JP2008189814A - Thermally conductive filler, method for producing the same, and method for producing resin molded article - Google Patents

Thermally conductive filler, method for producing the same, and method for producing resin molded article Download PDF

Info

Publication number
JP2008189814A
JP2008189814A JP2007025891A JP2007025891A JP2008189814A JP 2008189814 A JP2008189814 A JP 2008189814A JP 2007025891 A JP2007025891 A JP 2007025891A JP 2007025891 A JP2007025891 A JP 2007025891A JP 2008189814 A JP2008189814 A JP 2008189814A
Authority
JP
Japan
Prior art keywords
conductive filler
thermally conductive
inorganic particles
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007025891A
Other languages
Japanese (ja)
Other versions
JP5134824B2 (en
Inventor
Keisuke Hirano
敬祐 平野
Tomoo Yamaguchi
智雄 山口
Tomoo Sakamoto
友男 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007025891A priority Critical patent/JP5134824B2/en
Publication of JP2008189814A publication Critical patent/JP2008189814A/en
Application granted granted Critical
Publication of JP5134824B2 publication Critical patent/JP5134824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive filler sufficiently improving thermal conductivity of a resin molded article and to provide a method for producing the same. <P>SOLUTION: The thermally conductive filler is composed of inorganic particles formed into a powdered shape, and the surface of the inorganic particle is covered with a resin composition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱伝導性フィラーとその製造方法ならびに樹脂成形品製造方法に関する。   The present invention relates to a thermally conductive filler, a method for producing the same, and a method for producing a resin molded product.

従来、金属粒子、無機酸化物粒子、無機窒化物粒子やこれらの複合粒子、さらには、それらに表面処理が施された粒子が熱伝導性フィラーとして広く用いられている。
これらの熱伝導性フィラーを樹脂組成物に含有させることにより、樹脂成形品の熱伝導性を向上させたりすることが行われており、エポキシ樹脂などの熱硬化性のベース樹脂に、熱伝導性フィラーを分散させた熱伝導性樹脂組成物は、チップ部品の封止や、発熱部品の搭載された回路と放熱板との間の絶縁層の形成などといった電子部品用途において広く用いられている。
例えば、特許文献1には、ベース樹脂とフィラーとを含む熱伝導性樹脂組成物によりシート状に形成された高熱伝導性樹脂層が、金属箔が用いられて形成された金属箔層上に積層された金属箔付高熱伝導接着シートが記載されており、この金属箔付高熱伝導接着シートが半導体チップの接着に用いられることが記載されている。
Conventionally, metal particles, inorganic oxide particles, inorganic nitride particles and composite particles thereof, and particles obtained by subjecting them to surface treatment have been widely used as heat conductive fillers.
Inclusion of these thermally conductive fillers in the resin composition improves the thermal conductivity of the resin molded product. Thermal conductivity is added to thermosetting base resins such as epoxy resins. Thermally conductive resin compositions in which a filler is dispersed are widely used in electronic component applications such as sealing chip components and forming an insulating layer between a circuit on which a heat generating component is mounted and a heat sink.
For example, in Patent Document 1, a highly thermally conductive resin layer formed into a sheet shape from a thermally conductive resin composition containing a base resin and a filler is laminated on a metal foil layer formed using a metal foil. The high heat conductive adhesive sheet with metal foil is described, and it is described that this high heat conductive adhesive sheet with metal foil is used for bonding semiconductor chips.

この金属箔付高熱伝導接着シートのような高い熱伝導性が求められる樹脂成形品(以下「熱伝導性樹脂成形品」ともいう)には、通常、熱伝導率をより向上させることが求められている。
このことから、熱伝導性樹脂成形品の形成には、窒化ホウ素や窒化アルミニウムなどといった高い熱伝導率を有する無機窒化物が用いられたりしており、しかも、このような熱伝動性フィラーを高充填させることが検討されている。
例えば、特許文献2には、エポキシ樹脂中に熱伝導性フィラーを80〜95重量%もの高充填させた熱伝動性樹脂組成物を用いることにより、樹脂成形品の熱伝導率を3〜10W/mKとさせ得ることが記載されている。
Resin molded products that require high thermal conductivity such as this highly heat conductive adhesive sheet with metal foil (hereinafter also referred to as “thermal conductive resin molded products”) are usually required to further improve thermal conductivity. ing.
For this reason, inorganic nitrides having high thermal conductivity such as boron nitride and aluminum nitride are used for the formation of thermally conductive resin molded products. Filling is being considered.
For example, in Patent Document 2, by using a heat conductive resin composition in which an epoxy resin is highly filled with a heat conductive filler of 80 to 95% by weight, the heat conductivity of the resin molded product is 3 to 10 W / It is described that it can be mK.

このように熱伝導性フィラーを高充填して熱伝導性シートのような樹脂成形品を作製する場合には、通常、樹脂組成物を溶剤に溶解させた溶液中に熱伝導性フィラーを混合して粘稠な混和物を作製し、この混和物を基材などに塗工する方法が採用されている。   When a resin molded product such as a heat conductive sheet is prepared by highly filling the heat conductive filler in this way, the heat conductive filler is usually mixed in a solution in which the resin composition is dissolved in a solvent. A viscous mixture is prepared, and this mixture is applied to a substrate or the like.

ところで、通常、無機化合物と有機化合物との親和性は、有機化合物どうしに比べて低く、熱伝導性フィラーに用いられるような無機物粒子は、樹脂組成物に対して濡れ性が低い。
そのため、従来の熱伝導性フィラーは、樹脂組成物に対する濡れ性が低い状態で樹脂成形品の形成に用いられており、このような方法で樹脂成形品を作製すると空気などを混入させやすく樹脂成形品中に空気層が形成されるおそれを有する。
このように、樹脂成形品中に空気層が形成されると熱伝導率などの特性を低下させてしまうこととなる。
By the way, normally, the affinity between the inorganic compound and the organic compound is lower than that between the organic compounds, and the inorganic particles used for the heat conductive filler have low wettability with respect to the resin composition.
For this reason, conventional thermal conductive fillers are used to form resin molded products with low wettability to the resin composition. When a resin molded product is produced by such a method, air or the like can be easily mixed. An air layer may be formed in the product.
Thus, when an air layer is formed in a resin molded product, characteristics such as thermal conductivity are deteriorated.

すなわち、従来の熱伝導性フィラーは、成形品の熱伝導率を十分向上させることが困難であるという問題を有している。   That is, the conventional thermally conductive filler has a problem that it is difficult to sufficiently improve the thermal conductivity of the molded product.

特開平11−186473号公報JP-A-11-186473 特開2001−348488号公報JP 2001-348488 A

本発明は、上記問題に鑑みてなされたものであり、樹脂成形品の熱伝導率を十分向上させ得る熱伝導性フィラーとその製造方法の提供を課題としている。
また、本発明は、樹脂成形品の熱伝導率を十分向上させ得る樹脂成形品製造方法の提供を課題としている。
This invention is made | formed in view of the said problem, and makes it the subject to provide the heat conductive filler which can fully improve the heat conductivity of a resin molded product, and its manufacturing method.
Moreover, this invention makes it the subject to provide the resin molded product manufacturing method which can fully improve the heat conductivity of a resin molded product.

本発明は、前記課題を解決すべく無機物粒子が用いられて粉末状に形成されており、しかも、前記無機物粒子の表面には樹脂組成物が被覆されていることを特徴とする熱伝導性フィラーなどを提供する。   The present invention provides a thermally conductive filler characterized in that inorganic particles are used to solve the above problems and are formed into a powder, and the surface of the inorganic particles is coated with a resin composition. Etc.

本発明の熱伝導性フィラーは、無機物粒子が用いられて粉末状に形成されており、しかも、無機物粒子の表面には樹脂組成物が被覆されていることから、熱伝導性フィラー表面に対する樹脂組成物の濡れ性を良好なものとさせ得る。
したがって、この熱伝導性フィラーを用いて樹脂成形品を形成させる際に樹脂成形品中に空気層などが形成されることを抑制させることができ樹脂成形品の熱伝導率を向上させ得る。
The heat conductive filler of the present invention is formed into a powder form using inorganic particles, and the resin composition is coated on the surface of the inorganic particles, so that the resin composition with respect to the surface of the heat conductive filler The wettability of the object can be improved.
Therefore, when forming a resin molded product using this heat conductive filler, it is possible to suppress the formation of an air layer or the like in the resin molded product, and to improve the thermal conductivity of the resin molded product.

また、このような熱伝導性フィラーを製造するに際して樹脂組成物を溶媒に分散させた分散液と無機物粒子とを減圧下で混合攪拌して前記分散液で無機物粒子の表面を被覆し、前記溶媒を除去することにより無機物粒子の表面に樹脂組成物が被覆された粉末状の熱伝導性フィラーを作製する場合には、無機物粒子と該無機物粒子を被覆する樹脂組成物との界面における空気層の形成も抑制させることができ樹脂成形品の熱伝導率の向上にいっそう有効な熱伝導性フィラーを形成させ得る。   Further, when producing such a thermally conductive filler, a dispersion liquid in which a resin composition is dispersed in a solvent and inorganic particles are mixed and stirred under reduced pressure to coat the surface of the inorganic particles with the dispersion liquid, and the solvent In the case of producing a powdery thermally conductive filler in which the resin composition is coated on the surface of the inorganic particles by removing the particles, the air layer at the interface between the inorganic particles and the resin composition covering the inorganic particles Formation can also be suppressed, and a thermally conductive filler more effective in improving the thermal conductivity of the resin molded product can be formed.

さらに、樹脂組成物中に無機物粒子が分散されてなる樹脂成形品を製造する樹脂成形品製造方法において、樹脂組成物を溶媒に分散させた分散液と無機物粒子とを減圧下で混合攪拌して前記分散液で無機物粒子の表面を被覆し、前記溶媒を除去することにより無機物粒子の表面に樹脂組成物が被覆された粉末状の熱伝導性フィラーを作製し、該熱伝導性フィラーどうしを接着させることで熱伝導率に優れた樹脂成形品を簡便な方法で作製し得るという効果を奏する。   Further, in a resin molded product manufacturing method for manufacturing a resin molded product in which inorganic particles are dispersed in a resin composition, a dispersion in which the resin composition is dispersed in a solvent and the inorganic particles are mixed and stirred under reduced pressure. The surface of the inorganic particles is coated with the dispersion, and the solvent is removed to produce a powdery heat conductive filler in which the resin composition is coated on the surface of the inorganic particles, and the heat conductive fillers are bonded to each other. As a result, a resin molded product having excellent thermal conductivity can be produced by a simple method.

以下に、樹脂組成物中に無機物粒子が分散されている樹脂成形品として、全体がシート状に形成されている熱伝導性シートの形成に用いられる場合を例に熱伝導性フィラーを説明する。   Below, a heat conductive filler is demonstrated to the case where it uses for the formation of the heat conductive sheet by which the whole is formed in the sheet form as a resin molded product in which the inorganic particle is disperse | distributed in the resin composition.

本実施形態の熱伝導性フィラーは、無機物粒子が用いられて粉末状に形成されており、しかも、前記無機物粒子の表面には樹脂組成物が被覆されている。   The thermally conductive filler of the present embodiment is formed into a powder form using inorganic particles, and the surface of the inorganic particles is coated with a resin composition.

この熱伝導性フィラーの無機物粒子には、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、窒化ガリウム、二酸化ケイ素、炭化ケイ素あるいはダイヤモンドなどを主成分とするものが例示でき、中でも、良好なる熱伝導性を有する点において酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、二酸化ケイ素、および、ダイヤモンドのいずれかを主成分とするものが好適である。   Examples of the inorganic particles of the thermally conductive filler include those mainly composed of aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, gallium nitride, silicon dioxide, silicon carbide, diamond, etc. In view of the thermal conductivity, a material mainly composed of any one of aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon dioxide, and diamond is preferable.

この無機物粒子は、その大きさや形状に特に限定されるものではないが、通常、平均粒径が数μmから数十μmのものが用いられる。
また、形成する熱伝導性シートに良好なる熱伝導率を付与させ得る点から、熱伝導性フィラーに占める無機物粒子の割合は、質量で90%以上であることが好ましい。
また、無機物粒子表面の樹脂組成物の被覆状況を良好なるものとし得る点において、熱伝導性フィラーに占める無機物粒子の割合は、質量で97%以下であることが好ましい。
The inorganic particles are not particularly limited in size and shape, but those having an average particle size of several μm to several tens of μm are usually used.
Moreover, it is preferable that the ratio of the inorganic particle which occupies for a heat conductive filler is 90% or more from the point which can give favorable heat conductivity to the heat conductive sheet to form.
Moreover, it is preferable that the ratio of the inorganic particle which occupies for a heat conductive filler is 97% or less by the point which can make the coating condition of the resin composition on the surface of an inorganic particle favorable.

この無機物粒子の表面に被覆される樹脂組成物には、通常、ポリマー成分と各種添加剤が含有されている。
前記樹脂成分としては、通常、各種の熱可塑性樹脂、ならびに、熱硬化性樹脂を例示でき、この内、熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合体樹脂などのポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリエステル樹脂、フェノキシ樹脂、アクリル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルアミドイミド樹脂、ポリエーテルアミド樹脂、ポリエーテルイミド樹脂などが挙げられる。
前記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂などが挙げられる。
これらは、単独で用いてもよく、複数混合して用いてもよい。
The resin composition coated on the surface of the inorganic particles usually contains a polymer component and various additives.
Examples of the resin component include various thermoplastic resins and thermosetting resins. Among these, polyolefins such as polyethylene resins, polypropylene resins, and ethylene-vinyl acetate copolymer resins can be used as the thermoplastic resins. Examples thereof include resins, polyvinyl chloride resins, polyester resins, phenoxy resins, acrylic resins, polyamide resins, polyamideimide resins, polyimide resins, polyether amide imide resins, polyether amide resins, and polyether imide resins.
Examples of the thermosetting resin include an epoxy resin and a phenol resin.
These may be used alone or in combination.

なかでも、優れた接着性を示すと共に耐熱性にも優れていることからエポキシ樹脂を用いることが好適である。
しかも、常温固体のエポキシ樹脂が好ましい。
この常温固体のエポキシが好ましいのは、常温液体状のエポキシ樹脂を用いた場合には、熱伝導性シートを被着体に接着すべく加熱条件下において被着体に当接させた場合に、エポキシ樹脂の粘度が低下しすぎて、熱伝導性シートの端縁部から外にエポキシ樹脂が大きく滲み出してしまうおそれがあるためである。
このエポキシ樹脂の滲み出しが激しい場合には、例えば、熱伝導性シートの周囲で、例えは、放熱器取り付け箇所や接点箇所などの本来金属部分が露出しているべき個所にエポキシ樹脂被膜を形成させて、例えば、熱伝達に問題が生じたり、あるいは、導通不良などといった問題を生じさせてしまうおそれがある。
Among them, it is preferable to use an epoxy resin because it exhibits excellent adhesiveness and excellent heat resistance.
Moreover, a room temperature solid epoxy resin is preferred.
This room temperature solid epoxy is preferable, when a room temperature liquid epoxy resin is used, when the heat conductive sheet is brought into contact with the adherend under heating conditions to adhere to the adherend, This is because the viscosity of the epoxy resin is too low and the epoxy resin may ooze out from the edge of the heat conductive sheet.
If the epoxy resin oozes out, for example, form an epoxy resin coating around the heat conductive sheet, for example, where the metal parts should be exposed, such as where the radiator is attached or where the contacts are located. Therefore, for example, there is a possibility that a problem occurs in heat transfer, or a problem such as poor conduction occurs.

一方で、被着体への接着時にある程度の粘度低下が生じないと被着体と熱伝導性シートとの間に空隙などが生じやすく被着体側からの熱伝導性を低下させるおそれもある。
これらの問題をより確実に抑制させ得る点において、このエポキシ樹脂としては、エポキシ当量450〜2000g/eqの常温固体のビスフェノールA型エポキシ樹脂と、エポキシ当量160〜220g/eqの多官能の常温固体で87℃から93℃の間に軟化点を有するノボラック型エポキシ樹脂とが(ビスフェノールA型エポキシ樹脂/ノボラック型エポキシ樹脂)=40/60〜60/40となる重量比率で混合されているものを用いることが好ましい。
なお、このエポキシ当量は、JIS K 7236により求めることができる。
On the other hand, if a certain degree of viscosity reduction does not occur at the time of adhesion to the adherend, a gap or the like is likely to be generated between the adherend and the heat conductive sheet, and the heat conductivity from the adherend side may be lowered.
In the point which can suppress these problems more reliably, as this epoxy resin, the epoxy equivalent 450-2000 g / eq of normal temperature solid bisphenol A type epoxy resin and the epoxy equivalent 160-220 g / eq of polyfunctional normal temperature solid And a novolac type epoxy resin having a softening point between 87 ° C. and 93 ° C. (bisphenol A type epoxy resin / novolak type epoxy resin) = 40/60 to 60/40 It is preferable to use it.
In addition, this epoxy equivalent can be calculated | required by JISK7236.

前記樹脂組成物にポリマー成分とともに含有される添加剤としては、特に限定されず、例えば、分散剤、硬化剤、硬化促進剤、老化防止剤、酸化防止剤、安定剤、消泡剤、難燃剤、増粘剤、顔料などといったものを挙げることができる。   The additive contained together with the polymer component in the resin composition is not particularly limited, and examples thereof include a dispersant, a curing agent, a curing accelerator, an anti-aging agent, an antioxidant, a stabilizer, an antifoaming agent, and a flame retardant. , Thickeners, pigments and the like.

前記ポリマー成分としてエポキシ樹脂が含まれる場合においては、前記添加剤にエポキシ樹脂の硬化剤、硬化促進剤を含有させて無機物粒子の表面を被覆する樹脂組成物に熱硬化性を付与することができる。
この硬化剤としては、特に限定されるものではないが、例えば、ジアミノジフェニルスルホン、ジシアンジアミド、ジアミノジフェニルメタン、トリエチレンテトラミンなどのアミン系硬化剤、フェノールノボラック樹脂、アラルキル型フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ナフタレン型フェノール樹脂、ビスフェノール系フェノール樹脂などのフェノール系硬化剤、酸無水物などを用いることができる。
中でも、ジアミノジフェニルスルホンが好適である。
前記硬化促進剤としては、特に限定されるものではないが、三フッ化ホウ素モノエチルアミンなどのアミン系硬化促進剤が好適である。
When an epoxy resin is included as the polymer component, an epoxy resin curing agent and a curing accelerator are contained in the additive to impart thermosetting to the resin composition covering the surface of the inorganic particles. .
The curing agent is not particularly limited, and examples thereof include amine curing agents such as diaminodiphenyl sulfone, dicyandiamide, diaminodiphenylmethane, and triethylenetetramine, phenol novolac resins, aralkyl type phenol resins, and dicyclopentadiene modified phenols. Resin, phenolic curing agents such as naphthalene type phenolic resin and bisphenolic phenolic resin, acid anhydrides and the like can be used.
Of these, diaminodiphenylsulfone is preferred.
The curing accelerator is not particularly limited, but an amine curing accelerator such as boron trifluoride monoethylamine is suitable.

なお、表面に未硬化状態の樹脂組成物を備える熱伝導性フィラーとすることで、該熱伝導性フィラーを用いて樹脂成形品を形成する際にこの樹脂組成物の硬化反応を併せて実施して強度ならびに熱伝導性に優れた樹脂成形品を製造させ得る。
したがって、樹脂組成物のポリマー成分にエポキシ樹脂などの熱硬化性の樹脂を用い、添加剤に硬化剤や硬化促進剤を用いる場合には、前記無機物粒子にこの樹脂組成物を未硬化状態で被覆させることが好ましい。
In addition, by using a thermally conductive filler having an uncured resin composition on the surface, when the resin molded product is formed using the thermally conductive filler, the curing reaction of the resin composition is also performed. Thus, a resin molded product having excellent strength and thermal conductivity can be produced.
Therefore, when a thermosetting resin such as an epoxy resin is used as the polymer component of the resin composition and a curing agent or curing accelerator is used as the additive, the inorganic particles are coated with the resin composition in an uncured state. It is preferable to make it.

次いで、無機物粒子として窒化ホウ素粒子を用い、該窒化ホウ素粒子をエポキシ樹脂組成物で被覆する場合を例に熱伝導性フィラーの製造方法を説明する。   Next, a method for producing a thermally conductive filler will be described by taking boron nitride particles as inorganic particles and covering the boron nitride particles with an epoxy resin composition as an example.

(熱伝導性フィラーの製造方法)
減圧下での攪拌が可能なミキサーに前記窒化ホウ素粒子を投入すると共に、別途、この窒化ホウ素粒子の表面に被覆するエポキシ樹脂溶液を作製する。
なお、要すれば、エポキシ樹脂溶液の被覆前に、シランカップリング剤などのカップリング剤を投入して減圧下で攪拌し窒化ホウ素フィラーの表面処理を実施することもできる。
なお、樹脂組成物におけるポリマー成分にエポキシ樹脂が用いられている場合には、このカップリング剤としては、末端にグリシジル基あるいはアクリロイル基を有するものを用いることが好ましい。
また、このカップリング剤に代えて酸価を有する化合物が用いられてなる分散剤や0mgKOH/gを超え35mgKOH/g以下のアミン価を有する化合物が用いられてなる分散剤で窒化ホウ素フィラーの表面処理を実施することもできる。
(Method for producing thermally conductive filler)
The boron nitride particles are put into a mixer that can be stirred under reduced pressure, and an epoxy resin solution that covers the surface of the boron nitride particles is prepared separately.
In addition, if necessary, a surface treatment of the boron nitride filler can be performed by introducing a coupling agent such as a silane coupling agent and stirring under reduced pressure before coating with the epoxy resin solution.
When an epoxy resin is used as the polymer component in the resin composition, it is preferable to use a coupling agent having a glycidyl group or an acryloyl group at the terminal.
Further, the surface of the boron nitride filler is a dispersant formed by using a compound having an acid value instead of the coupling agent or a dispersant formed by using a compound having an amine value of more than 0 mgKOH / g and not more than 35 mgKOH / g. Processing can also be performed.

前記窒化ホウ素粒子の表面をカップリング剤や分散剤で処理しておくことによりエポキシ樹脂溶液に対する濡れ性を向上させることができ、窒化ホウ素粒子の表面にエポキシ樹脂組成物を比較的均一な状態で被覆させることができる。   By treating the surface of the boron nitride particles with a coupling agent or a dispersant, the wettability with respect to the epoxy resin solution can be improved, and the epoxy resin composition on the surface of the boron nitride particles in a relatively uniform state. Can be coated.

前記エポキシ樹脂溶液としては、エポキシ樹脂を、例えば、2−ブタノンなどの溶剤に溶解させ、さらに、ジアミノジフェニルスルホンなどの硬化剤や、三フッ化ホウ素モノエチルアミンなどの硬化促進剤を含有させたものなどを用いることができる。   As the epoxy resin solution, for example, an epoxy resin is dissolved in a solvent such as 2-butanone and further contains a curing agent such as diaminodiphenyl sulfone and a curing accelerator such as boron trifluoride monoethylamine. Etc. can be used.

次いで、窒化ホウ素粒子が投入されているミキサー内にこのエポキシ樹脂溶液を投入して、例えば、1〜20kPaの減圧下で数分間から数時間攪拌する。
このとき減圧下での攪拌を実施するのは、窒化ホウ素粒子とこの窒化ホウ素粒子を被覆するエポキシ樹脂溶液との界面に空気層などが形成されるおそれを抑制することができ、この熱伝導性フィラーを用いて形成する熱伝導性シートに優れた熱伝導率を発揮させ得るためである。
また、減圧下で攪拌することにより、あまり熱を加えることなく溶剤を除去させ得る。
したがって、エポキシ樹脂組成物を未硬化の状態で窒化ホウ素粒子の表面に被覆させ得る。
Next, the epoxy resin solution is charged into a mixer in which boron nitride particles are charged, and is stirred for several minutes to several hours under a reduced pressure of 1 to 20 kPa, for example.
At this time, the stirring under reduced pressure can suppress the possibility that an air layer or the like is formed at the interface between the boron nitride particles and the epoxy resin solution covering the boron nitride particles. This is because the thermal conductivity sheet formed using the filler can exhibit excellent thermal conductivity.
Further, by stirring under reduced pressure, the solvent can be removed without applying much heat.
Therefore, the surface of the boron nitride particles can be coated with the epoxy resin composition in an uncured state.

この攪拌後には常圧に戻し、この時点で溶剤が残留しているようであれば、さらに、追加乾燥を実施することが好ましい。
このとき、熱伝導性フィラーがタック性を有しているような状態であれば、追加乾燥の期間中は、攪拌を継続することが好ましい。
このように熱伝導性フィラーが十分に乾燥するまで攪拌を実施することにより熱伝導性フィラーを凝集が抑制された粉末状態とすることができる。
After this stirring, the pressure is returned to normal pressure, and if the solvent remains at this point, it is preferable to perform additional drying.
At this time, if the thermally conductive filler has a tackiness, stirring is preferably continued during the additional drying period.
Thus, by stirring until the heat conductive filler is sufficiently dried, the heat conductive filler can be made into a powder state in which aggregation is suppressed.

(熱伝導性シートの製造方法)
次いで、この熱伝導性フィラーを用いてシート状の樹脂成形品である熱伝導性シートを作製する方法について説明する。
この熱伝導性フィラーは、表面に未硬化状態のエポキシ樹脂組成物が被覆されていることから、この熱伝導性フィラー単独で熱伝導性シートを形成させることができる。
また、同様にして作製された別の熱伝導性フィラーと混合して熱伝導性シートを形成させることもできる。
(The manufacturing method of a heat conductive sheet)
Next, a method for producing a thermally conductive sheet that is a sheet-like resin molded product using the thermally conductive filler will be described.
Since the surface of this thermally conductive filler is coated with an uncured epoxy resin composition, a thermally conductive sheet can be formed with this thermally conductive filler alone.
Moreover, it can also mix with another heat conductive filler produced similarly, and can also form a heat conductive sheet.

さらには、この熱伝導性フィラーを無機物粒子のマスターバッチとして用い、無機物粒子が含有されていないか、あるいは、含有されていたとしても熱伝導性フィラーよりも低濃度にした含有されていない樹脂組成物とこの熱伝導性フィラーとを混合して熱伝導性シートに用いることもできる。   Furthermore, this heat conductive filler is used as a master batch of inorganic particles, and the inorganic resin particles are not contained, or even if contained, the resin composition is not contained at a lower concentration than the heat conductive filler. It is also possible to use a heat conductive sheet by mixing a product and this heat conductive filler.

熱伝導性フィラー単独、または、複数の熱伝導性フィラーを混合して用いる場合のように、全体が粉末状態のものから熱伝導性シートを作製するには、金型を用いたプレス成形や、押出し成形などの方法が好適である。
このとき、全体が粉末状態の熱伝導性フィラーを用いることから、エア抜け性も良好で形成される熱伝導性シートに空気層が形成されるおそれを低減し得る。
また、要すれば、真空プレスやベント機構付の押出し機を用いることにより、熱伝導性シート内に空気層が形成されるおそれをさらに低減させ得る。
さらに、基材に対して静電塗装法により熱伝導性フィラーをコーティングした後に加熱・加圧する方法なども採用可能である。
In order to produce a thermally conductive sheet from a powder state as in the case where a thermally conductive filler alone or a mixture of a plurality of thermally conductive fillers are used, press molding using a mold, A method such as extrusion is preferred.
At this time, since the powdery heat conductive filler is used as a whole, it is possible to reduce the possibility that an air layer is formed on the heat conductive sheet formed with good air detachability.
Moreover, if necessary, the risk of an air layer being formed in the heat conductive sheet can be further reduced by using a vacuum press or an extruder with a vent mechanism.
Furthermore, it is also possible to employ a method of heating and pressurizing after coating the substrate with a heat conductive filler by electrostatic coating.

熱伝導性フィラーと樹脂組成物とを混合して用いるマスターバッチ式の方法においては、この金型を用いたプレス成形、押出し成形などに加えて、射出成形やカレンダー成形なども好適な方法として挙げることができる。   In a masterbatch method using a mixture of a thermally conductive filler and a resin composition, in addition to press molding and extrusion molding using this mold, injection molding and calender molding are also preferred methods. be able to.

このようにして製造される熱伝導性シートは、樹脂組成物が無機物粒子の表面に液体状態で被覆され、しかも、減圧下で被覆されていることから、無機物粒子と樹脂組成物との界面に空気層が形成されるおそれが十分低減されており、上記のような特別の加工方法を要することなく簡便な加工方法を採用しつつも熱伝導率に優れた樹脂成形品を作製し得る。   In the heat conductive sheet produced in this way, the resin composition is coated on the surface of the inorganic particles in a liquid state and is coated under reduced pressure, so that the interface between the inorganic particles and the resin composition is applied. The possibility that an air layer is formed is sufficiently reduced, and a resin molded product excellent in thermal conductivity can be produced while adopting a simple processing method without requiring a special processing method as described above.

なお、本実施形態においては、熱伝導性シートを例に説明したが、熱伝導性フィラーの用途を熱伝導性シートに限定するものではない。
また、熱伝導性フィラーを窒化ホウ素粒子にエポキシ樹脂組成物を被覆する場合を主として例示したが、本発明においては熱伝導性フィラーをこのような材料を用いたものに限定するものではない。
さらに、本実施形態においては、熱伝導性フィラーの製造方法を形成される樹脂成形品中に空気層が形成されるおそれをいっそう低減させ得る点において、減圧下にて無機物粒子の表面に樹脂組成物を被覆させる場合を例に説明したが、本発明においては、熱伝導性フィラーの製造方法をこのような方法に限定するものではない。
例えば、水系溶媒に無機物粒子とともにアクリルモノマーと重合開始剤とを分散させたスラリーを作製して、該スラリー中で無機物粒子の表面に重合させたアクリル樹脂を被覆させるような場合も本発明の意図する範囲である。
In the present embodiment, the heat conductive sheet has been described as an example, but the use of the heat conductive filler is not limited to the heat conductive sheet.
Although the case where the epoxy resin composition is coated on the boron nitride particles as the thermally conductive filler is mainly exemplified, in the present invention, the thermally conductive filler is not limited to those using such a material.
Furthermore, in the present embodiment, the resin composition is formed on the surface of the inorganic particles under reduced pressure in that the risk of forming an air layer in the resin molded product formed by the method for producing a thermally conductive filler can be further reduced. In the present invention, the manufacturing method of the heat conductive filler is not limited to such a method.
For example, the intention of the present invention is also applicable to a case where a slurry is prepared by dispersing an acrylic monomer and a polymerization initiator together with inorganic particles in an aqueous solvent, and the surface of the inorganic particles is coated with an acrylic resin in the slurry. It is the range to do.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.

(実施例1)
(樹脂溶液の調整)
ビスフェノール型エポキシ樹脂(東都化成社製、商品名「YD−011」)66gと、クレゾールノボラック樹脂(東都化成社製、商品名「YDCN704」)66gと、硬化剤である4,4’−ジアミノジフェニルスルホン(和歌山精化社製、商品名「セイカキュアーS」)26g、硬化促進剤である三フッ化ホウ素モノエチルアミン1.3gと、2−ブタノン106gとを混合溶解させて樹脂溶液を作製した。
(Example 1)
(Preparation of resin solution)
66 g of bisphenol type epoxy resin (product name “YD-011” manufactured by Toto Kasei Co., Ltd.), 66 g of cresol novolac resin (product name “YDCN 704” manufactured by Toto Kasei Co., Ltd.), and 4,4′-diaminodiphenyl which is a curing agent A resin solution was prepared by mixing and dissolving 26 g of sulfone (trade name “Seika Cure S” manufactured by Wakayama Seika Co., Ltd.), 1.3 g of boron trifluoride monoethylamine as a curing accelerator, and 106 g of 2-butanone.

(熱伝導性フィラー(表面に樹脂組成物が被覆された無機物粒子)の製造)
(前処理)
酸化アルミニウム粒子であるマイクロン社製、商品名「AH35−2」(平均粒子径:35μm)90gと同じく酸化アルミニウム粒子であるマイクロン社製、商品名「AH3−32」(平均粒子径:3μm)10gを混合したものに、信越化学工業社製、シランカップリング剤(3−グリシドキシプロピルトリメトキシシラン)、商品名「KBM−403」を加えて酸化アルミニウム粒子の表面にシランカップリング剤を被覆させた。
(Manufacture of heat conductive filler (inorganic particles whose surface is coated with a resin composition))
(Preprocessing)
90 g of aluminum oxide particles made by Micron, trade name “AH35-2” (average particle size: 35 μm), and 10 g made by Micron, which is aluminum oxide particles, trade name “AH3-32” (average particle size: 3 μm) To the mixture, Shin-Etsu Chemical Co., Ltd., silane coupling agent (3-glycidoxypropyltrimethoxysilane) and trade name “KBM-403” are added, and the surface of the aluminum oxide particles is coated. I let you.

(樹脂組成物の被覆)
前記前処理を実施した酸化アルミニウム粒子100gを、減圧装置を備えた攪拌釜に投入すると共に、作製される熱伝導性フィラーに占める無機物粒子の割合が71体積%となるように前記樹脂溶液17gを攪拌釜に加え、さらに、攪拌釜内が1kPaの減圧下となるように脱気して20分間攪拌を実施した。
この減圧下での攪拌後常圧に戻して、室温で一昼夜にわたる自然乾燥を実施して、表面にエポキシ樹脂組成物が未硬化状態で被覆された酸化アルミニウム粒子である熱伝導性フィラー粉末を作製した。
(Coating of resin composition)
100 g of the aluminum oxide particles subjected to the pretreatment are put into a stirring vessel equipped with a decompression device, and 17 g of the resin solution is added so that the proportion of inorganic particles in the heat conductive filler to be produced is 71% by volume. In addition to the stirring vessel, the mixture was further deaerated so that the pressure in the stirring vessel was reduced to 1 kPa and stirred for 20 minutes.
After stirring under this reduced pressure, the pressure is returned to normal pressure, and air-drying is performed at room temperature for a whole day and night to produce a thermally conductive filler powder that is aluminum oxide particles coated with an epoxy resin composition in an uncured state on the surface. did.

(実施例2)
用いる無機物粒子を酸化アルミニウム粒子に代えて窒化ホウ素粒子(昭和電工社製、商品名「UHP−1」)100gとし、シランカップリング剤に代えて分散剤(ビックケミー社製、商品名「Disperbyk−2001」、固形分濃度46%)1.1gを前処理に用いた点、ならびに、樹脂溶液の添加量を17gに代えて、熱伝導性フィラーに占める無機物粒子の割合が55体積%となるように70.8gとした以外は実施例1と同様に熱伝導性フィラー粉末を作製した。
(Example 2)
The inorganic particles used are boron nitride particles (trade name “UHP-1”, manufactured by Showa Denko KK) 100 g instead of aluminum oxide particles, and the dispersant (Bic Chemie, product name “Disperbyk-2001” is used instead of the silane coupling agent. The solid content concentration 46%) 1.1 g was used for the pretreatment, and the amount of the resin solution added was changed to 17 g so that the proportion of the inorganic particles in the thermally conductive filler was 55% by volume. A thermally conductive filler powder was prepared in the same manner as in Example 1 except that the amount was 70.8 g.

(実施例3)
用いる窒化ホウ素粒子をGEスペシャルティ・マテリアルズ社製、商品名「PTX−25」100gとし、前処理に用いる分散剤をビックケミー社製、商品名「Disperbyk−164」(固形分濃度60%)1.7gとした以外は実施例2と同様に無機物粒子の割合が55体積%となるようにして熱伝導性フィラー粉末を作製した。
(Example 3)
The boron nitride particles to be used are 100 g of a product name “PTX-25” manufactured by GE Specialty Materials, and the dispersant used for pretreatment is a product name “Disperbyk-164” (solid content concentration 60%) manufactured by BYK Chemie. A thermally conductive filler powder was prepared in the same manner as in Example 2 except that the amount was 7 g so that the proportion of inorganic particles was 55% by volume.

(実施例4)
用いる無機物粒子を窒化ホウ素粒子に代えて窒化アルミニウム素粒子(ダウ・ケミカル社製、商品名「scan70」、100g)とした以外は実施例3と同様に熱伝導性フィラー粉末を作製した。
Example 4
A thermally conductive filler powder was prepared in the same manner as in Example 3 except that the inorganic particles used were replaced with boron nitride particles and aluminum nitride elementary particles (manufactured by Dow Chemical Company, trade name “scan70”, 100 g) were used.

(比較例1)
ヘンシェルミキサーに、実施例1の熱伝導性フィラーと同じ配合比率となるように、酸化アルミニウム粒子、シランカップリング剤、エポキシ樹脂、硬化剤、硬化促進剤を投入し、3000rpmの回転数で10分間攪拌を行い、酸化アルミニウム粒子やエポキシ樹脂粉末などが均一に混合された粉末を作製した。
(Comparative Example 1)
Into the Henschel mixer, aluminum oxide particles, a silane coupling agent, an epoxy resin, a curing agent, and a curing accelerator are added so that the blending ratio is the same as that of the heat conductive filler of Example 1, and the rotation speed is 3000 rpm for 10 minutes. Stirring was performed to prepare a powder in which aluminum oxide particles, epoxy resin powder, and the like were uniformly mixed.

(比較例2)
ヘンシェルミキサーに、実施例2の熱伝導性フィラーと同じ配合比率となるように、窒化ホウ素粒子、分散剤、エポキシ樹脂、硬化剤、硬化促進剤を投入し、3000rpmの回転数で10分間攪拌を行い、窒化ホウ素粒子やエポキシ樹脂粉末などが均一に混合された粉末を作製した。
(Comparative Example 2)
Boron nitride particles, a dispersant, an epoxy resin, a curing agent, and a curing accelerator are added to the Henschel mixer so that the blending ratio is the same as that of the thermally conductive filler of Example 2, and stirred for 10 minutes at a rotation speed of 3000 rpm. Then, a powder in which boron nitride particles, epoxy resin powder and the like were uniformly mixed was produced.

(熱伝導性シートの作製)
(製造例1乃至6)
実施例1の熱伝導性フィラー粉末を金型に入れ、プレス成形(180℃×5分間)によりシート化して製造例1の熱伝導性シート(厚み0.2mm)を作製した。
同様に実施例2乃至4の熱伝導性フィラー粉末ならびに比較例1、2の粉末を用いたものをそれぞれ製造例2乃至6の熱伝導性シート(厚み0.2mm)として作製した。
(Preparation of thermal conductive sheet)
(Production Examples 1 to 6)
The thermally conductive filler powder of Example 1 was put into a mold and formed into a sheet by press molding (180 ° C. × 5 minutes) to produce the thermally conductive sheet (thickness 0.2 mm) of Production Example 1.
Similarly, thermal conductive filler powders of Examples 2 to 4 and powders of Comparative Examples 1 and 2 were prepared as thermal conductive sheets (thickness 0.2 mm) of Production Examples 2 to 6, respectively.

(評価)
各製造例の熱伝導性シートの熱伝導率の測定を実施した。
なお、熱伝導率は、アイフェイズ社製、商品名「ai−phase mobile」により熱拡散率を求め、さらに、示差走査熱量計(DSC)を用いた測定により熱伝導性シートの単位体積あたりの熱容量を測定し、先の熱拡散率に乗じることにより算出した。
(Evaluation)
Measurement of the thermal conductivity of the thermal conductive sheet of each production example was performed.
In addition, thermal conductivity calculates | requires a thermal diffusivity by the product name "ai-phase mobile" by an eye phase company, Furthermore, per unit volume of a heat conductive sheet by the measurement using a differential scanning calorimeter (DSC). The heat capacity was measured and calculated by multiplying the previous thermal diffusivity.

また、熱伝導性シートの脆さを指触にて判定し、取り扱いが良好で成形時における支障が生じないと見られるものを「○」、やや脆い感じがあるものの実用上問題ない普通レベルと感じられるものを「△」、もろく、成形時に慎重な取り扱いを要するものを「×」として判定した。
結果を表1に示す。
In addition, the brittleness of the thermal conductive sheet is judged by touch, and “○” indicates that the handling is good and does not cause any trouble during molding, but the level is slightly fragile but has no practical problem. What was felt was judged as “△”, and fragile, and what required careful handling at the time of molding was judged as “x”.
The results are shown in Table 1.

Figure 2008189814
Figure 2008189814

(実施例5)
(樹脂溶液の調整)
ビスフェノール型エポキシ樹脂(東都化成社製、商品名「YD−011」)66gと、クレゾールノボラック樹脂(東都化成社製、商品名「YDCN704」)66gと、硬化剤である4,4’−ジアミノジフェニルスルホン(和歌山精化社製、商品名「セイカキュアーS」)26g、硬化促進剤である三フッ化ホウ素モノエチルアミン1.3gと、2−ブタノン106gとを混合溶解させて樹脂溶液を作製した。
(Example 5)
(Preparation of resin solution)
66 g of bisphenol type epoxy resin (product name “YD-011” manufactured by Toto Kasei Co., Ltd.), 66 g of cresol novolac resin (product name “YDCN 704” manufactured by Toto Kasei Co., Ltd.), and 4,4′-diaminodiphenyl which is a curing agent A resin solution was prepared by mixing and dissolving 26 g of sulfone (trade name “Seika Cure S” manufactured by Wakayama Seika Co., Ltd.), 1.3 g of boron trifluoride monoethylamine as a curing accelerator, and 106 g of 2-butanone.

(熱伝導性フィラー(表面に樹脂組成物が被覆された無機物粒子)の製造)
窒化ホウ素粒子(昭和電工社製、商品名「UHP−1」)100g、前記樹脂溶液8g、2−ブタノン10g、分散剤(ビックケミー社製、商品名「Disperbyk−2001」、固形分濃度46%)2gを、減圧装置を備えた攪拌釜に投入して、この攪拌釜内が1kPaの減圧下となるように脱気しつつ20分間攪拌を実施した。
この減圧下での攪拌後常圧に戻して、さらに、溶剤を自然乾燥させて、表面にエポキシ樹脂組成物が未硬化状態で被覆された窒化ホウ素粒子である熱伝導性フィラー粉末を作製した。
(Manufacture of heat conductive filler (inorganic particles whose surface is coated with a resin composition))
Boron nitride particles (made by Showa Denko, trade name “UHP-1”) 100 g, resin solution 8 g, 2-butanone 10 g, dispersant (Bic Chemie, trade name “Disperbyk-2001”, solid content concentration 46%) 2 g was put into a stirring vessel equipped with a decompression device, and stirred for 20 minutes while degassing so that the inside of this stirring vessel was under a reduced pressure of 1 kPa.
After stirring under this reduced pressure, the pressure was returned to normal pressure, and the solvent was naturally dried to produce thermally conductive filler powder, which is boron nitride particles coated with the epoxy resin composition in an uncured state on the surface.

(実施例6)
使用材料を、窒化ホウ素粒子(昭和電工社製、商品名「UHP−1」)100g、ポリカルボジイミド樹脂溶液(オプトメイト社製、商品名「HR−712」、固形分20質量%)10g、シクロヘキサノン10g、分散剤(ビックケミー社製、商品名「Disperbyk−164」、固形分濃度60%)1.7gとした以外は実施例5と同様に熱伝導性フィラー粉末を作製した。
(Example 6)
Materials used were boron nitride particles (Showa Denko, trade name “UHP-1”) 100 g, polycarbodiimide resin solution (Optomete, trade name “HR-712”, solid content 20 mass%) 10 g, cyclohexanone A thermally conductive filler powder was prepared in the same manner as in Example 5 except that 10 g and a dispersant (trade name “Disperbyk-164”, solid content concentration 60%, manufactured by Big Chemie) were 1.7 g.

(実施例7)
使用材料を、窒化ホウ素粒子(昭和電工社製、商品名「UHP−1」)100g、ポリスチレン樹脂溶液(固形分20質量%)10g、2−ブタノン10g、分散剤(ビックケミー社製、商品名「Disperbyk−164」、固形分濃度60%)1.7gとした以外は実施例5と同様に熱伝導性フィラー粉末を作製した。
(Example 7)
Boron nitride particles (trade name “UHP-1” manufactured by Showa Denko KK) 100 g, polystyrene resin solution (solid content 20% by mass) 10 g, 2-butanone 10 g, dispersant (manufactured by Big Chemie, trade name “ A thermally conductive filler powder was prepared in the same manner as in Example 5 except that 1.7 g (Disperbyk-164 ", solid concentration 60%) was used.

(実施例8)
メチルメタクリレート10g、分散剤(ビックケミー社製、商品名「Disperbyk−2001」、固形分濃度46%)2g、重合開始剤(和光純薬社製、「アゾビスイソブチロニトリル」)0.1gを酢酸エチル100gに溶解した溶液に窒化ホウ素粒子(昭和電工社製、商品名「UHP−1」)100gを分散させた分散液を作製した。
次いで、ドデシルベンゼンスルホン酸ナトリウム1gを水500gに分散させて水性溶媒を作製し、前記分散液をホモミキサーでこの水性溶媒中に分散させ、70℃の状態で5時間保持してメチルメタクリレートの重合を実施した。
重合後は、吸引ろ過を実施してアクリル樹脂が表面に被覆された窒化ホウ素粒子をろ別して、洗浄、乾燥させて熱伝導性フィラー粉末を作製した。
(Example 8)
10 g of methyl methacrylate, 2 g of a dispersant (manufactured by Big Chemie, trade name “Disperbyk-2001”, solid content concentration 46%), 0.1 g of a polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd., “azobisisobutyronitrile”) A dispersion was prepared by dispersing 100 g of boron nitride particles (trade name “UHP-1”, manufactured by Showa Denko KK) in a solution dissolved in 100 g of ethyl acetate.
Next, 1 g of sodium dodecylbenzenesulfonate is dispersed in 500 g of water to prepare an aqueous solvent. The dispersion is dispersed in this aqueous solvent with a homomixer and maintained at 70 ° C. for 5 hours to polymerize methyl methacrylate. Carried out.
After the polymerization, suction filtration was performed to filter out boron nitride particles coated with acrylic resin on the surface, which were then washed and dried to produce a thermally conductive filler powder.

(比較例3)
樹脂が被覆されていない窒化ホウ素粒子(昭和電工社製、商品名「UHP−1」)を比較例3の熱伝導性フィラーとした。
(Comparative Example 3)
Boron nitride particles (made by Showa Denko KK, trade name “UHP-1”) not coated with resin were used as the thermally conductive filler of Comparative Example 3.

(熱伝導性シートの作製)
(製造例7)
実施例5の熱伝導性フィラー粉末100g、エポキシ樹脂(東都化成社製、商品名「YSLV−80XY」)11.3g、クレゾールノボラック樹脂(東都化成社製、商品名「YDCN−701」)11.3g、硬化促進剤(三フッ化ホウ素モノエチルアミン)0.26gを小型粉砕機に投入してこれらを混合した粉末原料を作製した。
この粉末原料を、金型を用いてプレス成形(180℃×10分間)によりシート化して製造例7の熱伝導性シート(厚み0.2mm)を作製した。
(Preparation of thermal conductive sheet)
(Production Example 7)
10. Thermally conductive filler powder 100 g of Example 5, epoxy resin (manufactured by Toto Kasei Co., Ltd., trade name “YSLV-80XY”) 11.3 g, cresol novolac resin (manufactured by Toto Kasei Co., Ltd., trade name “YDCN-701”) 3 g and 0.26 g of a curing accelerator (boron trifluoride monoethylamine) were charged into a small pulverizer to prepare a powder raw material in which these were mixed.
This powder raw material was formed into a sheet by press molding (180 ° C. × 10 minutes) using a mold to produce a heat conductive sheet (thickness 0.2 mm) of Production Example 7.

(製造例8)
実施例5の熱伝導性フィラー粉末50g、エポキシ樹脂(東都化成社製、商品名「YSLV−80XY」)5.6g、クレゾールノボラック樹脂(東都化成社製、商品名「YDCN−701」)5.6g、硬化促進剤(三フッ化ホウ素モノエチルアミン)0.13gを混練機(東洋精機社製、商品名「ラボプラストミル」)小型粉砕機に投入して80℃の温度で15分間混練しペースト状原料を作製した。
このペースト状原料を、金型を用いてプレス成形(180℃×10分間)によりシート化して製造例8の熱伝導性シート(厚み0.2mm)を作製した。
(Production Example 8)
Thermal conductive filler powder 50 g of Example 5, epoxy resin (manufactured by Toto Kasei Co., Ltd., trade name “YSLV-80XY”) 5.6 g, cresol novolac resin (manufactured by Toto Kasei Co., Ltd., trade name “YDCN-701”) 6 g, 0.13 g of a curing accelerator (boron trifluoride monoethylamine) is put into a kneading machine (trade name “Lab Plast Mill”, manufactured by Toyo Seiki Co., Ltd.), and kneaded for 15 minutes at a temperature of 80 ° C. A raw material was prepared.
The paste-like raw material was formed into a sheet by press molding (180 ° C. × 10 minutes) using a mold to produce a heat conductive sheet (thickness 0.2 mm) of Production Example 8.

(製造例9)
製造例7において形成された粉末原料をランズバーグインダストリー社製の粉体静電塗装機で銅箔に0.2mm厚さに塗工し、この塗工されたものを180℃×1時間加熱して熱伝導性シートを作製した。
(Production Example 9)
The powder raw material formed in Production Example 7 was applied to a copper foil to a thickness of 0.2 mm with a powder electrostatic coating machine manufactured by Landsburg Industry Co., Ltd., and the coated material was heated at 180 ° C. for 1 hour. Thus, a heat conductive sheet was produced.

(製造例10)
実施例6の熱伝導性フィラーを用いたこと以外は、製造例8と同様にして熱伝導性シートを作製した。
(Production Example 10)
A thermally conductive sheet was produced in the same manner as in Production Example 8 except that the thermally conductive filler of Example 6 was used.

(製造例11)
実施例7の熱伝導性フィラー100gをポリスチレン樹脂(PSジャパン社製、汎用ポリスチレン樹脂)15gで希釈した後に、射出成形温度200℃に設定された射出成形機を用いて厚み0.2mmの熱伝導性シートを射出成形により作製した。
(Production Example 11)
After diluting 100 g of the heat conductive filler of Example 7 with 15 g of polystyrene resin (manufactured by PS Japan, general-purpose polystyrene resin), heat conduction with a thickness of 0.2 mm using an injection molding machine set at an injection molding temperature of 200 ° C. Sheet was produced by injection molding.

(製造例12)
実施例8の熱伝導性フィラーを用いたこと以外は、製造例8と同様にして熱伝導性シートを作製した。
(Production Example 12)
A thermally conductive sheet was produced in the same manner as in Production Example 8 except that the thermally conductive filler of Example 8 was used.

(製造例13)
実施例8の熱伝導性フィラーを用いたこと、希釈に用いた樹脂をポリスチレン樹脂に代えてポリメチルメタクリレート樹脂(三菱レーヨン社製、商品名「アクリペットVH」)とした以外は、製造例8と同様にして熱伝導性シートを作製した。
(Production Example 13)
Production Example 8 except that the thermally conductive filler of Example 8 was used, and that the resin used for dilution was replaced with polystyrene resin and polymethyl methacrylate resin (trade name “Acrypet VH”, manufactured by Mitsubishi Rayon Co., Ltd.) was used. A heat conductive sheet was produced in the same manner as described above.

(製造例14)
比較例3の熱伝導性フィラーを用いたこと以外は、製造例7と同様にして熱伝導性シートを作製した。
なお、この製造例14で得られた熱伝導性シートは、表面に凸凹が見られるとともに内部にも空気層が形成されており、非常に脆く成形性に劣るものであった。
(Production Example 14)
A thermally conductive sheet was produced in the same manner as in Production Example 7 except that the thermally conductive filler of Comparative Example 3 was used.
In addition, the heat conductive sheet obtained in Production Example 14 had irregularities on the surface and an air layer formed inside, and was very brittle and poor in moldability.

(製造例15)
比較例3の熱伝導性フィラーを用いたこと以外は、製造例9と同様にして熱伝導性シートを作製した。
なお、この製造例15で得られた熱伝導性シートは、内部に空気層が多数形成されており、非常に脆く成形性に劣るものであった。
(Production Example 15)
A thermally conductive sheet was produced in the same manner as in Production Example 9 except that the thermally conductive filler of Comparative Example 3 was used.
The heat conductive sheet obtained in Production Example 15 had a large number of air layers inside, and was very brittle and inferior in moldability.

(製造例16)
比較例3の熱伝導性フィラーを用いたこと以外は、製造例11と同様にして熱伝導性シートを作製した。
なお、この製造例16で得られた熱伝導性シートは、面内に無機物粒子が密で樹脂組成物が粗となっている部分と、樹脂が多く無機物粒子が粗となっている部分とが生じており、実質、熱伝導性シートとして用いることができないものであった。
(Production Example 16)
A thermally conductive sheet was produced in the same manner as in Production Example 11 except that the thermally conductive filler of Comparative Example 3 was used.
The heat conductive sheet obtained in Production Example 16 has a portion where the inorganic particles are dense and the resin composition is rough in a plane, and a portion where there are many resins and the inorganic particles are rough. It has arisen and it cannot be used as a heat conductive sheet substantially.

(評価)
製造例7乃至15の熱伝導性シートについて、熱伝導率ならびに絶縁破壊電圧の測定を実施した(製造例16の熱伝導性シートは評価できず)。
なお、熱伝導率は、アイフェイズ社製、商品名「ai−phase mobile」により熱拡散率を求め、さらに、示差走査熱量計(DSC)を用いた測定により熱伝導性シートの単位体積あたりの熱容量を測定し、先の熱拡散率に乗じることにより算出した。
また、絶縁破壊電圧は、常温の絶縁油(JIS C 2320に規定された1種2号絶縁油)中で1kV/minの昇圧速度で測定した。
さらに、各熱伝導性シートの脆さを指触にて判定し、取り扱いが良好で成形時における支障が生じないと見られるものを「○」、やや脆い感じがあるものの実用上問題ない普通レベルと感じられるものを「△」、もろく、成形時に慎重な取り扱いを要するものを「×」として判定した。
結果を表2に示す。
(Evaluation)
About the heat conductive sheet of manufacture example 7 thru | or 15, the heat conductivity and the dielectric breakdown voltage were measured (the heat conductive sheet of manufacture example 16 cannot be evaluated).
In addition, thermal conductivity calculates | requires a thermal diffusivity by the product name "ai-phase mobile" by an eye phase company, Furthermore, per unit volume of a heat conductive sheet by the measurement using a differential scanning calorimeter (DSC). The heat capacity was measured and calculated by multiplying the previous thermal diffusivity.
Moreover, the dielectric breakdown voltage was measured at a pressure increase rate of 1 kV / min in normal temperature insulating oil (type 1 No. 2 insulating oil specified in JIS C 2320).
Furthermore, the brittleness of each thermal conductive sheet is judged by touch, and “○” indicates that the handling is good and does not cause any trouble during molding. What was felt as “△” was judged as “△”, and what was fragile and required careful handling at the time of molding was judged as “x”.
The results are shown in Table 2.

Figure 2008189814
Figure 2008189814

表1、2などの結果からも、無機物粒子が用いられて粉末状に形成されており、しかも、無機物粒子の表面には樹脂組成物が被覆されている熱伝導性フィラーは、 樹脂組成物に対する濡れ性が良好で樹脂成形品を形成させる際に樹脂成形品中に空気層などが形成されることを抑制させることができ樹脂成形品の熱伝導率を十分向上させ得ることがわかる。   From the results in Tables 1 and 2 and the like, the thermally conductive filler in which inorganic particles are used and formed into a powder and the surface of the inorganic particles is coated with the resin composition is It can be seen that when the resin molded product is formed with good wettability, the formation of an air layer or the like in the resin molded product can be suppressed, and the thermal conductivity of the resin molded product can be sufficiently improved.

Claims (7)

無機物粒子が用いられて粉末状に形成されており、しかも、前記無機物粒子の表面には樹脂組成物が被覆されていることを特徴とする熱伝導性フィラー。   A thermally conductive filler, wherein inorganic particles are used to form a powder, and the surface of the inorganic particles is coated with a resin composition. 前記樹脂組成物が、減圧下で無機物粒子の表面に被覆されたものである請求項1記載の熱伝導性フィラー。   The thermally conductive filler according to claim 1, wherein the resin composition is coated on the surface of inorganic particles under reduced pressure. 全体に占める前記無機物粒子の割合が、質量で90〜97%である請求項1または2に記載の熱伝導性フィラー。   The thermally conductive filler according to claim 1 or 2, wherein a ratio of the inorganic particles in the whole is 90 to 97% by mass. 前記無機物粒子が、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、酸化ケイ素、および、ダイヤモンドの内の少なくとも1種を主成分とする粒子である請求項1乃至3のいずれか1項に記載の熱伝導性フィラー。   4. The particle according to claim 1, wherein the inorganic particles are particles mainly composed of at least one of aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon oxide, and diamond. Thermally conductive filler. 前記樹脂組成物が熱硬化性を有し、しかも、未硬化の状態で無機物粒子の表面に被覆されている請求項1乃至4のいずれか1項に記載の熱伝導性フィラー。   The thermally conductive filler according to any one of claims 1 to 4, wherein the resin composition has thermosetting properties and is coated on the surface of the inorganic particles in an uncured state. 樹脂組成物を溶媒に分散させた分散液と無機物粒子とを減圧下で混合攪拌して前記分散液で無機物粒子の表面を被覆し、前記溶媒を除去することにより無機物粒子の表面に樹脂組成物が被覆された粉末状の熱伝導性フィラーを作製することを特徴とする熱伝導性フィラー製造方法。   A dispersion in which a resin composition is dispersed in a solvent and inorganic particles are mixed and stirred under reduced pressure to coat the surface of the inorganic particles with the dispersion, and the surface of the inorganic particles is removed by removing the solvent. A method for producing a thermally conductive filler, characterized in that a powdery thermally conductive filler coated with is produced. 樹脂組成物中に無機物粒子が分散されてなる樹脂成形品を製造する樹脂成形品製造方法であって、
樹脂組成物を溶媒に分散させた分散液と無機物粒子とを減圧下で混合攪拌して前記分散液で無機物粒子の表面を被覆し、前記溶媒を除去することにより無機物粒子の表面に樹脂組成物が被覆された粉末状の熱伝導性フィラーを作製し、該熱伝導性フィラーどうしを接着させることにより樹脂成形品を作製することを特徴とする樹脂成形品製造方法。
A resin molded product manufacturing method for manufacturing a resin molded product in which inorganic particles are dispersed in a resin composition,
A dispersion in which a resin composition is dispersed in a solvent and inorganic particles are mixed and stirred under reduced pressure to coat the surface of the inorganic particles with the dispersion, and the surface of the inorganic particles is removed by removing the solvent. A method for producing a resin molded product, comprising: producing a powdery thermally conductive filler coated with a resin, and bonding the thermally conductive fillers together to produce a resin molded product.
JP2007025891A 2007-02-05 2007-02-05 Resin molded product manufacturing method Expired - Fee Related JP5134824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025891A JP5134824B2 (en) 2007-02-05 2007-02-05 Resin molded product manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025891A JP5134824B2 (en) 2007-02-05 2007-02-05 Resin molded product manufacturing method

Publications (2)

Publication Number Publication Date
JP2008189814A true JP2008189814A (en) 2008-08-21
JP5134824B2 JP5134824B2 (en) 2013-01-30

Family

ID=39750218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025891A Expired - Fee Related JP5134824B2 (en) 2007-02-05 2007-02-05 Resin molded product manufacturing method

Country Status (1)

Country Link
JP (1) JP5134824B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248048A (en) * 2007-03-30 2008-10-16 Shin Kobe Electric Mach Co Ltd Molding material of high heat conductive thermoplastic resin
JP2009235402A (en) * 2008-03-05 2009-10-15 Hitachi Chem Co Ltd Adhesive film
JP2010215554A (en) * 2009-03-16 2010-09-30 Dainichiseika Color & Chem Mfg Co Ltd Composite spherical polymer particle, method for producing the same and cosmetic using the same
JP2010229269A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Heat-conductive epoxy resin sheet material
JP2011236376A (en) * 2010-05-13 2011-11-24 Hitachi Chem Co Ltd High thermal conductivity composite particle and heat radiating material using the same
JP2012255086A (en) * 2011-06-09 2012-12-27 National Institute Of Advanced Industrial Science & Technology Composite material with high thermal conductivity
JPWO2012017571A1 (en) * 2010-08-05 2013-09-19 住友ベークライト株式会社 Functional particle, functional particle group, filler, resin composition for electronic component, electronic component and semiconductor device
WO2015083340A1 (en) * 2013-12-06 2015-06-11 ナガセケムテックス株式会社 Thermosetting resin composition and thermally conductive sheet
JP2015117260A (en) * 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 Organic-inorganic composite composition, molding, and sheet
JP2015193752A (en) * 2014-03-31 2015-11-05 三菱化学株式会社 Boron nitride particle, method for producing boron nitride particle, coating liquid for heat radiation sheet comprising the boron nitride particle, heat radiation sheet comprising the boron nitride particle, and power device apparatus
JP2015195292A (en) * 2014-03-31 2015-11-05 三菱化学株式会社 Heat dissipation sheet, manufacturing method of heat dissipation sheet, slurry for heat dissipation sheet and power device
JP2016204545A (en) * 2015-04-24 2016-12-08 日東電工株式会社 Encapsulation resin sheet and electronic device
JPWO2015125760A1 (en) * 2014-02-19 2017-03-30 日本化薬株式会社 Resin-modified filler, epoxy resin composition, and cured product thereof
JP2017179272A (en) * 2016-03-31 2017-10-05 日本ガスケット株式会社 Thermal conductive insulation resin composition and manufacturing method of molded article using the same
KR101876247B1 (en) * 2017-02-28 2018-08-09 주식회사 신한세라믹 Method for granular boron nitride filler by using thermosetting resin as binder and filler thereof
CN115433415A (en) * 2022-08-17 2022-12-06 山东鲁泰控股集团有限公司石墨烯高分子复合材料研发中心 Preparation method of heat-conducting PVC (polyvinyl chloride)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124969A (en) * 1995-10-30 1997-05-13 Mitsubishi Chem Corp Carbon black for insulation black matrix
JPH09286606A (en) * 1996-04-19 1997-11-04 Dowa Mining Co Ltd High-thermal conductive aluminum nitride, its production and resin composition using the same
JP2000119443A (en) * 1998-10-15 2000-04-25 Sumitomo Chem Co Ltd Resin-filling aluminum hydroxide
JP2004250273A (en) * 2003-02-19 2004-09-09 National Institute Of Advanced Industrial & Technology Method for producing waterproof aluminum nitride powder
JP2006160830A (en) * 2004-12-03 2006-06-22 Three M Innovative Properties Co Thermal conductive sheet and method for producing the same
JP2006226629A (en) * 2005-02-18 2006-08-31 Negishi Seisakusho:Kk Radiation drier
JP2006278476A (en) * 2005-03-28 2006-10-12 Kaneka Corp Composition for heat dissipating sheet and heat dissipating sheet cured thereby
JP2006290667A (en) * 2005-04-08 2006-10-26 Toyo Aluminium Kk Aluminum nitride-based powder, its production method, and heat conductive material containing aluminum nitride-based powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124969A (en) * 1995-10-30 1997-05-13 Mitsubishi Chem Corp Carbon black for insulation black matrix
JPH09286606A (en) * 1996-04-19 1997-11-04 Dowa Mining Co Ltd High-thermal conductive aluminum nitride, its production and resin composition using the same
JP2000119443A (en) * 1998-10-15 2000-04-25 Sumitomo Chem Co Ltd Resin-filling aluminum hydroxide
JP2004250273A (en) * 2003-02-19 2004-09-09 National Institute Of Advanced Industrial & Technology Method for producing waterproof aluminum nitride powder
JP2006160830A (en) * 2004-12-03 2006-06-22 Three M Innovative Properties Co Thermal conductive sheet and method for producing the same
JP2006226629A (en) * 2005-02-18 2006-08-31 Negishi Seisakusho:Kk Radiation drier
JP2006278476A (en) * 2005-03-28 2006-10-12 Kaneka Corp Composition for heat dissipating sheet and heat dissipating sheet cured thereby
JP2006290667A (en) * 2005-04-08 2006-10-26 Toyo Aluminium Kk Aluminum nitride-based powder, its production method, and heat conductive material containing aluminum nitride-based powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012038960; 粉体工学会誌 29(11), 1992, P831-837 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248048A (en) * 2007-03-30 2008-10-16 Shin Kobe Electric Mach Co Ltd Molding material of high heat conductive thermoplastic resin
JP2009235402A (en) * 2008-03-05 2009-10-15 Hitachi Chem Co Ltd Adhesive film
US9205033B2 (en) 2009-03-16 2015-12-08 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Composite spherical polymer particles and their production process, and cosmetics using the same
JP2010215554A (en) * 2009-03-16 2010-09-30 Dainichiseika Color & Chem Mfg Co Ltd Composite spherical polymer particle, method for producing the same and cosmetic using the same
JP2010229269A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Heat-conductive epoxy resin sheet material
JP2011236376A (en) * 2010-05-13 2011-11-24 Hitachi Chem Co Ltd High thermal conductivity composite particle and heat radiating material using the same
JPWO2012017571A1 (en) * 2010-08-05 2013-09-19 住友ベークライト株式会社 Functional particle, functional particle group, filler, resin composition for electronic component, electronic component and semiconductor device
JP2012255086A (en) * 2011-06-09 2012-12-27 National Institute Of Advanced Industrial Science & Technology Composite material with high thermal conductivity
WO2015083340A1 (en) * 2013-12-06 2015-06-11 ナガセケムテックス株式会社 Thermosetting resin composition and thermally conductive sheet
JP2015110709A (en) * 2013-12-06 2015-06-18 ナガセケムテックス株式会社 Thermosetting resin composition and thermally conductive sheet
JP2015117260A (en) * 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 Organic-inorganic composite composition, molding, and sheet
JPWO2015125760A1 (en) * 2014-02-19 2017-03-30 日本化薬株式会社 Resin-modified filler, epoxy resin composition, and cured product thereof
JP2015195292A (en) * 2014-03-31 2015-11-05 三菱化学株式会社 Heat dissipation sheet, manufacturing method of heat dissipation sheet, slurry for heat dissipation sheet and power device
JP2015193752A (en) * 2014-03-31 2015-11-05 三菱化学株式会社 Boron nitride particle, method for producing boron nitride particle, coating liquid for heat radiation sheet comprising the boron nitride particle, heat radiation sheet comprising the boron nitride particle, and power device apparatus
JP2016204545A (en) * 2015-04-24 2016-12-08 日東電工株式会社 Encapsulation resin sheet and electronic device
JP2017179272A (en) * 2016-03-31 2017-10-05 日本ガスケット株式会社 Thermal conductive insulation resin composition and manufacturing method of molded article using the same
KR101876247B1 (en) * 2017-02-28 2018-08-09 주식회사 신한세라믹 Method for granular boron nitride filler by using thermosetting resin as binder and filler thereof
CN115433415A (en) * 2022-08-17 2022-12-06 山东鲁泰控股集团有限公司石墨烯高分子复合材料研发中心 Preparation method of heat-conducting PVC (polyvinyl chloride)
CN115433415B (en) * 2022-08-17 2024-03-19 山东鲁泰控股集团有限公司石墨烯高分子复合材料研发中心 Preparation method of heat-conducting PVC (polyvinyl chloride)

Also Published As

Publication number Publication date
JP5134824B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5134824B2 (en) Resin molded product manufacturing method
JP4889110B2 (en) Thermally conductive resin composition, thermal conductive sheet and method for producing the same
JP5002280B2 (en) Resin molded product manufacturing method
TWI687393B (en) Agglomerated boron nitride particles, a method for producing agglomerated boron nitride particles, a resin composition including the agglomerated boron nitride particles, molding, and sheet
WO2012070289A1 (en) Thermal conductive sheet and power module
TWI715799B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
TWI774644B (en) Resin composition and multilayer substrate
TW201634547A (en) Resin composition and preparation process thereof
JP6815042B2 (en) A resin composition, an article produced from the resin composition, and a method for producing the same.
JP2014095063A (en) Epoxy resin/inorganic matter composite sheet for sealing
JP6945241B2 (en) Resin composition for film, film, film with base material, metal / resin laminate, cured resin, semiconductor device, and film manufacturing method
JP2012092297A (en) Adhesive resin composition, its cured product and adhesive film
JP5171798B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP7019955B2 (en) Boron Nitride Particle Containing Sheet
JP2013194223A (en) Heat conductive material
JP2002275433A (en) Adhesive film
JP5888584B2 (en) Resin composition, resin sheet, prepreg sheet, cured resin sheet, structure, and semiconductor device for power or light source
KR101898234B1 (en) Resin composition, article prepared by using the same and method of preparing the same
JP6037275B2 (en) Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board
JP2018021156A (en) Resin composition, and cured molding, adhesive sheet, and substrate comprising the same
JP2020063438A (en) Resin composition, resin cured product and composite molding
WO2020075663A1 (en) Resin composition, resin cured product, and composite molded body
JP2019196473A (en) Printed circuit board and resin composition for ic package, and product using the same
JP6508508B2 (en) Resin composition, thermally conductive adhesive and laminate

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees