JP2008177099A - Dye-sensitized solar cell, and manufacturing method of dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell, and manufacturing method of dye-sensitized solar cell Download PDF

Info

Publication number
JP2008177099A
JP2008177099A JP2007010669A JP2007010669A JP2008177099A JP 2008177099 A JP2008177099 A JP 2008177099A JP 2007010669 A JP2007010669 A JP 2007010669A JP 2007010669 A JP2007010669 A JP 2007010669A JP 2008177099 A JP2008177099 A JP 2008177099A
Authority
JP
Japan
Prior art keywords
zinc oxide
dye
solar cell
sensitized solar
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010669A
Other languages
Japanese (ja)
Other versions
JP5192154B2 (en
Inventor
Toshinori Okamoto
俊紀 岡本
Susumu Ito
晋 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2007010669A priority Critical patent/JP5192154B2/en
Publication of JP2008177099A publication Critical patent/JP2008177099A/en
Application granted granted Critical
Publication of JP5192154B2 publication Critical patent/JP5192154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell having superior photo-electric conversion characteristics and high adhesiveness of a substrate with a zinc oxide porous layer, and to provide a manufacturing method of the dye-sensitized solar cell. <P>SOLUTION: This is the dye-sensitized solar cell having the photo-electric electrode in which a zinc oxide thin film is formed by using a water solution containing zinc salt and a template compound on a transparent conductive layer of a substrate on which the transparent conductive layer is formed by an electrodeposition method, and after the template compound is desorbed and the zinc oxide porous layer is formed, the zinc oxide porous layer is made to carry a dye, and formed into the dye-sensitized solar cell, in which the zinc oxide thin film contains 6.4 to 7.4 wt.% of the template compound. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔質層との密着性の高い色素増感太陽電池及び色素増感太陽電池の製造方法に関する。 The present invention relates to a dye-sensitized solar cell having excellent photoelectric conversion characteristics and high adhesion between a substrate and a zinc oxide porous layer, and a method for producing the dye-sensitized solar cell.

色素増感太陽電池は、身近な材料である金属酸化物半導体多孔膜を利用した太陽電池であり、シリコン太陽電池に比べて、高価な材料やプロセスを必要とせず、安価な太陽電池を実現できるデバイスとして実用化が期待されている。 A dye-sensitized solar cell is a solar cell that uses a metal oxide semiconductor porous film, which is a familiar material, and does not require expensive materials and processes compared to a silicon solar cell, and can realize an inexpensive solar cell. Practical use is expected as a device.

色素増感太陽電池は、通常、透明電極基板に金属酸化物半導体多孔質層を形成し色素を担持させた光電極と、基板に導電層を形成した正電極とを電解質層を介して挟み込んだ構成となっている。
このような色素増感太陽電池の基本原理は、特許文献1に開示されているように、以下の通りである。まず、色素増感太陽電池に光が照射されると、金属酸化物半導体多孔質層表面に吸着された増感色素が光を吸収し、色素分子内の電子が励起され、電子が半導体へ渡される。これにより、光電極側で電子が発生し、この電子が電気回路を通じて、正電極に移動する。そして、正電極に移動した電子は、電解質層を通じて光電極に戻る。このような過程が繰り返されることで、電気エネルギーが生じ、高い光電変換効率が実現されている。
In a dye-sensitized solar cell, a photoelectrode in which a metal oxide semiconductor porous layer is formed on a transparent electrode substrate to carry the dye and a positive electrode in which a conductive layer is formed on the substrate are usually sandwiched through an electrolyte layer. It has a configuration.
The basic principle of such a dye-sensitized solar cell is as follows, as disclosed in Patent Document 1. First, when the dye-sensitized solar cell is irradiated with light, the sensitizing dye adsorbed on the surface of the metal oxide semiconductor porous layer absorbs light, excites electrons in the dye molecule, and passes the electrons to the semiconductor. It is. Thereby, electrons are generated on the photoelectrode side, and the electrons move to the positive electrode through the electric circuit. Then, the electrons that have moved to the positive electrode return to the photoelectrode through the electrolyte layer. By repeating such a process, electric energy is generated and high photoelectric conversion efficiency is realized.

このうち、色素増感太陽電池の光電極の一部である金属酸化物半導体多孔質層を形成する方法としては、液相法や気相法等、多くの方法があるが、従来は金属酸化物半導体微粒子を溶媒に分散させた半導体多孔膜用分散液を基板に塗布した後、乾燥焼成して成膜する方法が一般的であった。 Among these, there are many methods such as a liquid phase method and a gas phase method for forming a metal oxide semiconductor porous layer that is a part of a photoelectrode of a dye-sensitized solar cell. In general, a method for forming a film by applying a dispersion for a semiconductor porous film, in which fine semiconductor particles are dispersed in a solvent, to a substrate, followed by drying and baking.

一方、近年では、電析法を用いて金属酸化物半導体多孔質層を形成することにより、色素増感太陽電池を製造する方法が行われている。電析法は、湿式の成膜法であり、100℃以下の低温での成膜が可能となることから、特に基板としてプラスチックフィルムを使用する場合に有効に用いられる。しかしながら、電析法を用いた場合は、焼成が不要であるという利点を有するものの、得られる金属酸化物半導体多孔質層の表面積が小さくなるため、色素を充分に担持させることができず、色素増感太陽電池の光電変換率を高めるのが難しいという問題があった。
また、特許文献2には、電解液にテンプレート化合物を添加し、電析によって酸化亜鉛薄膜を形成した後、テンプレート化合物をアルカリで脱着することにより、多孔質酸化亜鉛層を形成する方法が開示されている。
しかしながら、このような方法を用いた場合であっても、色素を充分に担持することができず、得られる色素増感太陽電池の光電変換率が低くなったり、基板と多孔質酸化亜鉛層との密着性が低下して、多孔質酸化亜鉛層の剥離が生じたりすることがあった。
特許第2664194号公報 特開2004−6235号公報
On the other hand, in recent years, a method for producing a dye-sensitized solar cell has been performed by forming a metal oxide semiconductor porous layer using an electrodeposition method. The electrodeposition method is a wet film formation method, and can be formed at a low temperature of 100 ° C. or lower, and thus is effectively used particularly when a plastic film is used as a substrate. However, when the electrodeposition method is used, although there is an advantage that firing is unnecessary, the surface area of the obtained metal oxide semiconductor porous layer is small, so that the dye cannot be sufficiently supported, and the dye There was a problem that it was difficult to increase the photoelectric conversion rate of the sensitized solar cell.
Patent Document 2 discloses a method of forming a porous zinc oxide layer by adding a template compound to an electrolytic solution, forming a zinc oxide thin film by electrodeposition, and then desorbing the template compound with an alkali. ing.
However, even when such a method is used, the dye cannot be sufficiently supported, and the resulting dye-sensitized solar cell has a low photoelectric conversion rate, or the substrate and the porous zinc oxide layer In some cases, the adhesion of the porous zinc oxide layer deteriorates and the porous zinc oxide layer peels off.
Japanese Patent No. 2664194 JP 2004-6235 A

本発明は、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔質層との密着性の高い色素増感太陽電池及び色素増感太陽電池の製造方法を提供する。 The present invention provides a dye-sensitized solar cell having excellent photoelectric conversion characteristics and high adhesion between a substrate and a zinc oxide porous layer and a method for producing the dye-sensitized solar cell.

本発明は、透明導電層が形成された基板の前記透明導電層上に、亜鉛塩とテンプレート化合物とを含有する水溶液を用いて電析法により酸化亜鉛薄膜を形成し、前記テンプレート化合物を脱着して酸化亜鉛多孔質層を形成した後、前記酸化亜鉛多孔質層に色素を担持させてなる光電極を有する色素増感太陽電池であって、前記酸化亜鉛薄膜は、前記テンプレート化合物を6.4〜7.4重量%含有する色素増感太陽電池である。 In the present invention, a zinc oxide thin film is formed by electrodeposition using an aqueous solution containing a zinc salt and a template compound on the transparent conductive layer of the substrate on which the transparent conductive layer is formed, and the template compound is desorbed. After forming the zinc oxide porous layer, the dye-sensitized solar cell has a photoelectrode in which a dye is supported on the zinc oxide porous layer, and the zinc oxide thin film contains 6.4 of the template compound. It is a dye-sensitized solar cell containing 7.4% by weight.

本発明者らは鋭意検討した結果、テンプレート化合物を用いた電析法によって酸化亜鉛多孔質層を形成する場合、得られる色素増感太陽電池における光電変換効率や、基板に対する酸化亜鉛多孔質層の密着性と、テンプレート化合物を脱着する前の酸化亜鉛薄膜におけるテンプレート化合物の含有量とが密接に関連していることを見出した。
そして、本発明者らは更に鋭意検討した結果、テンプレート化合物を用いた電析法によって酸化亜鉛多孔質層を形成する際に、酸化亜鉛薄膜のテンプレート化合物含有量を所定の範囲内とすることにより、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔質層との密着性の高い色素増感太陽電池が得られることを見出し、本発明を完成させるに至った。
As a result of intensive studies, the present inventors have determined that when a zinc oxide porous layer is formed by an electrodeposition method using a template compound, the photoelectric conversion efficiency in the resulting dye-sensitized solar cell and the zinc oxide porous layer relative to the substrate It has been found that the adhesion and the content of the template compound in the zinc oxide thin film before desorption of the template compound are closely related.
And, as a result of further intensive studies, the inventors of the present invention have made the template compound content of the zinc oxide thin film within a predetermined range when forming the zinc oxide porous layer by the electrodeposition method using the template compound. The present inventors have found that a dye-sensitized solar cell having excellent photoelectric conversion characteristics and high adhesion between the substrate and the zinc oxide porous layer can be obtained, and the present invention has been completed.

本発明の色素増感太陽電池に用いられる基板としては、入射する光を妨げず、適度な強度を有するものであれば特に限定されず、例えば、ガラス、透明樹脂からなるシート、フィルム等が挙げられる。
上記透明樹脂としては特に限定されず、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスルフォン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、環状ポリオレフィン等の耐熱性を有する透明性樹脂からなるものが挙げられる。
上記基板の厚みの好ましい下限は100μm、好ましい上限は3mmである。厚みを上記範囲内とすることで、適当な剛性と柔軟性をもたせることが可能となる。
The substrate used in the dye-sensitized solar cell of the present invention is not particularly limited as long as it does not interfere with incident light and has an appropriate strength, and examples thereof include glass, a sheet made of a transparent resin, a film, and the like. It is done.
The transparent resin is not particularly limited, and examples thereof include those made of a transparent resin having heat resistance such as polyethylene terephthalate, polyethylene naphthalate, polysulfone, polycarbonate, polyethersulfone, polyarylate, and cyclic polyolefin.
The minimum with the preferable thickness of the said board | substrate is 100 micrometers, and a preferable upper limit is 3 mm. By setting the thickness within the above range, appropriate rigidity and flexibility can be provided.

上記透明導電層としては、例えば、ITO、SnO、ZnO等からなるものが好ましく、なかでも、ITOからなるものが好ましい。 As the transparent conductive layer, e.g., ITO, preferably made of SnO 2, ZnO and the like, among others, made of ITO are preferred.

本発明の色素増感太陽電池は、上記透明導電層が形成された基板の透明導電層上に、亜鉛塩とテンプレート化合物とを含有する水溶液を用い電析法によって酸化亜鉛薄膜を形成し、前記テンプレート化合物を脱着して酸化亜鉛多孔質層を形成した後、前記酸化亜鉛多孔質層に色素を担持させてなる光電極を有する。 In the dye-sensitized solar cell of the present invention, a zinc oxide thin film is formed on the transparent conductive layer of the substrate on which the transparent conductive layer is formed by an electrodeposition method using an aqueous solution containing a zinc salt and a template compound, After the template compound is desorbed to form a zinc oxide porous layer, the photocathode is formed by supporting a dye on the zinc oxide porous layer.

本発明の色素増感太陽電池では、電析法によって、酸化亜鉛薄膜を成膜する。上記電析法は、原料粒子分散液を塗布し、焼結させる方法等のように、高温の焼成工程を行う必要がなく、樹脂フィルムを基板として用いる場合にも好適に使用することができ、また、結晶性の高い酸化亜鉛多孔質層を得ることができる。 In the dye-sensitized solar cell of the present invention, a zinc oxide thin film is formed by an electrodeposition method. The electrodeposition method does not require a high-temperature baking step, such as a method of applying a raw material particle dispersion and sintering, and can be suitably used when a resin film is used as a substrate. Moreover, a highly crystalline zinc oxide porous layer can be obtained.

上記電析法によって酸化亜鉛薄膜を形成する方法としては、具体的には例えば、亜鉛塩及びテンプレート化合物を含有する水溶液中に透明電極を形成した基板を浸漬し、作用極に透明電極、対向極に亜鉛を配置し、酸素をバブリングしながら参照電極に対して負の定電圧を印加する3電極法等が挙げられる。 As a method for forming a zinc oxide thin film by the electrodeposition method, specifically, for example, a substrate on which a transparent electrode is formed is immersed in an aqueous solution containing a zinc salt and a template compound, and the transparent electrode and the counter electrode are used as the working electrode. A three-electrode method in which zinc is placed on the electrode and a negative constant voltage is applied to the reference electrode while bubbling oxygen.

上記亜鉛塩としては、電析後に酸化亜鉛薄膜が得られるものであれば特に限定されず、例えば、ZnCl、ZnBr、ZnI等が挙げられる。
上記亜鉛塩の電析液中の濃度の好ましい下限は1mM/L、好ましい上限は50mM/Lである。1mM/L未満であると、充分な酸化亜鉛薄膜を形成できないことがあり、50mM/Lを超えると、亜鉛に対する酸素の供給が不充分となり亜鉛金属の析出が発生することがある。
The zinc salt is not particularly limited as long as a zinc oxide thin film can be obtained after electrodeposition, and examples thereof include ZnCl 2 , ZnBr 2 , and ZnI 2 .
A preferable lower limit of the concentration of the zinc salt in the electrodeposition solution is 1 mM / L, and a preferable upper limit is 50 mM / L. When the concentration is less than 1 mM / L, a sufficient zinc oxide thin film may not be formed. When the concentration exceeds 50 mM / L, supply of oxygen to zinc is insufficient, and precipitation of zinc metal may occur.

上記テンプレート化合物とは、亜鉛塩とともに電析液中に添加し、電析成膜することによって、酸化亜鉛薄膜の内部表面に吸着され、かつ、所定の脱着手段によって脱着可能な化合物のことをいう。上記テンプレート化合物は、上述の性質を有し、亜鉛塩の水溶液等の電析液に溶解しやすいものであれば特に限定されないが、電気化学的に還元性を有する芳香族化合物のようなπ電子を有する有機化合物が好適である。特に、有機色素であるキサンテン系色素が好適であり、具体的には例えば、エオシンY、エリスロシンY、フロキシンB、ローズベンガル、ローダミンB等が挙げられる。 The template compound refers to a compound that is adsorbed on the inner surface of the zinc oxide thin film by being added to the electrodeposition solution together with the zinc salt and deposited, and can be desorbed by a predetermined desorption means. . The template compound is not particularly limited as long as it has the above-mentioned properties and can be easily dissolved in an electrodeposition solution such as an aqueous solution of zinc salt, but π-electrons such as an aromatic compound having electrochemical reduction properties. Organic compounds having are preferred. Particularly preferred are xanthene dyes which are organic dyes, and specific examples include eosin Y, erythrosine Y, phloxine B, rose bengal, rhodamine B and the like.

上記テンプレート化合物の電析液中の濃度の好ましい下限は150μM/L、好ましい上限は450μM/Lである。150μM/L未満であると、酸化亜鉛薄膜中のテンプレート化合物含有量が小さくなるため、形成される酸化亜鉛多孔質層の空孔率が低下し、色素の担持量が低下したり、電解液が浸透しにくくなったりすることから、得られる色素増感太陽電池の光電変換効率が低下することがある。450μM/Lを超えると、形成される酸化亜鉛多孔質層の空孔率が高くなるものの、透明電極と酸化亜鉛多孔質層との接触面積が非常に小さくなり、透明電極と酸化亜鉛多孔質層との密着性が低下することがある。より好ましい下限は180μM/L、より好ましい上限は400μM/Lである。
なお、後述のように空孔率の異なる複数の層からなる酸化亜鉛多孔質層を形成する場合は、透明電極と酸化亜鉛多孔質層との密着性が向上することから、上記テンプレート化合物の電析液中の濃度を500μM/L程度としても、充分な密着性を有する色素増感太陽電池が得られる。
The preferable lower limit of the concentration of the template compound in the electrodeposition solution is 150 μM / L, and the preferable upper limit is 450 μM / L. If it is less than 150 μM / L, the content of the template compound in the zinc oxide thin film is reduced, so that the porosity of the formed zinc oxide porous layer is reduced, the amount of dye supported is reduced, and the electrolyte solution is reduced. Since it becomes difficult to permeate, the photoelectric conversion efficiency of the resulting dye-sensitized solar cell may decrease. If it exceeds 450 μM / L, the porosity of the formed zinc oxide porous layer increases, but the contact area between the transparent electrode and the zinc oxide porous layer becomes very small, and the transparent electrode and the zinc oxide porous layer Adhesiveness may be reduced. A more preferable lower limit is 180 μM / L, and a more preferable upper limit is 400 μM / L.
In addition, when forming a zinc oxide porous layer composed of a plurality of layers having different porosity as described later, the adhesion between the transparent electrode and the zinc oxide porous layer is improved. Even when the concentration in the depositing solution is about 500 μM / L, a dye-sensitized solar cell having sufficient adhesion can be obtained.

本発明では、上記電析法によって形成される酸化亜鉛薄膜におけるテンプレート化合物の含有量の下限が6.4重量%、上限が7.4重量%である。
上記酸化亜鉛薄膜のテンプレート化合物含有量を上記範囲内とすることで、本発明の色素増感太陽電池は、優れた光電変換特性と、基板及び酸化亜鉛多孔質層の密着性とを両立したものとなる。なお、上記酸化亜鉛薄膜のテンプレート化合物含有量は、例えば、酸化亜鉛薄膜より採取した所定量の試料の400℃までの重量減少率を測定することにより求めることができる。
In this invention, the minimum of content of the template compound in the zinc oxide thin film formed by the said electrodeposition method is 6.4 weight%, and an upper limit is 7.4 weight%.
By setting the template compound content of the zinc oxide thin film within the above range, the dye-sensitized solar cell of the present invention has both excellent photoelectric conversion characteristics and adhesion between the substrate and the zinc oxide porous layer. It becomes. In addition, the template compound content of the said zinc oxide thin film can be calculated | required by measuring the weight decreasing rate to 400 degreeC of the predetermined amount sample extract | collected from the zinc oxide thin film, for example.

上記酸化亜鉛薄膜のテンプレート化合物含有量が6.4重量%未満であると、形成される酸化亜鉛多孔質層の空孔率が低下して、色素の担持量が低下したり、電解液が浸透しにくくなったりすることから、得られる色素増感太陽電池の光電変換特性が大幅に低下する。7.4重量%を超えると、透明導電層と形成される酸化亜鉛多孔質層との接触面積が非常に小さくなり、透明導電層と酸化亜鉛多孔質層との密着性が大幅に低下する。従って、得られる色素増感太陽電池において、酸化亜鉛多孔質層の剥離が発生しやすくなる。 When the template compound content of the zinc oxide thin film is less than 6.4% by weight, the porosity of the formed zinc oxide porous layer is lowered, the amount of the dye supported is lowered, or the electrolytic solution is permeated. The photoelectric conversion characteristics of the resulting dye-sensitized solar cell are greatly reduced. When it exceeds 7.4% by weight, the contact area between the transparent conductive layer and the formed zinc oxide porous layer becomes very small, and the adhesion between the transparent conductive layer and the zinc oxide porous layer is greatly reduced. Therefore, in the obtained dye-sensitized solar cell, peeling of the zinc oxide porous layer is likely to occur.

図1は、本発明において、酸化亜鉛薄膜を形成した後、色素を担持するまでを示す模式図である。本発明では、まず、透明導電層2が形成された基板1の透明導電層2上に、亜鉛粒子3とテンプレート化合物4とからなる酸化亜鉛薄膜6を形成する(図1a)。次いで、アルカリ等を用いてテンプレート化合物4を脱着させることにより、酸化亜鉛多孔質層7を形成する(図1b)。更に、得られた酸化亜鉛多孔質層7に色素5を担持させることにより、色素増感太陽電池用の光電極とすることができる(図1c)。
図1に示すように、本発明では酸化亜鉛薄膜6に含まれるテンプレート化合物4の含有量を6.4〜7.4重量%とすることで、テンプレート化合物4を脱着した後の酸化亜鉛多孔質層7は充分な空孔率を有することから、得られる色素増感太陽電池は光電変換特性に優れ、更に、基板と酸化亜鉛多孔質膜との密着性が高くなることから、酸化亜鉛多孔質層7の剥離等を生じにくくすることができる。
FIG. 1 is a schematic view showing the process from the formation of a zinc oxide thin film to the loading of a dye in the present invention. In the present invention, first, a zinc oxide thin film 6 composed of zinc particles 3 and a template compound 4 is formed on the transparent conductive layer 2 of the substrate 1 on which the transparent conductive layer 2 is formed (FIG. 1a). Next, the zinc oxide porous layer 7 is formed by desorbing the template compound 4 using alkali or the like (FIG. 1b). Furthermore, by making the obtained zinc oxide porous layer 7 carry | support the pigment | dye 5, it can be set as the photoelectrode for a dye-sensitized solar cell (FIG. 1c).
As shown in FIG. 1, in the present invention, the content of the template compound 4 contained in the zinc oxide thin film 6 is set to 6.4 to 7.4% by weight, so that the porous zinc oxide after the template compound 4 is desorbed is obtained. Since the layer 7 has a sufficient porosity, the obtained dye-sensitized solar cell is excellent in photoelectric conversion characteristics, and further, the adhesion between the substrate and the zinc oxide porous film is increased. The peeling of the layer 7 can be made difficult to occur.

一方、図2は、従来の方法を用いた場合、即ち、酸化亜鉛薄膜6に含まれるテンプレート化合物4の含有量が6.4重量%未満の場合であるが、図2aのように酸化亜鉛薄膜6に含まれるテンプレート化合物4の含有量が少なすぎると、図2bに示すように空孔率の非常に低い酸化亜鉛多孔質膜7が得られる。この場合、図2cに示すように、色素5の担持量が非常に小さくなり、得られる色素増感太陽電池の光電変換特性が大幅に低下する。
なお、図示はしていないが、本発明において規定するテンプレート化合物含有量を超える場合、即ち、酸化亜鉛薄膜6に含まれるテンプレート化合物4の含有量が7.4重量%を超える場合は、空孔率の非常に高い酸化亜鉛多孔質膜7が得られるものの、透明導電層2と酸化亜鉛多孔質層7との接触面積が非常に小さくなり、透明導電層2と酸化亜鉛多孔質層7との密着性が大幅に低下する。従って、得られる色素増感太陽電池において、酸化亜鉛多孔質層7の剥離が発生しやすくなる。
On the other hand, FIG. 2 shows the case where the conventional method is used, that is, the case where the content of the template compound 4 contained in the zinc oxide thin film 6 is less than 6.4% by weight. If the content of the template compound 4 contained in 6 is too small, a zinc oxide porous film 7 having a very low porosity can be obtained as shown in FIG. 2b. In this case, as shown in FIG. 2c, the amount of the dye 5 supported becomes very small, and the photoelectric conversion characteristics of the obtained dye-sensitized solar cell are greatly deteriorated.
Although not shown, when the template compound content specified in the present invention is exceeded, that is, when the content of the template compound 4 contained in the zinc oxide thin film 6 exceeds 7.4% by weight, Although the zinc oxide porous film 7 having a very high rate is obtained, the contact area between the transparent conductive layer 2 and the zinc oxide porous layer 7 becomes very small, and the transparent conductive layer 2 and the zinc oxide porous layer 7 Adhesion is greatly reduced. Therefore, in the obtained dye-sensitized solar cell, peeling of the zinc oxide porous layer 7 is likely to occur.

上記亜鉛塩とテンプレート化合物とを含有する水溶液には、上記亜鉛塩及びテンプレート化合物に加えて、凝集防止等を目的として、界面活性剤等の適当な添加剤を配合してもよい。 In the aqueous solution containing the zinc salt and the template compound, an appropriate additive such as a surfactant may be blended in addition to the zinc salt and the template compound for the purpose of preventing aggregation.

本発明では、上記酸化亜鉛薄膜を形成した後、上記テンプレート化合物を脱着させることにより酸化亜鉛多孔質層を形成する。 In the present invention, after the zinc oxide thin film is formed, the template compound is desorbed to form the zinc oxide porous layer.

上記テンプレート化合物を脱着する方法としては特に限定されず、使用するテンプレート化合物によって種々の方法を用いることができる。具体的には例えば、テンプレート化合物がカルボキシル基、スルホン酸基又はリン酸基等のアンカー基を有する化合物である場合、水酸化ナトリウム、水酸化カリウム等のアルカリ溶液を用いて洗浄することによってテンプレート化合物の脱着を行うことができる。
上記アルカリ溶液を用いてテンプレート化合物の脱着を行う場合、上記アルカリ溶液のpHの好ましい下限は10、好ましい上限は13である。
The method for desorbing the template compound is not particularly limited, and various methods can be used depending on the template compound to be used. Specifically, for example, when the template compound is a compound having an anchor group such as a carboxyl group, a sulfonic acid group or a phosphoric acid group, the template compound is washed by using an alkaline solution such as sodium hydroxide or potassium hydroxide. Can be desorbed.
When the template compound is desorbed using the alkaline solution, the preferred lower limit of the pH of the alkaline solution is 10, and the preferred upper limit is 13.

上記酸化亜鉛多孔質層の膜厚の好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、色素担持量が少なくなるとともに、得られる色素増感太陽電池の光電変換特性も低下することがあり、20μmを超えても、酸化亜鉛多孔質層中の電子の拡散長が限られているために光電変換特性向上に寄与せず、逆に電解質液の酸化亜鉛多孔質層への浸入が困難になることから光電変換特性が低下することがある。 The preferable lower limit of the thickness of the zinc oxide porous layer is 1 μm, and the preferable upper limit is 20 μm. When the thickness is less than 1 μm, the amount of the dye supported decreases, and the photoelectric conversion characteristics of the resulting dye-sensitized solar cell may be deteriorated. Even when the thickness exceeds 20 μm, the diffusion length of electrons in the zinc oxide porous layer is small. Since it is limited, it does not contribute to the improvement of the photoelectric conversion characteristics, and conversely, it becomes difficult for the electrolyte solution to enter the zinc oxide porous layer, so that the photoelectric conversion characteristics may be deteriorated.

本発明の色素増感太陽電池では、空孔率の異なる複数の層からなる酸化亜鉛多孔質層を形成することが好ましい。例えば、基板と反対側に空孔率の高い上層を形成し、基板側に空孔率の低い下層を形成する場合、上層では高い空孔率によって、より多くの色素を担持させることができ、下層は色素の担持量は少なくなるものの、透明電極との接触面積が大きくなることから、優れた光電変換特性と、基板及び酸化亜鉛多孔質層の密着性との両立を更に好適に行うことができる。 In the dye-sensitized solar cell of the present invention, it is preferable to form a zinc oxide porous layer composed of a plurality of layers having different porosity. For example, when an upper layer with a high porosity is formed on the side opposite to the substrate and a lower layer with a low porosity is formed on the substrate side, more pigment can be carried by the upper layer due to the high porosity. Although the lower layer has a smaller amount of dye supported, the contact area with the transparent electrode is increased, so that it is possible to more suitably achieve both excellent photoelectric conversion characteristics and adhesion between the substrate and the zinc oxide porous layer. it can.

上記空孔率の異なる複数の層からなる酸化亜鉛多孔質層を形成する方法としては特に限定されないが、例えば、まず、基板の透明導電層上に、テンプレート化合物の濃度の低い電析液を用いて電析を行うことにより、テンプレート化合物の含有量の少ない酸化亜鉛薄膜を形成した後、更にその上に、テンプレート化合物の濃度の高い電析液を用いて電析を行うことにより、テンプレート化合物の含有量の多い酸化亜鉛薄膜を形成し、その後テンプレート化合物を脱着する方法等が挙げられる。 The method of forming the zinc oxide porous layer composed of a plurality of layers having different porosity is not particularly limited. For example, first, an electrodeposition solution having a low template compound concentration is used on the transparent conductive layer of the substrate. After forming a zinc oxide thin film with a low content of the template compound by electrodeposition, the template compound is further deposited on the zinc oxide thin film with a high concentration of the template compound. Examples include a method of forming a zinc oxide thin film having a high content and then desorbing the template compound.

図3は、空孔率の異なる複数の層からなる酸化亜鉛多孔質層を形成する場合における酸化亜鉛薄膜を形成した後、色素を担持するまでを示す模式図である。
上述した複数の層からなる酸化亜鉛多孔質層を形成する方法に従って、電析を行った場合、透明導電層2が形成された基板1の透明導電層2上に、酸化亜鉛粒子3とテンプレート化合物4とからなり、テンプレート化合物4の含有量が比較的少ない酸化亜鉛薄膜6a、及び、テンプレート化合物4の含有量が比較的多い酸化亜鉛薄膜6bの2層が形成される(図3a)。次いで、アルカリ等を用いてテンプレート化合物4を脱着させることにより、空孔率の低い酸化亜鉛多孔質層7aと空孔率の高い酸化亜鉛多孔質層7bが形成される(図3b)。更に、得られた酸化亜鉛多孔質層7a、7bに色素5を担持させることにより、色素増感太陽電池用の光電極とすることができる(図3c)。図3cに示すように、この方法では、酸化亜鉛多孔質層7bに多量の色素を担持できるとともに、透明導電層2と酸化亜鉛多孔質層7aとの密着性は充分に確保される。従って、空孔率の異なる複数の層からなる酸化亜鉛多孔質層を形成することで、優れた光電変換特性と、基板及び酸化亜鉛多孔質層の密着性との両立を更に確実に行うことができる。
FIG. 3 is a schematic view showing the process from the formation of a zinc oxide thin film in the case of forming a zinc oxide porous layer having a plurality of layers having different porosities until the dye is supported.
When electrodeposition is performed according to the method for forming a zinc oxide porous layer composed of a plurality of layers as described above, zinc oxide particles 3 and a template compound are formed on the transparent conductive layer 2 of the substrate 1 on which the transparent conductive layer 2 is formed. 4, a zinc oxide thin film 6a having a relatively low content of the template compound 4 and a zinc oxide thin film 6b having a relatively high content of the template compound 4 are formed (FIG. 3a). Next, by desorbing the template compound 4 using alkali or the like, the zinc oxide porous layer 7a having a low porosity and the zinc oxide porous layer 7b having a high porosity are formed (FIG. 3b). Furthermore, it can be set as the photoelectrode for dye-sensitized solar cells by carrying | supporting the pigment | dye 5 on the obtained zinc oxide porous layer 7a, 7b (FIG. 3c). As shown in FIG. 3c, in this method, a large amount of dye can be supported on the zinc oxide porous layer 7b, and the adhesion between the transparent conductive layer 2 and the zinc oxide porous layer 7a is sufficiently ensured. Therefore, by forming a zinc oxide porous layer composed of a plurality of layers having different porosity, it is possible to more reliably achieve both excellent photoelectric conversion characteristics and adhesion between the substrate and the zinc oxide porous layer. it can.

このようにして得られた酸化亜鉛多孔質層に色素を担持させることにより、光照射によって起電力を発生させる色素増感太陽電池用の光電極として用いることができる。 The zinc oxide porous layer thus obtained can be used as a photoelectrode for a dye-sensitized solar cell that generates an electromotive force by light irradiation by supporting the dye.

本発明の色素増感太陽電池に用いる色素としては、光エネルギーにより生じた電子を酸化亜鉛多孔質層に送る機能を有するものであれば特に限定されないが、上記酸化亜鉛多孔質層と強固に吸着させるための官能基を有するものが好ましい。上記官能基としては例えば、カルボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基等が挙げられる。
具体的には、ルテニウム金属錯体系色素や各種の有機色素を使用することができ、例えば、エオシンY、フルオレセイン、エリスロシンB、フロキシンB、ローズベンガル、ローダミンB、フルオレクソン、マーキュロクロム、ジブロモフルオレセイン、ピロガロールレッド等のキサンテン系色素;クマリン343等のクマリン系色素;ブロモフェノールブルー、ブロモチモールブルー、フェノールフタレイン等のトリフェニルメタン系色素;シアニン系色素、メロシアニン系色素、インジゴ系色素、オキソノール系色素、ポルフィリン系色素、フタロシアニン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、スクアリリウム系色素、ペリレンテトラカルボン酸誘導体;Ru、Os等のポリピリジン錯体;アントシアニン、クチナシ色素、ウコン色素、ベニバナ色素、カロテノイド色素、コチニール色素、パプリカ色素等の天然色素等が挙げられる。
The dye used in the dye-sensitized solar cell of the present invention is not particularly limited as long as it has a function of sending electrons generated by light energy to the zinc oxide porous layer, but strongly adsorbs with the zinc oxide porous layer. What has the functional group for making it do is preferable. Examples of the functional group include a carboxylic acid group, a carboxylic anhydride group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group.
Specifically, ruthenium metal complex dyes and various organic dyes can be used. For example, eosin Y, fluorescein, erythrosine B, phloxine B, rose bengal, rhodamine B, fluorexone, mercurochrome, dibromofluorescein, pyrogallol Xanthene dyes such as red; coumarin dyes such as coumarin 343; triphenylmethane dyes such as bromophenol blue, bromothymol blue, and phenolphthalein; cyanine dyes, merocyanine dyes, indigo dyes, oxonol dyes, Porphyrin dyes, phthalocyanine dyes, azo dyes, quinone dyes, quinone imine dyes, squarylium dyes, perylene tetracarboxylic acid derivatives; polypyridine complexes such as Ru and Os; anthocyanins, cutina Dyes, turmeric pigment, safflower pigment, carotenoid pigments, cochineal dyes, natural pigments, and the like, such as paprika pigment.

上記色素を担持させる方法としては、例えば、上記色素を含有する溶液に、上記酸化亜鉛多孔質層が形成された樹脂フィルム基板を浸漬した後、乾燥を行う方法等が挙げられる。
上記色素を含有する溶液に用いる溶媒としては、色素を溶解することができ、基板を劣化させないものであれば特に限定されず、例えば、エタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル等のエーテル類、アセトニトリル等が挙げられる。
Examples of the method for supporting the dye include a method in which the resin film substrate on which the zinc oxide porous layer is formed is immersed in a solution containing the dye and then dried.
The solvent used in the solution containing the dye is not particularly limited as long as it can dissolve the dye and does not deteriorate the substrate. For example, alcohols such as ethanol, ketones such as acetone, diethyl ether, and the like Ethers, acetonitrile and the like.

上記方法で得られた光電極と、電解質層と、対向電極とをこの順で積層することにより、色素増感太陽電池を製造することができる。具体的には例えば、電解質を含有する溶液を光電極上に塗工し、電解質層を形成した後、対向電極を積層する方法や、光電極と電解質溶液注入口を有する対向電極とを積層した後、上記電解質溶液注入口から電解質溶液を注入する方法等により製造することができる。 A dye-sensitized solar cell can be manufactured by laminating the photoelectrode obtained by the above method, the electrolyte layer, and the counter electrode in this order. Specifically, for example, after a solution containing an electrolyte is applied on the photoelectrode to form an electrolyte layer, a method of laminating the counter electrode, or after laminating the photoelectrode and the counter electrode having an electrolyte solution inlet Further, it can be manufactured by a method of injecting an electrolyte solution from the electrolyte solution inlet.

上記電解質層は、電解質溶液からなるものであってもよく、電解質溶液をゲル化剤によって半固体化したものであってもよい。また、上記電解質層としては、電子、ホール、イオン等を輸送できる物質であれば特に限定されず、例えば、CuI、CuSCN、NiO、CuO、KI等のp型半導体固体ホール輸送材料、ヨウ素/ヨウ化物、臭素/臭化物等の酸化還元電解質を有機溶媒に溶解した溶液を用いることができる。
上記有機溶媒としては、例えば、ニトリル系のアセトニトリル、メトキシプロピオニトリルや炭化水素系のプロピレンカルボナート、ジエチルカルボナート、γ―ブチロラクタンやポリエチレングリコール等の多価アルコールが挙げられる。
これらの中では、嵩高く、酸化亜鉛多孔質層に吸着させた色素が脱着しにくいことから、酸化還元電解質を有機溶媒に溶解した溶液が好ましい。
The electrolyte layer may be composed of an electrolyte solution, or may be a semi-solidified electrolyte solution with a gelling agent. The electrolyte layer is not particularly limited as long as it is a substance that can transport electrons, holes, ions, and the like. For example, a p-type semiconductor solid hole transport material such as CuI, CuSCN, NiO, Cu 2 O, and KI, iodine A solution in which a redox electrolyte such as / iodide and bromine / bromide is dissolved in an organic solvent can be used.
Examples of the organic solvent include polyhydric alcohols such as nitrile acetonitrile, methoxypropionitrile, hydrocarbon propylene carbonate, diethyl carbonate, γ-butyrolactan, and polyethylene glycol.
Among these, a solution in which a redox electrolyte is dissolved in an organic solvent is preferable because it is bulky and the dye adsorbed on the zinc oxide porous layer is difficult to desorb.

上記対向電極としては特に限定されず、例えば、光電極と同様の基板や透明導電層からなるものを用いることができる。
なお、上記対向電極の基板及び導電層には、光電極に使用する基板や透明導電層と異なり、必ずしも透明性は必要とされず、チタンやタングステン等の耐食性のある金属、カーボン、グラファイト等の炭素材料、PEDOT/PSS等の導電性高分子等を用いることができる。
The counter electrode is not particularly limited, and for example, a substrate made of the same substrate as the photoelectrode or a transparent conductive layer can be used.
Unlike the substrate and transparent conductive layer used for the photoelectrode, the counter electrode substrate and the conductive layer do not necessarily require transparency, such as corrosion-resistant metals such as titanium and tungsten, carbon, graphite, etc. Carbon materials, conductive polymers such as PEDOT / PSS, and the like can be used.

本発明の色素増感太陽電池は、例えば、透明導電層が形成されたフィルム基板の前記透明導電層上に、亜鉛塩とテンプレート化合物とを含有する水溶液を用いて電析法により成膜することにより酸化亜鉛薄膜を形成する工程1、前記酸化亜鉛薄膜に含まれるテンプレート化合物を脱着することにより、酸化亜鉛多孔質層を形成する工程2、及び、前記酸化亜鉛多孔質層に色素を担持させる工程3を有する色素増感太陽電池の製造方法であって、工程1において、前記酸化亜鉛薄膜中の前記テンプレート化合物含有量を6.4〜7.4重量%とする方法によって製造することができる。このような色素増感太陽電池の製造方法もまた、本発明の1つである。 The dye-sensitized solar cell of the present invention is formed by, for example, an electrodeposition method using an aqueous solution containing a zinc salt and a template compound on the transparent conductive layer of the film substrate on which the transparent conductive layer is formed. Step 1 for forming a zinc oxide thin film by: Step 2 for forming a zinc oxide porous layer by desorbing a template compound contained in the zinc oxide thin film; and Step for supporting a dye on the zinc oxide porous layer 3 in which the template compound content in the zinc oxide thin film is 6.4 to 7.4% by weight. Such a method for producing a dye-sensitized solar cell is also one aspect of the present invention.

なお、上記電析法により酸化亜鉛薄膜を形成する方法、テンプレート化合物を脱着する方法、色素を担持する方法については、上述した本発明の色素増感太陽電池の場合と同様であるため、その詳しい説明を省略する。 The method for forming the zinc oxide thin film by the electrodeposition method, the method for desorbing the template compound, and the method for supporting the dye are the same as in the case of the dye-sensitized solar cell of the present invention described above. Description is omitted.

本発明では、テンプレート化合物を用いた電析法によって酸化亜鉛多孔質層を形成する際に、酸化亜鉛薄膜のテンプレート化合物含有量を所定の範囲内とすることにより、適度な空孔率を有する酸化亜鉛多孔質層が得られることから、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔質層との密着性の高い色素増感太陽電池を実現することが可能となる。
また、本発明の色素増感太陽電池の製造方法を用いることにより、基板と酸化亜鉛多孔質層との密着性に優れ、得られる色素増感太陽電池が充分な光電変換特性を有する色素増感太陽電池を好適に製造することができる。
In the present invention, when the zinc oxide porous layer is formed by the electrodeposition method using the template compound, the content of the template compound in the zinc oxide thin film is set within a predetermined range, so that the oxide having an appropriate porosity can be obtained. Since the zinc porous layer is obtained, a dye-sensitized solar cell having excellent photoelectric conversion characteristics and high adhesion between the substrate and the zinc oxide porous layer can be realized.
Further, by using the method for producing a dye-sensitized solar cell of the present invention, the dye-sensitized solar cell having excellent adhesion between the substrate and the zinc oxide porous layer and having a sufficient photoelectric conversion property is obtained. A solar cell can be suitably manufactured.

(実施例1)
(酸化亜鉛薄膜の形成)
PETフィルムにITO膜を成膜した透明電極基板上に10×20mmの矩形パターンのマスキングを施し、回転電極装置による電析法により酸化亜鉛薄膜を成膜した。電析は、上記の透明電極基板を作用極とし、対極を白金線及びZn線として、参照電極(SCE)に飽和カロメル電極を用いる3電極法により行った。
電析の手順としては、まず、透明電極基板をKClの100mM/L水溶液230mLに浸漬し、500rpmで回転させながら、白金対極を用いて予備電解を40分間行い、基板表面を清浄化した。その後、電析浴にZnClを5.0mM/L濃度になるように添加して、Zn対極を用いて5分間電析を行い、酸化亜鉛ボトム層を成膜した。その後、電析浴に、テンプレート化合物であるエオシンY色素を350μM/L濃度になるように添加してエオシンY色素含有酸化亜鉛薄膜を形成した。浴温は70℃で、酸素を流量100sccmで浴中にバブリングし、透明電極基板を電析浴中で500rpmで回転させながら、電位−1.0V(vs.SCE)の定電位で20分間電析を行った。
(Example 1)
(Formation of zinc oxide thin film)
A 10 × 20 mm rectangular pattern was masked on a transparent electrode substrate on which an ITO film was formed on a PET film, and a zinc oxide thin film was formed by electrodeposition using a rotating electrode device. Electrodeposition was performed by the three-electrode method using the transparent electrode substrate as a working electrode, the counter electrode as a platinum wire and a Zn wire, and a saturated calomel electrode as a reference electrode (SCE).
As a procedure for electrodeposition, first, the transparent electrode substrate was immersed in 230 mL of a 100 mM / L aqueous solution of KCl, and while rotating at 500 rpm, preliminary electrolysis was performed for 40 minutes using a platinum counter electrode to clean the substrate surface. Thereafter, ZnCl 2 was added to the electrodeposition bath to a concentration of 5.0 mM / L, and electrodeposition was performed using a Zn counter electrode for 5 minutes to form a zinc oxide bottom layer. Thereafter, eosin Y dye as a template compound was added to the electrodeposition bath so as to have a concentration of 350 μM / L to form an eosin Y dye-containing zinc oxide thin film. The bath temperature was 70 ° C., oxygen was bubbled into the bath at a flow rate of 100 sccm, and the transparent electrode substrate was rotated at 500 rpm in the electrodeposition bath for 20 minutes at a constant potential of −1.0 V (vs. SCE). Analysis was performed.

(色素増感太陽電池セルの作製)
得られたエオシンY色素含有酸化亜鉛薄膜を0.1MのKOH水溶液に一晩浸漬後、水洗することにより、エオシンY色素を脱着して酸化亜鉛多孔質層を得た。この基板を120℃で60分間乾燥処理した後、有機色素D149(三菱製紙社製)0.5mMとデオキシコール酸1mM/Lとをt−ブタノールとアセトニトリルとの1:1混合溶媒に溶解した色素溶液に1時間浸漬して、色素を担持させた酸化亜鉛多孔膜層を有する光電極を作製した。
(Preparation of dye-sensitized solar cell)
The obtained eosin Y dye-containing zinc oxide thin film was immersed in a 0.1 M KOH aqueous solution overnight and then washed with water to desorb the eosin Y dye to obtain a zinc oxide porous layer. The substrate was dried at 120 ° C. for 60 minutes, and then an organic dye D149 (manufactured by Mitsubishi Paper Industries) 0.5 mM and deoxycholic acid 1 mM / L were dissolved in a 1: 1 mixed solvent of t-butanol and acetonitrile. A photoelectrode having a zinc oxide porous film layer carrying a dye was produced by immersing in a solution for 1 hour.

得られた光電極と、PETフィルムに透明導電膜であるITO膜と白金膜をスパッタ法で積層した対極基板とを重ねて、セル周辺部をアイオノマー樹脂フィルムで熱融着して空セルを作製した。
この空セルに電解質液(ヨウ素0.1M/L、テトラプロピルアンモニウムヨージド1.0M/L、溶媒:プロピレンカルボナート)を注入し、UV硬化樹脂で注入口を封止して、色素増感太陽電池セルを作製した。
The obtained photoelectrode and a counter electrode substrate obtained by laminating an ITO film, which is a transparent conductive film, and a platinum film on a PET film, are stacked by sputtering, and the cell periphery is thermally fused with an ionomer resin film to produce an empty cell. did.
An electrolyte solution (iodine 0.1 M / L, tetrapropylammonium iodide 1.0 M / L, solvent: propylene carbonate) is injected into the empty cell, and the injection port is sealed with a UV curable resin, thereby sensitizing the dye. A solar battery cell was produced.

(実施例2)
実施例1の(酸化亜鉛薄膜の形成)において、酸化亜鉛ボトム層を成膜した後、電析浴にテンプレート化合物であるエオシンY色素を180μM/L濃度になるように添加し、エオシンY色素含有酸化亜鉛薄膜を形成した以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Example 2)
In Example 1 (Formation of zinc oxide thin film), after forming a zinc oxide bottom layer, eosin Y dye as a template compound was added to the electrodeposition bath to a concentration of 180 μM / L, and eosin Y dye contained A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that the zinc oxide thin film was formed.

(実施例3)
実施例1の(酸化亜鉛薄膜の形成)において、酸化亜鉛ボトム層を成膜した後、電析浴にテンプレート化合物であるエオシンY色素を400μM/L濃度になるように添加し、エオシンY色素含有酸化亜鉛薄膜を形成した以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Example 3)
In Example 1 (Formation of zinc oxide thin film), after forming a zinc oxide bottom layer, eosin Y dye as a template compound was added to the electrodeposition bath to a concentration of 400 μM / L, and eosin Y dye contained A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that the zinc oxide thin film was formed.

(実施例4)
実施例1の(酸化亜鉛薄膜の形成)において、酸化亜鉛ボトム層を成膜した後、電析浴に、テンプレート化合物であるエオシンY色素を35μM/L濃度になるように添加して1分間電析を行うことによりエオシンY色素含有酸化亜鉛薄膜を形成し、更にその上に、電析浴にエオシンY色素を350μM/L濃度になるように添加し、19分間電析を行うことによりエオシンY色素含有酸化亜鉛薄膜を形成した以外は実施例1と同様にして色素増感太陽電池セルを得た。
Example 4
In Example 1 (Formation of zinc oxide thin film), after forming a zinc oxide bottom layer, eosin Y dye, which is a template compound, was added to the electrodeposition bath to a concentration of 35 μM / L and charged for 1 minute. An eosin Y dye-containing zinc oxide thin film is formed by depositing, and further, eosin Y dye is added to the electrodeposition bath to a concentration of 350 μM / L, and the eosin Y dye is deposited for 19 minutes. A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that the dye-containing zinc oxide thin film was formed.

(実施例5)
実施例1の(酸化亜鉛薄膜の形成)において、酸化亜鉛ボトム層を成膜した後、電析浴にテンプレート化合物であるフロキシンB色素を250μM/L濃度になるように添加し、フロキシンB色素含有酸化亜鉛薄膜を形成した以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Example 5)
In Example 1 (Formation of zinc oxide thin film), after forming a zinc oxide bottom layer, Phloxine B dye as a template compound was added to the electrodeposition bath to a concentration of 250 μM / L to contain Phloxine B dye. A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that the zinc oxide thin film was formed.

(比較例1)
実施例1の(酸化亜鉛薄膜の形成)において、酸化亜鉛ボトム層を成膜した後、電析浴にテンプレート化合物であるエオシンY色素を45μM/L濃度になるように添加し、エオシンY色素含有酸化亜鉛薄膜を形成した以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Comparative Example 1)
In Example 1 (Formation of zinc oxide thin film), after forming a zinc oxide bottom layer, eosin Y dye as a template compound was added to the electrodeposition bath to a concentration of 45 μM / L, and eosin Y dye contained A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that the zinc oxide thin film was formed.

(比較例2)
実施例1の(酸化亜鉛薄膜の形成)において、酸化亜鉛ボトム層を成膜した後、電析浴にテンプレート化合物であるエオシンY色素を450μM/L濃度になるように添加し、エオシンY色素含有酸化亜鉛薄膜を形成した以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Comparative Example 2)
In Example 1 (Formation of zinc oxide thin film), after forming a zinc oxide bottom layer, eosin Y dye, which is a template compound, was added to the electrodeposition bath to a concentration of 450 μM / L to contain eosin Y dye. A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that the zinc oxide thin film was formed.

(比較例3)
実施例1の(酸化亜鉛薄膜の形成)において、酸化亜鉛ボトム層を成膜した後、電析浴にテンプレート化合物であるエオシンY色素を550μM/L濃度になるように添加し、エオシンY色素含有酸化亜鉛薄膜を形成した。次いで、実施例1と同様にして(色素増感太陽電池セルの作製)の操作を行ったが、酸化亜鉛多孔質層に多数のピンホールが生じたため、色素増感太陽電池セルを作製することができなかった。
(Comparative Example 3)
In Example 1 (Formation of zinc oxide thin film), after forming a zinc oxide bottom layer, eosin Y dye as a template compound was added to the electrodeposition bath to a concentration of 550 μM / L, and eosin Y dye contained A zinc oxide thin film was formed. Subsequently, the operation of (preparation of dye-sensitized solar cell) was performed in the same manner as in Example 1. However, since many pinholes were generated in the zinc oxide porous layer, a dye-sensitized solar cell was prepared. I could not.

(比較例4)
実施例1の(酸化亜鉛薄膜の形成)において、酸化亜鉛ボトム層を成膜した後、電析浴にテンプレート化合物であるフロキシンB色素を150μM/L濃度になるように添加し、フロキシンB色素含有酸化亜鉛薄膜を形成した以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Comparative Example 4)
In Example 1 (Formation of zinc oxide thin film), after forming a zinc oxide bottom layer, Phloxin B dye, which is a template compound, was added to the electrodeposition bath to a concentration of 150 μM / L to contain Phloxine B dye. A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that the zinc oxide thin film was formed.

(評価)
以下の手順で評価を行った。結果を表1に示した。
(1)酸化亜鉛薄膜中のテンプレート化合物含有量の測定
実施例及び比較例において得られる酸化亜鉛薄膜を乾燥した後、削り落とした試料について、熱天秤装置を用いて、150℃から400℃までの重量減少量を測定することにより、酸化亜鉛薄膜中に含まれるテンプレート化合物の含有量を測定した。
(Evaluation)
Evaluation was performed according to the following procedure. The results are shown in Table 1.
(1) Measurement of template compound content in zinc oxide thin film After drying the zinc oxide thin film obtained in the examples and comparative examples, the sample scraped off was measured from 150 ° C. to 400 ° C. using a thermobalance device. By measuring the amount of weight loss, the content of the template compound contained in the zinc oxide thin film was measured.

(2)酸化亜鉛多孔質層中の増感色素含有量の測定
実施例及び比較例において得られる酸化亜鉛多孔質層を乾燥した後、削り落とした試料について、上述した(1)と同様の方法で酸化亜鉛多孔質層中に含まれる増感色素の含有量を測定した。
(2) Measurement of sensitizing dye content in zinc oxide porous layer The same method as (1) above for the sample scraped off after drying the zinc oxide porous layer obtained in Examples and Comparative Examples The content of the sensitizing dye contained in the zinc oxide porous layer was measured.

(3)密着性
実施例及び比較例において得られる酸化亜鉛多孔質層に碁盤目状のマス目を入れ、テープ剥離試験後に残った酸化亜鉛多孔質層のマスの割合を計測する碁盤目試験により、酸化亜鉛多孔質層の密着性を評価した。
(3) Adhesiveness According to a cross-cut test in which a grid-like cell is put in the zinc oxide porous layer obtained in the examples and comparative examples, and the proportion of the zinc oxide porous layer remaining after the tape peeling test is measured. The adhesion of the zinc oxide porous layer was evaluated.

(4)空孔率
実施例及び比較例において得られる酸化亜鉛多孔質層を基板ごと乾燥した後、多孔質層の膜厚をレーザー顕微鏡で測定し、削り落とした膜について精密天秤で重量を測定した。これらの測定値を基に酸化亜鉛膜多孔層の空孔率は下記(1)式を用いて算出した。
空孔率(%)=(1−(多孔質層の重量/(多孔質層の体積×比重)))×100 (1)
なお、多孔質層の体積は、面積×膜厚で求めることができる。
(4) Porosity After the zinc oxide porous layer obtained in Examples and Comparative Examples was dried together with the substrate, the thickness of the porous layer was measured with a laser microscope, and the weight of the scraped membrane was measured with a precision balance. did. Based on these measured values, the porosity of the zinc oxide membrane porous layer was calculated using the following formula (1).
Porosity (%) = (1- (weight of porous layer / (volume of porous layer × specific gravity))) × 100 (1)
The volume of the porous layer can be determined by area × film thickness.

(5)光電変換特性
実施例及び比較例で得られた色素増感太陽電池セルについて、光源強度が1SUN(100mW/cm)であるソーラーシミュレータを用い、光電変換効率を測定した。
(5) Photoelectric conversion characteristics About the dye-sensitized solar cell obtained by the Example and the comparative example, the photoelectric conversion efficiency was measured using the solar simulator whose light source intensity | strength is 1 SUN (100 mW / cm < 2 >).

Figure 2008177099
Figure 2008177099

表1に示すように、実施例1〜5で得られた色素増感太陽電池セルは、光電変換効率が高く、密着性に関しても充分なものとなっていた。これに対して、比較例1、4で得られた色素増感太陽電池セルは、光電変換効率が不充分なものとなっていた。また、比較例2で得られた色素増感太陽電池セルは、酸化亜鉛多孔質層と基板との密着性低下に起因する光電変換特性の低下が見られた。 As shown in Table 1, the dye-sensitized solar cells obtained in Examples 1 to 5 had high photoelectric conversion efficiency and sufficient adhesiveness. In contrast, the dye-sensitized solar cells obtained in Comparative Examples 1 and 4 have insufficient photoelectric conversion efficiency. Further, in the dye-sensitized solar cell obtained in Comparative Example 2, a decrease in photoelectric conversion characteristics due to a decrease in adhesion between the zinc oxide porous layer and the substrate was observed.

本発明によれば、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔質層との密着性の高い色素増感太陽電池及び色素増感太陽電池の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, it has the outstanding photoelectric conversion characteristic, and can provide the manufacturing method of a dye-sensitized solar cell with high adhesiveness of a board | substrate and a zinc oxide porous layer, and a dye-sensitized solar cell.

本発明の色素増感太陽電池において、酸化亜鉛薄膜を形成した後、色素を担持するまでを示す模式図である。In the dye-sensitized solar cell of this invention, it is a schematic diagram which shows after carrying | supporting a pigment | dye, after forming a zinc oxide thin film. 従来の色素増感太陽電池において、酸化亜鉛薄膜を形成した後、色素を担持するまでを示す模式図である。In the conventional dye-sensitized solar cell, after forming a zinc oxide thin film, it is a schematic diagram which shows to carrying | supporting a pigment | dye. 本発明において、空孔率の異なる複数の層からなる酸化亜鉛多孔質層を形成する場合に酸化亜鉛薄膜を形成した後、色素を担持するまでを示す模式図である。In this invention, when forming the zinc oxide porous layer which consists of several layers from which the porosity differs, after forming a zinc oxide thin film, it is a schematic diagram which shows to carry | supporting a pigment | dye.

符号の説明Explanation of symbols

1 基板
2 透明電極
3 酸化亜鉛粒子
4 テンプレート化合物
5 色素
6 酸化亜鉛薄膜
7 酸化亜鉛多孔質層
1 Substrate 2 Transparent electrode 3 Zinc oxide particles 4 Template compound 5 Dye 6 Zinc oxide thin film 7 Zinc oxide porous layer

Claims (4)

透明導電層が形成された基板の前記透明導電層上に、亜鉛塩とテンプレート化合物とを含有する水溶液を用いて電析法により酸化亜鉛薄膜を形成し、前記テンプレート化合物を脱着して酸化亜鉛多孔質層を形成した後、前記酸化亜鉛多孔質層に色素を担持させてなる光電極を有する色素増感太陽電池であって、
前記酸化亜鉛薄膜は、前記テンプレート化合物を6.4〜7.4重量%含有する
ことを特徴とする色素増感太陽電池。
On the transparent conductive layer of the substrate on which the transparent conductive layer is formed, a zinc oxide thin film is formed by electrodeposition using an aqueous solution containing a zinc salt and a template compound, and the template compound is desorbed to form a porous zinc oxide A dye-sensitized solar cell having a photoelectrode in which a dye layer is supported on the zinc oxide porous layer after forming a porous layer,
The said zinc oxide thin film contains the said template compound 6.4 to 7.4 weight%, The dye-sensitized solar cell characterized by the above-mentioned.
酸化亜鉛多孔質層は、空孔率の異なる複数の層からなることを特徴とする請求項1記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 1, wherein the zinc oxide porous layer is composed of a plurality of layers having different porosity. テンプレート化合物は、キサンテン系色素であることを特徴とする請求項1又は2記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 1 or 2, wherein the template compound is a xanthene dye. 透明導電層が形成されたフィルム基板の前記透明導電層上に、亜鉛塩とテンプレート化合物とを含有する水溶液を用いて電析法により成膜することにより酸化亜鉛薄膜を形成する工程1、前記酸化亜鉛薄膜に含まれるテンプレート化合物を脱着することにより、酸化亜鉛多孔質層を形成する工程2、及び、前記酸化亜鉛多孔質層に色素を担持させる工程3を有する色素増感太陽電池の製造方法であって、
工程1において、前記酸化亜鉛薄膜中の前記テンプレート化合物含有量を6.4〜7.4重量%とすることを特徴とする色素増感太陽電池の製造方法。
Step 1 of forming a zinc oxide thin film by depositing a film by an electrodeposition method using an aqueous solution containing a zinc salt and a template compound on the transparent conductive layer of the film substrate on which the transparent conductive layer is formed, the oxidation In a method for producing a dye-sensitized solar cell, comprising the step 2 of forming a zinc oxide porous layer by desorbing a template compound contained in the zinc thin film, and the step 3 of supporting the dye on the zinc oxide porous layer There,
In the process 1, the template compound content in the zinc oxide thin film is 6.4 to 7.4% by weight.
JP2007010669A 2007-01-19 2007-01-19 Method for producing dye-sensitized solar cell Expired - Fee Related JP5192154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010669A JP5192154B2 (en) 2007-01-19 2007-01-19 Method for producing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010669A JP5192154B2 (en) 2007-01-19 2007-01-19 Method for producing dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2008177099A true JP2008177099A (en) 2008-07-31
JP5192154B2 JP5192154B2 (en) 2013-05-08

Family

ID=39703960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010669A Expired - Fee Related JP5192154B2 (en) 2007-01-19 2007-01-19 Method for producing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5192154B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037878A (en) * 2007-08-01 2009-02-19 Yamaguchi Prefecture Metal oxide porous film, dye-sensitized solar cell using the same, and method for manufacturing metal oxide porous film
GB2462700A (en) * 2008-07-08 2010-02-24 Honeywell Int Inc Solar cell with a porous insulating layer
JP2010257955A (en) * 2009-03-30 2010-11-11 Tdk Corp Electrode for photoelectric conversion element, manufacturing method for the same, and dye-sensitized solar cell
US8067763B2 (en) 2007-12-19 2011-11-29 Honeywell International Inc. Quantum dot solar cell with conjugated bridge molecule
US8089063B2 (en) 2007-12-19 2012-01-03 Honeywell International Inc. Quantum dot solar cell with electron rich anchor group
US8106388B2 (en) 2007-12-19 2012-01-31 Honeywell International Inc. Quantum dot solar cell with rigid bridge molecule
US8148632B2 (en) 2008-07-15 2012-04-03 Honeywell International Inc. Quantum dot solar cell
CN102509622A (en) * 2011-10-27 2012-06-20 无锡英普林纳米科技有限公司 Micro-structural working electrode of dye sensitized solar cell and preparing method thereof
US8227686B2 (en) 2009-02-04 2012-07-24 Honeywell International Inc. Quantum dot solar cell
US8227687B2 (en) 2009-02-04 2012-07-24 Honeywell International Inc. Quantum dot solar cell
US8283561B2 (en) 2008-05-13 2012-10-09 Honeywell International Inc. Quantum dot solar cell
US8288649B2 (en) 2008-02-26 2012-10-16 Honeywell International Inc. Quantum dot solar cell
US8299355B2 (en) 2008-04-22 2012-10-30 Honeywell International Inc. Quantum dot solar cell
US8372678B2 (en) 2009-12-21 2013-02-12 Honeywell International Inc. Counter electrode for solar cell
US8373063B2 (en) 2008-04-22 2013-02-12 Honeywell International Inc. Quantum dot solar cell
US8426728B2 (en) 2009-06-12 2013-04-23 Honeywell International Inc. Quantum dot solar cells
US8455757B2 (en) 2008-08-20 2013-06-04 Honeywell International Inc. Solar cell with electron inhibiting layer
US8710354B2 (en) 2007-12-19 2014-04-29 Honeywell International Inc. Solar cell with hyperpolarizable absorber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257012A (en) * 2000-03-10 2001-09-21 Fuji Photo Film Co Ltd Photoelectric conversion element and solar battery
JP2002184476A (en) * 2000-12-12 2002-06-28 Sharp Corp Method of manufacturing porous photoelectric conversion semiconductor layer and solar battery
JP2004006235A (en) * 2002-03-29 2004-01-08 Nagoya Industrial Science Research Inst Porous zinc oxide thin film for substrate of pigment sensitized solar battery, zinc oxide/pigment composite thin film for optical electrode material of the solar battery, manufacturing method therefor, and the solar battery of which the optical electrode is used with the thin film
JP2004095387A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Photoelectric transfer element and its manufacturing method
JP2006283048A (en) * 2005-03-31 2006-10-19 Toyoda Gosei Co Ltd Production method of porous compound film with metal oxide pigment
JP2006307315A (en) * 2005-04-01 2006-11-09 Toyoda Gosei Co Ltd Method for producing composite film of oxidized metal/template compound, and method for producing optical electrode material using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257012A (en) * 2000-03-10 2001-09-21 Fuji Photo Film Co Ltd Photoelectric conversion element and solar battery
JP2002184476A (en) * 2000-12-12 2002-06-28 Sharp Corp Method of manufacturing porous photoelectric conversion semiconductor layer and solar battery
JP2004006235A (en) * 2002-03-29 2004-01-08 Nagoya Industrial Science Research Inst Porous zinc oxide thin film for substrate of pigment sensitized solar battery, zinc oxide/pigment composite thin film for optical electrode material of the solar battery, manufacturing method therefor, and the solar battery of which the optical electrode is used with the thin film
JP2004095387A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Photoelectric transfer element and its manufacturing method
JP2006283048A (en) * 2005-03-31 2006-10-19 Toyoda Gosei Co Ltd Production method of porous compound film with metal oxide pigment
JP2006307315A (en) * 2005-04-01 2006-11-09 Toyoda Gosei Co Ltd Method for producing composite film of oxidized metal/template compound, and method for producing optical electrode material using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037878A (en) * 2007-08-01 2009-02-19 Yamaguchi Prefecture Metal oxide porous film, dye-sensitized solar cell using the same, and method for manufacturing metal oxide porous film
US8089063B2 (en) 2007-12-19 2012-01-03 Honeywell International Inc. Quantum dot solar cell with electron rich anchor group
US8710354B2 (en) 2007-12-19 2014-04-29 Honeywell International Inc. Solar cell with hyperpolarizable absorber
US8106388B2 (en) 2007-12-19 2012-01-31 Honeywell International Inc. Quantum dot solar cell with rigid bridge molecule
US8067763B2 (en) 2007-12-19 2011-11-29 Honeywell International Inc. Quantum dot solar cell with conjugated bridge molecule
US8288649B2 (en) 2008-02-26 2012-10-16 Honeywell International Inc. Quantum dot solar cell
US8299355B2 (en) 2008-04-22 2012-10-30 Honeywell International Inc. Quantum dot solar cell
US8373063B2 (en) 2008-04-22 2013-02-12 Honeywell International Inc. Quantum dot solar cell
US8283561B2 (en) 2008-05-13 2012-10-09 Honeywell International Inc. Quantum dot solar cell
GB2462700A (en) * 2008-07-08 2010-02-24 Honeywell Int Inc Solar cell with a porous insulating layer
GB2462700B (en) * 2008-07-08 2010-12-01 Honeywell Int Inc Solar cell with porous insulating layer
US8148632B2 (en) 2008-07-15 2012-04-03 Honeywell International Inc. Quantum dot solar cell
US8455757B2 (en) 2008-08-20 2013-06-04 Honeywell International Inc. Solar cell with electron inhibiting layer
US8227686B2 (en) 2009-02-04 2012-07-24 Honeywell International Inc. Quantum dot solar cell
US8227687B2 (en) 2009-02-04 2012-07-24 Honeywell International Inc. Quantum dot solar cell
JP2010257955A (en) * 2009-03-30 2010-11-11 Tdk Corp Electrode for photoelectric conversion element, manufacturing method for the same, and dye-sensitized solar cell
US8426728B2 (en) 2009-06-12 2013-04-23 Honeywell International Inc. Quantum dot solar cells
US8372678B2 (en) 2009-12-21 2013-02-12 Honeywell International Inc. Counter electrode for solar cell
CN102509622A (en) * 2011-10-27 2012-06-20 无锡英普林纳米科技有限公司 Micro-structural working electrode of dye sensitized solar cell and preparing method thereof

Also Published As

Publication number Publication date
JP5192154B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5192154B2 (en) Method for producing dye-sensitized solar cell
Xiang et al. Aqueous dye-sensitized solar cell electrolytes based on the cobalt (II)/(III) tris (bipyridine) redox couple
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JP5135774B2 (en) Photoelectric conversion element and solar cell
JP2005174934A (en) Dye-sensitive solar cell, and method for manufacturing the same
JP2010218770A (en) Dye-sensitized solar cell and its manufacturing method
JP2008186752A (en) Photoelectric conversion element and solar cell
JP4887664B2 (en) Method for producing porous structure and method for producing photoelectric conversion element
WO2004068627A1 (en) Photoelectric conversion element and process for fabricating the same, electronic apparatus and process for fabricating the same, and semiconductor layer and process for forming the same
JP4982067B2 (en) Method for producing photoelectrode for dye-sensitized solar cell
JP2010118158A (en) Paste composition for photoelectric conversion element, manufacturing method of porous membrane for photoelectric conversion element, and photoelectric conversion element
JP5181550B2 (en) Photoelectric conversion element
JP5189870B2 (en) Electrolytic solution and dye-sensitized solar cell
JP2013118127A (en) Photoelectrode using carbon nano-tube
JP2004127849A (en) Carbon electrode and dye-sensitized solar cell with the same
JP5337423B2 (en) Dye-sensitized solar cell and method for producing dye-sensitized solar cell
JP5075354B2 (en) Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell
Wang et al. Hybridized dye-sensitized solar cells for persistent power generation free of sun illumination
JP2007299671A (en) Dye-sensitized solar cell
JP2004253333A (en) Dye-sensitized solar cell
JP5332114B2 (en) Photoelectric conversion element and solar cell
JP4684572B2 (en) Carbon electrode and manufacturing method thereof, carbon electrode manufacturing material, and dye-sensitized solar cell provided with carbon electrode
JP4455868B2 (en) Dye-sensitized solar cell
JP5189869B2 (en) Electrolytic solution and dye-sensitized solar cell
JP5194286B2 (en) Method for producing photoelectrode for dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees