JP2008183512A - Vacuum distillation regenerating apparatus - Google Patents

Vacuum distillation regenerating apparatus Download PDF

Info

Publication number
JP2008183512A
JP2008183512A JP2007019039A JP2007019039A JP2008183512A JP 2008183512 A JP2008183512 A JP 2008183512A JP 2007019039 A JP2007019039 A JP 2007019039A JP 2007019039 A JP2007019039 A JP 2007019039A JP 2008183512 A JP2008183512 A JP 2008183512A
Authority
JP
Japan
Prior art keywords
liquid
recovered
tank
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007019039A
Other languages
Japanese (ja)
Inventor
Yoichiro Watanabe
洋一郎 渡辺
Akira Ishii
章 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WORLD KIKO KK
Original Assignee
WORLD KIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WORLD KIKO KK filed Critical WORLD KIKO KK
Priority to JP2007019039A priority Critical patent/JP2008183512A/en
Publication of JP2008183512A publication Critical patent/JP2008183512A/en
Ceased legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To separate only a recovery component from a solution to be treated by a distillation regeneration apparatus. <P>SOLUTION: The apparatus comprises a vacuum distillation tank for distilling a solution to be treated under a reduced pressure, heating means installed in the vacuum distillation tank for heating the solution to be treated to a boiling point of a recovery component contained in the solution, an overflowing tank for storing a recovery solution for recovering the recovery component, a circulation path for sucking the recovery solution of the overflowing tank and turning the recovery solution back to the overflowing tank, cooling means for cooling the recovery solution in the overflowing tank, an ejector for sucking the ambient gas and condensed liquid of the recovery component in the vacuum distillation tank from a condensation part of the vacuum distillation tank and jointing them to a working fluid and recovering them in the working fluid, and temperature control means for cooling the recovery solution by the cooling means in a manner that the temperature of the solution to be treated and the temperature of the recovery solution in the overflowing tank are compared and the measured difference is controlled to be coincident with a prescribed value determined previously from the boiling point of the recovery component at the time of heating the solution to be treated to the boiling point by the heating means or after the heating. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は被処理液から所定の成分を蒸留する蒸留再生装置に関するものであり、特に、減圧により沸点を調節する減圧蒸留再生装置に関するものである。   The present invention relates to a distillation regenerator that distills predetermined components from a liquid to be treated, and more particularly to a vacuum distillation regenerator that adjusts the boiling point by reducing pressure.

従来、機器を洗浄する洗浄液としては、アルカリ水を用いた洗浄液や溶媒を所定量含んだ水系洗浄液又は、炭化水素系洗浄液が用いられる。
この種、洗浄液は、機器の洗浄に使用すると油等により汚染されているが、再生せずに廃棄処分とすると資源が無駄になる。
そこで、洗浄液等、使用後の廃液(以下、被処理液という)を濃縮し、再生液として再生するために、ヒータの熱、加熱されたオイルの熱又はボイラの熱を加熱源として再生する蒸留再生器を用いた再生方法が検討されている。
Conventionally, as a cleaning liquid for cleaning an apparatus, a cleaning liquid using alkaline water or an aqueous cleaning liquid containing a predetermined amount of a solvent or a hydrocarbon-based cleaning liquid is used.
This type of cleaning liquid is contaminated with oil or the like when used for cleaning equipment, but resources are wasted if discarded without being recycled.
Therefore, in order to concentrate the waste liquid after use (hereinafter referred to as the liquid to be treated) such as a cleaning liquid and regenerate it as a regenerated liquid, distillation that regenerates the heat of the heater, the heat of heated oil or the heat of the boiler as a heating source. A regeneration method using a regenerator has been studied.

しかし、ヒータやボイラの加熱によって被処理液を蒸留すると温度の精度のよい制御が難く、蒸留の際の蒸発潜熱や被処理液補充の際の外乱に起因した被処理液の沸点の変動により、被処理液中の回収成分の沸点に近い他の沸点の成分が蒸発し、被処理液から分離される回収成分ともに回収されてしまうことがある。   However, when the liquid to be treated is distilled by heating a heater or a boiler, it is difficult to control the temperature accurately, and due to fluctuations in the boiling point of the liquid to be treated due to latent heat of evaporation during distillation or disturbance during replenishment of the liquid to be treated, A component having a boiling point close to the boiling point of the recovered component in the liquid to be treated may evaporate and be recovered together with the recovered component separated from the liquid to be processed.

そこで、蒸留再生装置において、回収成分のみを分離するために解決すべき技術的課題が生じるのであり、本発明はこの課題を解決することを目的とする。   Therefore, a technical problem to be solved in order to separate only the recovered component occurs in the distillation regenerator, and the present invention aims to solve this problem.

第1の手段は、被処理液を減圧下で蒸留するための減圧蒸留槽と、前記減圧蒸留槽に設けられ、前記被処理液をこれに含まれる回収成分の沸点に加熱する加熱手段と、前記回収成分を回収する回収液を貯溜する溢流槽と、前記溢流槽の回収液を吸い込んで当該溢流槽に還流する循環路と、前記溢流槽内の回収液を冷却する冷却手段と、前記循環路に介設され、前記貯溜槽の回収液が作動流体として通流されたとき、前記減圧蒸留室の凝縮部から前記減圧蒸留室内の回収成分の雰囲気及び凝縮液を吸引してこれを前記作動流体に合流させて作動流体中に回収するエゼクタと、前記加熱手段の加熱により前記被処理液を前記沸点に加熱する際及び加熱後に、前記被処理液の温度と前記溢流槽の回収液の温度とを比較して、得られる差が予め前記回収成分の沸点に基づいて定められる所定値に合致するように前記冷却手段により前記回収液を冷却させる温度制御手段とを、備えた減圧蒸留再生装置を提供する。   The first means is a vacuum distillation tank for distilling the liquid to be treated under reduced pressure, a heating means provided in the vacuum distillation tank, and heating the liquid to be treated to the boiling point of the recovered component contained therein, An overflow tank for storing the recovered liquid for recovering the recovered component, a circulation path for sucking the recovered liquid in the overflow tank and returning it to the overflow tank, and a cooling means for cooling the recovered liquid in the overflow tank And when the recovered liquid in the storage tank is passed as a working fluid, the atmosphere of the recovered components and the condensate in the vacuum distillation chamber are sucked from the condensing part of the vacuum distillation chamber. An ejector that joins the working fluid and collects it in the working fluid, and the temperature of the liquid to be treated and the overflow tank when the treatment liquid is heated to the boiling point by heating by the heating means. The temperature of the recovered liquid is compared and the difference And a temperature control means for the causing the cooling means to cool the recovered solution so as to conform to a predetermined value that is determined based on the boiling points of the components, to provide a vacuum distillation reproducing device provided.

第2の手段は、被処理液を減圧下で蒸留するための減圧蒸留槽と、前記減圧蒸留槽に設けられ、前記被処理液をこれに含まれる回収成分の沸点に加熱する加熱手段と、前記回収成分を回収する回収液を貯溜する溢流槽と、前記溢流槽の回収液を吸い込んで当該溢流槽に還流する循環路と、前記溢流槽内の回収液を冷却する冷却手段と、前記循環路に介設され、前記貯溜槽の回収液が作動流体として通流されたとき、前記減圧蒸留室の凝縮部から前記減圧蒸留室内の回収成分の雰囲気及び凝縮液を吸引してこれを前記作動流体に合流させて作動流体中に回収するエゼクタと、前記加熱手段の加熱により前記被処理液を前記沸点に加熱する際及び加熱後に、前記被処理液の温度と前記加熱手段の加熱温度とを比較して、得られた差が予め前記回収成分の沸点に基づいて定められる所定値に合致するように、前記加熱手段の加熱温度を調節する温度制御手段とを、備えた減圧蒸留再生装置を提供する。   The second means is a vacuum distillation tank for distilling the liquid to be treated under reduced pressure, a heating means provided in the vacuum distillation tank and heating the liquid to be treated to the boiling point of the recovered component contained therein, An overflow tank for storing the recovered liquid for recovering the recovered component, a circulation path for sucking the recovered liquid in the overflow tank and returning it to the overflow tank, and a cooling means for cooling the recovered liquid in the overflow tank And when the recovered liquid in the storage tank is passed as a working fluid, the atmosphere of the recovered components and the condensate in the vacuum distillation chamber are sucked from the condensing part of the vacuum distillation chamber. An ejector that joins the working fluid and collects it in the working fluid, and when the treatment liquid is heated to the boiling point by heating the heating means, and after the heating, the temperature of the treatment liquid and the heating means Compared to the heating temperature, the difference obtained is Min to match the predetermined value determined based on the boiling point, and a temperature control means for adjusting the heating temperature of the heating means, to provide a vacuum distillation reproducing device provided.

第3の手段は、第1の手段又は第2の手段において、前記所定値が、前記作動流体中に前記回収成分を回収して得られる蒸留再生液の再生量及び前記作動流体中に回収される回収成分と他の成分との比率に基づいて定められる減圧蒸留再生装置を提供する。   According to a third means, in the first means or the second means, the predetermined value is recovered in the working fluid and the regenerated amount of the distilled regenerated liquid obtained by recovering the recovered component in the working fluid. A reduced-pressure distillation regenerator that is determined based on the ratio of the recovered component to other components.

第4の手段は、第1〜第3手段のいずれかにおいて、前記加熱手段が熱交換媒体の通流により昇温される加熱コイルから構成され、圧縮機、凝縮機、膨張弁、蒸発器を、順次、熱交換媒体の管路で環状に接続した冷凍サイクルの凝縮器後段の凝縮器として冷凍サイクルに組み込まれ、前記凝縮器のファンの運転/停止の切り替えにより前記加熱コイルへの熱交換媒体の温度を制御するように構成された減圧蒸留再生装置を提供する。   The fourth means includes a heating coil in which the heating means is heated by the flow of the heat exchange medium in any one of the first to third means, and includes a compressor, a condenser, an expansion valve, and an evaporator. Are sequentially incorporated in the refrigeration cycle as a condenser subsequent to the condenser of the refrigeration cycle, which is connected in an annular shape through a heat exchange medium conduit, and the heat exchange medium to the heating coil is switched by switching the operation of the condenser fan. A vacuum distillation regenerator configured to control the temperature of the is provided.

第5の手段は、第1〜第4手段のいずれかにおいて、前記冷却手段が熱交換媒体の通流により冷却される冷却コイルから構成され、圧縮機、凝縮機、膨張弁、蒸発器を、順次、熱交換媒体の管路で環状に接続した冷凍サイクルの高圧側から熱交換媒体を導入してこれを冷凍サイクルの低圧側に排出させる蒸発器として冷凍サイクルに接続され、前記温度制御手段が、前記冷却コイルの熱交換媒体の導入口よりも上流側に設けられた開閉弁の開閉の切り替えにより、前記冷却コイルの温度を調節し前記作動流体の温度を調節するように構成され、前記冷却コイルの導入口と前記開閉弁との間には断熱膨張のための膨張弁が設けられた減圧蒸留再生装置を提供する。   The fifth means includes a cooling coil in which the cooling means is cooled by the flow of the heat exchange medium in any one of the first to fourth means, and includes a compressor, a condenser, an expansion valve, and an evaporator. Sequentially, the temperature control means is connected to the refrigeration cycle as an evaporator that introduces the heat exchange medium from the high pressure side of the refrigeration cycle that is annularly connected by the pipe of the heat exchange medium and discharges it to the low pressure side of the refrigeration cycle, The cooling coil is configured to adjust the temperature of the working fluid by switching the opening and closing of an on-off valve provided upstream of the heat exchange medium inlet of the cooling coil, and the cooling fluid Provided is a vacuum distillation regenerator provided with an expansion valve for adiabatic expansion between a coil inlet and the on-off valve.

第6の手段は、第1〜第5手段のいずれかにおいて、前記被処理液が汚れる前の液と同じ液であり、減圧蒸留前に、前記溢流槽及び前記循環路に前記回収液が満たされている減圧蒸留再生装置を提供するものである。   A sixth means is the same as the liquid before the liquid to be treated is soiled in any one of the first to fifth means, and before the vacuum distillation, the recovered liquid is placed in the overflow tank and the circulation path. A vacuum distillation regenerator that is filled is provided.

本発明によれば、減圧蒸留槽の蒸気圧が変動しても被処理液の沸点と温度との温度差が一定に保持される。このため、温度差を所定値とすることによって、品質の高い蒸留再生液が得られ、また、温度差を所定値とすることによって蒸留再生液の処理量を増加させることができる。   According to the present invention, even if the vapor pressure in the vacuum distillation tank varies, the temperature difference between the boiling point and temperature of the liquid to be treated is kept constant. Therefore, by setting the temperature difference to a predetermined value, a high-quality distillation regenerated liquid can be obtained, and by setting the temperature difference to a predetermined value, the throughput of the distilled regenerated liquid can be increased.

以下、添付図面を参照して本発明の最良の形態に係る減圧蒸留再生装置について説明する。なお、本実施形態では、被処理液、すなわち、被処理液の一例として機器を洗浄した後のアルカリ電解水などの水系洗浄液の蒸留再生に適用されるが、廃液等油系洗浄液や他の被処理液の再生装置として適用することが可能である。   Hereinafter, a vacuum distillation regenerator according to the best mode of the present invention will be described with reference to the accompanying drawings. In this embodiment, the present invention is applied to distillation regeneration of an aqueous cleaning liquid such as alkaline electrolyzed water after cleaning the equipment as an example of the processing liquid, but oil-based cleaning liquid such as waste liquid or other The present invention can be applied as a processing liquid recycling apparatus.

参照する図面において、図1は蒸留再生器を示す解説図である。
まず、図1を参照して本発明に係る減圧蒸留再生装置の構成の一例について説明し、次に、再生処理工程の一例について説明する。
<減圧再生処理装置の構成>
図1に示すように、蒸留再生装置は、減圧蒸留層としての蒸留再生ユニット1、減圧ユニット2、回収ユニット3、冷凍機4及び温度制御ユニット5とで構成される。
<蒸留再生ユニット1の構成>
蒸留再生ユニット1は、被処理液を導入し、被処理液を所定の減圧下で回収成分の沸点に加熱することにより、被処理液から回収成分を蒸発させるための蒸留槽7と、蒸留槽7で蒸発した回収成分を導入して冷却するための冷却槽8とを備える。
蒸留槽7及び冷却槽8は、それぞれ耐圧性を保持できる厚肉の鋼板、例えば、ステンレス鋼板により有底筒体状に形成され、蒸留槽7は上部が冷却槽8の底部軸心部を貫通して冷却槽8の内に挿入されることによって冷却槽8と連通している。
In the drawings to be referred to, FIG. 1 is an explanatory view showing a distillation regenerator.
First, an example of the configuration of the vacuum distillation regenerator according to the present invention will be described with reference to FIG. 1, and then an example of the regeneration process step will be described.
<Configuration of decompression regeneration processing apparatus>
As shown in FIG. 1, the distillation regeneration apparatus includes a distillation regeneration unit 1, a decompression unit 2, a recovery unit 3, a refrigerator 4, and a temperature control unit 5 as a vacuum distillation layer.
<Configuration of distillation regeneration unit 1>
The distillation regeneration unit 1 introduces a liquid to be treated, and heats the liquid to be treated to the boiling point of the recovered component under a predetermined reduced pressure, thereby distilling the recovered component from the liquid to be processed, and a distillation tank. And a cooling tank 8 for introducing and cooling the recovered component evaporated in step 7.
The distillation tank 7 and the cooling tank 8 are each formed in a bottomed cylindrical shape by a thick steel plate that can maintain pressure resistance, for example, a stainless steel plate, and the upper part of the distillation tank 7 penetrates the bottom axis of the cooling tank 8. Then, it is communicated with the cooling tank 8 by being inserted into the cooling tank 8.

蒸留槽7の上端面は、冷却槽8上部の開口部9を開閉する蓋10の下面から所定距離下方に離れて冷却槽8内に存在しており、冷却槽8の開口部9を開閉する蓋10の下面と蒸留槽7の上端面との間に冷却槽8内と蒸留槽7内とを連通する連通口11を形成している。
なお、蓋10は、冷却槽8及び蒸留槽7内のメンテナンスや点検のために設けられる。
前記蒸留槽7の被処理液を回収成分の沸点に加熱するための加熱手段は、熱交換媒体の通流により加熱する加熱コイル12によって構成される。
蒸留槽7から連通口11を通じて冷却槽8に導入された気体の水分と回収成分とを凝縮させるための冷却手段は、熱交換媒体を通流することにより冷却される冷却コイル13によって構成される。
The upper end surface of the distillation tank 7 exists in the cooling tank 8 at a predetermined distance below the lower surface of the lid 10 that opens and closes the opening 9 at the top of the cooling tank 8, and opens and closes the opening 9 of the cooling tank 8. A communication port 11 that connects the inside of the cooling tank 8 and the inside of the distillation tank 7 is formed between the lower surface of the lid 10 and the upper end surface of the distillation tank 7.
The lid 10 is provided for maintenance and inspection in the cooling tank 8 and the distillation tank 7.
The heating means for heating the liquid to be treated in the distillation tank 7 to the boiling point of the recovered component is constituted by a heating coil 12 that is heated by flowing a heat exchange medium.
The cooling means for condensing gaseous moisture and the recovered components introduced into the cooling tank 8 from the distillation tank 7 through the communication port 11 is constituted by a cooling coil 13 that is cooled by flowing a heat exchange medium. .

加熱コイル12は、蒸留槽7内に設置され、冷却コイル13は冷却槽8に設置される。前記加熱コイル12及び冷却コイル13の入口部及び出口部は、それぞれ蒸留槽7、冷却槽8を貫通して外部に延びており、加熱コイル12の入口部及び出口部は、冷凍サイクル中の凝縮器として冷凍機4の配管に接続され、冷却コイル13の入口部及び出口部は、冷凍サイクル中の後段の蒸発器として冷凍機4の配管に接続される。   The heating coil 12 is installed in the distillation tank 7, and the cooling coil 13 is installed in the cooling tank 8. The inlet and outlet of the heating coil 12 and the cooling coil 13 extend through the distillation tank 7 and the cooling tank 8, respectively, and the inlet and outlet of the heating coil 12 are condensed during the refrigeration cycle. It is connected to the piping of the refrigerator 4 as a refrigerator, and the inlet and outlet portions of the cooling coil 13 are connected to the piping of the refrigerator 4 as a subsequent evaporator in the refrigeration cycle.

また、蒸留槽7内で沸騰した被処理液の飛散を防止するため、前記蒸留槽7に複数の邪魔板14〜16と錐状の邪魔部材17,18とが設けられる。
複数の邪魔板14〜16は、図示例では蒸留槽7の上部側に上下方向に間隔を隔てて固定され、錐状の邪魔部材17,18は、頂点部が蓋10側を向き、開放部が蒸留槽7の液面を向くようにして前記蓋10の下面又は蒸留槽7の上部内面に固定される。
In order to prevent the liquid to be treated boiled in the distillation tank 7 from being scattered, the distillation tank 7 is provided with a plurality of baffle plates 14 to 16 and conical baffle members 17 and 18.
In the illustrated example, the plurality of baffle plates 14 to 16 are fixed to the upper side of the distillation tank 7 with an interval in the vertical direction, and the conical baffle members 17 and 18 have apexes facing the lid 10 side and open portions. Is fixed to the lower surface of the lid 10 or the upper inner surface of the distillation tank 7 so as to face the liquid surface of the distillation tank 7.

なお、前記蒸留再生ユニット1は、蒸留槽7又は冷却槽8を介して固定系に据え付けられ、前記邪魔板14〜16及び邪魔部材17,18は必要に応じてブラケット(図示せず)等の支持部材によって取り付けられる。また、濃縮液排出管19は濃縮液回収タンク20の配管21に開閉弁22を介して接続され、また、被処理液導入管23が被処理液の供給源である機器の被処理液の排出部又は被処理液供給タンク24の被処理液輸送管25に接続される。   The distillation regeneration unit 1 is installed in a stationary system via the distillation tank 7 or the cooling tank 8, and the baffle plates 14 to 16 and the baffle members 17 and 18 are provided with brackets (not shown) or the like as necessary. It is attached by a support member. Further, the concentrate discharge pipe 19 is connected to the pipe 21 of the concentrate collection tank 20 via an on-off valve 22, and the liquid to be processed is discharged from a device whose processing liquid introduction pipe 23 is a supply source of the liquid to be processed. Or a liquid to be processed transport pipe 25 of the liquid supply tank 24 to be processed.

<減圧ユニット2>
減圧ユニット2は、排気により蒸留再生ユニット1の蒸留槽7と冷却槽8を減圧し、減圧により被処理液の沸点を調節すると共に、冷却槽8の液及び気体となった回収成分を回収液に回収させる。
本実施の形態では、前記減圧ユニット2は、後述する溢流槽26に貯溜されている回収液が負圧を発生させる作動流体として通流されることにより、気体及び液体を吸引するエゼクタ27と、エゼクタ27の吸引口(以下、負圧発生口という)28と前記冷却槽8内とを連通する回収液回収路(負圧路)29と、エゼクタ27に、前記作動流体としての回収液を通流する流体ポンプ(送水ポンプ)30とで構成される。
なお、溢流槽26と循環路31(後述)には、予め、回収液と同じ液、すなわち、汚れる前の被処理液(例えば、アルカリ電解水)を満たしておく。
<Decompression unit 2>
The decompression unit 2 decompresses the distillation tank 7 and the cooling tank 8 of the distillation regeneration unit 1 by exhausting, adjusts the boiling point of the liquid to be treated by decompression, and collects the recovered component that has become liquid and gas in the cooling tank 8. To recover.
In the present embodiment, the decompression unit 2 includes an ejector 27 that sucks a gas and a liquid by allowing a collected liquid stored in an overflow tank 26 described later to flow as a working fluid that generates a negative pressure, A recovery liquid recovery path (negative pressure path) 29 that connects the suction port (hereinafter referred to as negative pressure generation port) 28 of the ejector 27 and the inside of the cooling tank 8, and the recovery liquid as the working fluid are passed through the ejector 27. It is comprised with the fluid pump (water supply pump) 30 to flow.
The overflow tank 26 and the circulation path 31 (described later) are previously filled with the same liquid as the recovered liquid, that is, the liquid to be treated (for example, alkaline electrolyzed water) before being contaminated.

エゼクタ27はノズル部、ディフューザ部、負圧発生口28を有する周知の流体エゼクタ(水エゼクタ)で構成されており、ノズル部の下流端に吸引口としての負圧発生口28が連通する。   The ejector 27 is composed of a well-known fluid ejector (water ejector) having a nozzle portion, a diffuser portion, and a negative pressure generating port 28, and a negative pressure generating port 28 serving as a suction port communicates with the downstream end of the nozzle portion.

前記減圧ユニット2を、前記蒸留再生ユニット1に取り付け、流体ポンプ30によって前記回収液をエゼクタ27のノズル部からディフィーザ部に向けて通流すると、ノズル部を通過する際の回収液の流速の急激な増加と圧力の低下によって負圧発生口28に発生する負圧が冷却槽8及び蒸留槽7に作用し、冷却槽8の凝縮液及び気体の回収成分が回収液
中に回収される。また、蒸留槽7内及び冷却槽8内の圧力、すなわち、蒸気圧が回収成分のみを蒸発させるための沸点に保持される。
When the decompression unit 2 is attached to the distillation regeneration unit 1 and the recovered liquid is caused to flow from the nozzle part of the ejector 27 toward the diffuser part by the fluid pump 30, the flow rate of the recovered liquid rapidly passes through the nozzle part. The negative pressure generated at the negative pressure generating port 28 due to the increase and the decrease in pressure acts on the cooling tank 8 and the distillation tank 7, and the condensate and gaseous recovery components of the cooling tank 8 are recovered in the recovery liquid. Further, the pressure in the distillation tank 7 and the cooling tank 8, that is, the vapor pressure is maintained at the boiling point for evaporating only the recovered component.

<回収ユニット3>
回収ユニット3は、前記流体ポンプ30に回収液を供給する溢流槽(循環タンクともいう)26と、溢流槽26に接続された循環路31と、溢流槽26内の回収液中に設置された溢流槽側冷却コイル32とで構成される。
エゼクタ27及び前記流体ポンプ30は、循環路31に介設され、流体ポンプ30は、エゼクタ27より下流側に配置される。
溢流槽側冷却コイル32の入口部及び出口部は溢流槽26を貫通して外部に延びており、後述する冷凍サイクルの後段の蒸発器として冷凍機4の配管に接続される。
冷却コイル13の入口部側には温度調節手段のひとつとして開閉弁5aが設けられ、その下流側に膨張弁33が設けられる。
<Recovery unit 3>
The recovery unit 3 includes an overflow tank (also referred to as a circulation tank) 26 that supplies the recovered liquid to the fluid pump 30, a circulation path 31 connected to the overflow tank 26, and a recovered liquid in the overflow tank 26. It is comprised with the overflow tank side cooling coil 32 installed.
The ejector 27 and the fluid pump 30 are interposed in the circulation path 31, and the fluid pump 30 is disposed on the downstream side of the ejector 27.
An inlet portion and an outlet portion of the overflow tank side cooling coil 32 extend through the overflow tank 26 and are connected to the piping of the refrigerator 4 as an evaporator at a later stage of the refrigeration cycle described later.
An opening / closing valve 5a is provided as one of the temperature adjusting means on the inlet side of the cooling coil 13, and an expansion valve 33 is provided on the downstream side thereof.

回収液に回収成分が混合して溢流槽26が増水すると、再生液排出管34から溢流する。
溢流した液は蒸留再生液として溢流液回収タンク35に貯溜される。
なお、蒸留再生液を溢流液回収タンク35に回収せずに、蒸留再生液を使用する装置の再生液導入部(図示せず)に直接戻す構成としてもよい。
When the recovered components are mixed with the recovered liquid and the overflow tank 26 increases in water, the recovered liquid discharge pipe 34 overflows.
The overflowed liquid is stored in the overflow liquid recovery tank 35 as a distillation regenerated liquid.
In addition, it is good also as a structure which returns directly to the regeneration liquid introduction part (not shown) of the apparatus which uses distillation regeneration liquid, without collect | recovering distillation regeneration liquid in the overflow liquid collection tank 35.

<冷凍機4>
冷凍機4は、圧縮機36、凝縮器(前段の凝縮器)37、蒸留槽7の加熱コイル12(後段の凝縮器)、膨張弁38及び冷却槽8の冷却コイル13(前段の蒸発器)を配管によって順次且つ環状に接続して構成される。
この冷凍機4は、蒸留槽7の加熱コイル12を高温・高圧の熱交換媒体によって加熱し、冷却槽8の冷却コイル13を冷却するための冷凍サイクルを構成する。
そして冷凍サイクルには、前記溢流槽26の貯溜液を冷却するための溢流槽側冷却コイル32が後段の蒸発器として組み込まれ、冷凍機4の配管に接続される。
冷凍機4の冷凍能力は、予め設定された処理量、すなわち、所定量の被処理液から蒸留した被処理液中の水分と回収成分を冷却するための冷却量と溢流槽26内の回収液を冷却するために必要な冷却量とに対応して決定されている。
<Refrigerator 4>
The refrigerator 4 includes a compressor 36, a condenser (an upstream condenser) 37, a heating coil 12 (a downstream condenser) in the distillation tank 7, an expansion valve 38 and a cooling coil 13 in the cooling tank 8 (an upstream evaporator). Are sequentially and annularly connected by piping.
The refrigerator 4 constitutes a refrigeration cycle for heating the heating coil 12 of the distillation tank 7 with a high-temperature and high-pressure heat exchange medium and cooling the cooling coil 13 of the cooling tank 8.
In the refrigeration cycle, an overflow tank side cooling coil 32 for cooling the stored liquid in the overflow tank 26 is incorporated as a subsequent evaporator and connected to the piping of the refrigerator 4.
The refrigerating capacity of the refrigerator 4 has a predetermined processing amount, that is, a cooling amount for cooling water and recovery components in the processing liquid distilled from a predetermined amount of the processing liquid, and recovery in the overflow tank 26. It is determined in accordance with the cooling amount necessary for cooling the liquid.

<温度制御ユニット5>
図2に前記温度制御ユニット5の好ましい形態を示す。
温度制御ユニット5は、蒸留槽7の被処理液の温度T1を検知する温度検知部(温度検知手段)5cと、溢流槽26側の回収液の温度T2を検知する温度検知部(温度検知手段)5dと、前記加熱コイル12の温度T3を検知する温度検知部(温度検知手段)5eと、被処理液、回収液及び加熱コイルの各検出温度とこれら検出温度に対応する設定値とをそれぞれ比較してその差を求める比較演算部5fと、比較演算部5fの演算によって得られた差を対応する設定値に近づくように、被処理液の温度と回収液の温度とを制御する温度制御部(温度制御手段)5gと、を備えて構成される。
<Temperature control unit 5>
FIG. 2 shows a preferred form of the temperature control unit 5.
The temperature control unit 5 includes a temperature detection unit (temperature detection means) 5c that detects the temperature T1 of the liquid to be treated in the distillation tank 7, and a temperature detection unit (temperature detection) that detects the temperature T2 of the recovered liquid on the overflow tank 26 side. Means) 5d, a temperature detection part (temperature detection means) 5e for detecting the temperature T3 of the heating coil 12, each detected temperature of the liquid to be processed, the recovered liquid and the heating coil, and set values corresponding to these detected temperatures. A comparison operation unit 5f that compares and calculates the difference, and a temperature that controls the temperature of the liquid to be treated and the temperature of the recovered liquid so that the difference obtained by the operation of the comparison operation unit 5f approaches a corresponding set value. And a control unit (temperature control means) 5g.

前記比較演算部5fは、被処理液の温度T1と溢流槽26側の回収液(作動流体)の温度T2との差|Δt1|及び被処理液の温度T1と前記加熱コイル12の温度T3との差|Δt2|をそれぞれ演算し、温度制御部5gは、比較演算部が演算した各温度差|Δt1|,|Δt2|がそれぞれ対応する設定値(目標値)|Δt1set|,|Δt2set|に近づくように、言い換えると収束するように制御する。
温度制御ユニット5がコンピュータで構成されている場合は、前記設定値(目標値)|Δt1set|及び|Δt2set|は、予め、メモリ(図示せず)に保持されており、温度制御ユニット5がシーケンス回路で構成されている場合は、設定値設定部(図示せず
)によって設定されている。
ここで、|Δt1set|は、下式に示すように、減圧蒸留の際に、処理量(再生量)が最大でかつ、回収成分の以外の他の沸点の成分が回収液に混入することがない状態、すなわち、外乱のない状態で被処理液を回収成分の沸点に加熱したときの被処理液の温度T1と回収液T2との温度差を基準に、前記作動流体中に前記回収成分を回収して得られる蒸留再生液の再生量及び前記作動流体中に回収される回収成分と他の成分との比率(回収液の品質)に基づいて定められ、|Δt2set|は、減圧蒸留の際に、処理量(再生量)が最大でかつ、回収成分以外の他の沸点の成分が回収液に混入することがない状態、すなわち、外乱のない状態で被処理液を回収成分の沸点に加熱したときの被処理液の温度T1と加熱コイルの加熱温度T3との温度差を基準に、前記作動流体中に前記回収成分を回収して得られる蒸留再生液の再生量及び前記作動流体中に回収される回収成分と他の成分との比率(回収液の品質)に基づいて定められる。
|Δt1set|=T1−T2…(1)
|Δt2set|=T3−T1…(2)
本実施の形態では、加熱コイル12の温度は、加熱コイル温度センサ5hにより、回収液の温度は回収液温度センサ5iにより検出され、被処理液の温度は、被処理液温度センサ5jにより検出される。そして、前記温度制御部5gの出力部は溢流槽側冷却コイル32の入口部の開閉弁5aの駆動制御部及び冷凍サイクル前段のファン(冷却ファン)5bの駆動制御部に接続されていて、温度調節手段としての開閉弁5aの開閉及びファン5bの運転/停止を切り替えることによって、溢流槽側冷却コイル32、加熱コイル12の温度を制御する。
The comparison calculation unit 5f includes a difference | Δt1 | between the temperature T1 of the liquid to be processed and the temperature T2 of the recovered liquid (working fluid) on the overflow tank 26 side, and the temperature T1 of the liquid to be processed and the temperature T3 of the heating coil 12. Difference | Δt2 | is calculated, and the temperature controller 5g sets the set values (target values) | Δt1set | and | Δt2set | corresponding to the temperature differences | Δt1 | and | Δt2 | Control is performed so as to approach, in other words, to converge.
When the temperature control unit 5 is configured by a computer, the set values (target values) | Δt1set | and | Δt2set | are stored in advance in a memory (not shown), and the temperature control unit 5 performs a sequence. In the case of a circuit, it is set by a set value setting unit (not shown).
Here, as shown in the following formula, | Δt1set | is the maximum amount of treatment (regeneration amount) during distillation under reduced pressure, and other boiling components other than the recovered components may be mixed into the recovered liquid. The recovered component is contained in the working fluid on the basis of the temperature difference between the temperature T1 of the liquid to be processed and the recovered liquid T2 when the liquid to be processed is heated to the boiling point of the recovered component without any disturbance. It is determined on the basis of the regeneration amount of the distillation regenerated liquid obtained by recovery and the ratio (recovered liquid quality) between the recovered component recovered in the working fluid and other components, and | Δt2set | In addition, the liquid to be treated is heated to the boiling point of the recovered component in a state where the processing amount (regeneration amount) is maximum and components having other boiling points other than the recovered component are not mixed into the recovered liquid, that is, without disturbance. The temperature T1 of the liquid to be treated and the heating temperature T3 of the heating coil And the ratio of the recovered component recovered in the working fluid to other components (the quality of the recovered liquid). ).
| Δt1set | = T1-T2 (1)
| Δt2set | = T3-T1 (2)
In the present embodiment, the temperature of the heating coil 12 is detected by the heating coil temperature sensor 5h, the temperature of the recovered liquid is detected by the recovered liquid temperature sensor 5i, and the temperature of the liquid to be processed is detected by the liquid temperature sensor 5j. The And the output part of the said temperature control part 5g is connected to the drive control part of the on-off valve 5a of the inlet_port | entrance part of the overflow tank side cooling coil 32, and the drive control part of the fan (cooling fan) 5b of the refrigeration cycle front stage, The temperature of the overflow tank side cooling coil 32 and the heating coil 12 is controlled by switching the opening / closing of the on-off valve 5a as the temperature adjusting means and the operation / stop of the fan 5b.

このようにすると、減圧蒸留の際の被処理液の液面での蒸発潜熱や被処理液の補充による等に対する外乱があってもエゼクタ27の圧縮に起因する回収液の温度上昇及び冷却槽8より回収される回収成分の温度に起因する回収水の温度が適正な温度に修正される。
なお、本実施の形態では、温度制御ユニット5をコンピュータで構成し、前記した各手段としてコンピュータを機能させるプログラムによって動作されるように構成したが、コンピュータに代えて専用のシーケンサ又はシーケンス回路によって制御することも可能である。
In this way, the temperature rise of the recovered liquid caused by the compression of the ejector 27 and the cooling tank 8 even if there are disturbances due to the latent heat of vaporization at the liquid surface of the liquid to be processed and the replenishment of the liquid to be processed during distillation under reduced pressure. The temperature of the recovered water resulting from the temperature of the recovered component to be recovered is corrected to an appropriate temperature.
In this embodiment, the temperature control unit 5 is configured by a computer and is operated by a program that causes the computer to function as each of the above-described means. However, the temperature control unit 5 is controlled by a dedicated sequencer or sequence circuit instead of the computer. It is also possible to do.

以下に、前記した|Δt1|及び|Δt2|の具体的な設定の一例を示す。
<|Δt1|の設定>
An example of specific settings for the above-described | Δt1 | and | Δt2 | will be described below.
<Setting of | Δt1 |

(a)|Δt1|≦|Δt1set|のとき
被処理液の温度T1と回収液の温度T2との差|Δt1|が、予め設定された被処理液の温度と回収液の温度との差である設定値(目標値)|Δt1set|よりも小さいとき、すなわち、|Δt1|<|Δt1set|のときは、エゼクタ27の仕事や回収成分の回収によって回収液の温度が上昇している。
従って、このような場合は、|Δt1|=|Δt1set|の場合と比べて蒸留槽7内の蒸気圧が|Δt1|=|Δt1set|の場合よりも上昇している。
(A) When | Δt1 | ≦ | Δt1set |, the difference | Δt1 | between the temperature T1 of the liquid to be processed and the temperature T2 of the recovered liquid is the difference between the temperature of the liquid to be processed and the temperature of the recovered liquid set in advance. When it is smaller than a certain set value (target value) | Δt1set |, that is, when | Δt1 | <| Δt1set |, the temperature of the recovered liquid rises due to the work of the ejector 27 and recovery of the recovered components.
Therefore, in such a case, the vapor pressure in the distillation tank 7 is higher than in the case of | Δt1 | = | Δt1set | as compared with the case of | Δt1 | = | Δt1set |.

このため、温度制御部5gは、溢流槽側冷却コイル32の入口部側に設けられている開閉弁5aに開信号を送信し、冷却用の熱交換媒体を溢流槽側冷却コイル32に供給し、|Δt1|を|Δt1set|側に近づける。   Therefore, the temperature control unit 5g transmits an open signal to the on-off valve 5a provided on the inlet side of the overflow tank side cooling coil 32, and the cooling heat exchange medium is sent to the overflow tank side cooling coil 32. And | Δt1 | is brought closer to the | Δt1set | side.

回収液の温度が下がり、|Δt1|が|Δt1set|側に収束するに連れて蒸留槽7内の蒸気圧が|Δt1|=||Δt1set|の場合の蒸気圧に回復する。
この結果、被処理液の液面から回収成分のみが蒸発し、|Δt1|=|Δt1set|の場合と同量又は近似の回収成分が回収液に回収される。
As the temperature of the recovered liquid decreases and | Δt1 | converges on the | Δt1set | side, the vapor pressure in the distillation tank 7 recovers to the vapor pressure in the case of | Δt1 | = || Δt1set |.
As a result, only the recovered component evaporates from the liquid surface of the liquid to be processed, and the recovered component is recovered in the recovered liquid in the same or approximate amount as in the case of | Δt1 | = | Δt1set |.

(b)|Δt1|>|Δt1set|のとき
被処理液の温度T1と回収液の温度T2との差|Δt1|が、予め設定された被処理液の温度と回収液の温度との差|Δt1set|よりも大きいとき、すなわち、|Δt1|>|Δt1set|のときは、|Δt1|=|Δt1set|の場合よりも被処理液の温度が高く、蒸留槽7内の蒸気圧が低下している。この結果、回収成分よりも沸点の低い成分も蒸発し、回収液に回収されてしまう。
(B) When | Δt1 |> | Δt1set |, the difference | Δt1 | between the temperature T1 of the liquid to be treated and the temperature T2 of the recovered liquid is the difference between the preset temperature of the liquid to be processed and the temperature of the recovered liquid | When it is larger than Δt1set |, that is, when | Δt1 |> | Δt1set |, the temperature of the liquid to be treated is higher than in the case of | Δt1 | = | Δt1set |, and the vapor pressure in the distillation tank 7 decreases. Yes. As a result, a component having a boiling point lower than that of the recovered component also evaporates and is recovered in the recovered liquid.

このとき、温度制御部5gが|Δt1|>|Δt1set|のときに、溢流槽側冷却コイル32の入口部側に設けられている開閉弁5aに閉信号を送信することによって溢流槽側冷却コイル32への冷却用の熱交換媒体を供給を停止し、|Δt1|を|Δt1set|側に近づける。   At this time, when the temperature control unit 5g is | Δt1 |> | Δt1set |, the overflow tank side is transmitted by transmitting a closing signal to the on-off valve 5a provided on the inlet side of the overflow tank side cooling coil 32. Supply of the heat exchange medium for cooling to the cooling coil 32 is stopped, and | Δt1 | is brought closer to the | Δt1set | side.

|Δt1|が|Δt1set|側に収束するに連れて蒸留槽7内の蒸気圧が|Δt1|=|Δt1set|のときの蒸気圧に回復するので、被処理液の液面から回収成分のみが蒸発し、|Δt1|=|Δt1set|の場合と同様の回収成分が回収液に回収される。   As | Δt1 | converges on the | Δt1set | side, the vapor pressure in the distillation tank 7 recovers to the vapor pressure when | Δt1 | = | Δt1set |, so that only the recovered component is recovered from the liquid surface of the liquid to be treated. Evaporated and recovered components similar to the case of | Δt1 | = | Δt1set | are recovered in the recovery liquid.

このように、エゼクタ27により減圧する方式では、循環水の水温に相当する蒸気圧に近い到達圧力が得られること、溢流槽26の回収水の温度はそのまま蒸留再生ユニット1の液の沸点に近いこと、溢流槽26の回収液を冷却しないと被処理液の温度が上昇するという特性を利用し、少なくとも、溢流槽26の回収液の温度又は被処理液の温度の何れか一方を変えることによって、結果的に蒸留槽7の被処理液の沸点をある範囲内で変え、被処理液の温度変化に合わせて減圧における沸点を回収成分の沸点に追従させることができる。   Thus, in the method of reducing the pressure by the ejector 27, an ultimate pressure close to the vapor pressure corresponding to the water temperature of the circulating water can be obtained, and the temperature of the recovered water in the overflow tank 26 remains at the boiling point of the liquid of the distillation regeneration unit 1. By utilizing the property that the temperature of the liquid to be treated rises unless the liquid collected in the overflow tank 26 is cooled, at least one of the temperature of the liquid collected in the overflow tank 26 or the temperature of the liquid to be treated is used. As a result, the boiling point of the liquid to be treated in the distillation tank 7 can be changed within a certain range, and the boiling point at the reduced pressure can follow the boiling point of the recovered component in accordance with the temperature change of the liquid to be treated.

例えば、設定温度|Δt1set|,|Δt2set|をそれぞれ0℃に設定すると、被処理液の温度が変化しても常に回収成分の沸点の温度で蒸発が行われることになる。このことにより、蒸留槽7の被処理液の温度T1が変化してしまうような運転状態、すなわち、外乱が強い運転状態でも常に同じ条件で被処理液を沸騰させることが可能となり、結果として、|Δt1|=|Δt1set|の場合と同様又は同じ品質、再生量の再生処理が行われる。   For example, if the set temperatures | Δt1set | and | Δt2set | are each set to 0 ° C., the evaporation is always performed at the boiling point of the recovered component even if the temperature of the liquid to be treated changes. This makes it possible to boil the liquid to be treated under the same conditions even in an operating state in which the temperature T1 of the liquid to be processed in the distillation tank 7 changes, that is, in an operating state where the disturbance is strong. A reproduction process with the same quality and reproduction amount as in the case of | Δt1 | = | Δt1set | is performed.

<|Δt2|の設定> <Setting of | Δt2 |>

(c)|Δt2|≦|Δt2set|のとき
被処理液の温度T1と加熱コイル12の温度T3との差|Δt2|が、予め設定された被処理液の温度と回収液の温度との差|Δt2set|よりも小さいとき、すなわち、|Δt2|<|Δt2set|のときは、被処理液の温度に対して加熱コイル12の温度が下がり過ぎている状態にある。
この場合、温度制御部5gは、ファン5bの駆動回路に対して停止信号を出力し、温度の高い熱交換媒体をそのままの温度で加熱コイル12に供給し、これにより被処理液の温度を、|Δt2|=|Δt2set|の場合の温度に収束させる。
この結果、加熱コイル12の温度が上がり、被処理液中の回収成分の沸点が、|Δt2|=|Δt2set|の場合の沸点と同じ又は近づく。この結果、被処理液の液面から回収成分のみが蒸発し、|Δt2|=|Δt2set|の場合と同様の品質、処理量が確保される。
(C) When | Δt2 | ≦ | Δt2set |, the difference | Δt2 | between the temperature T1 of the liquid to be treated and the temperature T3 of the heating coil 12 is the difference between the temperature of the liquid to be treated and the temperature of the recovered liquid. When smaller than | Δt2set |, that is, when | Δt2 | <| Δt2set |, the temperature of the heating coil 12 is too low with respect to the temperature of the liquid to be treated.
In this case, the temperature control unit 5g outputs a stop signal to the drive circuit of the fan 5b, and supplies the heat exchange medium having a high temperature to the heating coil 12 at the same temperature, thereby changing the temperature of the liquid to be processed. The temperature is converged to the case of | Δt2 | = | Δt2set |.
As a result, the temperature of the heating coil 12 rises, and the boiling point of the recovered component in the liquid to be treated is the same as or close to the boiling point in the case of | Δt2 | = | Δt2set |. As a result, only the recovered component evaporates from the liquid surface of the liquid to be processed, and the same quality and throughput as in the case of | Δt2 | = | Δt2set | are ensured.

(d)|Δt2|>|Δt2set|のとき
被処理液の温度T1と加熱コイルの温度T3との温度差|Δt2|が予め設定された被処理液の温度T1と加熱コイル12の温度T3との差|Δt2set|よりも大きいときは、|Δt2|=|Δt2set|の場合よりも、加熱コイル12の温度が高く、回収成
分の沸点よりも高い沸点の他の成分も蒸発して回収液に混入することがある。
(D) When | Δt2 |> | Δt2set |, the temperature difference | Δt2 | between the temperature T1 of the liquid to be treated and the temperature T3 of the heating coil is set to the temperature T1 of the liquid to be treated and the temperature T3 of the heating coil 12 Is larger than the difference | Δt2set |, the temperature of the heating coil 12 is higher than that in the case of | Δt2 | = | Δt2set | May be mixed.

温度制御部5gは、このような場合、冷凍サイクル前段の凝縮器37のファン5bの駆動回路(図示せず)に駆動信号を出力し、冷凍サイクル前段の凝縮器37のファン5bを回転させ、凝縮器37から加熱コイル12に供給する熱交換媒体の温度を下げる。
この結果、加熱コイル12に供給される熱交換媒体の温度が下降して被処理液の温度が低下し、蒸留槽7の蒸気圧が|Δt2|=|Δt2set|の場合の蒸気圧になるように修正され、被処理液の液面から回収成分のみが蒸発し、|Δt2|=|Δt2set|の場合と同様の回収成分が回収液に回収される。
In such a case, the temperature controller 5g outputs a drive signal to a drive circuit (not shown) of the fan 5b of the condenser 37 in the pre-refrigeration cycle, rotates the fan 5b of the condenser 37 in the pre-refrigeration cycle, The temperature of the heat exchange medium supplied from the condenser 37 to the heating coil 12 is lowered.
As a result, the temperature of the heat exchange medium supplied to the heating coil 12 is lowered, the temperature of the liquid to be treated is lowered, and the vapor pressure of the distillation tank 7 becomes the vapor pressure when | Δt2 | = | Δt2set |. Thus, only the recovered component evaporates from the liquid surface of the liquid to be treated, and the recovered component similar to the case of | Δt2 | = | Δt2set | is recovered in the recovered liquid.

なお、本実施の形態では、|Δt1|及び|Δt2|に基づいて被処理液に対する加熱手段の温度又は被処理液に対する回収液の温度の少なくとも何れか一方を制御し、被処理液の液温と回収すべき回収成分の沸点とを一定値以内の温度差に保持することによって、蒸留再生液となる回収液の品質や処理量が一定に制御するが、回収液の品質と処理量とに基づいて|Δt1set|,|Δt2set|の設定値を、適宜、修正し、処理量よりも品質を、又、回収液の品質よりも処理量を優先させるようにしてもよい。   In this embodiment, based on | Δt1 | and | Δt2 |, at least one of the temperature of the heating unit with respect to the liquid to be processed and the temperature of the recovered liquid with respect to the liquid to be processed is controlled. And the boiling point of the recovered component to be recovered are kept at a temperature difference within a certain value, so that the quality and throughput of the recovered liquid that is the distillation regenerated liquid are controlled to a constant level. Based on this, the set values of | Δt1set | and | Δt2set | may be appropriately modified so that the quality is given priority over the processing amount and the processing amount is given priority over the quality of the recovered liquid.

また、前記した|Δt1|と|Δt2|の設定値を組み合わせて減圧蒸留の際の回収液と被処理液の温度を制御すると、ニーズに合わせた精度の高い回収品質、回収量の制御が可能になる。   In addition, by combining the above set values of | Δt1 | and | Δt2 | to control the temperature of the recovered liquid and the liquid to be processed during vacuum distillation, it is possible to control the recovery quality and the recovery amount with high accuracy according to needs. become.

(実施の形態の効果)
以上、説明したように、本実施の形態によれば、被処理液の再生において、溢流槽26の回収液の温度変動が修正され、液温と沸点とが同じ状態で回収成分を蒸発できる。また、蒸留再生液としての品質、処理量を、所望の品質、処理量に調節することができる。
(Effect of embodiment)
As described above, according to the present embodiment, in the regeneration of the liquid to be treated, the temperature fluctuation of the recovered liquid in the overflow tank 26 is corrected, and the recovered components can be evaporated with the liquid temperature and the boiling point being the same. . In addition, the quality and throughput of the distillation regenerated solution can be adjusted to the desired quality and throughput.

次に、図1を参照して水系洗浄液としてアルカリ電解水の再生処理について説明する。   Next, the regeneration treatment of alkaline electrolyzed water as an aqueous cleaning solution will be described with reference to FIG.

被処理液の再生処理では、被処理液導入工程、被処理液の蒸留工程、濃縮液排出工程を実行する。
被処理液導入工程では減圧蒸留再生装置に被処理液として使用により汚れてしまったアルカリ電解水を導入する。
被処理液導入工程では、コントローラ(図示せず)が減圧ユニット2を作動する。
コントローラは、減圧ユニット2によって蒸留槽7と冷却槽8とを減圧した後、蒸留槽に側壁に取り付けられた濃縮液排出管19の開閉弁22を閉、蒸留槽7の被処理液導入管23の開閉弁40を開とすると、負圧のため、被処理液導入管23に接続されている被処理液輸送管25を通じて蒸留槽7に被処理液としての汚れたアルカリ電解水が導入される。
このとき、被処理液の導入量は、流量計により検知される。
In the treatment liquid regeneration process, a liquid treatment introduction process, a liquid distillation process, and a concentrate discharge process are executed.
In the process liquid introduction step, alkaline electrolyzed water that has become dirty due to use as a process liquid is introduced into the vacuum distillation regenerator.
In the process liquid introduction process, a controller (not shown) operates the decompression unit 2.
After depressurizing the distillation tank 7 and the cooling tank 8 by the decompression unit 2, the controller closes the open / close valve 22 of the concentrate discharge pipe 19 attached to the side wall of the distillation tank, and the liquid to be treated introduction pipe 23 of the distillation tank 7. When the on-off valve 40 is opened, due to the negative pressure, dirty alkaline electrolyzed water as the liquid to be treated is introduced into the distillation tank 7 through the liquid feed pipe 25 to be treated connected to the liquid feed pipe 23 to be treated. .
At this time, the introduction amount of the liquid to be treated is detected by a flow meter.

蒸留槽7に定量の被処理液が導入されると、コントローラ(図示せず)は、被処理液導入管23の開閉弁22を閉として被処理液の供給を停止し、被処理液の導入工程を終了する。   When a fixed amount of liquid to be processed is introduced into the distillation tank 7, a controller (not shown) closes the on-off valve 22 of the liquid to be processed introducing pipe 23 to stop the supply of the liquid to be processed and introduce the liquid to be processed. The process ends.

被処理液の減圧蒸留工程では、コントローラが冷凍機4を稼動させ、被処理液の減圧下での蒸留再生を実施する。
冷凍機4が稼動すると、冷凍機4の圧縮機36が駆動され、圧縮機36により圧縮された高温・高圧の熱交換媒体が加熱コイル12、冷却コイル13、膨張弁38を順次通過する。
In the vacuum distillation process for the liquid to be processed, the controller operates the refrigerator 4 to perform distillation regeneration under reduced pressure of the liquid to be processed.
When the refrigerator 4 is operated, the compressor 36 of the refrigerator 4 is driven, and the high-temperature and high-pressure heat exchange medium compressed by the compressor 36 sequentially passes through the heating coil 12, the cooling coil 13, and the expansion valve 38.

蒸留槽7の被処理液の温度は、加熱コイル12の熱交換媒体との熱交換(放熱反応)によって上昇し、冷却槽8内の雰囲気は冷却コイルとの熱交換によって冷却される。
加熱コイル12との熱交換により、被処理液の温度が回収成分の沸点に到達すると、被処理液の表面から回収成分が蒸発する。
The temperature of the liquid to be treated in the distillation tank 7 rises by heat exchange (heat radiation reaction) with the heat exchange medium of the heating coil 12, and the atmosphere in the cooling tank 8 is cooled by heat exchange with the cooling coil.
When the temperature of the liquid to be processed reaches the boiling point of the recovered component due to heat exchange with the heating coil 12, the recovered component evaporates from the surface of the liquid to be processed.

蒸発した回収成分は、蒸留槽7内を上昇して、蒸留槽7の邪魔板14〜16間、邪魔部材17,18間を通過し、前記連通口11から前記冷却槽8へと導入される。
冷却槽8内が冷却コイル13によって冷却されているので、被処理液から蒸発した回収成分は、冷却槽8の雰囲気と冷却コイル13の表面で凝縮する。そして、回収液回収路29を介してエゼクタ27の負圧発生口28に吸引され、回収液と合流する。
The evaporated recovered component ascends in the distillation tank 7 and passes between the baffle plates 14 to 16 and the baffle members 17 and 18 of the distillation tank 7 and is introduced into the cooling tank 8 from the communication port 11. .
Since the inside of the cooling tank 8 is cooled by the cooling coil 13, the recovered component evaporated from the liquid to be treated is condensed in the atmosphere of the cooling tank 8 and the surface of the cooling coil 13. Then, it is sucked into the negative pressure generating port 28 of the ejector 27 through the recovered liquid recovery path 29 and merges with the recovered liquid.

なお、蒸留前の減圧において、エゼクタ27の吸引により、蒸留槽7及び冷却槽8の雰囲気は、回収液と混合した状態で溢流槽26内に導入され、回収液中を上昇して外気に放出される。
減圧蒸留により、被処理液に含まれている回収成分が回収液中に取り込まれると、溢流槽26の液位が次第に上昇する。そして、回収液が溢流槽26から溢流すると蒸留再生液として溢流液回収タンク35に回収される。
Note that the atmosphere in the distillation tank 7 and the cooling tank 8 is introduced into the overflow tank 26 in a state of being mixed with the recovered liquid by the suction of the ejector 27 in the decompression before distillation, and rises in the recovered liquid to the outside air. Released.
When the recovered component contained in the liquid to be treated is taken into the recovered liquid by vacuum distillation, the liquid level in the overflow tank 26 gradually increases. When the recovered liquid overflows from the overflow tank 26, it is recovered in the overflow liquid recovery tank 35 as a distillation regenerated liquid.

加熱コイル12の加熱により、被処理液の液面からの回収成分の蒸発が進み、蒸留槽7における被処理液の液面が所定位置に下がると、前記コントローラが開閉弁40の開閉を制御して被処理液を定量ずつ補充させる。
そして、被処理液の蒸留工程が終了すると、濃縮液排出工程が実施される。
濃縮液排出工程では、コントローラ又は手動により、濃縮液排出管19の開閉弁22が開とされ、濃縮液回収タンク20に排出される。油で汚れた機器を洗浄したアルカリ電解水を被処理液として再生する場合は、油を主成分とした濃縮液が濃縮液回収タンク20に回収される。
When the heating of the heating coil 12 evaporates the recovered components from the liquid level of the liquid to be processed and the liquid level of the liquid to be processed in the distillation tank 7 is lowered to a predetermined position, the controller controls the opening / closing of the on-off valve 40. To replenish the liquid to be treated in a fixed amount.
And when the distillation process of a to-be-processed liquid is complete | finished, a concentrate discharge process is implemented.
In the concentrate discharge process, the on-off valve 22 of the concentrate discharge pipe 19 is opened by the controller or manually and is discharged to the concentrate recovery tank 20. In the case where alkaline electrolyzed water that has been cleaned of equipment contaminated with oil is regenerated as a liquid to be treated, a concentrated liquid mainly composed of oil is recovered in the concentrated liquid recovery tank 20.

そして、減圧蒸留の際は、前記したように温度制御部5gが|Δt1|=|Δt1set|となるように開閉弁5aの開閉と、溢流槽側冷却コイル32の温度を調節し、|Δt2|=|Δt2set|となるように、凝縮器37のファン5bの回転/停止を切り替えるので、一定品質、一定処理量の蒸留再生液が得られる。   During distillation under reduced pressure, as described above, the temperature controller 5g adjusts the temperature of the on-off valve 5a and the temperature of the overflow tank side cooling coil 32 so that | Δt1 | = | Δt1set | Since rotation / stop of the fan 5b of the condenser 37 is switched so that | = | Δt2set |, a distillation regenerated liquid having a constant quality and a constant processing amount can be obtained.

なお、本発明の実施の形態では、被処理液してアルカリ電解水について説明をしたが、他の水系洗浄液、油系洗浄液や他の被処理液についても適用が可能である。この場合、溢流槽に予め貯溜しておく回収液は、汚れる前、又は使用前の溶質と同じ液が用いられる。   In the embodiment of the present invention, alkaline electrolyzed water has been described as the liquid to be treated. However, the present invention can be applied to other aqueous cleaning liquids, oil-based cleaning liquids, and other liquids to be treated. In this case, the recovered liquid stored in the overflow tank in advance is the same liquid as the solute before being contaminated or used.

また、エゼクタ27は流体ポンプ30の圧力に対応してエゼクタ27内部の循環水の圧力が所定圧力となるように設計されていて蒸留槽7内を減圧し、回収成分を溢流槽26に回収するが、システム全体としての熱効率を向上すると共に、蒸留再生液の品質、処理量をさらに増加させる必要がある場合は、エゼクタ27b,27cの到達圧力は、水の蒸気圧に到達圧力に近似するので、処理量を上げる場合は、図3に示すように、エゼクタ27,27b,27cを多段に設け、流体ポンプ30,30b,30cを各段に設けてエゼクタ27b,27cの差圧分Δpの増加分を修正するとよい。   The ejector 27 is designed so that the pressure of the circulating water inside the ejector 27 becomes a predetermined pressure corresponding to the pressure of the fluid pump 30, and the inside of the distillation tank 7 is depressurized, and the recovered components are recovered in the overflow tank 26. However, when it is necessary to improve the thermal efficiency of the entire system and to further increase the quality and throughput of the distillation regenerated solution, the ultimate pressure of the ejectors 27b and 27c approximates the ultimate pressure of the water vapor pressure. Therefore, when the processing amount is increased, as shown in FIG. 3, the ejectors 27, 27b, and 27c are provided in multiple stages, and the fluid pumps 30, 30b, and 30c are provided in the respective stages so that the pressure difference Δp between the ejectors 27b and 27c is increased. It is good to correct the increase.

さらに、蒸留槽7の上部を前記冷却槽8の底部に溶接によって固着するという説明をしたが、一対のフランジによって接続する構成としてもよい。   Furthermore, although it explained that the upper part of the distillation tank 7 was fixed to the bottom part of the cooling tank 8 by welding, it may be configured to be connected by a pair of flanges.

また、本実施の形態において、膨張弁38は熱交換媒体を急速に断熱膨張させる絞り弁として設けられ、圧力と温度を低下させることで、冷却コイル13での熱交換媒体の蒸発を促すが、膨張弁36,膨張弁33をエゼクタに代えることによって圧縮機36の負荷を
軽減させるようにしてもよい。
Further, in the present embodiment, the expansion valve 38 is provided as a throttle valve that rapidly adiabatically expands the heat exchange medium and promotes evaporation of the heat exchange medium in the cooling coil 13 by reducing the pressure and temperature. You may make it reduce the load of the compressor 36 by replacing the expansion valve 36 and the expansion valve 33 with an ejector.

また、冷却槽8を蒸留槽7の上方に配置し、これらを管によって接続する構造としてもよい。また、蒸留槽7と冷却槽8同士の接合には、溶接を用いてもよいし、フランジ接続としてもよい。   Moreover, it is good also as a structure which arrange | positions the cooling tank 8 above the distillation tank 7, and connects these with a pipe | tube. Moreover, welding may be used for joining between the distillation tank 7 and the cooling tank 8, or a flange connection may be used.

<付記1>
被処理液を減圧下で蒸留するための減圧蒸留槽と、前記減圧蒸留槽に設けられ、前記被処理液をこれに含まれる回収成分の沸点に加熱する加熱手段と、前記回収成分を回収する回収液を貯溜する溢流槽と、前記溢流槽の回収液を吸い込んで当該溢流槽に還流する循環路と、前記溢流槽内の回収液を冷却する冷却手段と、前記循環路に介設され、前記貯溜槽の回収液が作動流体として通流されたとき、前記減圧蒸留室の凝縮部から前記減圧蒸留室内の回収成分の雰囲気及び凝縮液を吸引してこれを前記作動流体に合流させて作動流体中に回収するエゼクタと、前記加熱手段の加熱により前記被処理液を前記沸点に加熱する際及び加熱後に、前記被処理液の温度と前記溢流槽の回収液の温度とを比較して、得られる差が予め前記回収成分の沸点に基づいて定められる所定値に合致するように前記冷却手段により前記回収液を冷却させる共に、前記被処理液の温度と前記加熱手段の加熱温度とを比較して、得られた差が予め前記回収成分の沸点に基づいて定められる所定値に合致するように、前記加熱手段の加熱温度を調節する温度制御手段とを、備えた減圧蒸留再生装置。
<Appendix 1>
A vacuum distillation tank for distilling the liquid to be treated under reduced pressure, a heating means provided in the vacuum distillation tank for heating the liquid to be treated to the boiling point of the recovered component contained therein, and recovering the recovered component An overflow tank for storing the recovered liquid; a circulation path for sucking the recovered liquid in the overflow tank and returning to the overflow tank; a cooling means for cooling the recovered liquid in the overflow tank; and the circulation path When the collected liquid in the storage tank is passed as working fluid, the atmosphere of the recovered components and the condensed liquid in the vacuum distillation chamber are sucked from the condensing part of the vacuum distillation chamber and used as the working fluid. An ejector that merges and recovers in the working fluid; and when the liquid to be processed is heated to the boiling point by heating by the heating means, and after the heating, the temperature of the liquid to be processed and the temperature of the recovered liquid in the overflow tank The difference obtained is the boiling point of the recovered component in advance. The recovered liquid is cooled by the cooling means so as to meet a predetermined value determined by comparing the temperature of the liquid to be treated and the heating temperature of the heating means, and the difference obtained is determined in advance. A vacuum distillation regenerator comprising temperature control means for adjusting the heating temperature of the heating means so as to match a predetermined value determined based on the boiling point of the component.

<付記2>
付記2において、前記所定値が、前記作動流体中に前記回収成分を回収して得られる蒸留再生液の再生量及び前記作動流体中に回収される回収成分と他の成分との比率に基づいて定められる減圧蒸留再生装置。
<Appendix 2>
In Supplementary Note 2, the predetermined value is based on the regeneration amount of the distilled regenerated liquid obtained by collecting the recovered component in the working fluid and the ratio of the recovered component recovered in the working fluid and other components. A vacuum distillation regenerator defined.

<付記3>
付記1又は2において、前記加熱手段が熱交換媒体の通流により昇温される加熱コイルから構成され、圧縮機、凝縮機、膨張弁、蒸発器を、順次、熱交換媒体の管路で環状に接続した冷凍サイクルの凝縮器後段の凝縮器として冷凍サイクルに組み込まれ、前記凝縮器のファンの運転/停止の切り替えにより前記加熱コイルへの熱交換媒体の温度を制御するように構成された減圧蒸留再生装置。
<Appendix 3>
In Appendix 1 or 2, the heating means is composed of a heating coil that is heated by the flow of the heat exchange medium, and the compressor, the condenser, the expansion valve, and the evaporator are sequentially looped through the heat exchange medium line. A depressurization unit that is incorporated in the refrigeration cycle as a condenser subsequent to the condenser of the refrigeration cycle connected to the refrigeration cycle, and is configured to control the temperature of the heat exchange medium to the heating coil by switching operation / stop of the fan of the condenser Distillation regenerator.

<付記4>
付記請求項1〜3いずれかにおいて、前記冷却手段が熱交換媒体の通流により冷却される冷却コイルから構成され、圧縮機、凝縮機、膨張弁、蒸発器を、順次、熱交換媒体の管路で環状に接続した冷凍サイクルの高圧側から熱交換媒体を導入してこれを冷凍サイクルの低圧側に排出させる蒸発器として冷凍サイクルに接続され、前記温度制御手段が、前記冷却コイルの熱交換媒体の導入口よりも上流側に設けられた開閉弁の開閉の切り替えにより、前記冷却コイルの温度を調節し前記作動流体の温度を調節するように構成され、前記冷却コイルの導入口と前記開閉弁との間には、断熱膨張のための膨張弁が設けられ減圧蒸留再生装置。
<Appendix 4>
4. The heat exchanger medium according to claim 1, wherein the cooling means includes a cooling coil that is cooled by the flow of the heat exchange medium, and the compressor, the condenser, the expansion valve, and the evaporator are sequentially arranged. It is connected to the refrigeration cycle as an evaporator that introduces a heat exchange medium from the high-pressure side of the refrigeration cycle that is connected in a ring shape and discharges it to the low-pressure side of the refrigeration cycle, and the temperature control means performs heat exchange of the cooling coil The temperature of the cooling coil is adjusted by switching the opening and closing of an on-off valve provided on the upstream side of the medium inlet, and the temperature of the working fluid is adjusted. An expansion valve for adiabatic expansion is provided between the valves and a vacuum distillation regenerator.

<付記5>付記1〜4いずれかにおいて、前記被処理液が汚れる前の液と同じ液であり、減圧蒸留前に、前記溢流槽及び前記循環路に前記回収液が満たされている減圧蒸留再生装置。   <Supplementary Note 5> In any one of Supplementary Notes 1 to 4, the reduced pressure is the same as the liquid before the liquid to be treated is soiled, and the recovered liquid is filled in the overflow tank and the circulation path before distillation under reduced pressure Distillation regenerator.

このように、本発明は、本発明の技術思想を逸脱しない範囲において種々の改変が可能であり、このような発明に本発明が及ぶことは当然である。   As described above, the present invention can be variously modified without departing from the technical idea of the present invention, and the present invention naturally extends to such invention.

本発明の1実施の形態に係る減圧蒸留再生装置の解説図である。It is explanatory drawing of the vacuum distillation reproduction | regeneration apparatus which concerns on 1 embodiment of this invention. 温度制御ユニットの構成を示す解説図である。It is explanatory drawing which shows the structure of a temperature control unit. エゼクタ及びポンプを多段にした場合の一例を示す解説図である。It is explanatory drawing which shows an example at the time of making an ejector and a pump multistage.

符号の説明Explanation of symbols

1 蒸留再生ユニット
2 減圧ユニット
3 回収ユニット
4 冷凍機
5 温度制御ユニット
5a 開閉弁
5b ファン
5f 比較演算部
5g 温度制御部
5h 加熱コイル温度検知センサ
7 蒸留槽
8 冷却槽
12 加熱コイル(加熱手段)
13 冷却コイル(冷却手段)
22 開閉弁
26 溢流槽
27 エゼクタ
28 負圧発生口
29 回収液回収路
30 流体ポンプ
31 循環路
32 溢流槽側冷却コイル
DESCRIPTION OF SYMBOLS 1 Distillation reproduction unit 2 Decompression unit 3 Recovery unit 4 Refrigerator 5 Temperature control unit 5a On-off valve 5b Fan 5f Comparison calculation part 5g Temperature control part 5h Heating coil temperature detection sensor 7 Distillation tank 8 Cooling tank 12 Heating coil (heating means)
13 Cooling coil (cooling means)
22 Opening / closing valve 26 Overflow tank 27 Ejector 28 Negative pressure generating port 29 Recovery liquid recovery path 30 Fluid pump 31 Circulation path 32 Overflow tank side cooling coil

Claims (6)

被処理液を減圧下で蒸留するための減圧蒸留槽と、
前記減圧蒸留槽に設けられ、前記被処理液をこれに含まれる回収成分の沸点に加熱する加熱手段と、
前記回収成分を回収する回収液を貯溜する溢流槽と、
前記溢流槽の回収液を吸い込んで当該溢流槽に還流する循環路と、
前記溢流槽内の回収液を冷却する冷却手段と、
前記循環路に介設され、前記貯溜槽の回収液が作動流体として通流されたとき、前記減圧蒸留室の凝縮部から前記減圧蒸留室内の回収成分の雰囲気及び凝縮液を吸引してこれを前記作動流体に合流させて作動流体中に回収するエゼクタと、
前記加熱手段の加熱により前記被処理液を前記沸点に加熱する際及び加熱後に、
前記被処理液の温度と前記溢流槽の回収液の温度とを比較して、得られる差が予め前記回収成分の沸点に基づいて定められる所定値に合致するように前記冷却手段により前記回収液を冷却させる温度制御手段とを、
備えたことを特徴とする減圧蒸留再生装置。
A vacuum distillation tank for distilling the liquid to be treated under reduced pressure;
A heating means provided in the vacuum distillation tank for heating the liquid to be treated to the boiling point of the recovered component contained therein;
An overflow tank for storing a recovered liquid for recovering the recovered component;
A circulation path for sucking the recovered liquid of the overflow tank and returning to the overflow tank;
Cooling means for cooling the recovered liquid in the overflow tank;
When the recovered liquid in the storage tank is inserted as a working fluid and is interposed in the circulation path, the atmosphere of the recovered components and the condensate in the vacuum distillation chamber are sucked from the condensing part of the vacuum distillation chamber. An ejector that joins the working fluid and collects it in the working fluid;
During and after heating the liquid to be treated to the boiling point by heating the heating means,
Comparing the temperature of the liquid to be treated with the temperature of the recovery liquid in the overflow tank, the recovery means allows the recovery to be performed by the cooling means so that the obtained difference matches a predetermined value determined in advance based on the boiling point of the recovery component. Temperature control means for cooling the liquid,
A reduced-pressure distillation regenerator characterized by comprising:
被処理液を減圧下で蒸留するための減圧蒸留槽と、
前記減圧蒸留槽に設けられ、前記被処理液をこれに含まれる回収成分の沸点に加熱する加熱手段と、
前記回収成分を回収する回収液を貯溜する溢流槽と、
前記溢流槽の回収液を吸い込んで当該溢流槽に還流する循環路と、
前記溢流槽内の回収液を冷却する冷却手段と、
前記循環路に介設され、前記貯溜槽の回収液が作動流体として通流されたとき、前記減圧蒸留室の凝縮部から前記減圧蒸留室内の回収成分の雰囲気及び凝縮液を吸引してこれを前記作動流体に合流させて作動流体中に回収するエゼクタと、
前記加熱手段の加熱により前記被処理液を前記沸点に加熱する際及び加熱後に、
前記被処理液の温度と前記加熱手段の加熱温度とを比較して、得られた差が予め前記回収成分の沸点に基づいて定められる所定値に合致するように、前記加熱手段の加熱温度を調節する温度制御手段とを、
備えたことを特徴とする減圧蒸留再生装置。
A vacuum distillation tank for distilling the liquid to be treated under reduced pressure;
A heating means provided in the vacuum distillation tank for heating the liquid to be treated to the boiling point of the recovered component contained therein;
An overflow tank for storing a recovered liquid for recovering the recovered component;
A circulation path for sucking the recovered liquid of the overflow tank and returning to the overflow tank;
Cooling means for cooling the recovered liquid in the overflow tank;
When the recovered liquid in the storage tank is inserted as a working fluid and is interposed in the circulation path, the atmosphere of the recovered components and the condensate in the vacuum distillation chamber are sucked from the condensing part of the vacuum distillation chamber. An ejector that joins the working fluid and collects it in the working fluid;
During and after heating the liquid to be treated to the boiling point by heating the heating means,
Comparing the temperature of the liquid to be treated with the heating temperature of the heating means, the heating temperature of the heating means is adjusted so that the obtained difference matches a predetermined value determined in advance based on the boiling point of the recovered component. A temperature control means to adjust,
A reduced-pressure distillation regenerator characterized by comprising:
前記所定値が、前記作動流体中に前記回収成分を回収して得られる蒸留再生液の再生量及び前記作動流体中に回収される回収成分と他の成分との比率に基づいて定められる請求項1又は2記載の減圧蒸留再生装置。   The predetermined value is determined based on a regeneration amount of a distillation regenerated liquid obtained by recovering the recovered component in the working fluid and a ratio between the recovered component recovered in the working fluid and other components. The vacuum distillation regenerator according to 1 or 2. 前記加熱手段が熱交換媒体の通流により昇温される加熱コイルから構成され、圧縮機、凝縮機、膨張弁、蒸発器を、順次、熱交換媒体の管路で環状に接続した冷凍サイクルの凝縮器後段の凝縮器として冷凍サイクルに組み込まれ、前記凝縮器のファンの運転/停止の切り替えにより前記加熱コイルへの熱交換媒体の温度を制御するように構成された請求項1〜3いずれかに記載の減圧蒸留再生装置。   The heating means is composed of a heating coil that is heated by the flow of the heat exchange medium, and a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner through a heat exchange medium line. Any one of claims 1 to 3, wherein the condenser is incorporated in a refrigeration cycle as a condenser subsequent to the condenser, and is configured to control the temperature of the heat exchange medium to the heating coil by switching the operation / stop of the fan of the condenser. A vacuum distillation regenerator described in 1. 前記冷却手段が熱交換媒体の通流により冷却される冷却コイルから構成され、
圧縮機、凝縮機、膨張弁、蒸発器を、順次、熱交換媒体の管路で環状に接続した冷凍サイクルの高圧側から熱交換媒体を導入してこれを冷凍サイクルの低圧側に排出させる蒸発器として冷凍サイクルに接続され、
前記温度制御手段が、前記冷却コイルの熱交換媒体の導入口よりも上流側に設けられた開閉弁の開閉の切り替えにより、前記冷却コイルの温度を調節し前記作動流体の温度を調節するように構成され、
前記冷却コイルの導入口と前記開閉弁との間には、断熱膨張のための膨張弁が設けられ
た請求項1〜4いずれかに記載の減圧蒸留再生装置。
The cooling means is composed of a cooling coil cooled by the flow of a heat exchange medium;
Evaporation in which a heat exchange medium is introduced from the high-pressure side of the refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner through a heat exchange medium pipe, and then discharged to the low-pressure side of the refrigeration cycle. Connected to the refrigeration cycle as
The temperature control means adjusts the temperature of the cooling fluid by adjusting the opening and closing of an on-off valve provided upstream of the heat exchange medium inlet of the cooling coil, thereby adjusting the temperature of the working fluid. Configured,
The vacuum distillation regenerator according to any one of claims 1 to 4, wherein an expansion valve for adiabatic expansion is provided between the inlet of the cooling coil and the on-off valve.
前記被処理液が汚れる前の液と同じ液であり、減圧蒸留前に、前記溢流槽及び前記循環路に前記回収液が満たされている請求項1〜5いずれかに記載の減圧蒸留再生装置。   The vacuum distillation regeneration according to any one of claims 1 to 5, wherein the liquid to be treated is the same as the liquid before the contamination, and the recovery liquid is filled in the overflow tank and the circulation path before vacuum distillation. apparatus.
JP2007019039A 2007-01-30 2007-01-30 Vacuum distillation regenerating apparatus Ceased JP2008183512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019039A JP2008183512A (en) 2007-01-30 2007-01-30 Vacuum distillation regenerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019039A JP2008183512A (en) 2007-01-30 2007-01-30 Vacuum distillation regenerating apparatus

Publications (1)

Publication Number Publication Date
JP2008183512A true JP2008183512A (en) 2008-08-14

Family

ID=39726892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019039A Ceased JP2008183512A (en) 2007-01-30 2007-01-30 Vacuum distillation regenerating apparatus

Country Status (1)

Country Link
JP (1) JP2008183512A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525676A (en) * 2009-04-30 2012-10-22 エルジー・ケム・リミテッド Cooling system for battery system and method for cooling battery system
CN102895789A (en) * 2012-09-25 2013-01-30 无锡恒谊化工机械有限公司 Wiped film distiller
JP2015003307A (en) * 2013-06-21 2015-01-08 アクトファイブ株式会社 Cleaning liquid regeneration method and device
KR101690292B1 (en) * 2016-07-25 2016-12-28 동문이엔티(주) Distilled water manufacturing equipment using vapor pressure reducing
JP2017039060A (en) * 2015-08-17 2017-02-23 アクトファイブ株式会社 Vacuum distillation equipment
TWI666046B (en) * 2018-08-24 2019-07-21 復盛股份有限公司 Distillation system
CN114381352A (en) * 2022-01-18 2022-04-22 江苏今世缘酒业股份有限公司 Solid fermented grain variable-pressure distillation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541272A (en) * 1977-05-30 1979-01-08 Stevens Christopher Improvement of drug collecting apparatus
JPS57132504A (en) * 1980-12-29 1982-08-16 Allied Chem Energy efficiency device and method of evaporating and condensing liquid
JPH07136402A (en) * 1993-08-30 1995-05-30 Tousei Denki Kk Distillation under decreased pressure and apparatus therefor
JP2000033232A (en) * 1998-07-17 2000-02-02 Otsuka Giken Kogyo Kk Solvent recovery apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541272A (en) * 1977-05-30 1979-01-08 Stevens Christopher Improvement of drug collecting apparatus
JPS57132504A (en) * 1980-12-29 1982-08-16 Allied Chem Energy efficiency device and method of evaporating and condensing liquid
JPH07136402A (en) * 1993-08-30 1995-05-30 Tousei Denki Kk Distillation under decreased pressure and apparatus therefor
JP2000033232A (en) * 1998-07-17 2000-02-02 Otsuka Giken Kogyo Kk Solvent recovery apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525676A (en) * 2009-04-30 2012-10-22 エルジー・ケム・リミテッド Cooling system for battery system and method for cooling battery system
CN102895789A (en) * 2012-09-25 2013-01-30 无锡恒谊化工机械有限公司 Wiped film distiller
JP2015003307A (en) * 2013-06-21 2015-01-08 アクトファイブ株式会社 Cleaning liquid regeneration method and device
JP2017039060A (en) * 2015-08-17 2017-02-23 アクトファイブ株式会社 Vacuum distillation equipment
KR101690292B1 (en) * 2016-07-25 2016-12-28 동문이엔티(주) Distilled water manufacturing equipment using vapor pressure reducing
TWI666046B (en) * 2018-08-24 2019-07-21 復盛股份有限公司 Distillation system
CN110857227A (en) * 2018-08-24 2020-03-03 复盛股份有限公司 Distillation system
CN110857227B (en) * 2018-08-24 2022-04-26 复盛股份有限公司 Distillation system
CN114381352A (en) * 2022-01-18 2022-04-22 江苏今世缘酒业股份有限公司 Solid fermented grain variable-pressure distillation system

Similar Documents

Publication Publication Date Title
JP2008183512A (en) Vacuum distillation regenerating apparatus
US5630913A (en) Water distillation system
US9945596B2 (en) Heat pump apparatus
JP5589834B2 (en) Distillation process for starting materials and apparatus for carrying out this process
KR100854089B1 (en) A vacuum vaporization recycling apparatus for waste water
JP2010075817A (en) Apparatus and method for evaporating and concentrating aqueous solution
CN207507042U (en) Multiple-effect falling film evaporator
JP5036480B2 (en) Concentration apparatus and concentration method
JP5816134B2 (en) Absorption heat pump and operation method of absorption heat pump
CN104645646A (en) Total heat and latent heat recovery type multi-effect vacuum evaporation and concentration device
JP4240351B2 (en) Evaporation concentration device
JP2017161105A (en) Heat pump type steam generator
JP2014163522A (en) Absorption heat pump, and operational method for absorption heat pump
CN216403893U (en) Heat pump system and evaporation treatment system
JP6844256B2 (en) Steam generation system
JP2010046571A (en) Method and device for concentrating aqueous solution by evaporation
JP2013228188A (en) Superheated steam generator
JP2019090580A (en) Dehydration and concentration system
JP6931543B2 (en) Waste heat utilization system, alcohol distillation equipment and waste heat utilization method
JP6595855B2 (en) Distillation equipment with distillation tower
JP2006255503A (en) Heating/cooling apparatus
JP4683773B2 (en) Method for evaporating and concentrating effervescent liquid
CN220283681U (en) Low-temperature evaporation full-quantization processing device
JP2016128727A (en) Steam generation system
JP2006214698A (en) Extraction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A977 Report on retrieval

Effective date: 20110131

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110411

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20120105

Free format text: JAPANESE INTERMEDIATE CODE: A01

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20120529