JP2008188852A - Tire vulcanization molding device and vulcanization molding method - Google Patents

Tire vulcanization molding device and vulcanization molding method Download PDF

Info

Publication number
JP2008188852A
JP2008188852A JP2007025157A JP2007025157A JP2008188852A JP 2008188852 A JP2008188852 A JP 2008188852A JP 2007025157 A JP2007025157 A JP 2007025157A JP 2007025157 A JP2007025157 A JP 2007025157A JP 2008188852 A JP2008188852 A JP 2008188852A
Authority
JP
Japan
Prior art keywords
pressurized gas
bladder
tire
vulcanization molding
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007025157A
Other languages
Japanese (ja)
Inventor
Masafumi Shirokibara
雅史 白木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007025157A priority Critical patent/JP2008188852A/en
Publication of JP2008188852A publication Critical patent/JP2008188852A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To exfoliate a bladder by surely introducing pressurized gas between a tire and the bladder after vulcanization molding. <P>SOLUTION: A pressurized gas introducing path 40 having an opening 41 of one end side abutting on the bladder 20 is formed at an underside bead ring 14 of a tire vulcanization molding device 1. A pressurized gas supply fixture 52 for supplying the pressurized gas is constituted there so as to approach and separate from the opening 42 at the other end side to be moved by a moving means 54. A contact displacement member 61 is mounted to the pressurized gas supply fixture 52 to be inserted in the pressurized gas introducing path 40. When supplying the pressurized gas, the pressurized gas supply fixture 52 is moved to a position where the supply port 52A communicates with the pressurized gas introducing path 40. The tip of the contact displacement member 61 is brought in contact with the bladder 20, thereby to be displaced to the inner side to get the bladder 20 separated from the opening 41 where the pressurized gas is introduced between a tire 5' after vulcanization and the bladder 20 to exfoliate the bladder 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生タイヤ(グリーンタイヤ)内でブラダを膨張させて加硫成型するタイヤ加硫成型装置及び加硫成型方法に関し、特に、加硫成型後のタイヤからのブラダの剥離を確実に行えるようにしたタイヤ加硫成型装置及び加硫成型方法に関する。   The present invention relates to a tire vulcanization molding apparatus and a vulcanization molding method for inflating and vulcanizing a bladder in a green tire (green tire), and in particular, the bladder can be reliably peeled from the tire after vulcanization molding. The present invention relates to a tire vulcanization molding apparatus and a vulcanization molding method.

空気入りタイヤは、一般に、未加硫ゴム等からなる各種のタイヤ構成部材を組み合わせて生タイヤを成型し、加硫成型して所定形状に成型される。この加硫成型工程では、従来、剛体の外型内に生タイヤを収納し、その内側でブラダを膨張させて生タイヤを外型に押し付けて加硫成型するタイヤ加硫成型装置が広く使用されている。   A pneumatic tire is generally formed into a predetermined shape by molding a raw tire by combining various tire constituent members made of unvulcanized rubber or the like, and vulcanizing and molding the tire. In this vulcanization molding process, conventionally, a tire vulcanization molding apparatus is widely used in which a raw tire is housed in a rigid outer mold, a bladder is expanded inside and the raw tire is pressed against the outer mold to vulcanize and mold. ing.

図4は、このような従来のタイヤ加硫成型装置の一例を模式的に示す要部断面図であり、加硫成型する生タイヤの幅方向に対応する方向の断面を、かつ、その断面の一方側(図では右側)を拡大して示す半断面図である。
このタイヤ加硫成型装置90は、図示のように、タイヤの外面形状を規定する外型10と、その内部に配置された膨張可能な略袋状のブラダ20と、ブラダ20の半径方向内側(図では左側)の両端部21を係止して保持するクランプ手段30と、を備えている。
FIG. 4 is a main part cross-sectional view schematically showing an example of such a conventional tire vulcanization molding apparatus, and shows a cross section in a direction corresponding to the width direction of a raw tire to be vulcanized and molded. It is a semi-sectional view which expands and shows one side (right side in a figure).
As shown in the drawing, the tire vulcanization molding apparatus 90 includes an outer mold 10 that defines the outer shape of the tire, an inflatable substantially bag-like bladder 20 disposed inside thereof, and a radially inner side of the bladder 20 ( And clamping means 30 for locking and holding both end portions 21 on the left side in the figure.

外型10は、生タイヤ5のトレッド部からサイド部にかけての外面形状を成型する上型11及び下型12と、ビード部付近の外面形状を成型する上側ビードリング13及び下側ビードリング14等からなり、例えば上型11及び上側ビードリング13を上下動させて内部空間(キャビティ)を開閉する。クランプ手段30は、ブラダ20の両外側に配置された外側ブラダリング31、32と、そのブラダ20の端部21を挟んだ内側に配置された内側ブラダリング33、34とを有し、それらでブラダ20の端部21を両側から挟んで係止する。   The outer mold 10 includes an upper mold 11 and a lower mold 12 that mold an outer surface shape from a tread portion to a side portion of the green tire 5, an upper bead ring 13 and a lower bead ring 14 that mold an outer surface shape near the bead portion, and the like. For example, the upper mold 11 and the upper bead ring 13 are moved up and down to open and close the internal space (cavity). The clamp means 30 includes outer bladder rings 31 and 32 disposed on both outer sides of the bladder 20 and inner bladder rings 33 and 34 disposed on the inner side of the end portion 21 of the bladder 20. The end portion 21 is sandwiched and locked from both sides.

このタイヤ加硫成型装置90では、外型10内に生タイヤ5を収納して、その内部に配置したブラダ20内に高温・高圧の蒸気等の熱流体を供給し、ブラダ20を膨張させて内圧を上昇させ、この圧力で生タイヤ5を外型10内面に押し付けつつ、生タイヤ5を加熱型付けして加硫成型を行う。この熱と圧力により、生タイヤ5のゴムと硫黄等が架橋反応(加硫反応)し、かつ生タイヤ5を構成する各部材同士が接着されて、加硫成型後のタイヤ5’に強度や弾力性、耐久性等の諸性能が付与される。同時に、加熱された生タイヤ5が外型10等に押し付けられて変形し、その最終的な形状やトレッドパターン(トレッド部の模様)も形成される。その後、ブラダ20の内圧を低下させ、ブラダ20を加硫成型後のタイヤ5’の内面から剥離させてタイヤ5’内から抜き出し、タイヤ5’を外型10内から取り出して製品タイヤが完成する。   In the tire vulcanization molding apparatus 90, the raw tire 5 is accommodated in the outer mold 10, a hot fluid such as high-temperature / high-pressure steam is supplied into the bladder 20 disposed therein, and the bladder 20 is expanded. The internal pressure is raised, and the raw tire 5 is pressed against the inner surface of the outer mold 10 with this pressure, and the raw tire 5 is heated and molded to perform vulcanization molding. By this heat and pressure, the rubber and sulfur of the green tire 5 undergo a cross-linking reaction (vulcanization reaction), and the members constituting the green tire 5 are bonded to each other, so that the strength and Various performances such as elasticity and durability are imparted. At the same time, the heated green tire 5 is pressed against the outer mold 10 and deformed, and the final shape and tread pattern (tread pattern) are also formed. Thereafter, the internal pressure of the bladder 20 is reduced, the bladder 20 is peeled off from the inner surface of the vulcanized tire 5 ′ and extracted from the tire 5 ′, and the tire 5 ′ is taken out from the outer mold 10 to complete the product tire. .

ところが、このような従来のタイヤ加硫成型装置90では、加硫成型中の熱と圧力により、ブラダ20の外面がタイヤ5’の内面と強く密着し、それらの剥離が不完全になり易い、という問題がある。これにより、ブラダ20の抜き出し時や加硫成型後のタイヤ5’を取り出す際に、密着したブラダ20に引っ張られてビード部等のタイヤ5’の一部が変形等して製品不良が発生することがある。一方、ブラダ20には、密着したタイヤ5’等から引き剥がされる際に、それらに強く引っ張られて大きな応力等が作用し、特に、その半径方向内側の外側ブラダリング31、32やビードリング13、14に当接する付近を中心にクラック等が生じ易くなる。その結果、ブラダ20が比較的早期に損傷等して、その寿命(使用回数)が短くなり、交換回数が多くなる等して加硫成型の生産性等が低くなる、という問題もある。   However, in such a conventional tire vulcanization molding apparatus 90, due to heat and pressure during vulcanization molding, the outer surface of the bladder 20 is in close contact with the inner surface of the tire 5 ′, and their peeling tends to be incomplete. There is a problem. As a result, when the bladder 20 is pulled out or when the tire 5 ′ after vulcanization molding is taken out, a part of the tire 5 ′ such as the bead portion is deformed due to being pulled by the closely attached bladder 20 to cause a product defect. Sometimes. On the other hand, when the bladder 20 is peeled off from the tire 5 ′ or the like that is in close contact with the bladder 20, a large stress or the like acts on the bladder 20 in particular, and the outer bladder rings 31 and 32 and the bead ring 13 on the radially inner side are particularly affected. Cracks and the like are likely to occur in the vicinity of the vicinity in contact with 14. As a result, there is a problem that the bladder 20 is damaged relatively early, the life (number of times of use) is shortened, the number of replacements is increased, and the productivity of vulcanization molding is lowered.

そのため、従来から、加硫成型後のタイヤ5’の取り出し前等に、タイヤ5’とブラダ20との間に高圧空気(いわゆる剥離エア)等の加圧気体を導入し、それらを予め剥離させることが行われている(特許文献1参照)。   Therefore, conventionally, a pressurized gas such as high-pressure air (so-called peeling air) is introduced between the tire 5 ′ and the bladder 20 before the tire 5 ′ after vulcanization molding is taken out, and these are peeled off in advance. (See Patent Document 1).

ここで、この従来のタイヤ加硫成型装置90(図4参照)も、加圧気体をブラダ20の端部21側から供給してブラダ20とタイヤ5’の間に導入し、それらを剥離させるようになっており、そのための加圧気体供給手段50等を備えている。   Here, this conventional tire vulcanization molding apparatus 90 (see FIG. 4) also supplies pressurized gas from the end 21 side of the bladder 20, introduces it between the bladder 20 and the tire 5 ', and peels them off. For this purpose, a pressurized gas supply means 50 and the like are provided.

図5は、この従来のタイヤ加硫成型装置90が備える加圧気体を導入するための構成を模式的に示す要部断面図であり、図4のX領域付近を拡大して示している。
このタイヤ加硫成型装置90では、図示のように、下側ビードリング14に、一端側(図では上側)の開口部41がブラダ20に当接する貫通孔を形成して加圧気体導入路40とし、その他端側の開口部42(図では下側)に加圧気体供給手段50を取り付けている。加圧気体供給手段50は、コンプレッサ等の加圧気体源51と、加圧気体の吐出口(供給口)52Aが設けられた加圧気体供給治具52と、それらを連結するホース等の管路53等からなり、加圧気体供給治具52の供給口52Aを加圧気体導入路40に接続し、加圧気体源51からの加圧気体を、管路53を介して供給口52Aから加圧気体導入路40に供給(図5の矢印K)する。
FIG. 5 is a main part sectional view schematically showing a configuration for introducing the pressurized gas provided in the conventional tire vulcanization molding apparatus 90, and shows the vicinity of the X region in FIG. 4 in an enlarged manner.
In the tire vulcanization molding apparatus 90, as shown in the drawing, the lower bead ring 14 is formed with a through hole in which the opening 41 on one end side (upper side in the figure) contacts the bladder 20, and the pressurized gas introduction path 40. The pressurized gas supply means 50 is attached to the opening 42 on the other end side (lower side in the figure). The pressurized gas supply means 50 includes a pressurized gas source 51 such as a compressor, a pressurized gas supply jig 52 provided with a pressurized gas discharge port (supply port) 52A, and a tube such as a hose connecting them. The supply port 52A of the pressurized gas supply jig 52 is connected to the pressurized gas introduction channel 40, and the pressurized gas from the pressurized gas source 51 is supplied from the supply port 52A via the conduit 53. Supply to the pressurized gas introduction path 40 (arrow K in FIG. 5).

タイヤ加硫成型装置90は、この供給された加圧気体を、加圧気体導入路40の開口部41から加硫成型後のタイヤ5’内面とブラダ20外面との間に導入(図5の矢印D)し、その力でタイヤ5’からブラダ20を剥離させる。これにより、ブラダ20とタイヤ5’とが密着した状態で、ブラダ20の抜き出しや加硫成型後のタイヤ5’の取り出し等が行われるのを防止し、上記したタイヤ5’の変形を抑制しつつ、ブラダ20の寿命を長くし、かつブラダ20の剥離等に要する時間を削減して加硫成型のサイクルタイムを短縮させている。   The tire vulcanization molding apparatus 90 introduces the supplied pressurized gas from the opening 41 of the pressurized gas introduction path 40 between the inner surface of the tire 5 ′ after vulcanization molding and the outer surface of the bladder 20 (FIG. 5). Arrow D), and the bladder 20 is peeled off from the tire 5 ′ by the force. This prevents the bladder 20 from being pulled out or the tire 5 ′ after vulcanization molding from being taken out in a state where the bladder 20 and the tire 5 ′ are in close contact with each other, thereby suppressing the deformation of the tire 5 ′ described above. However, the cycle time of the vulcanization molding is shortened by extending the life of the bladder 20 and reducing the time required for peeling the bladder 20 and the like.

しかしながら、この従来のタイヤ加硫成型装置90では、ブラダ20の外面が下側ビードリング14及び加圧気体導入路40(開口部41)の周囲等に強固に密着して、タイヤ5’とブラダ20との間に加圧気体が導入され難くなり、その導入量が減少又は停止してブラダ20の充分な剥離効果が得られないことがある。また、ブラダ20の使用回数が多くなると、加圧気体導入路40の開口部41に繰り返し当接するブラダ20に開口部41の跡が付いて凸部が形成され、それが加圧気体導入路40内に入り込んで開口部41が塞がれてしまうことがある。その結果、このタイヤ加硫成型装置90では、ブラダ20の使用に伴い、加圧気体を導入してもブラダ20が徐々に剥離され難くなる傾向があり、場合によっては、開口部41が完全に塞がれて加圧気体の導入が停止する、という問題が生じる。   However, in this conventional tire vulcanization molding apparatus 90, the outer surface of the bladder 20 is in close contact with the lower bead ring 14 and the surroundings of the pressurized gas introduction path 40 (opening 41) and the tire 5 ′ and the bladder. 20 may be difficult to introduce a pressurized gas, and the amount of introduction may be reduced or stopped, and a sufficient peeling effect of the bladder 20 may not be obtained. Further, when the number of times of use of the bladder 20 is increased, the bladder 20 repeatedly contacting the opening 41 of the pressurized gas introduction path 40 is marked with a mark of the opening 41 to form a convex portion, which is the pressurized gas introduction path 40. The opening 41 may be blocked by entering inside. As a result, in the tire vulcanization molding apparatus 90, with the use of the bladder 20, there is a tendency that the bladder 20 is gradually peeled off even when the pressurized gas is introduced, and in some cases, the opening 41 is completely removed. There is a problem that the introduction of the pressurized gas is stopped due to the blockage.

なお、このような問題に対処する方法として、加圧気体導入路40を下側ビードリング14の周方向に沿って複数形成してその数を増やし、それら複数箇所から加圧気体を供給してブラダ20とタイヤ5’との間に導入することが考えられる。このようにすることで、加圧気体の導入される量等が増加するとともに、一部の加圧気体導入路40が塞がれても、他の加圧気体導入路40から加圧気体が導入されるため、ブラダ20のタイヤ5’からの剥離をより確実に行うことができる。しかしながら、この場合には、加圧気体導入路40毎に加圧気体供給手段50を設ける必要がある等、タイヤ加硫成型装置90の構造が複雑になり、その部品等の数も多くなるため、タイヤ加硫成型装置90の製造に要するコストや、そのメンテナンス等の維持に要する手間等が増加する、という新たな問題が生じる。   As a method of dealing with such a problem, a plurality of pressurized gas introduction paths 40 are formed along the circumferential direction of the lower bead ring 14 to increase the number thereof, and pressurized gas is supplied from the plurality of locations. It is conceivable to introduce between the bladder 20 and the tire 5 '. By doing in this way, while the quantity etc. by which pressurized gas is introduce | transduced increase, even if some pressurized gas introduction paths 40 are obstruct | occluded, pressurized gas is received from other pressurized gas introduction paths 40. Since it is introduced, peeling of the bladder 20 from the tire 5 'can be performed more reliably. However, in this case, the structure of the tire vulcanization molding apparatus 90 becomes complicated and the number of parts and the like increases because it is necessary to provide the pressurized gas supply means 50 for each pressurized gas introduction path 40. Further, there arises a new problem that the cost required for manufacturing the tire vulcanization molding apparatus 90 and the labor required for maintenance and the like increase.

特開昭59−20645号公報JP 59-20645 A

本発明は、前記従来の問題に鑑みなされたものであって、その目的は、簡単な構成で、確実に加硫成型後のタイヤとブラダとの間に加圧気体を導入してブラダを剥離させ、タイヤに製品不良が生じるのを抑制しつつ、ブラダの寿命を長くすることである。   The present invention has been made in view of the above-described conventional problems, and the object thereof is to remove a bladder by introducing a pressurized gas between a tire and a bladder after vulcanization molding with a simple configuration. It is to extend the life of the bladder while suppressing the occurrence of product defects in the tire.

請求項1の発明は、生タイヤを収納可能な外型と、前記生タイヤ内に配置される膨張可能なブラダとを備え、前記外型内に収納した生タイヤ内で前記ブラダを膨張させて該生タイヤを前記外型に押し付けて加硫成型するタイヤ加硫成型装置であって、一端側の開口部が前記膨張したブラダに当接し、該開口部から加硫成型後のタイヤと前記ブラダとの間に加圧気体を導入するための加圧気体導入路と、該加圧気体導入路の他端側の開口部に前記加圧気体を供給する加圧気体供給手段と、該加圧気体供給手段による前記加圧気体の供給時に、前記加圧気体導入路の一端側の開口部に当接する前記ブラダを変位させて該開口部から離間させる変位手段と、を備えたことを特徴とする。
請求項2の発明は、請求項1に記載されたタイヤ加硫成型装置において、前記変位手段は、前記加圧気体導入路内に挿入され、かつ該加圧気体導入路内を移動して前記一端側の開口部に当接する前記ブラダに接触して変位させる接触変位部材を有することを特徴とする。
請求項3の発明は、請求項2に記載されたタイヤ加硫成型装置において、前記加圧気体供給手段は、前記加圧気体を供給するための供給口が設けられた移動可能な加圧気体供給治具と、該加圧気体供給治具を、前記供給口が前記加圧気体導入路に連通する前記加圧気体の供給位置と、前記他端側の開口部から離間した離間位置との間で移動させる移動手段と、を有し、前記離間位置から前記供給位置に移動する前記加圧気体供給治具により、前記接触変位部材を前記加圧気体導入路内で移動させ、前記ブラダに接触させて変位させることを特徴とする。
請求項4の発明は、請求項3に記載されたタイヤ加硫成型装置において、前記接触変位部材が、前記加圧気体供給治具の前記他端側の開口部に対向する位置に取り付けられ、該加圧気体供給治具と一体に移動することを特徴とする。
請求項5の発明は、外型内に収納した生タイヤ内でブラダを膨張させ、該ブラダの内圧を上昇させて前記生タイヤを前記外型に押し付けて加硫成型するタイヤ加硫成型方法であって、加硫成型完了後に前記ブラダの内圧を低下させる工程と、加硫成型後のタイヤと前記ブラダとの間に向かって加圧気体を供給する工程と、該加圧気体の供給時に、該加圧気体の供給位置の前記ブラダを変位させて前記供給位置から離間させる工程と、該離間位置から前記加硫成型後のタイヤと前記ブラダとの間に前記加圧気体を導入し、前記加硫成型後のタイヤから前記ブラダを剥離する工程と、を有することを特徴とする。
請求項6の発明は、請求項5に記載されたタイヤ加硫成型方法において、前記加圧気体を供給する工程は、前記膨張したブラダに一端側の開口部が当接する加圧気体導入路から前記加圧気体を供給し、前記離間させる工程は、前記加圧気体導入路の一端側の開口部に当接する前記ブラダを変位させて該開口部から離間させることを特徴とする。
The invention according to claim 1 includes an outer mold that can store a raw tire and an inflatable bladder disposed in the raw tire, and the bladder is inflated in the raw tire stored in the outer mold. A tire vulcanization molding apparatus that presses the green tire against the outer mold to perform vulcanization molding, wherein an opening on one end abuts the expanded bladder, and the tire and the bladder after vulcanization molding from the opening A pressurized gas introduction path for introducing a pressurized gas between them, a pressurized gas supply means for supplying the pressurized gas to the opening on the other end side of the pressurized gas introduction path, and the pressurization Displacement means for displacing the bladder in contact with the opening on one end side of the pressurized gas introduction path when the pressurized gas is supplied by the gas supply means and separating the bladder from the opening. To do.
According to a second aspect of the present invention, in the tire vulcanization molding apparatus according to the first aspect, the displacement means is inserted into the pressurized gas introduction path, and moves in the pressurized gas introduction path to It has a contact displacement member that contacts and displaces the bladder in contact with the opening on one end side.
A third aspect of the present invention is the tire vulcanization molding apparatus according to the second aspect, wherein the pressurized gas supply means is a movable pressurized gas provided with a supply port for supplying the pressurized gas. A supply jig, and a supply position of the pressurized gas, wherein the supply port communicates with the pressurized gas introduction path, and a separation position spaced apart from the opening on the other end side. And moving the contact displacement member in the pressurized gas introduction path by the pressurized gas supply jig that moves from the separated position to the supply position. Displaced by contact.
The invention according to claim 4 is the tire vulcanization molding apparatus according to claim 3, wherein the contact displacement member is attached to a position facing the opening on the other end side of the pressurized gas supply jig, It moves integrally with the pressurized gas supply jig.
The invention according to claim 5 is a tire vulcanization molding method in which a bladder is inflated in a raw tire housed in an outer mold, an internal pressure of the bladder is increased, and the raw tire is pressed against the outer mold to be vulcanized. A step of reducing the internal pressure of the bladder after completion of vulcanization molding, a step of supplying pressurized gas between the tire after vulcanization molding and the bladder, and at the time of supplying the pressurized gas, Displacing the bladder at the supply position of the pressurized gas to move away from the supply position; introducing the pressurized gas between the tire after vulcanization molding and the bladder from the separated position; And a step of peeling the bladder from the vulcanized tire.
According to a sixth aspect of the present invention, in the tire vulcanization molding method according to the fifth aspect, the step of supplying the pressurized gas is performed from a pressurized gas introduction path in which an opening on one end side contacts the expanded bladder. The step of supplying and separating the pressurized gas is characterized by displacing the bladder in contact with the opening on one end side of the pressurized gas introduction path so as to be separated from the opening.

本発明によれば、簡単な構成で、確実に加硫成型後のタイヤとブラダとの間に加圧気体を導入してブラダを剥離させることができ、タイヤに製品不良が生じるのを抑制しつつ、ブラダの寿命を長くすることができる。   According to the present invention, it is possible to reliably introduce a pressurized gas between a tire after vulcanization molding and a bladder with a simple configuration to separate the bladder, and to suppress the occurrence of product defects in the tire. However, the life of the bladder can be extended.

以下、本発明の一実施形態について、図面を参照して説明する。
図1は、本実施形態のタイヤ加硫成型装置を模式的に示す要部断面図であり、加硫成型する生タイヤの幅方向に対応する方向の断面を、かつ、その断面の一方側(図では右側)を拡大して示す半断面図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically illustrating a main part of a tire vulcanization molding apparatus according to the present embodiment. A cross section in a direction corresponding to a width direction of a raw tire to be vulcanized and one side of the cross section It is a half sectional view showing an enlarged view of the right side in the figure.

このタイヤ加硫成型装置1は、図示のように、生タイヤ5を収納可能な外型10と、生タイヤ5内に配置されるブラダ20と、ブラダ20の半径方向内側(図では左側)の両端部21を保持するクランプ手段30と、を備えており、外型10内に形成される空間(キャビティ)に生タイヤ5を収納して加硫成型する。   As shown in the figure, the tire vulcanization molding apparatus 1 includes an outer mold 10 that can store a raw tire 5, a bladder 20 that is disposed in the raw tire 5, and a radially inner side (left side in the drawing) of the bladder 20. Clamping means 30 for holding both end portions 21, and the raw tire 5 is housed in a space (cavity) formed in the outer mold 10 and vulcanized.

外型10は、タイヤの外面形状を規定する金型であり、アルミニウム基材料や鉄基材料等の剛体からなる。また、この外型10は、生タイヤ5を挟んで全体を覆うように上下に配置された上型11及び下型12と、それらの半径方向内側端(図では左側端)の生タイヤ5側(上型11の下側及び下型12の上側)の縁部に配置された略環状の上側ビードリング13及び下側ビードリング14と、から構成されている。   The outer mold 10 is a mold that defines the outer shape of the tire, and is made of a rigid body such as an aluminum-based material or an iron-based material. In addition, the outer mold 10 includes an upper mold 11 and a lower mold 12 which are arranged vertically so as to cover the whole with the raw tire 5 interposed therebetween, and the radial tire inner side (the left end in the drawing) of the raw mold 5 side. It is comprised from the substantially cyclic | annular upper side bead ring 13 and the lower side bead ring 14 which are arrange | positioned at the edge part (the lower side of the upper mold | type 11 and the upper side of the lower mold | type 12).

上型11及び下型12は、生タイヤ5のトレッド部からサイド部にかけての外面形状を成型するものであり、生タイヤ5の赤道面付近を中心に上下方向から組み合わさり、その状態で、全体として略環状をなすとともに、内周部に生タイヤ5を収納可能な凹状のキャビティが形成される。この上型11及び下型12の生タイヤ5側の内面は、成型するタイヤの外面形状に対応して全体として略トロイダル状に形成されるとともに、上型11の下面及び下型12の上面に生タイヤ5のサイド部の外面形状を成型するサイド成型面が、各側面(内周面)に生タイヤ5のトレッド部の外面形状を成型する各種の溝等からなるトレッド成型面が、それぞれ対応する形状に形成されている。   The upper mold 11 and the lower mold 12 are for molding the outer surface shape from the tread portion to the side portion of the raw tire 5, and are combined from the vertical direction around the equator plane of the raw tire 5, and in that state, As a result, a concave cavity that can accommodate the raw tire 5 is formed on the inner periphery. The inner surfaces of the upper mold 11 and the lower mold 12 on the raw tire 5 side are formed in a substantially toroidal shape as a whole corresponding to the outer surface shape of the tire to be molded, and on the lower surface of the upper mold 11 and the upper surface of the lower mold 12. The side molding surface that molds the outer shape of the side part of the green tire 5 corresponds to the tread molding surface that consists of various grooves that mold the outer shape of the tread part of the raw tire 5 on each side surface (inner circumferential surface). It is formed in the shape to do.

上側ビードリング13及び下側ビードリング14は、生タイヤ5のビード部付近(ビード部の側面から内周面)の外面形状を成型するものであり、それぞれの生タイヤ5側が、ビード部の断面形状に対応した形状に切り込まれて凹曲面状に形成されている。一方、これら各リング13、14のブラダ20側の面(対向面)は、加硫成型時に膨張するブラダ20外面の端部21側に当接し、その付近のブラダ20を支持して所定位置に配置する位置決め面になっている。   The upper bead ring 13 and the lower bead ring 14 form an outer surface shape in the vicinity of the bead portion of the raw tire 5 (from the side surface to the inner peripheral surface of the bead portion), and each raw tire 5 side has a cross-section of the bead portion. It is cut into a shape corresponding to the shape to form a concave curved surface. On the other hand, the surface (opposite surface) on the bladder 20 side of each of the rings 13 and 14 abuts on the end portion 21 side of the outer surface of the bladder 20 that expands during vulcanization molding, and supports the bladder 20 in the vicinity thereof in a predetermined position. It is the positioning surface to be placed.

また、上型11と下型12の少なくとも一方は、キャビティ内への生タイヤ5の収納と、加硫成型後のタイヤ5’の取り出しを行うため、それぞれ上側ビードリング13又は下側ビードリング14と共に、型開き方向へ移動可能に構成されている。このタイヤ加硫成型装置1では、上型11及び上側ビードリング13が上下動可能になっており、それらをピストン・シリンダ機構を使用した昇降手段(図示せず)により上下動させる等して、外型10の型開き及び型閉め等を行う。   Further, at least one of the upper mold 11 and the lower mold 12 stores the raw tire 5 in the cavity and takes out the tire 5 ′ after vulcanization molding, so that the upper bead ring 13 or the lower bead ring 14 is respectively removed. In addition, it is configured to be movable in the mold opening direction. In this tire vulcanization molding apparatus 1, the upper mold 11 and the upper bead ring 13 can be moved up and down, and moved up and down by an elevating means (not shown) using a piston / cylinder mechanism. The outer mold 10 is opened and closed.

ブラダ20は、加硫成型時に、外型10内に収納された生タイヤ5内で膨張して、生タイヤ5を外型10の内面に押し付けるためのものであり、ゴム等の耐熱性を有し、かつ伸縮性のある材料により膨張及び収縮可能な略袋状に形成されている。また、このブラダ20には、図示は省略するが、その内部に高温・高圧の例えば蒸気や加熱気体等の熱流体を供給する手段と、その内部の流体を排気する手段が接続されており、加硫成型時には、供給された熱流体により膨張して生タイヤ5を外型10に所定の圧力で押し付けつつ、生タイヤ5を所定の温度に加熱する。一方、加硫成型完了後には、内部が大気開放されてタイヤ5’への押し付けを解除するとともに、内部の流体が排気されて収縮等し、タイヤ5’から抜き出される。更に、このブラダ20は、両端部21が断面略T字状に形成され、それぞれクランプ手段30に係止されている。   The bladder 20 expands in the raw tire 5 accommodated in the outer mold 10 during vulcanization molding and presses the raw tire 5 against the inner surface of the outer mold 10 and has heat resistance such as rubber. However, it is formed in a substantially bag shape that can be expanded and contracted by a stretchable material. Although not shown, the bladder 20 is connected with a means for supplying a high-temperature and high-pressure thermal fluid such as steam or heated gas and a means for exhausting the fluid inside the bladder 20. During vulcanization molding, the raw tire 5 is heated to a predetermined temperature while being expanded by the supplied hot fluid and pressing the raw tire 5 against the outer mold 10 with a predetermined pressure. On the other hand, after completion of the vulcanization molding, the inside is released to the atmosphere to release the pressing to the tire 5 ', and the internal fluid is exhausted, contracted, etc., and extracted from the tire 5'. Further, both ends 21 of the bladder 20 are formed in a substantially T-shaped cross section, and are respectively engaged with the clamping means 30.

クランプ手段30は、ブラダ20の両端部21の外側に配置された外側ブラダリング31、32、及びブラダ20の両端部21を挟んで内側に配置された内側ブラダリング33、34からなり、互いに対向して配置された外側ブラダリング31と内側ブラダリング33でブラダ20の上方の端部21を、外側ブラダリング32と内側ブラダリング34で下方の端部21を、それぞれ挟み込んで係止する。これら上側のブラダリング31、33、及び下側のブラダリング32、34は、いずれも略環状に形成されるとともに、ブラダ20の端部21を強固に係止し、かつ端部21を気密状態で挟み込めるよう、それぞれ組み合わされた状態で、端部21の断面形状に対応した形状に形成されている。また、各外側ブラダリング31、32は、ブラダ20の端部21からその外面に沿って各ビードリング13、14まで延びて当接し、そのブラダ20側の面が、各ビードリング13、14のブラダ20側の面と滑らかに連続するように形成されている。   The clamp means 30 includes outer bladder rings 31 and 32 disposed outside the both ends 21 of the bladder 20 and inner bladder rings 33 and 34 disposed inside the both ends 21 of the bladder 20 so as to face each other. The upper end 21 of the bladder 20 is sandwiched by the outer bladder ring 31 and the inner bladder ring 33 and the lower end 21 is sandwiched and locked by the outer bladder ring 32 and the inner bladder ring 34, respectively. The upper bladder rings 31 and 33 and the lower bladder rings 32 and 34 are both formed in a substantially annular shape, firmly hold the end portion 21 of the bladder 20 and sandwich the end portion 21 in an airtight state. In such a state that they are combined, they are formed in a shape corresponding to the cross-sectional shape of the end portion 21. Further, the outer bladder rings 31 and 32 extend from the end portion 21 of the bladder 20 to the respective bead rings 13 and 14 along the outer surface thereof, and the surface on the bladder 20 side is the bladder of each of the bead rings 13 and 14. It is formed to be smoothly continuous with the surface on the 20 side.

以上に加えて、このタイヤ加硫成型装置1は、加硫成型後のタイヤ5’とブラダ20との間に加圧気体(例えば高圧の空気や窒素等)を導入するようになっており、そのための加圧気体導入路40や加圧気体供給手段50等を備えている。   In addition to the above, the tire vulcanization molding apparatus 1 introduces a pressurized gas (for example, high-pressure air or nitrogen) between the tire 5 ′ after vulcanization molding and the bladder 20, For this purpose, a pressurized gas introduction path 40 and a pressurized gas supply means 50 are provided.

図2は、図1のタイヤ加硫成型装置1のY領域付近を拡大して示す要部断面図であり、加圧気体を導入するための構成を模式的に示している。
本実施形態のタイヤ加硫成型装置1は、図示のように、下側ビードリング14に設けられた加圧気体導入路40と、そこに加圧気体を供給する加圧気体供給手段50と、所定位置のブラダ20を変位させる変位手段60と、を備えている。
FIG. 2 is an enlarged cross-sectional view of the main part showing the vicinity of the Y region of the tire vulcanization molding apparatus 1 of FIG. 1, and schematically shows a configuration for introducing pressurized gas.
As shown in the drawing, the tire vulcanization molding apparatus 1 according to the present embodiment includes a pressurized gas introduction path 40 provided in the lower bead ring 14, a pressurized gas supply means 50 for supplying the pressurized gas thereto, Displacement means 60 for displacing the bladder 20 at a predetermined position.

加圧気体導入路40は、その一端側(図では上端側)の開口部41が加硫成型時の膨張したブラダ20に当接する位置に配置され、他端側(図では下端側)の開口部42に供給される加圧気体供給手段50からの加圧気体を、前記一端側の開口部41からタイヤ5’とブラダ20との間に導入するための通路である。本実施形態では、加圧気体導入路40は、下側ビードリング14の周方向の一箇所に形成された、ブラダ20への当接面(図では上面)から他方側の面(下面)まで延びる貫通孔であり、その上下の開口部41、42を含む断面形状が所定半径の円形状に、かつ上下方向に略直線状に延びるように形成されている。   The pressurized gas introduction path 40 is disposed at a position where the opening 41 on one end side (the upper end side in the drawing) contacts the expanded bladder 20 during vulcanization molding, and the opening on the other end side (the lower end side in the drawing). This is a passage for introducing the pressurized gas from the pressurized gas supply means 50 supplied to the portion 42 between the tire 5 ′ and the bladder 20 from the opening 41 on the one end side. In the present embodiment, the pressurized gas introduction path 40 is formed at one place in the circumferential direction of the lower bead ring 14 from the contact surface (upper surface in the drawing) to the bladder 20 to the other surface (lower surface). The extending through hole is formed so that the cross-sectional shape including the upper and lower openings 41 and 42 is a circular shape having a predetermined radius and extends substantially linearly in the vertical direction.

加圧気体供給手段50は、コンプレッサ等の加圧気体源51、加圧気体の供給口52Aが設けられた加圧気体供給治具52、それらを連結するホース等の変形自在な管路53、加圧気体供給治具52を移動させる移動手段54及び、加圧気体源51からの加圧気体の送り出しを調整及び遮断等する、例えば加圧気体源51と管路53との間に設けられた電磁弁(図示せず)等からなる。   The pressurized gas supply means 50 includes a pressurized gas source 51 such as a compressor, a pressurized gas supply jig 52 provided with a pressurized gas supply port 52A, a deformable pipe 53 such as a hose connecting them, The moving means 54 for moving the pressurized gas supply jig 52 and the supply of the pressurized gas from the pressurized gas source 51 are adjusted and blocked, for example, provided between the pressurized gas source 51 and the conduit 53. And a solenoid valve (not shown).

加圧気体供給治具52は、略板状をなし、その供給口52A(ここでは略円形口)が加圧気体導入路40の大きさに対応した大きさに形成されるとともに、その内部に、管路53を介して加圧気体源51から送り出される加圧気体を供給口52Aまで導く通路52Bが形成されている。また、この加圧気体供給治具52は、下側ビードリング14に対して接近及び離間する方向に移動可能に構成され、その供給口52Aを加圧気体導入路40と略同芯状に維持した状態で移動して、供給口52Aを加圧気体導入路40の開口部42に接近及び離間させる。   The pressurized gas supply jig 52 has a substantially plate shape, and its supply port 52A (here, a substantially circular port) is formed in a size corresponding to the size of the pressurized gas introduction path 40, and in the inside thereof. A passage 52B is formed that guides the pressurized gas sent from the pressurized gas source 51 through the conduit 53 to the supply port 52A. The pressurized gas supply jig 52 is configured to be movable in a direction approaching and separating from the lower bead ring 14, and the supply port 52 </ b> A is maintained substantially concentric with the pressurized gas introduction path 40. The supply port 52A is moved closer to and away from the opening 42 of the pressurized gas introduction path 40.

移動手段54は、加圧気体供給治具52を上記したように移動させるためのもので、例えば空気圧式や油圧式のピストン・シリンダ機構や、ステッピングモータとラック及びピニオンからなる駆動機構等の周知の手段からなる。この加圧気体供給手段50では、移動手段54として空気圧式のピストン・シリンダ機構を使用し、ピストンロッド54Pを上方に向けて配置して、その先端に加圧気体供給治具52を取り付けている。また、移動手段54は、そのピストンロッド54Pをシリンダ54S内から出し入れして進退させ、加圧気体供給治具52(供給口52A)を加圧気体導入路40(開口部42)に接近及び離間させる。移動手段54は、このように加圧気体供給治具52を移動させ、その供給口52Aが加圧気体導入路40(開口部42)に連通して加圧気体を供給可能な供給位置(図2B参照)と、開口部42から下方向に所定距離だけ離間した離間位置(図2A参照)との間で往復駆動する。   The moving means 54 is for moving the pressurized gas supply jig 52 as described above. For example, a pneumatic or hydraulic piston / cylinder mechanism, a driving mechanism including a stepping motor, a rack and a pinion, and the like are well known. It consists of means. In this pressurized gas supply means 50, a pneumatic piston / cylinder mechanism is used as the moving means 54, the piston rod 54 </ b> P is arranged upward, and a pressurized gas supply jig 52 is attached to the tip thereof. . Further, the moving means 54 moves the piston rod 54P in and out of the cylinder 54S to advance and retreat, and the pressurized gas supply jig 52 (supply port 52A) approaches and separates from the pressurized gas introduction path 40 (opening 42). Let The moving means 54 moves the pressurized gas supply jig 52 in this way, and the supply port 52A communicates with the pressurized gas introduction path 40 (opening 42) to supply the pressurized gas (see FIG. 2B) and a reciprocating position (see FIG. 2A) spaced apart from the opening 42 by a predetermined distance downward.

加圧気体供給手段50は、この移動手段54により、加圧気体供給治具52を前記離間位置から供給位置に移動させ、加圧気体源51からの加圧気体を、管路53を介して供給口52Aから加圧気体導入路40に供給する。この加圧気体供給治具52の供給口52Aの周囲には、オーリング等の加圧気体の封止部材(図示せず)が取り付けられており、上記した供給位置では、供給口52Aが加圧気体導入路40の開口部42と略同芯状に配置され、かつ、供給口52Aと開口部42の周囲の部分(対向面)が封止部材を挟み込む。加圧気体供給手段50は、この封止部材により封止して供給口52Aと加圧気体導入路40とを互いに連通させ、供給口52Aからの加圧気体を、周囲への漏れを防止しつつ加圧気体導入路40に供給する。   The pressurized gas supply means 50 causes the moving means 54 to move the pressurized gas supply jig 52 from the separation position to the supply position, and to supply the pressurized gas from the pressurized gas source 51 via the pipe line 53. The pressurized gas introduction path 40 is supplied from the supply port 52A. A pressurized gas sealing member (not shown) such as an O-ring is attached around the supply port 52A of the pressurized gas supply jig 52, and the supply port 52A is added at the supply position described above. It is arranged substantially concentrically with the opening 42 of the pressurized gas introduction path 40, and the portion around the supply port 52A and the opening 42 (opposing surface) sandwiches the sealing member. The pressurized gas supply means 50 is sealed by this sealing member to connect the supply port 52A and the pressurized gas introduction path 40 to each other, and prevents the pressurized gas from the supply port 52A from leaking to the surroundings. While being supplied to the pressurized gas introduction path 40.

また、この加圧気体供給手段50の加圧気体供給治具52には、膨張した状態のブラダ20の一部を外側から内側(図では下側から上側)に向かって変位させる変位手段60が取り付けられている。   The pressurized gas supply jig 52 of the pressurized gas supply means 50 has a displacement means 60 for displacing a part of the expanded bladder 20 from the outside to the inside (from the bottom to the top in the figure). It is attached.

変位手段60は、加圧気体供給手段50による加圧気体の供給時に、加圧気体導入路40の一端側の開口部41に当接するブラダ20を変位(図2B参照)させ、当接位置のブラダ20を開口部41から離間させるものである。これにより、変位手段60は、開口部41及びその周囲のブラダ20に内側(図では上側)方向の力を作用させ、下側ビードリング14に密着した部分をその表面から引き剥がし、加圧気体導入路40からの加圧気体の導入口(導入部)を確保して、ブラダ20の外面と、下側ビードリング14及びタイヤ5’の内面との間への加圧気体の導入を補助する。   The displacement means 60 displaces the bladder 20 in contact with the opening 41 on one end side of the pressurized gas introduction path 40 (see FIG. 2B) when the pressurized gas is supplied by the pressurized gas supply means 50, so The bladder 20 is separated from the opening 41. Thereby, the displacing means 60 applies a force in the inner (upper side in the drawing) direction to the opening 41 and the surrounding bladder 20, and peels off the portion that is in close contact with the lower bead ring 14 from the surface thereof. The inlet (introduction part) of the pressurized gas from the introduction path 40 is ensured to assist the introduction of the pressurized gas between the outer surface of the bladder 20 and the inner surface of the lower bead ring 14 and the tire 5 ′. .

本実施形態では、変位手段60は、加圧気体導入路40内に配置された略ロッド状の接触変位部材61を有し、その下端が加圧気体供給治具52の下側ビードリング14側(図では上側)の面に取り付けられて、加圧気体供給手段50と一体に構成されている。即ち、このタイヤ加硫成型装置1は、接触変位部材61を加圧気体導入路40内に挿入した状態で、加圧気体供給治具52を上記した離間位置(図2A参照)から供給位置(図2B参照)に移動させ、接触変位部材61を加圧気体導入路40内で移動させる。この移動により、接触変位部材61の先端を開口部41に当接するブラダ20に接近させて接触させ、その部分のブラダ20を上方に向かって変位(図2B参照)させて開口部41から離間させる。   In this embodiment, the displacement means 60 has a substantially rod-shaped contact displacement member 61 disposed in the pressurized gas introduction path 40, and the lower end thereof is on the lower bead ring 14 side of the pressurized gas supply jig 52. It is attached to the surface (upper side in the figure) and is configured integrally with the pressurized gas supply means 50. That is, in the tire vulcanization molding apparatus 1, the pressurized gas supply jig 52 is moved from the above-described separated position (see FIG. 2A) to the supply position (see FIG. 2A) with the contact displacement member 61 inserted into the pressurized gas introduction path 40. 2B), the contact displacement member 61 is moved in the pressurized gas introduction path 40. By this movement, the tip of the contact displacement member 61 is brought close to and brought into contact with the bladder 20 in contact with the opening 41, and the bladder 20 at that portion is displaced upward (see FIG. 2B) to be separated from the opening 41. .

従って、この変位手段60の接触変位部材61は、加圧気体供給治具52の加圧気体導入路40(開口部42)に対向する位置に取り付けられるとともに、加圧気体導入路40内に挿入されて移動可能な大きさ及び形状に形成されており、ここでは、加圧気体導入路40よりも細い略直線状に形成されている。また、この接触変位部材61は、加圧気体供給治具52が上記した離間位置にあるときには、その先端がブラダ20に接触しない加圧気体導入路40内の所定位置に配置され、かつ加圧気体供給治具52が供給位置に移動する間に先端がブラダ20に接触して、供給位置ではブラダ20を所定距離だけ変位させる。従って、接触変位部材61は、ブラダ20を変位させる量(距離)や、加圧気体供給治具52の移動量(ストローク)等に応じて、加圧気体導入路40よりも長い所定長さに形成されている。更に、接触変位部材61は、加圧気体導入路40内の加圧気体の流通を円滑に、かつ充分な流量を確保するため、加圧気体導入路40の内面との間に隙間が設けられる等、加圧気体導入路40を閉塞せずに加圧気体が流通可能な形状に形成されている。   Accordingly, the contact displacement member 61 of the displacing means 60 is attached at a position facing the pressurized gas introduction path 40 (opening 42) of the pressurized gas supply jig 52 and is inserted into the pressurized gas introduction path 40. It is formed in a size and shape that can be moved. Here, it is formed in a substantially straight line shape that is narrower than the pressurized gas introduction path 40. Further, the contact displacement member 61 is disposed at a predetermined position in the pressurized gas introduction path 40 where the tip thereof does not contact the bladder 20 when the pressurized gas supply jig 52 is in the above-described separated position, and is pressurized. While the gas supply jig 52 moves to the supply position, the tip contacts the bladder 20, and the bladder 20 is displaced by a predetermined distance at the supply position. Therefore, the contact displacement member 61 has a predetermined length longer than that of the pressurized gas introduction path 40 according to the amount (distance) by which the bladder 20 is displaced, the movement amount (stroke) of the pressurized gas supply jig 52, and the like. Is formed. Further, the contact displacement member 61 is provided with a gap between the inner surface of the pressurized gas introduction path 40 in order to smoothly flow the pressurized gas in the pressurized gas introduction path 40 and ensure a sufficient flow rate. For example, the pressurized gas introduction passage 40 is formed in a shape that allows the pressurized gas to flow without being blocked.

以下、この接触変位部材61の形状等について、より具体的に説明する。
図3は、変位手段60(接触変位部材61)及び加圧気体供給治具52を拡大して示す模式図であり、図3Aは図2と同じ方向から見た側面図、図3Bは図3AのF−F矢視図である。
Hereinafter, the shape and the like of the contact displacement member 61 will be described more specifically.
3 is an enlarged schematic view showing the displacement means 60 (contact displacement member 61) and the pressurized gas supply jig 52. FIG. 3A is a side view seen from the same direction as FIG. 2, and FIG. FIG.

本実施形態の接触変位部材61は、図示のように、略矩形状の板状部材61Aを組み合わせて長手方向に直行する方向の断面形状が略十字状(図3B参照)に形成され、下端部が加圧気体供給治具52の供給口52A上を直径方向に横断して、その略十字状の各先端部が供給口52Aの縁部に固定されている。また、接触変位部材61は、この固定端から、加圧気体供給治具52の供給口52Aが形成された面52C(下側ビードリング14に対向する面)に直行する方向(図3Aでは上方向)に向かって略直線状に延び、その先端部にブラダ20に接触する略円柱状の接触部61Bが設けられている。接触変位部材61は、この接触部61Bの先端面61Cでブラダ20に接触するが、この先端面61Cを平坦な平滑面に形成して、接触位置のブラダ20に傷等が生じるのを防止している。   As shown in the figure, the contact displacement member 61 of the present embodiment is formed in a cross shape (see FIG. 3B) in a direction orthogonal to the longitudinal direction by combining substantially rectangular plate-like members 61A, and has a lower end portion. Crosses the supply port 52A of the pressurized gas supply jig 52 in the diameter direction, and each of the substantially cross-shaped tips is fixed to the edge of the supply port 52A. Further, the contact displacement member 61 extends from the fixed end in a direction (upward in FIG. 3A) to a surface 52C (surface facing the lower bead ring 14) where the supply port 52A of the pressurized gas supply jig 52 is formed. A substantially cylindrical contact portion 61 </ b> B that extends in a substantially linear shape toward the direction) and that contacts the bladder 20 is provided at the tip thereof. The contact displacement member 61 comes into contact with the bladder 20 at the tip surface 61C of the contact portion 61B. However, the tip surface 61C is formed as a flat smooth surface to prevent the bladder 20 at the contact position from being damaged. ing.

この接触変位部材61は、移動手段54(図2参照)により加圧気体供給治具52と一体に移動し、加圧気体の供給時に、加圧気体導入路40内をブラダ20に向かって移動して先端面61Cをブラダ20に接触(当接)させ、接触位置のブラダ20を押し上げて内側に向かって変位させる。その際、接触変位部材61は、加圧気体供給治具52が上記した加圧気体の供給位置まで移動した状態(図2B参照)では、接触部61Bの全体が加圧気体導入路40外に突出する。このように、接触変位部材61(変位手段60)は、ブラダ20を下側ビードリング14から引き剥がして上記した加圧気体の導入口を確保するとともに、供給口52Aから供給される加圧気体を、略十字状の板状部材61Aと加圧気体導入路40間の隙間、及び接触部61Bの下面の空間等を通してブラダ20とタイヤ5’間等に導くようになっている。   The contact displacement member 61 is moved integrally with the pressurized gas supply jig 52 by the moving means 54 (see FIG. 2), and moves in the pressurized gas introduction path 40 toward the bladder 20 when the pressurized gas is supplied. Then, the front end surface 61C is brought into contact (contact) with the bladder 20, and the bladder 20 at the contact position is pushed up and displaced inward. At that time, when the pressurized gas supply jig 52 is moved to the pressurized gas supply position (see FIG. 2B), the contact displacement member 61 is entirely outside the pressurized gas introduction path 40. Protruding. Thus, the contact displacement member 61 (displacement means 60) peels the bladder 20 from the lower bead ring 14 to secure the above-described pressurized gas introduction port and the pressurized gas supplied from the supply port 52A. Is guided between the bladder 20 and the tire 5 'through the gap between the substantially cross-shaped plate member 61A and the pressurized gas introduction path 40, the space on the lower surface of the contact portion 61B, and the like.

次に、以上説明したタイヤ加硫成型装置1により、生タイヤ5を加硫成型する手順や動作等について説明する。
なお、以下の各手順等は、マイクロコンピュータ等からなる制御装置(図示せず)により制御されて、所定のプログラムや予め設定された条件等に基づいて、装置各部を所定のタイミングで作動させる等、連動して作動させて実行される。
Next, the procedure, operation | movement, etc. which vulcanize-mold the raw tire 5 with the tire vulcanization molding apparatus 1 demonstrated above are demonstrated.
The following procedures and the like are controlled by a control device (not shown) such as a microcomputer, and each part of the device is operated at a predetermined timing based on a predetermined program or preset conditions. , Run in conjunction with each other.

加硫成型時には、まず、外型10内(図1参照)に生タイヤ5を収納して、その内部に配置したブラダ20内に高温・高圧の蒸気等の熱流体を供給し、ブラダ20を膨張させて生タイヤ5の内面に接触させる。続けて、ブラダ20の内圧を所定圧力まで上昇させて、生タイヤ5の外面を外型10の内面(成型面)に押し付けるとともに、生タイヤ5を所定の加硫温度まで加熱する。この熱と圧力により、生タイヤ5を、外型10の内面形状等に応じた形状に変形させて型付けしつつ加硫反応を進行させ、その状態で所定時間加硫成型して、所定形状及び性能の製品タイヤを製造する。このようにして加硫成型が完了した後、ブラダ20の内部を大気開放して内圧を低下させ、上型11及び上側ビードリング13を上昇させる等して外型10を型開きする。   At the time of vulcanization molding, first, the raw tire 5 is accommodated in the outer mold 10 (see FIG. 1), and a thermal fluid such as high-temperature and high-pressure steam is supplied into the bladder 20 disposed therein, and the bladder 20 is It is inflated and brought into contact with the inner surface of the green tire 5. Subsequently, the internal pressure of the bladder 20 is increased to a predetermined pressure, the outer surface of the raw tire 5 is pressed against the inner surface (molded surface) of the outer mold 10, and the raw tire 5 is heated to a predetermined vulcanization temperature. With this heat and pressure, the raw tire 5 is deformed into a shape corresponding to the inner shape of the outer mold 10 and shaped, and the vulcanization reaction proceeds while being molded. Produce product tires with performance. After the vulcanization molding is completed in this way, the outer mold 10 is opened by releasing the air inside the bladder 20 to lower the internal pressure and raising the upper mold 11 and the upper bead ring 13.

続いて、加圧気体供給手段50により、加圧気体導入路40から加硫成型後のタイヤ5’とブラダ20との間に向かって加圧気体を供給し、ブラダ20をタイヤ5’の内面から剥離させる剥離工程を実行する。この加圧気体の供給時には、まず、移動手段54により、加圧気体供給治具52を離間位置(図2A参照)から移動させて下側ビードリング14に接近させる。これにより、加圧気体供給治具52の供給口52Aを加圧気体導入路40の開口部42に向かって移動させるとともに、接触変位部材61を加圧気体導入路40内で移動させて、その接触部61Bの先端面61Cを加圧気体導入路40の開口部41(ブラダ20)に向かって移動させる。   Subsequently, the pressurized gas supply means 50 supplies pressurized gas from the pressurized gas introduction path 40 between the tire 5 ′ after vulcanization molding and the bladder 20, and the bladder 20 is connected to the inner surface of the tire 5 ′. The peeling process to peel from is performed. When supplying the pressurized gas, first, the moving means 54 moves the pressurized gas supply jig 52 from the separated position (see FIG. 2A) to approach the lower bead ring 14. As a result, the supply port 52A of the pressurized gas supply jig 52 is moved toward the opening 42 of the pressurized gas introduction path 40, and the contact displacement member 61 is moved in the pressurized gas introduction path 40. The tip surface 61C of the contact portion 61B is moved toward the opening 41 (the bladder 20) of the pressurized gas introduction path 40.

続けて、加圧気体供給治具52を加圧気体の供給位置(図2B参照)まで移動させて、封止部材(図示せず)を挟んで下側ビードリング14に密着させ、その供給口52Aを加圧気体導入路40(開口部42)と連通させる。同時に、加圧気体供給治具52と一体に移動する接触変位部材61(変位手段60)により、加圧気体の供給位置のブラダ20を変位させて供給位置から離間させる。具体的には、接触部61Bの先端面61Cを、加圧気体導入路40の開口部41に当接するブラダ20に接触させて変位させ、接触位置のブラダ20を内側に押し上げる。このようにして、開口部41の周囲のブラダ20を下側ビードリング14から引き剥がし、開口部41から離間した離間位置に変位させて、上記した加圧気体の導入口を確保する。   Subsequently, the pressurized gas supply jig 52 is moved to the pressurized gas supply position (see FIG. 2B), and is brought into close contact with the lower bead ring 14 with a sealing member (not shown) interposed therebetween. 52A is communicated with the pressurized gas introduction path 40 (opening 42). At the same time, the contact displacement member 61 (displacement means 60) that moves integrally with the pressurized gas supply jig 52 displaces the bladder 20 at the supply position of the pressurized gas and separates it from the supply position. Specifically, the distal end surface 61C of the contact portion 61B is displaced by being brought into contact with the bladder 20 in contact with the opening 41 of the pressurized gas introduction path 40, and the bladder 20 at the contact position is pushed inward. In this manner, the bladder 20 around the opening 41 is peeled off from the lower bead ring 14 and displaced to a spaced position away from the opening 41 to secure the above-described pressurized gas inlet.

次に、加圧気体供給手段50(供給口52A)から加圧気体を加圧気体導入路40に供給し、ブラダ20の前記離間位置(導入口)から、加硫成型後のタイヤ5’の内面とブラダ20の外面との間に加圧気体を導入する。この加圧気体を、加圧気体導入路40のブラダ20側の開口部41から連続して所定時間供給し、タイヤ5’とブラダ20間の全体に渡って導入して、ブラダ20をタイヤ5’から剥離させる。次に、加圧気体の供給を停止して、加圧気体供給治具52及び接触変位部材61を離間位置(図2A参照)に移動させる。その後、ブラダ20の内部から流体を排気して収縮させる等して、ブラダ20をタイヤ5’の内部から抜き出し、タイヤ5’を外型10内から取り出して加硫成型工程を完了する。   Next, pressurized gas is supplied from the pressurized gas supply means 50 (supply port 52A) to the pressurized gas introduction path 40, and the tire 5 ′ after vulcanization molding is supplied from the separation position (introduction port) of the bladder 20. A pressurized gas is introduced between the inner surface and the outer surface of the bladder 20. The pressurized gas is continuously supplied from the opening 41 on the bladder 20 side of the pressurized gas introduction path 40 for a predetermined time, and is introduced over the entire area between the tire 5 ′ and the bladder 20. Remove from '. Next, the supply of the pressurized gas is stopped, and the pressurized gas supply jig 52 and the contact displacement member 61 are moved to the separation position (see FIG. 2A). Thereafter, the bladder 20 is extracted from the inside of the tire 5 ′ by exhausting the fluid from the inside of the bladder 20 and contracting, and the tire 5 ′ is taken out from the inside of the outer mold 10 to complete the vulcanization molding process.

以上説明したように、本実施形態では、加圧気体を導入する際に、ブラダ20を変位手段60により開口部41から離間させるため、例えばブラダ20が下側ビードリング14等に強固に密着したときでも、開口部41の周囲のブラダ20を下側ビードリング14から強制的に引き剥がすことができる。このように、開口部41の周囲に加圧気体を導入するための導入口を確実に確保できるため、加圧気体導入路40からの加圧気体をブラダ20と加硫成型後のタイヤ5’間に確実に導入して、ブラダ20をタイヤ5’から確実に剥離させることができる。また、上記した使用に伴いブラダ20に凸部が形成され、それにより開口部41が塞がれたときでも、加圧気体の導入を確実に行える等、使用回数が多くなるにつれてブラダ20が剥離され難くなるのを防止でき、長期に渡って充分な剥離効果を維持することができる。   As described above, in this embodiment, when the pressurized gas is introduced, the bladder 20 is separated from the opening 41 by the displacing means 60. For example, the bladder 20 is firmly attached to the lower bead ring 14 or the like. Sometimes, the bladder 20 around the opening 41 can be forcibly removed from the lower bead ring 14. Thus, since the inlet for introducing the pressurized gas around the opening 41 can be reliably ensured, the pressurized gas from the pressurized gas introduction path 40 is used as the bladder 20 and the tire 5 ′ after vulcanization molding. The bladder 20 can be surely introduced between the tires 5 ′ and reliably peeled off. In addition, the bladder 20 peels off as the number of uses increases, such as the introduction of pressurized gas, even when the convex portion is formed in the bladder 20 with the above-described use and the opening 41 is thereby blocked. It can be prevented from becoming difficult, and a sufficient peeling effect can be maintained over a long period of time.

これに伴い、ブラダ20と加硫成型後のタイヤ5’とが密着した状態で、ブラダ20の抜き出しやタイヤ5’の取り出し等が行われるのを防止できるため、上記したタイヤ5’の一部の変形等による製品不良の発生を抑制することもできる。また、ブラダ20に、引っ張りによるクラックや損傷等が生じるのを抑制できるため、その使用可能回数も多くなり、ブラダ20の寿命を長くすることができる。同時に、ブラダ20の剥離やタイヤ5’からの抜き出し等の作業が円滑に行え、それらに要する時間を短縮できるため、加硫成型工程のサイクルタイムを短縮でき、その生産性を向上させることができる。   Accordingly, since the bladder 20 and the tire 5 ′ after vulcanization molding are in close contact with each other, it is possible to prevent the bladder 20 from being pulled out or the tire 5 ′ from being taken out. It is also possible to suppress the occurrence of product defects due to deformation or the like. Further, since it is possible to suppress the occurrence of cracks, damage, and the like due to pulling in the bladder 20, the number of times that the bladder 20 can be used increases, and the life of the bladder 20 can be extended. At the same time, operations such as peeling of the bladder 20 and extraction from the tire 5 'can be performed smoothly, and the time required for them can be shortened, so that the cycle time of the vulcanization molding process can be shortened and the productivity can be improved. .

また、このタイヤ加硫成型装置1では、接触変位部材61を加圧気体導入路40内で移動させてブラダ20を変位させるため、その開口部41に当接するブラダ20を確実かつ正確に変位させて離間させることができる。加えて、接触変位部材61を、加圧気体の供給位置に移動する加圧気体供給治具52と共に移動させてブラダ20を変位させるため、加圧気体の供給時には、ブラダ20を開口部41から確実に離間させることができる。そのため、ブラダ20とタイヤ5’の間への加圧気体の導入及び、それによるブラダ20の剥離も確実に行うことができる。   In the tire vulcanization molding apparatus 1, the contact displacement member 61 is moved in the pressurized gas introduction path 40 to displace the bladder 20, so that the bladder 20 in contact with the opening 41 is displaced reliably and accurately. Can be separated. In addition, since the contact displacement member 61 is moved together with the pressurized gas supply jig 52 that moves to the pressurized gas supply position to displace the bladder 20, the bladder 20 is moved from the opening 41 during the supply of pressurized gas. It can be reliably separated. Therefore, the introduction of the pressurized gas between the bladder 20 and the tire 5 'and the peeling of the bladder 20 by it can be performed reliably.

更に、このタイヤ加硫成型装置1では、ブラダ20を確実に剥離するために、加圧気体導入路40や加圧気体供給手段50等の数を増やす必要がなく、かつ接触変位部材61を加圧気体供給治具52に取り付けて一体に移動させてブラダ20の変位手段60を構成したため、装置の構造及び機構が複雑にならず、比較的簡単な構成で大きな剥離効果を得ることができる。その結果、部品等の数も大きく増加せず、故障等の発生も抑制できるため、タイヤ加硫成型装置1の製造や、そのメンテナンス等の維持に要するコストや手間等が増加するのを抑制することもできる。   Further, in the tire vulcanization molding apparatus 1, it is not necessary to increase the number of the pressurized gas introduction passages 40, the pressurized gas supply means 50, etc. in order to peel the bladder 20 reliably, and the contact displacement member 61 is added. Since the displacement means 60 of the bladder 20 is configured by being attached to the compressed gas supply jig 52 and moved integrally, the structure and mechanism of the apparatus are not complicated, and a large peeling effect can be obtained with a relatively simple configuration. As a result, the number of parts or the like does not increase greatly, and the occurrence of a failure or the like can be suppressed. Therefore, it is possible to suppress an increase in costs and labor required for manufacturing the tire vulcanization molding apparatus 1 and maintaining it. You can also

従って、本実施形態によれば、簡単な構成で、確実に加硫成型後のタイヤ5’とブラダ20との間に加圧気体を導入してブラダ20を剥離させることができ、タイヤ5’に製品不良が生じるのを抑制しつつ、ブラダ20の寿命を長くすることができる。   Therefore, according to the present embodiment, with a simple configuration, the pressurized gas can be introduced between the tire 5 ′ after vulcanization and the bladder 20 and the bladder 20 can be peeled off reliably, and the tire 5 ′. The life of the bladder 20 can be extended while suppressing the occurrence of product defects.

なお、本実施形態では、加圧気体導入路40を下側ビードリング14に形成したが、加圧気体導入路40は、上側ビードリング13(図1参照)や、上下の外側ブラダリング31、32等、一端側の開口部がブラダ20に当接して、ブラダ20とタイヤ5’との間に加圧気体を導入可能な他の位置に形成してもよい。   In the present embodiment, the pressurized gas introduction path 40 is formed in the lower bead ring 14, but the pressurized gas introduction path 40 is configured by the upper bead ring 13 (see FIG. 1) and the upper and lower outer bladder rings 31 and 32. For example, the opening on one end side may be in contact with the bladder 20 and may be formed at another position where the pressurized gas can be introduced between the bladder 20 and the tire 5 '.

また、接触変位部材61も、加圧気体供給治具52に取り付けずに、例えば加圧気体導入路40内に、接触部61Bを掛止してその落下を防止する断部(凸部)を形成する等して、加圧気体導入路40内に移動可能に配置してもよい。この場合には、移動する加圧気体供給治具52を接触変位部材61の下端に接触させて押し上げ、これにより、接触変位部材61を加圧気体導入路40内で移動させる。同様に、加圧気体供給治具52を下側ビードリング14に固定して、そこに加圧気体導入路40に繋がる貫通孔を形成し、この貫通孔内に、本実施形態よりも長い接触変位部材61を、封止部材等を介して挿入し、この接触変位部材61を移動手段により移動させてブラダ20に接触及び離間させてもよい。このように、接触変位部材61(変位手段60)は、加圧気体供給治具52(加圧気体供給手段50)と別体に構成し、独立に移動等させてブラダ20を変位させるようにしてもよい。   Also, the contact displacement member 61 is not attached to the pressurized gas supply jig 52, but has a cut portion (convex portion) that hooks the contact portion 61B and prevents its fall in the pressurized gas introduction path 40, for example. For example, it may be arranged so as to be movable in the pressurized gas introduction path 40. In this case, the moving pressurized gas supply jig 52 is pushed up by contacting the lower end of the contact displacement member 61, thereby moving the contact displacement member 61 in the pressurized gas introduction path 40. Similarly, the pressurized gas supply jig 52 is fixed to the lower bead ring 14, a through hole connected to the pressurized gas introduction path 40 is formed therein, and a longer contact than this embodiment is formed in this through hole. The displacement member 61 may be inserted through a sealing member or the like, and the contact displacement member 61 may be moved by a moving unit to be brought into contact with or separated from the bladder 20. Thus, the contact displacement member 61 (displacement means 60) is configured separately from the pressurized gas supply jig 52 (pressurized gas supply means 50), and is moved independently to displace the bladder 20. May be.

更に、以上説明したタイヤ加硫成型装置1では、生タイヤ5のトレッド部からサイド部を2つの金型(上型11及び下型12)により成型したが、この金型は、両サイド部を成型する一対のサイド部成型用金型及び、トレッド部を成型する複数のセグメントを有するトレッド部成型用金型からなるもの等、複数の金型から構成されていてもよい。加えて、本実施形態では、ブラダ20を加硫成型後のタイヤ5’から剥離等させた後に、タイヤ5’を外型10から取り出す場合を例に採り説明したが、本発明は、例えばブラダ20を剥離させずにタイヤ5’と共に外型10から取り出した後に、上記と同様にブラダ20の剥離工程を実行する等、ブラダ20の剥離を他の場所やタイミングで行う場合にも適用することができる。   Furthermore, in the tire vulcanization molding apparatus 1 described above, the side part is molded from the tread part of the raw tire 5 by two molds (upper mold 11 and lower mold 12). You may be comprised from several metal mold | dies, such as what consists of a pair of side part shaping | molding metal mold | die to shape | mold, and a tread part shaping | molding metal mold | die which has a some segment which shape | molds a tread part. In addition, in this embodiment, the case where the tire 5 ′ is taken out from the outer mold 10 after the bladder 20 is peeled off from the tire 5 ′ after vulcanization molding has been described as an example. This is also applicable to the case where the bladder 20 is peeled off at another place or timing, such as performing the peeling step of the bladder 20 in the same manner as described above after the tire 20 is removed from the outer mold 10 without being peeled off. Can do.

(タイヤ加硫成型試験)
本発明の効果を確認するため、以上説明した本実施形態のタイヤ加硫成型装置1(図1、2、3参照)(以下、実施例という)と、ブラダ20の変位手段60(接触変位部材61)を備えていない上記した従来のタイヤ加硫成型装置90(図4、5参照)(以下、従来例という)と、により生タイヤ5を加硫成型し、加硫成型後のタイヤ5’からブラダ20を剥離させてタイヤ5’を取り出すタイヤ加硫成型試験を繰り返し行い、それらの結果を比較評価した。
(Tire vulcanization molding test)
In order to confirm the effect of the present invention, the tire vulcanization molding apparatus 1 (see FIGS. 1, 2, and 3) of the present embodiment described above (referred to as examples hereinafter) and the displacement means 60 (contact displacement member) of the bladder 20 are described. 61) and the above-described conventional tire vulcanization molding apparatus 90 (see FIGS. 4 and 5) (hereinafter referred to as a conventional example), the raw tire 5 is vulcanized and molded, and the tire 5 ′ after vulcanization molding is obtained. The tire vulcanization molding test for removing the bladder 20 and taking out the tire 5 ′ was repeated, and the results were compared and evaluated.

従来例では、加圧気体導入路40の開口部41に当接するブラダ20を変位(開口部41から離間)させずに、加硫成型後のタイヤ5’とブラダ20との間に加圧気体(ここでは剥離エア)を導入したが、それ以外は全て、実施例と同じ条件で加硫成型を行った。   In the conventional example, the pressurized gas is interposed between the tire 5 ′ after vulcanization molding and the bladder 20 without displacing (separating from the opening 41) the bladder 20 that contacts the opening 41 of the pressurized gas introduction path 40. (Here, peeling air) was introduced, but all other than that, vulcanization molding was performed under the same conditions as in the examples.

この試験では、各装置1、90により、それぞれ1000回ずつ加硫成型を行い、加硫成型後のタイヤ5’のビード部を検査して、ブラダ20がタイヤ5’の内面に密着することで生じたビード部の変形による不良品の数を計測し、その不良率を比較して加圧気体導入による剥離効果について評価した。また、ブラダ20の交換までの回数を数えて使用可能回数を比較し、ブラダ20の寿命に対する影響についても評価した。   In this test, each device 1 and 90 performs vulcanization molding 1000 times, inspects the bead portion of the tire 5 ′ after vulcanization molding, and the bladder 20 adheres to the inner surface of the tire 5 ′. The number of defective products due to the deformation of the generated bead portion was measured, and the defect rate was compared to evaluate the peeling effect by introducing pressurized gas. Further, the number of times until the bladder 20 was replaced was counted and the number of usable times was compared, and the influence on the life of the bladder 20 was also evaluated.

その結果、従来例の不良率は0.7%であったのに対し、実施例の不良率は0%であり、実施例では、加硫成型後のタイヤ5’のビード部に生じる変形不良を完全に防止できることが分かった。また、ブラダ20の寿命は、従来例では平均363回であったのに対し、実施例では、平均412回であり、ブラダ20の寿命が大幅に長くなることが分かった。これより、実施例では、ブラダ20の使用回数が多くなっても加圧気体の導入を確実に行え、タイヤ5’に密着したブラダ20を確実に剥離できることが分かった。   As a result, the defect rate of the conventional example was 0.7%, whereas the defect rate of the example was 0%, and in the example, the deformation failure occurred in the bead portion of the tire 5 ′ after vulcanization molding. It was found that can be completely prevented. The life of the bladder 20 was 363 times on average in the conventional example, whereas it was 412 times on average in the example, and it was found that the life of the bladder 20 was significantly increased. From this, it was found that, in the example, the pressurized gas can be reliably introduced even when the number of times of use of the bladder 20 is increased, and the bladder 20 in close contact with the tire 5 'can be reliably peeled off.

以上の結果から、本発明により、確実に加硫成型後のタイヤ5’とブラダ20との間に加圧気体を導入してブラダ20を剥離させることができ、タイヤ5’に製品不良が生じるのを抑制しつつ、ブラダ20の寿命を長くできることが証明された。   From the above results, according to the present invention, it is possible to reliably introduce the pressurized gas between the tire 5 ′ after vulcanization molding and the bladder 20 to separate the bladder 20, resulting in a product defect in the tire 5 ′. It has been proved that the life of the bladder 20 can be extended while suppressing this.

本実施形態のタイヤ加硫成型装置を模式的に示す要部断面図である。It is principal part sectional drawing which shows the tire vulcanization molding apparatus of this embodiment typically. 図1のタイヤ加硫成型装置のY領域付近を拡大して示す要部断面図である。It is principal part sectional drawing which expands and shows the Y area | region vicinity of the tire vulcanization molding apparatus of FIG. 本実施形態の変位手段及び加圧気体供給治具を拡大して示す模式図である。It is a schematic diagram which expands and shows the displacement means and pressurized gas supply jig | tool of this embodiment. 従来のタイヤ加硫成型装置の一例を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically an example of the conventional tire vulcanization molding apparatus. 従来のタイヤ加硫成型装置が備える加圧気体を導入するための構成を模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the structure for introduce | transducing the pressurized gas with which the conventional tire vulcanization molding apparatus is provided.

符号の説明Explanation of symbols

1・・・タイヤ加硫成型装置、5・・・生タイヤ、5’・・・タイヤ、10・・・外型、11・・・上型、12・・・下型、13・・・上側ビードリング、14・・・下側ビードリング、20・・・ブラダ、21・・・端部、30・・・クランプ手段、31・・・外側ブラダリング、32・・・外側ブラダリング、33・・・内側ブラダリング、34・・・内側ブラダリング、40・・・加圧気体導入路、41・・・開口部、42・・・開口部、50・・・加圧気体供給手段、51・・・加圧気体源、52・・・加圧気体供給治具、52A・・・供給口、52B・・・通路、53・・・管路、54・・・移動手段、54P・・・ピストンロッド、54S・・・シリンダ、60・・・変位手段、61・・・接触変位部材、61A・・・板状部材、61B・・・接触部、61C・・・先端面。   DESCRIPTION OF SYMBOLS 1 ... Tire vulcanization molding apparatus, 5 ... Raw tire, 5 '... Tire, 10 ... Outer type, 11 ... Upper type, 12 ... Lower type, 13 ... Upper side Bead ring, 14 ... lower bead ring, 20 ... bladder, 21 ... end, 30 ... clamping means, 31 ... outer bladder ring, 32 ... outer bladder ring, 33 ... Inner bladder ring, 34 ... inner bladder ring, 40 ... pressurized gas introduction path, 41 ... opening, 42 ... opening, 50 ... pressurized gas supply means, 51 ... pressurized Gas source, 52 ... pressurized gas supply jig, 52A ... supply port, 52B ... passage, 53 ... pipe, 54 ... moving means, 54P ... piston rod, 54S. ..Cylinder, 60 ... displacement means, 61 ... contact displacement member, 61A ... plate member 61B · · · contact portion, 61C · · · tip surface.

Claims (6)

生タイヤを収納可能な外型と、前記生タイヤ内に配置される膨張可能なブラダとを備え、前記外型内に収納した生タイヤ内で前記ブラダを膨張させて該生タイヤを前記外型に押し付けて加硫成型するタイヤ加硫成型装置であって、
一端側の開口部が前記膨張したブラダに当接し、該開口部から加硫成型後のタイヤと前記ブラダとの間に加圧気体を導入するための加圧気体導入路と、
該加圧気体導入路の他端側の開口部に前記加圧気体を供給する加圧気体供給手段と、
該加圧気体供給手段による前記加圧気体の供給時に、前記加圧気体導入路の一端側の開口部に当接する前記ブラダを変位させて該開口部から離間させる変位手段と、
を備えたことを特徴とするタイヤ加硫成型装置。
An outer mold capable of storing a raw tire; and an inflatable bladder disposed in the raw tire, wherein the bladder is inflated in the raw tire stored in the outer mold, and the raw tire is used as the outer mold. A tire vulcanization molding device that presses against a vulcanization molding,
An opening on one end side contacts the expanded bladder, and a pressurized gas introduction path for introducing pressurized gas between the tire after vulcanization molding and the bladder from the opening;
Pressurized gas supply means for supplying the pressurized gas to the opening on the other end of the pressurized gas introduction path;
Displacement means for displacing the bladder abutting against the opening on one end side of the pressurized gas introduction path when the pressurized gas is supplied by the pressurized gas supply means, and separating the bladder from the opening.
A tire vulcanization molding apparatus comprising:
請求項1に記載されたタイヤ加硫成型装置において、
前記変位手段は、前記加圧気体導入路内に挿入され、かつ該加圧気体導入路内を移動して前記一端側の開口部に当接する前記ブラダに接触して変位させる接触変位部材を有することを特徴とするタイヤ加硫成型装置。
In the tire vulcanization molding apparatus according to claim 1,
The displacement means includes a contact displacement member that is inserted into the pressurized gas introduction path, moves in the pressurized gas introduction path, and contacts and displaces the bladder that contacts the opening on the one end side. A tire vulcanization molding apparatus characterized by that.
請求項2に記載されたタイヤ加硫成型装置において、
前記加圧気体供給手段は、前記加圧気体を供給するための供給口が設けられた移動可能な加圧気体供給治具と、
該加圧気体供給治具を、前記供給口が前記加圧気体導入路に連通する前記加圧気体の供給位置と、前記他端側の開口部から離間した離間位置との間で移動させる移動手段と、を有し、
前記離間位置から前記供給位置に移動する前記加圧気体供給治具により、前記接触変位部材を前記加圧気体導入路内で移動させ、前記ブラダに接触させて変位させることを特徴とするタイヤ加硫成型装置。
In the tire vulcanization molding apparatus according to claim 2,
The pressurized gas supply means is a movable pressurized gas supply jig provided with a supply port for supplying the pressurized gas,
Movement for moving the pressurized gas supply jig between the pressurized gas supply position where the supply port communicates with the pressurized gas introduction path and a separated position separated from the opening on the other end side Means, and
The tire adding device is characterized in that the contact displacement member is moved in the pressurized gas introduction path by the pressurized gas supply jig that moves from the separated position to the supply position, and is displaced by being brought into contact with the bladder. Sulfur molding equipment.
請求項3に記載されたタイヤ加硫成型装置において、
前記接触変位部材が、前記加圧気体供給治具の前記他端側の開口部に対向する位置に取り付けられ、該加圧気体供給治具と一体に移動することを特徴とするタイヤ加硫成型装置。
In the tire vulcanization molding apparatus according to claim 3,
A tire vulcanization molding characterized in that the contact displacement member is attached to a position facing the opening on the other end side of the pressurized gas supply jig and moves integrally with the pressurized gas supply jig. apparatus.
外型内に収納した生タイヤ内でブラダを膨張させ、該ブラダの内圧を上昇させて前記生タイヤを前記外型に押し付けて加硫成型するタイヤ加硫成型方法であって、
加硫成型完了後に前記ブラダの内圧を低下させる工程と、
加硫成型後のタイヤと前記ブラダとの間に向かって加圧気体を供給する工程と、
該加圧気体の供給時に、該加圧気体の供給位置の前記ブラダを変位させて前記供給位置から離間させる工程と、
該離間位置から前記加硫成型後のタイヤと前記ブラダとの間に前記加圧気体を導入し、前記加硫成型後のタイヤから前記ブラダを剥離する工程と、
を有することを特徴とするタイヤ加硫成型方法。
A tire vulcanization molding method in which a bladder is inflated in a raw tire housed in an outer mold, an internal pressure of the bladder is increased, the raw tire is pressed against the outer mold, and vulcanized and molded.
Reducing the internal pressure of the bladder after completion of vulcanization molding;
Supplying a pressurized gas between the tire after vulcanization molding and the bladder;
Displacing the bladder at the supply position of the pressurized gas at the time of supplying the pressurized gas and separating the bladder from the supply position;
Introducing the pressurized gas between the vulcanized tire and the bladder from the spaced position, and peeling the bladder from the vulcanized tire;
A tire vulcanization molding method comprising:
請求項5に記載されたタイヤ加硫成型方法において、
前記加圧気体を供給する工程は、前記膨張したブラダに一端側の開口部が当接する加圧気体導入路から前記加圧気体を供給し、
前記離間させる工程は、前記加圧気体導入路の一端側の開口部に当接する前記ブラダを変位させて該開口部から離間させることを特徴とするタイヤ加硫成型方法。
In the tire vulcanization molding method according to claim 5,
The step of supplying the pressurized gas includes supplying the pressurized gas from a pressurized gas introduction path where an opening on one end side contacts the expanded bladder,
The tire vulcanization molding method characterized in that the step of separating includes displacing the bladder in contact with the opening at one end of the pressurized gas introduction path to separate the bladder from the opening.
JP2007025157A 2007-02-05 2007-02-05 Tire vulcanization molding device and vulcanization molding method Pending JP2008188852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025157A JP2008188852A (en) 2007-02-05 2007-02-05 Tire vulcanization molding device and vulcanization molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025157A JP2008188852A (en) 2007-02-05 2007-02-05 Tire vulcanization molding device and vulcanization molding method

Publications (1)

Publication Number Publication Date
JP2008188852A true JP2008188852A (en) 2008-08-21

Family

ID=39749412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025157A Pending JP2008188852A (en) 2007-02-05 2007-02-05 Tire vulcanization molding device and vulcanization molding method

Country Status (1)

Country Link
JP (1) JP2008188852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039288A (en) * 2015-08-21 2017-02-23 住友ゴム工業株式会社 Method for detecting bladder puncture
JP7506315B2 (en) 2020-09-04 2024-06-26 横浜ゴム株式会社 Tire vulcanizing device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039288A (en) * 2015-08-21 2017-02-23 住友ゴム工業株式会社 Method for detecting bladder puncture
JP7506315B2 (en) 2020-09-04 2024-06-26 横浜ゴム株式会社 Tire vulcanizing device and method

Similar Documents

Publication Publication Date Title
JP2007253400A (en) Halved mold for tire molding and tire manufacturing method using halved mold for tire molding
JP6724336B2 (en) Pneumatic tire vulcanizing apparatus and method
EP1930145A1 (en) Tire vulcanization method and tire vulcanization apparatus
JP4998992B2 (en) Tire manufacturing method
JP2008188852A (en) Tire vulcanization molding device and vulcanization molding method
JP5152460B2 (en) Tire vulcanizing apparatus and tire manufacturing method
EP1932646A1 (en) Tire vulcanizing device
JP7428875B2 (en) Tire vulcanization equipment and method
JP6617437B2 (en) Method and apparatus for manufacturing tire vulcanizing bladder
JP7417080B2 (en) Tire vulcanization equipment and method
US8992197B2 (en) Tire vulcanizer and maintenance method of tire vulcanizer
JP5711522B2 (en) Vulcanizing jig and vulcanizing device
JP2007168208A (en) Vulcanization apparatus for tire
JP2019209570A (en) Manufacturing method of pneumatic tire
JP6656575B2 (en) Mold release method for vulcanized tire
JP6912069B1 (en) Tire manufacturing method and bladder adjusting device used in this manufacturing method
JP6874546B2 (en) Radial tire manufacturing method and equipment
JP7469594B2 (en) Tire vulcanization method
CN113329853B (en) Tire vulcanizing device and method
JP2023095617A (en) Manufacturing method of tire and tire vulcanizer
JP6568350B2 (en) Tire vulcanizing bladder, method for manufacturing tire vulcanizing bladder, and tire vulcanizing method
SU1763215A1 (en) Device for air tyre vulcanization
JP2014008688A (en) Production method of tire and preshaping apparatus of tire vulcanization bladder
JP2007185855A (en) Tire vulcanizing method
JP2010030242A (en) Production process of tire