねじり方向バネ特性が内側ゴム部材4よりも高く、ねじり角度が、例えば、20度になっても破断しないことが条件となる。その具体的な材質は、前記内側ゴム部材4と同じであるが、その硬度がJIS A 60度ないし80度の範囲を確保できる、例えば75度近辺のもので、20度ねじれても破断しないものであれば、外側ゴム部材6として採用できる。   The outer rubber member 6 has a condition that its torsion direction spring characteristic is higher than that of the inner rubber member 4 and does not break even when the torsion angle becomes 20 degrees, for example. The specific material is the same as that of the inner rubber member 4, but the hardness can be secured within the range of 60 degrees to 80 degrees according to JIS A, for example, around 75 degrees and does not break even when twisted by 20 degrees. If so, the outer rubber member 6 can be employed.

上記のような2重管ダンパー1は、以下のようにして製作される。
まず、内筒3は真鍮製で、内側ゴム部材4はNR(ネオプレンゴム)+SBR(スチレン−ブタジエンゴム)のブレンド品で、ゴム硬度がJIS A 50度のゴム素材を使用し、外筒5も真鍮製を用い、外側ゴム部材6は内側ゴム部材4と同じブレンド品で、ゴム硬度がJIS A 75度である。
内筒3の外周面上に内側ゴム部材4を成形した後一次加硫する(図5、6参照)。次に外筒5の外周面上に外側ゴム部材6を成形した後一次加硫する。そして、外側ゴム部材6を一次加硫後の外筒5に、内側ゴム部材4を一次加硫後の内筒3を圧入し、さらに、これらを二次加硫にて接着して製作する。
The double pipe damper 1 as described above is manufactured as follows.
First, the inner cylinder 3 is made of brass, the inner rubber member 4 is a blended product of NR (neoprene rubber) + SBR (styrene-butadiene rubber), and a rubber material having a rubber hardness of JIS A 50 degrees is used. The outer rubber member 6 is made of brass, and the outer rubber member 6 is the same blend as the inner rubber member 4 and has a rubber hardness of JIS A 75 degrees.
After the inner rubber member 4 is molded on the outer peripheral surface of the inner cylinder 3, primary vulcanization is performed (see FIGS. 5 and 6). Next, the outer rubber member 6 is molded on the outer peripheral surface of the outer cylinder 5 and then primary vulcanized. Then, the outer rubber member 6 is press-fitted into the outer cylinder 5 after the primary vulcanization, the inner rubber member 4 is press-fitted into the inner cylinder 3 after the primary vulcanization, and these are further bonded by secondary vulcanization.

次に、上記構成になる2重管ダンパー1の作用について詳述する。
まず、例えば、小型船舶の船外機の機動力伝達機構における動力伝達管2内に装着可能な2重管ダンパー1を選択し、この2重管ダンパー1の外側ゴム部材6を動力伝達管2内に圧入すると共に、内筒3内にドライブシャフトを差し込み固着することで、動力伝達機構内に2重管ダンパー1を組み込む。この状態で、船外機のエンジンを駆動させると、機動力伝達機構に入力され、その際2重管ダンパー1のねじり方向バネ特性f1の低い内側ゴム部材3が対応して低トルクがプロペラに伝達される。その後、内側ゴム部材3のねじり方向角度の限界に近づくと、例えば20度を超えると、ストッパー7の内歯11と外歯12とが当接し、内側ゴム部材3のねじり回転を強制的に止め、通常入力時に入って外側ゴム部材6が働き(f2)対応して、定常トルクがプロペラに伝達され、小型船舶は推進することになる。
Next, the operation of the double pipe damper 1 having the above configuration will be described in detail.
First, for example, a double pipe damper 1 that can be mounted in the power transmission pipe 2 in the power transmission mechanism of the outboard motor of a small boat is selected, and the outer rubber member 6 of the double pipe damper 1 is connected to the power transmission pipe 2. The double pipe damper 1 is incorporated into the power transmission mechanism by press-fitting into the inner cylinder 3 and inserting and fixing the drive shaft into the inner cylinder 3. In this state, when the engine of the outboard motor is driven, it is input to the power transmission mechanism, and at this time, the inner rubber member 3 having a low torsional spring characteristic f1 of the double pipe damper 1 corresponds to the low torque. Communicated. Thereafter, when approaching the limit of the angle in the twist direction of the inner rubber member 3, for example, when it exceeds 20 degrees, the inner teeth 11 and the outer teeth 12 of the stopper 7 come into contact with each other, and the torsional rotation of the inner rubber member 3 is forcibly stopped. When the normal input is entered, the outer rubber member 6 works (f2), the steady torque is transmitted to the propeller, and the small vessel is propelled.

小型船舶が推進して、例えば浅瀬などに乗り上げ、従動側のプロペラが回転しなくなることで大トルクが生じたとき、動力伝達管2内で外側ゴム部材6がスリップして、このスリップトルクT以上のトルクが伝達されることはない。したがって、エンジンの回転動力を開始時から定常状態に至るまで、振動や異音を発生させることなくスムーズに従動側に伝達し、且つ従動側に回転障害が生じたりして大トルクが発生しても、スリップトルクT以上のトルクがエンジン側並びに従動側に伝達されることがなく、ダメージを最小限にくい止め且つ2重管ダンパー1自体の損傷も防ぐことができる。   When a small vessel is propelled and rides on, for example, shallow water, and the driven propeller stops rotating, and a large torque is generated, the outer rubber member 6 slips in the power transmission pipe 2 and exceeds the slip torque T. The torque is not transmitted. Therefore, from the start to the steady state, the rotational power of the engine is transmitted smoothly to the driven side without generating vibrations or abnormal noise, and a rotational failure occurs on the driven side, generating a large torque. However, torque greater than the slip torque T is not transmitted to the engine side and the driven side, damage can be kept to a minimum and damage to the double-tube damper 1 itself can be prevented.

以上、本発明の実施例1を説明したが、具体的な構成はこれに限定されず、本発明の要旨を逸脱しない範囲での変更は、適宜可能であると理解されるべきである。   Although the first embodiment of the present invention has been described above, the specific configuration is not limited to this, and it should be understood that modifications within the scope of the present invention can be made as appropriate.

本発明の2重管ダンパーは、回転方向のトルクを多段階で調整できて、エンジンの回転動力を開始時から定常状態に至るまで、振動や異音を発生させることなくスムーズに従動側に伝達し、且つ従動側に回転障害が生じてもエンジン側に与えるダメージを最小限に留めたいような場合に、極めて高い利用価値がある。   The double pipe damper of the present invention can adjust the torque in the rotational direction in multiple stages, and transmits the rotational power of the engine smoothly from the start to the steady state without generating vibration or abnormal noise. In addition, even when a rotation failure occurs on the driven side, it is extremely useful when it is desired to keep the damage to the engine side to a minimum.

本発明の実施例1に示した実施形態の2重管ダンパーを示す斜視図である。It is a perspective view which shows the double pipe | tube damper of embodiment shown in Example 1 of this invention. 実施例1に示したストッパー側から見た2重管ダンパーの側面図である。2 is a side view of a double pipe damper as viewed from the stopper side shown in Example 1. FIG. 図2のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line of FIG. 実施例1の反ストッパー側から見た2重管ダンパーの側面図である。It is a side view of the double pipe damper seen from the non-stopper side of Example 1. 実施例1の2重管ダンパーの内筒をストッパー側から見た側面図である。It is the side view which looked at the inner cylinder of the double pipe damper of Example 1 from the stopper side. 図5のVI−VI線に沿う断面図である。It is sectional drawing which follows the VI-VI line of FIG. ダンパーのねじり方向のトルクと角度との特性図である。It is a characteristic figure of the torque and angle of a twist direction of a damper. ダンパーの従来例を示す半裁断面図である。It is a half-cut sectional view showing a conventional example of a damper. ダンパーの従来例を示す斜視図である。It is a perspective view which shows the prior art example of a damper.

符号の説明Explanation of symbols

1 2重管ダンパー
2 動力伝達管
3,50 内筒
4 内側ゴム部材
5,52 外筒
6 外側ゴム部材
7 ストッパー
10 鍔
11 内歯
12 外歯
51 ゴム部材
60 上部カップリング
61 下部カップリング
62 ブッシュ
63 圧縮コイルバネ
64 ねじりバネ
65 エンジン側ドライブシャフト
66 プロペラ側ドライブシャフト
67,68 突起部
F 特性線
f1 内側ゴム部材のねじり方向バネ特性
f2 外側ゴム部材のねじり方向バネ特性
L 軸線
T スリップトルク
DESCRIPTION OF SYMBOLS 1 Double pipe damper 2 Power transmission pipe 3,50 Inner cylinder 4 Inner rubber member 5,52 Outer cylinder 6 Outer rubber member 7 Stopper 10 鍔 11 Inner tooth 12 Outer tooth 51 Rubber member 60 Upper coupling 61 Lower coupling 62 Bush 63 Compression coil spring 64 Torsion spring 65 Engine side drive shaft 66 Propeller side drive shaft 67, 68 Protrusion F Characteristic line f1 Torsion direction spring characteristic of inner rubber member f2 Torsion direction spring characteristic of outer rubber member L Axis line T Slip torque

Claims (3)

動力伝達機構における動力伝達管内に装着して、所定トルク以上で動力伝達管内でスリップする2重管ダンパーであって、内筒、内側ゴム部材、外筒及び外側ゴム部材の順に内側から外側に同じ軸線上に配設し、且つ前記内筒と前記外筒との間にストッパーを設けてなり、前記内側ゴム部材のねじり方向バネ特性は前記外側ゴム部材よりも低く設定して、内筒及び外筒のいずれか一方がいずれか他方に対して、前記軸線上で所定角度以上回転した際、前記ストッパーによってその回転を止めるようにしたことを特徴とする2重管ダンパー。   A double-tube damper that is mounted in a power transmission pipe in a power transmission mechanism and slips in the power transmission pipe at a predetermined torque or more, and is the same from the inside to the outside in the order of the inner cylinder, the inner rubber member, the outer cylinder, and the outer rubber member. A stopper is provided between the inner cylinder and the outer cylinder, and the torsion direction spring characteristic of the inner rubber member is set lower than that of the outer rubber member so that the inner cylinder and the outer cylinder are arranged. A double-tube damper characterized in that when one of the cylinders rotates more than a predetermined angle on the axis with respect to the other, the rotation is stopped by the stopper. 前記内側ゴム部材のねじり方向バネ特性は、ゴム硬度及び/またはゴム量により設定する請求項1記載の2重管ダンパー。   The double pipe damper according to claim 1, wherein the torsional direction spring characteristic of the inner rubber member is set by rubber hardness and / or rubber amount. 前記外側ゴム部材のねじり方向バネ特性は、ゴム硬度及び/またはゴム量により設定する請求項1または2記載の2重管ダンパー。   The double pipe damper according to claim 1 or 2, wherein the torsion direction spring characteristic of the outer rubber member is set according to rubber hardness and / or rubber amount.
JP2007052122A 2007-03-02 2007-03-02 Double tube damper Withdrawn JP2008215445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052122A JP2008215445A (en) 2007-03-02 2007-03-02 Double tube damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052122A JP2008215445A (en) 2007-03-02 2007-03-02 Double tube damper

Publications (1)

Publication Number Publication Date
JP2008215445A true JP2008215445A (en) 2008-09-18

Family

ID=39835727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052122A Withdrawn JP2008215445A (en) 2007-03-02 2007-03-02 Double tube damper

Country Status (1)

Country Link
JP (1) JP2008215445A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122519A (en) * 2010-12-07 2012-06-28 Nok Corp Vibration control bush for rotary shaft and method of manufacturing the same
US20120247896A1 (en) * 2011-03-29 2012-10-04 GM Global Technology Operations LLC Sleeve damper assembly
JP2015124858A (en) * 2013-12-27 2015-07-06 Nok株式会社 Damper for propeller shaft
JP2015169324A (en) * 2014-03-11 2015-09-28 Nok株式会社 power transmission coupling
CN110904744A (en) * 2019-11-22 2020-03-24 华东交通大学 Vibration absorption system for improving steel rail and method for improving vibration absorption performance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122519A (en) * 2010-12-07 2012-06-28 Nok Corp Vibration control bush for rotary shaft and method of manufacturing the same
US20120247896A1 (en) * 2011-03-29 2012-10-04 GM Global Technology Operations LLC Sleeve damper assembly
US8701848B2 (en) * 2011-03-29 2014-04-22 Gm Global Technology Operations Sleeve damper assembly
JP2015124858A (en) * 2013-12-27 2015-07-06 Nok株式会社 Damper for propeller shaft
JP2015169324A (en) * 2014-03-11 2015-09-28 Nok株式会社 power transmission coupling
CN110904744A (en) * 2019-11-22 2020-03-24 华东交通大学 Vibration absorption system for improving steel rail and method for improving vibration absorption performance

Similar Documents

Publication Publication Date Title
US8342058B2 (en) Recessed belt damper
US6478543B1 (en) Torque transmitting device for mounting a propeller to a propeller shaft of a marine propulsion system
US8419489B2 (en) Propeller unit for marine vessel propulsion device and marine vessel propulsion device including the same
JP2008215445A (en) Double tube damper
US10066727B2 (en) Uncoupling pulley with offset clutch
JP2018135934A (en) Friction damper
EP2683962A1 (en) Friction clutch plate with damping springs
JP2007069738A (en) Propeller buffer device for vessel propulsive machine
US11326648B2 (en) Belt pulley decoupler
JP2018105497A (en) Pulley with isolation
JP2008019959A (en) Spring clutch
JP5800131B2 (en) Torque fluctuation absorbing damper
JP2007182981A (en) Marine elastic coupling
US20080152511A1 (en) Power transmission device of a compressor
WO2019046957A1 (en) Single spring, torsionally compliant, overruning decoupler
JP2019065904A (en) Pulley with isolation
KR20180022798A (en) Rotation fluctuation absorption damper
JP2013117271A (en) Sliding spline shaft device
JP5696833B2 (en) Anti-vibration bush for rotating shaft
JP2017155804A (en) Pulley unit
JP2006292042A (en) Power transmission device
JP2015169296A (en) fluid coupling
JP2009107415A (en) Propeller shaft
JP2007120544A (en) Drive shaft
JP2009275765A (en) Planetary differential type motion conversion mechanism and power device equipped with same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511