JP2008211098A - Vacuum suction apparatus, manufacturing method thereof and method of sucking object to be sucked - Google Patents

Vacuum suction apparatus, manufacturing method thereof and method of sucking object to be sucked Download PDF

Info

Publication number
JP2008211098A
JP2008211098A JP2007048115A JP2007048115A JP2008211098A JP 2008211098 A JP2008211098 A JP 2008211098A JP 2007048115 A JP2007048115 A JP 2007048115A JP 2007048115 A JP2007048115 A JP 2007048115A JP 2008211098 A JP2008211098 A JP 2008211098A
Authority
JP
Japan
Prior art keywords
vacuum suction
mounting
ceramic
annular
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007048115A
Other languages
Japanese (ja)
Other versions
JP4666656B2 (en
Inventor
Motohiro Umetsu
基宏 梅津
Shinya Sato
伸也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007048115A priority Critical patent/JP4666656B2/en
Publication of JP2008211098A publication Critical patent/JP2008211098A/en
Application granted granted Critical
Publication of JP4666656B2 publication Critical patent/JP4666656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum suction apparatus capable of reducing step difference of a portion where the external circumferential end of a wafer is placed, placing the wafer with a sufficient suction force in carrying or processing the wafer, and being used for a long time. <P>SOLUTION: The vacuum suction apparatus is provided with: a supporting portion 1 made of dense ceramic; a placing section 2 made of a ceramic/glass composite material integrally bonded to the supporting portion 1 without substantially causing gap; and a circular coating portion 3 provided on the surface of the external circumferential portion of the placing portion 2 and made of frame-sprayed ceramic of porous rate 3-10%. In the vacuum suction apparatus, the frame-sprayed ceramic of the circular coating portion 3 enters into the pores of the placing portion 2 so as to exhibit an anchor effect. The depth of the placing portion 2 of the frame-sprayed ceramic into the pores is 50 μm or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体ウエハやガラス基板等の被吸着物を搬送、加工、検査等するときに使用される真空吸着装置に関するものである。 The present invention relates to a vacuum suction device used when transporting, processing, inspecting or the like an object to be adsorbed such as a semiconductor wafer or a glass substrate.

半導体装置の製造工程においては、半導体ウエハを搬送、加工、検査する場合に、真空圧を利用した真空吸着装置が一般的に用いられている。なかでも、多孔質材からなる載置部の載置面にウエハを真空吸着する真空チャックが多く用いられてきた。
このような半導体ウエハの真空吸着装置では、載置面の平坦度を高める必要があるため、ダイヤモンド砥石等による載置面の平面研削加工が行われる。しかしながら載置部を構成する多孔質体と支持部を構成する緻密質体とは強度および硬度が異なるため、載置部上面の研削加工の際に載置部と、その外周を取り囲む支持部との接合部に段差が生じていた。このような段差があると、載置面の平坦度が得られないだけでなく、ウエハを載置したときにウエハの外周端部が位置する段差付近から吸気漏れが生じやすくなる。このため、均一な吸着が難しくなり、さらには吸着力が発現しない場合があった。その結果、被吸着物である半導体ウエハの搬送時にウエハが脱落したり、ウエハを載置面に載置して平坦化加工する際に十分な加工精度が得られなかったりする問題があった。
In the manufacturing process of a semiconductor device, a vacuum suction device using a vacuum pressure is generally used when a semiconductor wafer is transported, processed, or inspected. In particular, a vacuum chuck that vacuum-sucks a wafer on a mounting surface of a mounting portion made of a porous material has been used.
In such a semiconductor wafer vacuum suction apparatus, since it is necessary to increase the flatness of the mounting surface, surface grinding of the mounting surface with a diamond grindstone or the like is performed. However, since the porous body constituting the placement portion and the dense body constituting the support portion are different in strength and hardness, the placement portion and the support portion surrounding the outer periphery thereof when grinding the upper surface of the placement portion, There was a step at the joint. If there is such a step, not only the flatness of the mounting surface cannot be obtained, but also intake air leakage is likely to occur from the vicinity of the step where the outer peripheral edge of the wafer is positioned when the wafer is mounted. For this reason, uniform adsorption becomes difficult, and further, the adsorption force may not be expressed. As a result, there has been a problem that the wafer is dropped when the semiconductor wafer as the object to be adsorbed is transferred, or sufficient processing accuracy cannot be obtained when the wafer is mounted on the mounting surface and flattened.

一方、支持部と載置部との接合部の段差を避けて、載置部の外径をウエハの外径よりも大きくし、ウエハの外周端部を支持部ではなく、載置部に載せて吸着する方法も検討された。しかし、載置部表面の露出部から吸気漏れがあるため十分な吸着力が発現しなかったり、研削液が載置部内に侵入し、載置部を汚染して目詰まりを起こし吸着力を低下したりする問題があった。 On the other hand, the outer diameter of the mounting portion is made larger than the outer diameter of the wafer while avoiding the step at the joint between the supporting portion and the mounting portion, and the outer peripheral edge of the wafer is placed on the mounting portion instead of the supporting portion. The adsorption method was also studied. However, there is an intake air leak from the exposed part of the surface of the mounting part, so that sufficient adsorption power does not appear, or grinding liquid enters the mounting part, contaminates the mounting part and causes clogging, reducing the adsorption power There was a problem to do.

そこで、本発明者らは、載置部と支持部との接合部の段差および隙間を無くし、十分な吸着力で均一にウエハを載置でき、ウエハの高平坦化加工を可能とするべく、多孔質体からなる載置部と緻密質体からなる支持部とが実質的に隙間なく一体的に接合されており、支持部上面に載置部側に張り出した庇状薄肉部を有する真空吸着装置を提案した(特許文献1参照)。これは、載置面の加工により生じる段差は載置部の撓み変形によるものと考えられたため、載置部側に張り出した庇状薄肉部を設けることで、緻密質薄肉部が載置部の撓み変形に追従し、載置面における載置部と支持部との接合部の段差の発生を抑制できるというものであった。 Therefore, the present inventors have eliminated the level difference and gap at the joint between the mounting portion and the support portion, and can place the wafer uniformly with sufficient adsorption force, to enable high planarization processing of the wafer. A vacuum suction having a mounting portion made of a porous body and a support portion made of a dense body integrally joined without substantial gap and having a bowl-shaped thin portion projecting toward the mounting portion on the upper surface of the supporting portion. An apparatus was proposed (see Patent Document 1). This is because the level difference caused by the processing of the mounting surface was thought to be due to the bending deformation of the mounting part, so by providing a saddle-shaped thin part projecting to the mounting part side, the dense thin part becomes a part of the mounting part. Following the bending deformation, it was possible to suppress the occurrence of a step at the joint portion between the placement portion and the support portion on the placement surface.

また、本発明者らは、載置部の外周に緻密質快削性セラミックスからなる被吸着物の外周端部を支持する周縁部を設けた真空吸着装置を提案した(特許文献2参照)。これによれば、載置部と周縁部との研削性が近似しているため、載置面を研削したときに、載置部と周縁部との間に段差が小さくなり、ウエハを載置する面の平坦度が高まるので、ウエハの外周端部を周縁部に載せて研削を行えば、ウエハの平坦度が向上する。また、周縁部は緻密質なので、載置部の汚染の問題も解消できる。
特開2005−212000号公報 特開2004−283936号公報
In addition, the present inventors have proposed a vacuum suction device in which a peripheral portion for supporting an outer peripheral end portion of an object to be adsorbed made of dense free-cutting ceramics is provided on the outer periphery of the mounting portion (see Patent Document 2). According to this, since the grindability between the mounting portion and the peripheral portion is approximate, when the mounting surface is ground, the step is reduced between the mounting portion and the peripheral portion, and the wafer is mounted. Since the flatness of the surface to be polished is increased, the flatness of the wafer is improved by grinding with the outer peripheral edge of the wafer placed on the peripheral edge. Further, since the peripheral portion is dense, the problem of contamination of the mounting portion can be solved.
Japanese Patent Laid-Open No. 2005-212000 JP 2004-283936 A

しかしながら、特許文献1に記載の真空吸着装置では、載置面の加工時に研削砥石の押圧による負荷がかかり、載置部および庇状薄肉部の撓み変形が繰り返されることにより、庇状薄肉部が破損したり、載置部との接合部が剥離して隙間が生じたりする問題があった。また、ウエハの吸着、脱離を繰り返したときにも、庇状薄肉部が破損したり、載置部から剥離したりする場合があった。これは真空吸着する際に真空度を高めるとウエハを介して載置面に大気圧がかかり、載置面が押されて凹形状に変形するために起きると考えられる。したがって歩留まりが悪いことに加え、使用中に破損や剥離が起きるおそれがあるため、製品として実用に供することはできなかった。 However, in the vacuum suction device described in Patent Document 1, a load due to the pressing of the grinding wheel is applied during the processing of the mounting surface, and the bending deformation of the mounting portion and the bowl-shaped thin portion is repeated. There was a problem that it was damaged or a joint part with the mounting part peeled off and a gap was generated. In addition, when the wafer is repeatedly adsorbed and desorbed, the bowl-shaped thin portion may be damaged or peeled off from the mounting portion. If the degree of vacuum is increased during vacuum suction, it is considered that atmospheric pressure is applied to the mounting surface through the wafer and the mounting surface is pushed and deformed into a concave shape. Therefore, in addition to the poor yield, there is a risk of breakage or peeling during use, so it could not be put into practical use as a product.

また、上記真空吸着装置は、アルミナ等のセラミックス粉末とガラス粉末を水等の溶媒を加えて混合したスラリーを、支持部に形成された凹部に注型した後、ガラス粉末の軟化点以上の温度で焼成する工程を含む製造方法により得られるものであり、真空吸着装置の載置部は、セラミックス粉末とガラス粉末を含むスラリーを焼成したものから構成されている。このような製法では、庇状薄肉部が支持部の凹部に張り出した構造のため、庇状薄肉部に接する部分へのスラリーの充填が難しく、スラリーの未充填による粗大ポアや隙間が生じる場合があった。載置部の庇状薄肉部に接する部分に粗大ポアや隙間があると、上述したような庇状薄肉部の剥離や破損が生じ易くなる。このような製法上の問題もあり、実用化に至らなかった。 In addition, the vacuum adsorbing device casts a slurry obtained by adding ceramic powder such as alumina and glass powder and adding a solvent such as water into the concave portion formed in the support portion, and then the temperature above the softening point of the glass powder. It is obtained by a manufacturing method including a step of firing at 1. The mounting portion of the vacuum suction device is constituted by firing a slurry containing ceramic powder and glass powder. In such a manufacturing method, because the bowl-shaped thin part protrudes into the concave part of the support part, it is difficult to fill the slurry with the part in contact with the bowl-like thin part, and coarse pores and gaps may occur due to unfilled slurry. there were. If there are coarse pores or gaps in the portion of the mounting portion that contacts the bowl-shaped thin wall portion, peeling or breakage of the bowl-shaped thin wall portion as described above is likely to occur. Due to such problems in the manufacturing method, it has not been put to practical use.

また、特許文献2に記載の真空吸着装置は、ガラス粉末とセラミックス粉末を加熱溶融固化させた緻密質体を周縁部に形成するものであり、熱膨張を完全に一致させることは困難であるため、冷却後の周縁部材に亀裂が生じることが多かった。また、載置部は気孔があるためウエハ真空吸着の際の大気圧やウエハ研削時の研削砥石の押圧によって圧縮変形するが、周縁部は気孔がなく緻密なため変形を起こし難く、載置部と周縁部間で段差が生じることがあった。したがって、特許文献1に記載の真空吸着装置と同様に歩留まりや吸着力の点で問題があった。 In addition, the vacuum suction device described in Patent Document 2 forms a dense body obtained by heating, melting and solidifying glass powder and ceramic powder at the periphery, and it is difficult to make thermal expansion completely coincident with each other. In many cases, the peripheral member after cooling was cracked. In addition, since the mounting part has pores, it is compressed and deformed by atmospheric pressure during wafer vacuum adsorption or by pressing of a grinding wheel during wafer grinding, but the peripheral part has no pores and is not easily deformed. In some cases, a difference in level was produced between the peripheral edge portions. Therefore, similarly to the vacuum suction device described in Patent Document 1, there are problems in terms of yield and suction power.

本発明はこのような事情に鑑みてなされたものであり、ウエハの外周端部が載置される部分の段差を低減し、ウエハの搬送や加工時に十分な吸着力でウエハを載置でき、長期間の使用に供することができる真空吸着装置を提供するものである。 The present invention has been made in view of such circumstances, reducing the level difference of the portion on which the outer peripheral edge of the wafer is placed, and placing the wafer with a sufficient suction force during wafer transfer and processing, A vacuum adsorption device that can be used for a long period of time is provided.

本発明の真空吸着装置は、緻密質セラミックスからなる支持部と、前記支持部と実質的に隙間なく一体的に接合されたセラミックス/ ガラス複合多孔質材からなる載置部と、前記載置部の外周縁部表面に設けられた気孔率3〜10%の溶射セラミックスからなる環状被覆部と、から構成され、前記環状被覆部の溶射セラミックスはアンカー効果を発揮するように載置部の気孔に進入していることを特徴とするものである。 The vacuum suction device of the present invention includes a support portion made of a dense ceramic, a placement portion made of a ceramic / glass composite porous material integrally joined to the support portion substantially without any gap, and the placement portion described above And an annular coating portion made of thermal sprayed ceramic with a porosity of 3 to 10% provided on the outer peripheral surface of the outer circumferential edge of the outer circumferential edge portion, and the thermal spraying ceramic of the annular coating portion is formed in the pores of the mounting portion so as to exert an anchor effect. It is characterized by entering.

本発明によれば、環状被覆部の溶射セラミックスが載置部の気孔に進入した構造となっているため、アンカー効果により載置部と環状被覆部との密着性に優れ、載置面加工時の押圧やウエハ真空吸着時の大気圧によって載置部が撓み変形を繰り返しても環状被覆部が載置部から剥離することはない。また、環状被覆部の剛性および加工性が載置部と近似しているため段差を極めて小さく抑えることができる。さらに、環状被覆部の気孔率を3〜10%とすることで搬送や加工に十分な吸着力でウエハを載置することができる。 According to the present invention, since the thermal sprayed ceramic of the annular covering portion enters the pores of the mounting portion, the adhesion between the mounting portion and the annular covering portion is excellent due to the anchor effect, and the mounting surface is processed. Even if the mounting portion repeatedly bends and deforms due to the pressure or the atmospheric pressure at the time of vacuuming the wafer, the annular covering portion does not peel from the mounting portion. Further, since the rigidity and workability of the annular covering portion are approximate to those of the placing portion, the step can be suppressed to be extremely small. Furthermore, by setting the porosity of the annular covering portion to 3 to 10%, it is possible to place the wafer with an adsorption force sufficient for conveyance and processing.

また、本発明の真空吸着装置において、前記環状被覆部の溶射セラミックスは載置部の気孔に進入しており、その進入深さが50μm以上である。進入深さがこのような範囲内であれば、環状被覆部が剥離することがない。また、ウエハ等の被吸着物の外周端部が前記環状被覆部に位置するように載置されるので、段差による不具合を防ぐことができる。 Moreover, in the vacuum suction device of the present invention, the thermal spray ceramics of the annular covering portion has entered the pores of the mounting portion, and the depth of penetration is 50 μm or more. If the penetration depth is within such a range, the annular covering portion will not peel off. Further, since the outer peripheral end of the object to be adsorbed such as a wafer is placed so as to be positioned on the annular covering portion, it is possible to prevent a problem due to a step.

さらに、本発明の真空吸着装置は、アルミナ粉末または炭化珪素粉末と、ガラス粉末と、水またはアルコールとを加えて混合してスラリーを調整する工程と、前記載置部が形成される支持部の凹部に前記スラリーを充填するスラリー充填工程と、前記凹部にスラリーが充填された支持部をガラスの軟化点以上の温度で焼成する工程と、前記焼成工程によりスラリーを焼成して得られた載置部の少なくとも外周縁部の表面を研削加工して被溶射面を形成する工程と、被溶射面にセラミックスを溶射して環状被覆部を形成する工程と、載置部および環状被覆部の表面を研削加工して載置面を形成する工程と、を含む製造方法により得られる。このような製造方法を用いれば、載置部と支持部とが実質的に隙間なく一体的に接合された構造とすることができる。 Further, the vacuum suction device of the present invention includes a step of adding and mixing alumina powder or silicon carbide powder, glass powder, water or alcohol to adjust slurry, and a support portion on which the mounting portion is formed. A slurry filling step for filling the concave portion with the slurry, a step for firing the support portion filled with the slurry in the concave portion at a temperature equal to or higher than the softening point of the glass, and a mounting obtained by firing the slurry by the firing step. Forming a sprayed surface by grinding the surface of at least the outer peripheral edge of the part, spraying ceramics on the sprayed surface to form an annular covering part, and mounting the surface of the mounting part and the annular covering part. And a step of forming a mounting surface by grinding. If such a manufacturing method is used, it can be set as the structure to which the mounting part and the support part were integrally joined substantially without the clearance gap.

また、本発明は、上述のような真空吸着装置を用いて、被吸着物の外周端部が前記環状被覆部上に位置するように載置する被吸着物の吸着方法を提供するものである。この方法によりウエハの搬送や加工時に吸着不良を起こすことを防ぐことができる。 Moreover, this invention provides the adsorption | suction method of the to-be-adsorbed object mounted so that the outer peripheral edge part of an to-be-adsorbed object may be located on the said cyclic | annular coating | coated part using the above vacuum suction apparatuses. . By this method, it is possible to prevent a suction failure from occurring during wafer conveyance and processing.

本発明によれば、環状被覆部の溶射セラミックスが載置部の気孔に進入した構造となっているためアンカー効果により載置部と環状被覆部との密着性に優れ、載置面加工時の押圧やウエハ真空吸着時の大気圧によって載置部が撓み変形を繰り返しても環状被覆部が載置部から剥離することはない。また、環状被覆部の剛性および加工性が載置部と近似しているため段差を極めて小さく抑えることができる。さらに、環状被覆部の気孔率を3〜10%とすることで搬送や加工に十分な吸着力でウエハを載置でき、長期間の使用に供することができる。 According to the present invention, since the thermal spray ceramics of the annular coating portion has a structure that enters the pores of the mounting portion, the anchoring effect provides excellent adhesion between the mounting portion and the annular coating portion, and during mounting surface processing. Even if the mounting portion is repeatedly bent and deformed by the atmospheric pressure at the time of pressing or wafer vacuum suction, the annular covering portion does not peel from the mounting portion. Further, since the rigidity and workability of the annular covering portion are approximate to those of the placing portion, the step can be suppressed to be extremely small. Furthermore, by setting the porosity of the annular covering portion to 3 to 10%, the wafer can be placed with an adsorption force sufficient for conveyance and processing, and can be used for a long period of time.

以下、図面を参照して、本発明の実施形態について説明する。図1は本発明の一実施形態に係る真空吸着装置の概略構成を示す断面図である。緻密質セラミックスからなる支持部1と、前記支持部と実質的に隙間なく一体的に接合されたセラミックス/ ガラス複合多孔質材からなる載置部2と、前記載置部の外周縁部表面に設けられた気孔率3〜10%の溶射セラミックスからなる環状被覆部3とから構成されている。図2は、本発明の真空吸着装置の平面図およびAA′断面図を示したものである。支持部1には、真空吸着のための吸引孔4および吸引溝5が形成されており、載置部2の気孔に連通する吸引孔4から真空ポンプ等(図示せず)で吸引することでウエハ等の被吸着物を載置面2aに吸着固定することができる。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of a vacuum suction device according to an embodiment of the present invention. A support portion 1 made of a dense ceramic, a placement portion 2 made of a ceramic / glass composite porous material integrally joined to the support portion substantially without any gap, and an outer peripheral edge surface of the placement portion. It is comprised from the cyclic | annular coating | coated part 3 which consists of the sprayed ceramics of the porosity 3-10% provided. FIG. 2 shows a plan view and a cross-sectional view of AA ′ of the vacuum suction device of the present invention. The support part 1 is formed with a suction hole 4 and a suction groove 5 for vacuum suction, and is sucked by a vacuum pump or the like (not shown) from the suction hole 4 communicating with the pores of the mounting part 2. An object to be adsorbed such as a wafer can be adsorbed and fixed on the mounting surface 2a.

ここで「実質的に隙間なく一体的に接合された」とは、載置部2の多孔質構造が支持部1との界面と接するまで連続し、直接に接合された状態をいう。したがって、載置部2の上面(載置面2a側)と吸引溝5の部分を除いた底面と側面は支持部1と密着している。なお、載置部はセラミックスとそれを結合するガラスから構成されており、ガラスはセラミックス粒子同士の結合と同時に支持部との接合に寄与している。 Here, “joined integrally with substantially no gap” means a state in which the porous structure of the mounting portion 2 is continuous and directly joined until it comes into contact with the interface with the support portion 1. Accordingly, the upper surface (the mounting surface 2 a side) of the mounting portion 2 and the bottom and side surfaces excluding the suction groove 5 are in close contact with the support portion 1. The mounting portion is composed of ceramics and glass for bonding the ceramics, and the glass contributes to bonding with the support portion simultaneously with bonding of ceramic particles.

ここで、載置面2aは、載置部2とその周囲の環状被覆部3とを同時に研削加工されることにより形成される。このとき、載置部2と環状被覆部3は同等の研削性を有しているため、載置面2aと環状被覆部3の表面との間で段差は生じない。これは、研削砥石の押圧によって載置部が撓んでも、環状被覆部3の溶射セラミックスが載置部の気孔に進入した構造となっており、載置部2との密着性に優れているので、環状被覆部が撓み変形に追従するためである。また、環状被覆部3は3〜10%の適度の気孔率を有しているため、研削速度が大きく相違することはない。 Here, the mounting surface 2a is formed by grinding the mounting portion 2 and the surrounding annular covering portion 3 simultaneously. At this time, since the mounting portion 2 and the annular covering portion 3 have the same grindability, no step is generated between the mounting surface 2 a and the surface of the annular covering portion 3. This is a structure in which the sprayed ceramics of the annular covering portion 3 enter the pores of the mounting portion even when the mounting portion is bent by the pressing of the grinding wheel, and the adhesiveness with the mounting portion 2 is excellent. Therefore, the annular covering portion follows the bending deformation. Moreover, since the cyclic | annular coating | coated part 3 has a moderate porosity of 3-10%, a grinding speed does not differ greatly.

環状被覆部の厚さ、幅等の寸法形状は特に限定されるものではない。ただし、環状被覆部の厚さについては、厚すぎると溶射セラミックスの剛性が大きくなり過ぎるため好ましくなく、逆に薄すぎると気密性が不十分になり吸気漏れを生ずるおそれがあるため好ましくない。したがって環状被覆部の厚さとしては、0.2〜1.0mmが望ましい。環状被覆部の幅については、被吸着物の外周端部が環状被覆部上に位置するように(図3)、環状被覆部の内径は被吸着物の直径以下とし、環状被覆部の外径は被吸着物の直径よりも大きく形成する。ただし、環状被覆部の内径が被吸着物の直径に比べて小さすぎると被吸着物の外周が反り上がる変形が起きるため、環状被覆部の内径と被吸着物の直径との差はできるだけ小さいほうが好ましく、1mm以下とすることが望ましい。また、緻密質支持部と環状被覆部との間には段差があるため、この段差の影響を少なくするためには、環状被覆部の外径を被吸着物の直径よりも1mm以上大きくすることが望ましい。 The dimensional shape such as the thickness and width of the annular covering portion is not particularly limited. However, if the thickness of the annular covering portion is too thick, it is not preferable because the rigidity of the thermal sprayed ceramic becomes too large. On the other hand, if the thickness is too thin, airtightness may be insufficient and air leakage may occur. Accordingly, the thickness of the annular covering portion is preferably 0.2 to 1.0 mm. Regarding the width of the annular covering portion, the inner diameter of the annular covering portion is equal to or less than the diameter of the adsorbing target so that the outer peripheral end of the adsorbed object is positioned on the annular covering portion (FIG. 3). Is formed larger than the diameter of the object to be adsorbed. However, if the inner diameter of the annular cover is too small compared to the diameter of the object to be adsorbed, the outer periphery of the object to be adsorbed will be deformed, so the difference between the inner diameter of the annular cover and the diameter of the object to be adsorbed should be as small as possible. Preferably, it is desirable to set it to 1 mm or less. In addition, since there is a step between the dense support portion and the annular covering portion, in order to reduce the influence of this step, the outer diameter of the annular covering portion should be made 1 mm or more larger than the diameter of the object to be adsorbed. Is desirable.

環状被覆部は、溶射セラミックス膜からなる。環状被覆部を形成するセラミックス材料としては、アルミナ、アルミナにチタニアを加えたもの等を用いることができる。環状被覆部の溶射セラミックスは載置部の気孔に進入しており、その進入深さが50μm以上である。これによりアンカー効果が発揮され環状被覆部の剥離を防ぐことができる。進入深さは、主として溶射セラミックス原料の粒径や載置部の気孔径によって定まる。プラズマ溶射を用いる場合の溶射セラミックス原料の粒径としては10〜30μmが好適であり、載置部の気孔径としては10〜100μmが適している。このような範囲で調整することにより、50μm以上の進入深さとすることができる。進入深さの上限値は特に定めないが、本発明者らの検討によれば、200μmの進入深さまで形成できている。また、溶射距離によっても、進入深さを調整することができる。特にローカイド溶射においては、溶射距離により進入深さを調整する必要がある。溶射距離が大きいと進入深さが小さくなり、溶射距離が小さいと進入深さが大きくなる傾向がある。なお、前記環状被覆部の厚さに進入深さは含まれない。 The annular covering portion is made of a sprayed ceramic film. As the ceramic material for forming the annular covering portion, alumina, alumina added with titania, or the like can be used. The thermal spray ceramics of the annular covering portion has entered the pores of the placement portion, and the depth of entry is 50 μm or more. Thereby, an anchor effect is exhibited and peeling of the annular covering portion can be prevented. The penetration depth is determined mainly by the particle size of the sprayed ceramic material and the pore size of the mounting portion. In the case of using plasma spraying, the particle size of the thermal sprayed ceramic material is preferably 10 to 30 μm, and the pore diameter of the mounting portion is preferably 10 to 100 μm. By adjusting in such a range, the penetration depth can be 50 μm or more. Although the upper limit value of the penetration depth is not particularly defined, according to the study by the present inventors, a penetration depth of 200 μm can be formed. Moreover, the penetration depth can be adjusted also by the spraying distance. In particular, in the case of low-side spraying, it is necessary to adjust the penetration depth according to the spraying distance. When the spraying distance is large, the penetration depth tends to be small, and when the spraying distance is small, the penetration depth tends to be large. In addition, the penetration depth is not included in the thickness of the annular covering portion.

載置部は所定のセラミックス(例えば、アルミナ、炭化珪素等)とガラスから構成され、連通する開気孔を有する多孔質組織を有している。載置部の開気孔率は20%以上50%以下であることが好ましく、その平均気孔径は10μm以上100μm以下であることが好ましい。この範囲内であれば、十分な吸着力および機械的強度を確保できる。また、上述したように平均気孔径が10μm以上であれば、環状被覆部の溶射セラミックスが載置部の気孔に進入して密着を高めることができる。 The mounting portion is made of predetermined ceramics (for example, alumina, silicon carbide, etc.) and glass, and has a porous structure having open pores communicating therewith. The open porosity of the mounting portion is preferably 20% or more and 50% or less, and the average pore diameter is preferably 10 μm or more and 100 μm or less. If it is in this range, sufficient adsorption power and mechanical strength can be secured. In addition, as described above, when the average pore diameter is 10 μm or more, the thermal spray ceramics of the annular coating portion can enter the pores of the mounting portion to enhance adhesion.

支持部1は、好ましくはアルミナ、窒化珪素、炭化珪素、ジルコニアから選ばれたセラミックスから構成される。載置部を構成するセラミックスと同じものが好ましいことから、アルミナまたは炭化珪素が好適である。支持部は真空吸着装置を加工装置や搬送装置に組み込んで固定するのに用いられるため機械的強度が確保できるように緻密質である。 The support portion 1 is preferably made of a ceramic selected from alumina, silicon nitride, silicon carbide, and zirconia. Alumina or silicon carbide is preferred because the same ceramic as the mounting portion is preferable. The support portion is dense so that mechanical strength can be ensured because it is used to incorporate and fix the vacuum suction device in a processing device or a transport device.

本発明に係る真空吸着装置は、真空吸着装置10のように、その平面形状が円形のものに限定されるものではなく、被吸着物の形状に応じた変形が可能である。例えば、真空吸着装置の平面形状は略四角形であってもよい。 The vacuum suction device according to the present invention is not limited to a circular planar shape like the vacuum suction device 10, and can be modified according to the shape of the object to be adsorbed. For example, the planar shape of the vacuum suction device may be substantially square.

また、本発明の他の実施態様として、環状被覆部を載置部の外周縁部表面だけでなく、支持部上まで延長して形成したり(図4)、支持部の外周壁部を研削除去して載置部の外周側面まで環状被覆部を拡張した構造(図5)としたりすることも可能である。 As another embodiment of the present invention, the annular covering portion is formed not only on the outer peripheral surface of the mounting portion but also on the supporting portion (FIG. 4), or the outer peripheral wall portion of the supporting portion is ground. It is also possible to adopt a structure (FIG. 5) in which the annular covering portion is extended to the outer peripheral side surface of the placement portion.

次に、本発明の真空吸着装置の製造方法について説明する。最初に、公知の方法により、支持部1となる凹型部を有する容器形状のセラミックス部材を作製する。例えば、アルミナ等のセラミックス粉末に所定量のバインダを加えて造粒処理し、これを一軸プレス成形し、さらにCIP成形して、円板状のプレス成形体を作製する。続いて、このプレス成形体を凹型容器形状に加工し、さらに最終的に吸引孔4となる貫通孔および吸引溝5となる溝形状を内底の所定位置に形成する。こうして得られた加工体を、必要に応じて脱脂処理した後、所定の雰囲気、温度、時間で焼成し、必要に応じて加工することにより、支持部1となる容器形状のセラミック部材を得ることができる。続いて、こうして作製した支持部1の吸引孔4および吸引溝5に、後に説明するように支持部1にスラリーを充填することができるように、樹脂等の焼失材料を充填する。 Next, the manufacturing method of the vacuum suction apparatus of this invention is demonstrated. First, a container-shaped ceramic member having a concave portion to be the support portion 1 is produced by a known method. For example, a predetermined amount of a binder is added to ceramic powder such as alumina and granulated, and this is uniaxially press-molded and further CIP-molded to produce a disk-shaped press-molded body. Subsequently, this press-molded body is processed into a concave container shape, and finally a through hole that becomes the suction hole 4 and a groove shape that becomes the suction groove 5 are formed at predetermined positions on the inner bottom. The processed body thus obtained is degreased as necessary, and then fired at a predetermined atmosphere, temperature, and time, and processed as necessary to obtain a container-shaped ceramic member serving as the support portion 1. Can do. Subsequently, the suction holes 4 and the suction grooves 5 of the support portion 1 thus manufactured are filled with a burned-out material such as a resin so that the support portion 1 can be filled with slurry as will be described later.

続いて、載置部の多孔質材を形成するためのスラリーを調製する。このスラリーは、セラミックス粉末(好ましくは、アルミナ粉末または炭化珪素粉末)およびガラス粉末に、水またはアルコール等の溶剤を加えて、ボールミル、ミキサー等の公知の方法を用いて混合することにより、作製することができる。なお、水またはアルコール等の添加量は、特に限定されるものではないが、セラミックス粉末の粒度、ガラス粉末の添加量を考慮して、適切な流動性が得られるように、調節することが好ましい。 Then, the slurry for forming the porous material of a mounting part is prepared. This slurry is prepared by adding a solvent such as water or alcohol to ceramic powder (preferably alumina powder or silicon carbide powder) and glass powder and mixing them using a known method such as a ball mill or a mixer. be able to. The amount of water or alcohol added is not particularly limited, but it is preferably adjusted so that appropriate fluidity can be obtained in consideration of the particle size of the ceramic powder and the amount of glass powder added. .

また、セラミックス粉末に対して添加するガラス粉末の量は、使用するセラミックス粉末の粒径(粒度分布)や焼成温度におけるガラスの粘性等を考慮して定められるが、多過ぎるとセラミックス粉末の充填が阻害されて焼成収縮が生じ、逆に少な過ぎるとセラミックス粉末の結合強度が低下し、脱粒や欠け等が生ずる。このため、ガラス粉末の量は、所望の結合強度、平均気孔径が得られる範囲においてできるだけ少ないことが好ましく、具体的には、概ねセラミックス粉末100質量部に対して5〜30質量部とすることが好ましい。 The amount of the glass powder added to the ceramic powder is determined in consideration of the particle size (particle size distribution) of the ceramic powder to be used and the viscosity of the glass at the firing temperature. If it is inhibited, firing shrinkage occurs. Conversely, if the amount is too small, the bond strength of the ceramic powder is lowered, and degranulation, chipping, and the like occur. For this reason, the amount of the glass powder is preferably as small as possible within the range where the desired bond strength and average pore diameter can be obtained. Specifically, the amount is generally 5 to 30 parts by mass with respect to 100 parts by mass of the ceramic powder. Is preferred.

さらにガラスとしては、その熱膨張係数が、多孔質材のもう一方の構成成分であるセラミックス材料の熱膨張係数より小さいものを用いることが好ましい。これにより、焼成段階で支持部1の容器形状の凹型部表面(接合界面)と実質的に隙間なく一体的に接合される載置部を形成することが容易となり、また、載置部において結合材としての役割を有するガラスに圧縮応力が加わった状態を作り出すことができる。ガラスは一般的に引張強度が弱いために、ガラスに圧縮応力が加わった状態とすることにより、載置部の強度が高められ、研削加工時の脱粒や欠け等の発生を抑制することができる。 Further, as the glass, it is preferable to use a glass whose thermal expansion coefficient is smaller than that of the ceramic material which is the other component of the porous material. Thereby, it becomes easy to form a mounting portion that is integrally bonded to the container-shaped concave portion surface (bonding interface) of the support portion 1 at the firing stage, and is bonded at the mounting portion. A state in which a compressive stress is applied to glass having a role as a material can be created. Since glass is generally weak in tensile strength, it is possible to increase the strength of the mounting portion by suppressing the occurrence of grain loss or chipping during grinding by making the glass in a state where compressive stress is applied. .

こうして作製したスラリーを支持部1の凹型部に充填する。このとき必要に応じて、スラリー中の残留気泡を除去するための真空脱泡処理や充填率を高めるための振動を加えるとよい。支持部1に充填されたスラリーを十分に乾燥した後、ガラスの軟化点以上の温度で焼成することにより、載置部となる多孔質材が形成される。このときの焼成温度がガラスの軟化点より低いと、ガラスが支持部に融着しないため支持部1と載置部となる多孔質材を密着させることができない。反対に焼成温度が高過ぎても変形や収縮が生じるために支持部と多孔質材とを密着させることができない。したがって多孔質材の焼成温度は、ガラス軟化点以上のできるだけ低い温度で焼成することが望ましい。 The slurry thus prepared is filled in the concave portion of the support portion 1. At this time, if necessary, it is preferable to apply a vacuum defoaming treatment for removing residual bubbles in the slurry and vibration for increasing the filling rate. After the slurry filled in the support portion 1 is sufficiently dried, it is fired at a temperature equal to or higher than the softening point of the glass, thereby forming a porous material serving as a placement portion. If the firing temperature at this time is lower than the softening point of the glass, the glass is not fused to the support part, and therefore the support part 1 and the porous material to be the placement part cannot be brought into close contact with each other. On the other hand, even if the firing temperature is too high, deformation and shrinkage occur, so that the support portion and the porous material cannot be brought into close contact with each other. Therefore, it is desirable that the porous material is fired at a temperature as low as possible above the glass softening point.

載置部となる多孔質材の開気孔率と平均気孔径の調節は、基本的に、原料粉末であるセラミックス粉末の粒度分布を調整することによって行うことができる。また、セラミックス粉末とガラスの粉末の配合比率を変えること、スラリーの粘度を変えること、スラリーの支持部1への充填率を変えること、粒子状樹脂、繊維状樹脂、カーボン粉末等の焼失材を添加すること等によっても、多孔質材の開気孔率と平均気孔径を制御することができる。 The adjustment of the open porosity and the average pore diameter of the porous material to be the placement portion can be basically performed by adjusting the particle size distribution of the ceramic powder as the raw material powder. In addition, changing the mixing ratio of ceramic powder and glass powder, changing the viscosity of the slurry, changing the filling rate of the slurry to the support part 1, particulate materials, fibrous resins, carbon powder, etc. Also by adding, etc., the open porosity and average pore diameter of the porous material can be controlled.

載置部となる多孔質材の開気孔率を20%〜50%とし、平均気孔径を10μm〜100μmとするためには、セラミックス粉末として平均粒径が20μm〜300μmのものを用い、ガラスの粉末としては、その平均粒径がこのセラミックス粉末の平均粒径よりも小さいものを用いることが好ましい。具体的には、ガラスの粉末の平均粒径は、セラミックス粉末の平均粒径の1/3以下であることが好ましく、1/5以下であることがより好ましい。これは、ガラス粉末の平均粒径がセラミックス粉末よりも大きいと、セラミックス粉末の充填が阻害されて、後のガラス軟化点以上での焼成時に焼成収縮を起こし亀裂や隙間が生じる場合がある。 In order to set the open porosity of the porous material to be the mounting portion to 20% to 50% and the average pore size to 10 μm to 100 μm, ceramic powder having an average particle size of 20 μm to 300 μm is used. As the powder, it is preferable to use a powder whose average particle size is smaller than the average particle size of the ceramic powder. Specifically, the average particle size of the glass powder is preferably 1/3 or less, more preferably 1/5 or less, of the average particle size of the ceramic powder. This is because if the average particle size of the glass powder is larger than that of the ceramic powder, the filling of the ceramic powder is hindered, and firing shrinkage may occur during firing above the glass softening point, resulting in cracks and gaps.

次に載置部2の少なくとも外周縁部の表面を加工して環状被覆部が形成される被溶射面を形成する。被溶射面は環状溝形であり、溝の深さは環状被覆部の厚さおよび加工代を考慮して設定する。このとき外周縁部だけでなく、必要に応じて載置部表面の平面加工を施すことが可能であり、また、支持部の上部または支持部の外周壁部の加工を行って、図4、5のような構造としても良い。 Next, at least the surface of the outer peripheral edge of the mounting portion 2 is processed to form a sprayed surface on which the annular covering portion is formed. The sprayed surface has an annular groove shape, and the depth of the groove is set in consideration of the thickness of the annular coating portion and the machining allowance. At this time, it is possible to process not only the outer peripheral edge portion but also the surface of the mounting portion as necessary, and processing the upper portion of the support portion or the outer peripheral wall portion of the support portion, FIG. It is good also as a structure like 5.

環状溝にプラズマ溶射またはローカイド溶射により溶射セラミック膜からなる環状被覆部3を形成する。溶射セラミック膜の原料はアルミナが好適である。必要に応じて溶射不要な箇所にマスキングを施すこともできる。本発明に好適な環状被覆部の気孔率は3〜10%である。この範囲であれば、気密性および強度を確保できるためである。気孔率は主として溶射距離、すなわち溶射ガンの先端から被溶射面である載置部までの距離に依存し、本発明においては100〜200mmの距離で溶射することにより調整できる。溶射距離が小さいと気孔率が小さくなり、溶射距離が大きいと気孔率が大きくなる傾向がある。これは、溶射距離が大きくなれば、噴霧された溶融セラミックスの温度の低下と速度の減少が起こるためである。プラズマ溶射の場合は、原料粉末の粒径は被溶射面である載置部の気孔率および気孔径によるが、密着性および気密性の点から平均粒径10〜30μm程度で調整すると良い。 An annular coating 3 made of a thermal sprayed ceramic film is formed in the annular groove by plasma spraying or low-temperature spraying. Alumina is suitable as a raw material for the thermal sprayed ceramic film. If necessary, masking can be applied to a portion that does not require thermal spraying. The porosity of the annular covering portion suitable for the present invention is 3 to 10%. This is because airtightness and strength can be secured within this range. The porosity mainly depends on the spraying distance, that is, the distance from the tip of the spray gun to the mounting portion which is the sprayed surface, and can be adjusted by spraying at a distance of 100 to 200 mm in the present invention. When the spraying distance is small, the porosity tends to be small, and when the spraying distance is large, the porosity tends to be large. This is because as the spray distance increases, the temperature and speed of the sprayed molten ceramics decrease. In the case of plasma spraying, the particle diameter of the raw material powder depends on the porosity and the pore diameter of the mounting portion which is the sprayed surface, but it is preferable to adjust the average particle diameter to about 10 to 30 μm from the viewpoint of adhesion and airtightness.

こうして環状被覆部3が形成されたら、載置部2とともに平坦度が最終的に例えば0.8μm未満となるように、研削、研磨処理して載置面2aを形成する。このとき、上述の通り載置部と支持部とがそれぞれ実質的に隙間なく一体的に接合されているので、吸着面の平坦度を高めることができる。これにより、半導体ウエハWを吸着保持した際の半導体ウエハWの平坦度を高めることもできる。なお、載置部2および環状被覆部3とともに支持部1の上面を加工しても良い。 When the annular covering portion 3 is thus formed, the placement surface 2a is formed by grinding and polishing treatment so that the flatness finally becomes, for example, less than 0.8 μm together with the placement portion 2. At this time, as described above, the placement portion and the support portion are integrally joined with each other substantially without any gap, so that the flatness of the suction surface can be increased. Thereby, the flatness of the semiconductor wafer W when the semiconductor wafer W is sucked and held can be increased. In addition, you may process the upper surface of the support part 1 with the mounting part 2 and the cyclic | annular coating | coated part 3. FIG.

(実施例1〜4、および比較例1)図2に示した構造を有するものを、上述した製造方法にしたがって作製した。支持部は凹型容器形状の緻密質アルミナからなり気孔率0.3%、外径φ250mm、高さ(厚さ)31.5mm、凹型部の内径205mm、深さ16.5mmの形状を有し、その熱膨張係数は8.0×10−6/℃である。アルミナ粉末(平均粒径125μm)、ガラス粉末(ほう珪酸ガラス、平均粒径:20μm、熱膨張係数40×10−7/℃、軟化点750℃)および蒸留水を100:20:20の質量比で混合し、ミキサーを用いて混錬してスラリーとした後、支持部の凹型部に注型し、真空脱泡を行った後、振動を加えて沈降充填させた。100℃で乾燥させた後、1000℃にて焼成した。次に載置部となる多孔質材の外周表面をダイヤモンド砥石で研削し、被溶射面である環状溝を形成した後、環状溝に0.8mmの厚さでプラズマ溶射によりアルミナ溶射膜を形成した。溶射条件は、原料;アルミナ粉末(99.9%、平均粒径20μm)、出力;50kW、溶射雰囲気;アルゴン+水素、ガン送り速度300mm/sとした。溶射条件を調べるために、溶射距離を変化させて気孔率および進入深さの異なる環状被覆部を持つ5つの真空吸着装置を作製した。最後に載置面の平坦度を1.0μm未満とすべく載置部、環状被覆部および支持部上面を#800ダイヤモンド砥石で研削し、載置面を得た。環状被覆部は外径205mm、内径199mm、厚み0.5mmとした。載置部の厚みは15mmとし、最終的な支持部の厚み、すなわち真空吸着装置の厚みは30mmとした。なお、これらの載置部の気孔率は32%、気孔径は36μmであった。それぞれ、アルキメデス法、水銀圧入法により測定した(以下、載置部の気孔率、気孔径について同様に測定した)。 Examples 1 to 4 and Comparative Example 1 A structure having the structure shown in FIG. 2 was produced according to the above-described production method. The support part is made of dense alumina in the shape of a concave container and has a porosity of 0.3%, an outer diameter of 250 mm, a height (thickness) of 31.5 mm, an inner diameter of the concave part of 205 mm, and a depth of 16.5 mm. Its thermal expansion coefficient is 8.0 × 10 −6 / ° C. Alumina powder (average particle size 125 μm), glass powder (borosilicate glass, average particle size: 20 μm, thermal expansion coefficient 40 × 10 −7 / ° C., softening point 750 ° C.) and distilled water in a mass ratio of 100: 20: 20 The mixture was kneaded with a mixer to form a slurry, which was then poured into a concave portion of the support portion, vacuum degassed, and then subjected to sedimentation by adding vibration. After drying at 100 ° C., firing was performed at 1000 ° C. Next, the outer peripheral surface of the porous material to be the mounting portion is ground with a diamond grindstone to form an annular groove as a sprayed surface, and then an alumina sprayed film is formed in the annular groove by plasma spraying with a thickness of 0.8 mm did. Thermal spraying conditions were as follows: raw material: alumina powder (99.9%, average particle size 20 μm), output: 50 kW, thermal spray atmosphere: argon + hydrogen, gun feed rate 300 mm / s. In order to investigate the thermal spraying conditions, five vacuum suction devices having annular coating portions having different porosity and penetration depth were manufactured by changing the spraying distance. Finally, the mounting surface, the annular covering portion, and the upper surface of the support portion were ground with a # 800 diamond grindstone so that the flatness of the mounting surface was less than 1.0 μm to obtain a mounting surface. The annular covering portion had an outer diameter of 205 mm, an inner diameter of 199 mm, and a thickness of 0.5 mm. The thickness of the mounting portion was 15 mm, and the final thickness of the support portion, that is, the thickness of the vacuum suction device was 30 mm. In addition, the porosity of these mounting parts was 32%, and the pore diameter was 36 micrometers. Each was measured by the Archimedes method and the mercury intrusion method (hereinafter, the porosity and the pore diameter of the mounting portion were measured in the same manner).

(実施例5)上記例と同様の支持部にアルミナ粉末(平均粒径50μm)、ガラス粉末(ほう珪酸ガラス、平均粒径:3μm、熱膨張係数40×10−7/℃、軟化点750℃)および蒸留水を100:20:30の質量比で混合したスラリーを注型し、以下、上記した例と同様の条件で焼成、溶射等を行って、環状被覆部を形成した後、載置面を得た。載置部の気孔率は38%、気孔径は15μmであった。 (Example 5) Alumina powder (average particle size 50 μm), glass powder (borosilicate glass, average particle size: 3 μm, thermal expansion coefficient 40 × 10 −7 / ° C., softening point 750 ° C. ) And distilled water mixed at a mass ratio of 100: 20: 30, and after that, firing, spraying, etc. are performed under the same conditions as in the above-described example to form an annular coating portion, and then mounting Got the plane. The porosity of the mounting portion was 38%, and the pore diameter was 15 μm.

(比較例2)上記例と同様の支持部にアルミナ粉末(平均粒径20μm)、ガラス粉末(ほう珪酸ガラス、平均粒径:3μm、熱膨張係数40×10−7/℃、軟化点750℃)および蒸留水を100:20:50の質量比で混合したスラリーを注型し、以下、上記した例と同様の条件で焼成、溶射等を行って、環状被覆部を形成した後、載置面を得た。載置部の気孔率は39%、気孔径は8μmであった。 (Comparative Example 2) Alumina powder (average particle size 20 μm), glass powder (borosilicate glass, average particle size: 3 μm, thermal expansion coefficient 40 × 10 −7 / ° C., softening point 750 ° C. ) And distilled water mixed at a mass ratio of 100: 20: 50, and after that, firing, thermal spraying, etc. are performed under the same conditions as in the above-described example to form an annular coating portion, and then mounting Got the plane. The porosity of the mounting portion was 39%, and the pore diameter was 8 μm.

(比較例3)図6に示したような支持部(気孔率:0.3%、外径:φ250mm、高さ(厚さ):31.5mm、凹型部分の内径199mm、深さ:16.5mm)の凹型部に実施例と同様のスラリーを注型した後、100℃で乾燥し、1000℃で焼成した。最後に載置部および支持部上面を上記例と同様に研削し、載置面を得た。 (Comparative Example 3) Support portion as shown in FIG. 6 (porosity: 0.3%, outer diameter: φ250 mm, height (thickness): 31.5 mm, concave portion inner diameter 199 mm, depth: 16. A slurry similar to that of the example was cast in a concave portion of 5 mm), dried at 100 ° C., and fired at 1000 ° C. Finally, the placement portion and the upper surface of the support portion were ground in the same manner as in the above example to obtain a placement surface.

(評価方法)作製した各真空吸着装置の環状被覆部の気孔率は、各真空吸着装置から環状被覆部の小片を採取し、アルキメデス法により求めた。溶射セラミックスの載置部への進入深さは、載置面に垂直に切断した断面の載置部と環状被覆部との境界(境界長さ5mm)について5箇所顕微鏡観察して各観察箇所の最大進入深さを求め、5箇所の平均を進入深さとした。吸着力の評価は、8インチウエハを吸着させたときに、真空度がゲージ圧50kPaまで達したものを○、達しなかったものを×とした。ウエハの平坦度については、−50kPaの真空度(ゲージ圧)で真空吸着した8インチウエハ(直径200mm、厚さ800μm)の研磨加工を行った後、レーザー干渉式測定器により平坦度を測定した。 (Evaluation method) The porosity of the annular covering portion of each vacuum suction device produced was determined by Archimedes method by collecting a small piece of the annular covering portion from each vacuum suction device. The penetration depth of the sprayed ceramics to the mounting portion was determined by observing the boundary between the mounting portion and the annular covering portion in a cross section perpendicular to the mounting surface (boundary length: 5 mm) with five microscopes. The maximum penetration depth was calculated and the average of five locations was taken as the penetration depth. In the evaluation of the adsorption force, when an 8-inch wafer was adsorbed, the case where the degree of vacuum reached a gauge pressure of 50 kPa was evaluated as ◯, and the case where the degree of vacuum did not reach was evaluated as x. Regarding the flatness of the wafer, after polishing an 8-inch wafer (diameter 200 mm, thickness 800 μm) vacuum-adsorbed at a vacuum degree (gauge pressure) of −50 kPa, the flatness was measured by a laser interference measuring instrument. .

Figure 2008211098
Figure 2008211098

本発明の範囲内である実施例1〜5では、十分な吸着力が得られ、ウエハの平坦度も良好であった。実施例5では、他の実施例と比べて気孔径が小さかったものの50μmの進入深さを有しており吸着力およびウエハの平坦度は良好であった。
一方、本発明の範囲外である比較例1では、吸着力は十分であったものの環状被覆部の気孔率が13.8%と大きく、また進入深さも40μmと不十分であったため、被覆部の研削不良や一部に剥離が起きてウエハの平坦度が悪くなった。比較例2では、溶射セラミックの進入深さが小さいためアンカー効果が発揮されず、載置面の平面加工の際に環状被覆部の剥離が起きたため十分な吸着力が得られなかった。ウエハの外周端部が気孔率0.3%の緻密質支持部に載置される比較例3では、ウエハの平坦度が2.4μmとなり、実施例と比べて著しく平坦度が悪かった。これは、載置部と緻密質支持部との支持剛性に大きな差があったためと思われる。
In Examples 1 to 5 which are within the scope of the present invention, sufficient adsorption force was obtained and the flatness of the wafer was also good. In Example 5, although the pore diameter was small as compared with the other examples, the penetration depth was 50 μm, and the adsorption force and the flatness of the wafer were good.
On the other hand, in Comparative Example 1, which is outside the scope of the present invention, the adsorbing force was sufficient, but the porosity of the annular covering portion was as large as 13.8% and the penetration depth was insufficient at 40 μm. The wafer flatness deteriorated due to poor grinding and partial peeling. In Comparative Example 2, since the penetration depth of the thermal sprayed ceramic was small, the anchor effect was not exhibited, and peeling of the annular covering portion occurred during the planar processing of the mounting surface, so that sufficient adsorption force was not obtained. In Comparative Example 3 in which the outer peripheral edge of the wafer was placed on a dense support portion having a porosity of 0.3%, the flatness of the wafer was 2.4 μm, and the flatness was significantly worse than in the Example. This seems to be because there was a large difference in support rigidity between the placing portion and the dense support portion.

本発明の真空吸着装置の斜視図である。It is a perspective view of the vacuum suction device of the present invention. 本発明の真空吸着装置の平面図およびAA’垂直断面図である。It is the top view and AA 'perpendicular sectional view of the vacuum suction device of the present invention. 本発明の真空吸着装置の使用態様を示す模式断面図である。It is a schematic cross section which shows the usage aspect of the vacuum suction apparatus of this invention. 本発明の他の形態を示す模式断面図である。It is a schematic cross section which shows the other form of this invention. 本発明の他の形態を示す模式断面図である。It is a schematic cross section which shows the other form of this invention. 従来の真空吸着装置の模式断面図である。It is a schematic cross section of the conventional vacuum suction device.

符号の説明Explanation of symbols

1;支持部
10、101、102;本発明の真空吸着装置
103;従来の真空吸着装置
2;載置部
2a;載置面
3、31、32;環状被覆部
4;吸引孔
5;吸引溝
W;被吸着物
DESCRIPTION OF SYMBOLS 1; Support part 10, 101, 102; Vacuum suction apparatus 103 of this invention; Conventional vacuum suction apparatus 2; Mounting part 2a; Mounting surface 3, 31, 32; W: Object to be adsorbed

Claims (5)

緻密質セラミックスからなる支持部と、前記支持部と実質的に隙間なく一体的に接合されたセラミックス/ ガラス複合多孔質材からなる載置部と、前記載置部の外周縁部表面に設けられた気孔率3〜10%の溶射セラミックスからなる環状被覆部と、から構成され、前記環状被覆部の溶射セラミックスはアンカー効果を発揮するように載置部の気孔に進入していることを特徴とする真空吸着装置。 A support portion made of a dense ceramic, a placement portion made of a ceramic / glass composite porous material integrally joined to the support portion substantially without any gap, and an outer peripheral edge surface of the placement portion. And an annular coating portion made of a thermal sprayed ceramic with a porosity of 3 to 10%, wherein the thermal sprayed ceramic of the annular coating portion has entered the pores of the mounting portion so as to exert an anchor effect. Vacuum suction device. 前記環状被覆部の溶射セラミックスは載置部の気孔に進入しており、その進入深さが50μm以上であることを特徴とする請求項1記載の真空吸着装置。 2. The vacuum suction device according to claim 1, wherein the thermal spray ceramics of the annular covering portion has entered the pores of the mounting portion, and the depth of penetration is 50 μm or more. 被吸着物の外周端部が前記環状被覆部上に位置するように載置されることを特徴とする請求項1または2記載の真空吸着装置。 The vacuum suction device according to claim 1 or 2, wherein an outer peripheral end portion of the object to be adsorbed is placed so as to be positioned on the annular covering portion. アルミナ粉末または炭化珪素粉末と、ガラス粉末と、水またはアルコールとを加えて混合してスラリーを調整する工程と、
前記載置部が形成される支持部の凹部に前記スラリーを充填するスラリー充填工程と、
前記凹部にスラリーが充填された支持部をガラスの軟化点以上の温度で焼成する工程と、
前記焼成工程によりスラリーを焼成して得られた載置部の少なくとも外周縁部の表面を研削加工して被溶射面を形成する工程と、
被溶射面にセラミックスを溶射して環状被覆部を形成する工程と、
載置部および環状被覆部の表面を研削加工して載置面を形成する工程と、
を含むことを特徴とする請求項1〜3に記載の真空吸着装置の製造方法。
Adding alumina powder or silicon carbide powder, glass powder, water or alcohol and mixing to adjust the slurry;
A slurry filling step of filling the slurry in the concave portion of the support portion where the placement portion is formed;
Firing the support filled with slurry in the recess at a temperature equal to or higher than the softening point of the glass;
Grinding the surface of at least the outer periphery of the mounting portion obtained by firing the slurry in the firing step to form a sprayed surface;
A step of thermally spraying ceramics on the surface to be sprayed to form an annular coating portion;
A step of grinding the surface of the mounting portion and the annular covering portion to form a mounting surface;
The manufacturing method of the vacuum suction apparatus of Claims 1-3 characterized by the above-mentioned.
被吸着物の外周端部が前記環状被覆部上に位置するように載置する請求項1〜3記載の真空吸着装置を用いた被吸着物の吸着方法。 The method for adsorbing an object to be adsorbed using the vacuum adsorbing apparatus according to claim 1, wherein the outer peripheral end of the object to be adsorbed is placed on the annular covering part.
JP2007048115A 2007-02-27 2007-02-27 Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed Active JP4666656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048115A JP4666656B2 (en) 2007-02-27 2007-02-27 Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048115A JP4666656B2 (en) 2007-02-27 2007-02-27 Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed

Publications (2)

Publication Number Publication Date
JP2008211098A true JP2008211098A (en) 2008-09-11
JP4666656B2 JP4666656B2 (en) 2011-04-06

Family

ID=39787127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048115A Active JP4666656B2 (en) 2007-02-27 2007-02-27 Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed

Country Status (1)

Country Link
JP (1) JP4666656B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119378A (en) * 2010-11-29 2012-06-21 Kyocera Corp Mounting member and manufacturing method thereof
JP2012140257A (en) * 2010-12-28 2012-07-26 Taiheiyo Cement Corp Dense-porous joined body
JP2013074206A (en) * 2011-09-28 2013-04-22 Taiheiyo Cement Corp Vacuum suction apparatus and method of manufacturing the same
JP2015012202A (en) * 2013-06-28 2015-01-19 太平洋セメント株式会社 Vacuum suction device and manufacturing method therefor
JP2015012201A (en) * 2013-06-28 2015-01-19 太平洋セメント株式会社 Vacuum suction device and manufacturing method therefor
US9519228B2 (en) 2013-04-01 2016-12-13 Samsung Display Co., Ltd. Substrate holding apparatus and method
JP2017112152A (en) * 2015-12-14 2017-06-22 日本特殊陶業株式会社 Vacuum suction device
JP2018103270A (en) * 2016-12-22 2018-07-05 東京エレクトロン株式会社 Multilayer porous plate and manufacturing method of the same
JP2018533212A (en) * 2015-10-12 2018-11-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate carrier for active / passive coupling and decoupling of substrates
JP2019012757A (en) * 2017-06-29 2019-01-24 日本特殊陶業株式会社 Vacuum suction member
JP2019016735A (en) * 2017-07-10 2019-01-31 日本特殊陶業株式会社 Vacuum suction device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148420A (en) * 1995-09-20 1997-06-06 Hitachi Ltd Electrostatic attracting electrode and its manufacture
JPH11226833A (en) * 1998-02-13 1999-08-24 Ckd Corp Adsorptive plate for vacuum chuck and manufacture thereof
JP2005074551A (en) * 2003-08-29 2005-03-24 Tech Res & Dev Inst Of Japan Def Agency Vacuum suction device
JP2005135940A (en) * 2003-10-28 2005-05-26 Okamoto Machine Tool Works Ltd Universal chucking mechanism of semiconductor wafer and wafer mounting plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148420A (en) * 1995-09-20 1997-06-06 Hitachi Ltd Electrostatic attracting electrode and its manufacture
JPH11226833A (en) * 1998-02-13 1999-08-24 Ckd Corp Adsorptive plate for vacuum chuck and manufacture thereof
JP2005074551A (en) * 2003-08-29 2005-03-24 Tech Res & Dev Inst Of Japan Def Agency Vacuum suction device
JP2005135940A (en) * 2003-10-28 2005-05-26 Okamoto Machine Tool Works Ltd Universal chucking mechanism of semiconductor wafer and wafer mounting plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119378A (en) * 2010-11-29 2012-06-21 Kyocera Corp Mounting member and manufacturing method thereof
JP2012140257A (en) * 2010-12-28 2012-07-26 Taiheiyo Cement Corp Dense-porous joined body
JP2013074206A (en) * 2011-09-28 2013-04-22 Taiheiyo Cement Corp Vacuum suction apparatus and method of manufacturing the same
US9519228B2 (en) 2013-04-01 2016-12-13 Samsung Display Co., Ltd. Substrate holding apparatus and method
JP2015012202A (en) * 2013-06-28 2015-01-19 太平洋セメント株式会社 Vacuum suction device and manufacturing method therefor
JP2015012201A (en) * 2013-06-28 2015-01-19 太平洋セメント株式会社 Vacuum suction device and manufacturing method therefor
JP2018533212A (en) * 2015-10-12 2018-11-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate carrier for active / passive coupling and decoupling of substrates
JP7071260B2 (en) 2015-10-12 2022-05-18 アプライド マテリアルズ インコーポレイテッド Substrate carrier for active / passive coupling and decoupling of substrates
JP2017112152A (en) * 2015-12-14 2017-06-22 日本特殊陶業株式会社 Vacuum suction device
JP2018103270A (en) * 2016-12-22 2018-07-05 東京エレクトロン株式会社 Multilayer porous plate and manufacturing method of the same
JP2019012757A (en) * 2017-06-29 2019-01-24 日本特殊陶業株式会社 Vacuum suction member
JP2019016735A (en) * 2017-07-10 2019-01-31 日本特殊陶業株式会社 Vacuum suction device

Also Published As

Publication number Publication date
JP4666656B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2008132562A (en) Vacuum chuck and vacuum suction device using it
JP2010109106A (en) Suction cup and vacuum suction apparatus
JP2008060307A (en) Vacuum suction device, and its manufacturing method
JP5261057B2 (en) Suction board and vacuum suction device
JP2008028170A (en) Vacuum suction device and manufacturing method thereof
JP2005205507A (en) Vacuum-sucking device and its manufacturing method
JP4405887B2 (en) Vacuum adsorption device
JP2005022027A (en) Vacuum sucking device and its manufacturing method
JP4704971B2 (en) Vacuum adsorption device
JP5231064B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP6179030B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4964910B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4405886B2 (en) Vacuum adsorption device
JP5709600B2 (en) Method for manufacturing adsorption member
JP2008006529A (en) Vacuum chuck and vacuum suction device using the same
JP6120702B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5597155B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2004209633A (en) Apparatus for securing work substrate and method for manufacturing the same
JP4468059B2 (en) Hydrostatic bearing device
JP2009147078A (en) Vacuum suction device, and manufacturing method thereof
JP2009111293A (en) Vacuum suction apparatus and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091028

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250