JP2008166560A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2008166560A
JP2008166560A JP2006355364A JP2006355364A JP2008166560A JP 2008166560 A JP2008166560 A JP 2008166560A JP 2006355364 A JP2006355364 A JP 2006355364A JP 2006355364 A JP2006355364 A JP 2006355364A JP 2008166560 A JP2008166560 A JP 2008166560A
Authority
JP
Japan
Prior art keywords
well
region
diode
conductivity type
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006355364A
Other languages
English (en)
Inventor
Yukinori Nakada
行則 中田
Tatsuki Sueyoshi
辰樹 末吉
Kuniomi Matsumoto
訓臣 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006355364A priority Critical patent/JP2008166560A/ja
Publication of JP2008166560A publication Critical patent/JP2008166560A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】 同一半導体基板上にMOSトランジスタとショットキーバリアダイオードを備えてなる半導体装置であって、その装置規模を従来のものと比較して更に縮小させる。
【解決手段】 半導体基板2上に、第1導電型の第1ウェル3、第1導電型とは異なる第2導電型の第2ウェル4、及び第2導電型の第3ウェル5を備える。第2ウェル4上には、第1MOSトランジスタT1、第1ウェル3上には第2MOSトランジスタT2、第3ウェル5上には、第1ショットキーバリアダイオードD1を備える。各素子の電極には高融点金属シリサイド膜(51〜58)が形成される。
【選択図】 図1

Description

本発明は半導体装置及びその製造方法に関し、特に、同一半導体基板上にMOSトランジスタとショットキーバリアダイオードを備えてなる半導体装置及びその製造方法に関する。
半導体基板上に金属層が設けられ、金属層と半導体層との接触界面にショットキー接合構造が形成されたショットキーバリアダイオードは、少数キャリアを使用しないためPN接合によるダイオードと比較してスイッチング特性が高速であり、又、順方向電圧が低く消費電力が小さいという性質を有している。このため、標準ロジックICや電源回路等に利用されている。
このようなショットキーバリアダイオードをMOSトランジスタと同一の半導体基板上に形成する方法として、従来、MOSトランジスタを形成後、所定の電極形成領域上の層間絶縁膜をエッチングしてコンタクトホールを介して半導体基板面を露出させ、当該露出面に対して高濃度不純物イオン注入をした後、所定のショットキー接合形成領域上の層間絶縁膜をエッチングしてコンタクトホールを介して半導体基板面を露出させ、その後に金属膜を堆積させることで、ショットキー接合形成領域に係る半導体基板面と金属膜との界面にショットキー接合を形成する方法が従来より開示されている(例えば、特許文献1参照)。この場合、仮に半導体基板がN型である場合、ショットキー接合形成領域上の金属膜側をアノード電極とし、電極形成領域上の金属膜をカソード電極とするショットキーバリアダイオードが形成されることとなる。
特許文献1に記載の方法のように、ショットキーバリアダイオードの一方の電極(上記例ではカソード電極)を取り出すための導電領域を形成すべく、高濃度不純物イオンを注入する工程を行う際、ショットキー接合を形成するショットキー接合形成領域上には層間絶縁膜が堆積されているため、当該領域内に高濃度不純物イオンが注入されることがなく、これによってショットキー接合の特性に影響を与えることなくショットキーバリアダイオードを形成することが可能となる。又、同一の基板上にMOSトランジスタとショットキーバリアダイオードが形成されるため、半導体装置の高集積化を図ることができる。
特開平2−125463号公報
しかしながら、特許文献1に記載の方法の場合、コンタクトホールを形成後に、ショットキーバリアダイオードを構成するための不純物イオン注入工程及び金属膜堆積工程を行う構成であるため、ショットキーバリアダイオードの素子特性を設計段階の範囲内に収めるためには、所定の領域内に正しくコンタクトホールを形成する必要がある。このためには、当該領域内にコンタクトホールが正しく形成されるよう、エッチング工程時における誤差等を考慮した十分な大きさの孔径を有するコンタクトホールを形成する必要がある。しかしながら、前記のような孔径のコンタクトホールを形成するためには、素子と素子との間隔についてもある程度の距離を確保する必要があり、このことは、高集積化の時代の流れに反する結果となる。
本発明は、上記の問題点に鑑み、同一半導体基板上にMOSトランジスタとショットキーバリアダイオードを備えてなる半導体装置であって、その装置規模を従来のものと比較して更に縮小させることを目的とする。又、本発明は、このような半導体装置を製造する製造方法を提供することを別の目的とする。
上記目的を達成するための本発明に係る半導体装置の製造方法は、半導体基板上にMOSトランジスタとショットキーバリアダイオードを備えてなる半導体装置の製造方法であって、前記半導体基板上に素子分離絶縁膜で分離された活性領域を形成し、前記半導体基板上の所定領域に低濃度不純物イオンを注入することで、第1導電型の第1ウェル、前記第1導電型とは異なる第2導電型の第2ウェル、及び前記第2導電型の第3ウェルを形成することにより、前記第1ウェルと前記第2ウェル上に夫々MOSトランジスタ形成用の活性領域を形成し、第3ウェル上に素子分離絶縁膜で分離された第1ダイオード電極形成領域及び第2ダイオード電極形成領域の2領域を形成する第1工程と、前記第1工程終了後、前記半導体基板上にゲート絶縁膜を介してゲート電極膜を堆積した後、所定の形状にパターニングすることで、前記第2ウェル上の所定領域に第1MOSトランジスタのゲート電極となる第1ゲート電極を、前記第1ウェル上の所定領域に第2MOSトランジスタのゲート電極となる第2ゲート電極を、夫々形成する第2工程と、前記第2工程終了後、前記第1ウェル、及び前記第2ダイオード電極形成領域に対して、前記第2導電型の高濃度不純物イオンを注入することで、前記第2MOSトランジスタのソース・ドレイン拡散領域となる第2ソース・ドレイン拡散領域、及びダイオード電極用拡散領域を形成し、前記第2ウェルに対して前記第1導電型の高濃度不純物イオンを注入することで、前記第1MOSトランジスタのソース・ドレイン拡散領域となる第1ソース・ドレイン拡散領域を形成する第3工程と、前記第3工程終了後、希ガス系元素、又は、前記半導体基板と同一元素で構成されるイオンを注入することで、少なくとも前記第1ゲート電極、前記第1ソース・ドレイン拡散領域、前記第2ゲート電極、前記第2ソース・ドレイン拡散領域、及び前記ダイオード電極用拡散領域の内の何れか一の領域の表面をアモルファス化する第4工程と、前記第4工程終了後、前記半導体基板の全面に高融点金属膜を堆積することで、前記第1ダイオード電極形成領域と前記高融点金属膜との界面にショットキー接合を形成し、前記ショットキー接合の前記高融点金属膜側を第1ダイオード電極とし、前記ショットキー接合の前記第1ダイオード電極形成領域側と前記ダイオード電極用拡散領域を介して電気的に接続する前記第2ダイオード電極形成領域に接触形成された前記高融点金属膜を第2ダイオード電極とする第1ショットキーバリアダイオードを形成する第5工程と、前記第5工程終了後、アニール処理を施すことで、少なくとも前記第1ゲート電極、前記第1ソース・ドレイン拡散領域、前記第2ゲート電極、前記第2ソース・ドレイン拡散領域、及び前記ダイオード電極用拡散領域の内の何れか一の領域と、前記高融点金属膜との界面をシリサイド化した後、未反応の前記高融点金属膜を除去する第6工程と、を有することを第1の特徴とする。
本発明に係る半導体装置の製造方法の上記第1の特徴によれば、同一基板上に第1MOSトランジスタ、第2MOSトランジスタ、及び第1ショットキーバリアダイオードの各素子を備える半導体装置を製造する際、ソース・ドレイン拡散領域、ダイオード電極用拡散領域、並びに高融点金属シリサイド膜の形成後に層間絶縁膜が形成される構成であり、イオン注入並びに金属膜堆積のためのコンタクトホールを形成する必要がない。従って、従来方法のように、素子特性を設計段階の範囲内に収めるためにエッチング誤差を考慮した十分な孔径のコンタクトホールを形成する必要がないため、素子と素子との間隔を狭めることができる。これにより、集積度を更に高めることができる。
又、拡散領域の界面、或いはゲート電極の界面に高融点金属シリサイド膜が形成されることで、導通時の抵抗が低減される。これによって、拡散領域或いはゲート電極との電気的接続を形成する際の抵抗値の増加を抑制しつつ高集積化を図ることができる。
又、第4工程において、アモルファス化を行うために注入されるイオンが希ガス系元素又は前記半導体基板と同一元素で構成されるイオンであり、P型或いはN型の特性を示さない元素であるため、第1ダイオード電極形成領域に対して当該イオンが注入された場合であっても、第1ダイオード電極形成領域の電気的特性に影響を与えることがない。このため、当該領域にその後形成されるショットキー接合の電気的特性に影響を与えることなく、換言すれば、同一基板上に形成される第1ショットキーバリアダイオードの特性に影響を与えることなく高集積化を図ることが可能となる。
又、本発明に係る半導体装置の製造方法は、上記第1の特徴に加えて、前記第4工程が、前記半導体基板の全面にイオン注入を行う工程であることを第2の特徴とする。
上述したように前記第4工程で注入されるイオンの構成元素は、P型或いはN型の特性を示さない元素であるため、各拡散領域の導電型に対して影響を与えることがない。従って、本発明に係る半導体装置の製造方法の上記第2の特徴のように、基板全面にイオン注入を行った場合であっても、第1ダイオード電極形成領域を含む各拡散領域の導電型に対して影響を与えることなく、即ち、第1ショットキーバリアダイオードの電気的特性に影響を与えることなく拡散領域界面或いはゲート電極界面をアモルファス化することができるため、工程数を削減することができる。
又、本発明に係る半導体装置の製造方法は、上記第1又は第2の特徴に加えて、前記第1工程において、前記第2ウェルと、前記第3ウェルとが電気的に絶縁されていることを第3の特徴とする。
又、本発明に係る半導体装置の製造方法は、上記第1〜第3の何れか一の特徴に加えて、前記第3工程において、更に前記第1ダイオード電極形成領域の端縁部分に対して前記第1導電型の高濃度不純物イオンを注入することで、前記第1ダイオード電極形成領域内にPN接合を形成することを第4の特徴とする。
本発明に係る半導体装置の製造方法の上記第4の特徴によれば、第3ウェルと、当該ウェル3上に形成される高融点金属膜又は高融点金属シリサイド膜との接触領域で形成されるショットキー接合の整流方向と同一方向の整流作用を、当該ショットキー接合形成箇所に隣接形成できる。これにより、ショットキーバリアダイオードの整流作用を補完的に高めることができる。
又、本発明に係る半導体装置は、半導体基板上に、第1導電型の第1ウェル、前記第1導電型とは異なる第2導電型の第2ウェル、及び前記第2導電型の第3ウェルを、各ウェル内の表面近傍領域が素子分離絶縁膜で分離された状態で備えると共に、前記第3ウェル内の表面近傍領域に、素子分離絶縁膜で分離されてなる第1ダイオード電極形成領域及び第2ダイオード電極形成領域の2領域を有し、前記第2ダイオード電極形成領域には前記第2導電型の高濃度不純物イオン注入によりダイオード電極用拡散領域が形成され、前記第2ウェル上の所定領域に下から順に形成される第1ゲート絶縁膜及び第1ゲート電極と、少なくとも前記第1ゲート電極下部領域の近接外側に係る前記第2ウェル内の表面近傍領域に前記第1導電型の高濃度不純物イオン注入により形成される第1ソース・ドレイン拡散領域とを有して構成される第1MOSトランジスタと、前記第1ウェル上の所定領域に下から順に形成される第2ゲート絶縁膜及び第2ゲート電極と、少なくとも前記第1ゲート電極下部領域の近接外側に係る前記第1ウェル内の表面近傍領域に前記第2導電型の高濃度不純物イオン注入により形成される第2ソース・ドレイン拡散領域とを有して構成される第2MOSトランジスタと、前記第1ダイオード電極形成領域の上面に接触するように形成された高融点金属膜又は高融点金属シリサイド膜を第1ダイオード電極とし、前記ダイオード電極用拡散領域の上面に接触するように形成された高融点金属膜又は高融点金属シリサイド膜を第2ダイオード電極とする第1ショットキーバリアダイオードと、を備え、少なくとも前記第1ゲート電極、前記第1ソース・ドレイン拡散領域、前記第2ゲート電極、前記第2ソース・ドレイン拡散領域、及び前記ダイオード電極用拡散領域の内の何れか一の領域の界面に高融点金属シリサイド膜が形成されていることを第1の特徴とする。
本発明に係る半導体装置の上記第1の特徴構成によれば、同一基板上に第1MOSトランジスタ、第2MOSトランジスタ、及び第1ショットキーバリアダイオードの各素子を備えると共に、これらの素子の何れか又は全ての電極上に高融点金属シリサイド膜を備えることで、拡散領域或いはゲート電極における低抵抗化が図られる。従って、拡散領域或いはゲート電極との電気的接続を形成する際の抵抗値の増加を抑制しつつ高集積化を図ることができる。
又、本発明に係る半導体装置は、上記第1の特徴構成に加えて、前記第2ウェルと、前記第3ウェルとが電気的に絶縁されていることを第2の特徴とする。
又、本発明に係る半導体装置は、上記第1又は第2の特徴構成に加えて、前記第1ダイオード電極形成領域の端縁部分において、少なくとも一部の上面が前記高融点金属膜又は前記高融点金属シリサイド膜と接触する前記第1導電型の高濃度拡散領域を有しており、前記第1ダイオード電極形成領域内において、PN接合が構成されることを第3の特徴とする。
本発明に係る半導体装置の上記第3の特徴構成によれば、第3ウェルと、当該第3ウェル上に形成される高融点金属膜又は高融点金属シリサイド膜との接触領域で形成されるショットキー接合の整流方向と同一方向の整流作用を、当該ショットキー接合形成箇所に隣接形成できる。これにより、ショットキーバリアダイオードの整流作用を補完的に高めることができる。
本発明の構成によれば、同一基板上にMOSトランジスタとショットキーバリアダイオードを備える半導体装置の装置規模の縮小化を図ることができる。
以下において、本発明に係る半導体装置(以下、適宜「本発明装置」と称する)、及びその製造方法(以下、適宜「本発明方法」と称する)の実施形態について図1を参照して説明する。
[本発明装置の説明]
図1は、本発明装置の概略構成を示す構造図であり、図1(a)は断面構造図を、図1(b)は平面構造図を、夫々示すものである。図1(a)は、図1(b)上におけるX−X’線上で本発明装置を切断したときの断面構造を示している。尚、図1(b)は、説明の都合上、層間絶縁膜等の一部の構造を省略して図示している。
又、図1は、本発明装置の構造を模式的に図示したものであり、実際の構造の寸法の縮尺と図面の縮尺とは必ずしも一致するものではない。後述する図2〜図12、及び図15の各図についても同様とする。
本発明装置1は、図1(b)に示されるように、半導体基板2上に、第1MOSトランジスタT1、第2MOSトランジスタT2、及び第1ショットキーバリアダイオードD1を備える構成である。
図1(a)に示されるように、本発明装置1は、半導体基板2上に、第1導電型の第1ウェル3、第1導電型とは異なる第2導電型の第2ウェル4、及び第2導電型の第3ウェル5を備える。各ウェルは、素子分離絶縁膜6で分離形成されている。
第2ウェル4上には、第1ゲート絶縁膜7、第1ゲート電極8、及び第1導電型の第1ソース・ドレイン拡散領域32、33を有する第1MOSトランジスタT1が形成される。そして、第1ソース・ドレイン拡散領域32及び33の第1ゲート電極8側の端部には、第1ソース・ドレイン拡散領域32及び33よりは低濃度の拡散領域17及び18が形成されている。尚、以下では、拡散領域17、18、32、及び33を併せて適宜「第1ソース・ドレイン拡散領域DZ1」と総称する。又、第1ゲート電極8の側壁にはサイドウォール絶縁膜21が形成されている。
又、第1ゲート電極8の上部には高融点金属シリサイド膜52が、第1ソース・ドレイン拡散領域DZ1の上部には高融点金属シリサイド膜51及び53が、夫々形成されている。
第1ウェル3上には、第2ゲート絶縁膜9、第2ゲート電極11、及び第2導電型の第2ソース・ドレイン拡散領域23、24を有する第2MOSトランジスタT2が形成される。そして、第2ソース・ドレイン拡散領域23及び24の第2ゲート電極11側の端部には、第2ソース・ドレイン拡散領域23及び24よりは低濃度の拡散領域12及び13が形成されている。尚、以下では、拡散領域12、13、23、及び24を併せて適宜「第2ソース・ドレイン拡散領域DZ2」と総称する。又、第2ゲート電極9の側壁にはサイドウォール絶縁膜22が形成されている。
又、第2ゲート電極11の上部には高融点金属シリサイド膜55が、第2ソース・ドレイン拡散領域DZ2の上部には高融点金属シリサイド膜54及び56が、夫々形成されている。
第3ウェル5上には、第3ウェル5を構成する第2導電型の活性領域上に高融点金属シリサイド膜57を備えてなる第1ダイオード電極と、第2導電型の高濃度拡散領域で構成されるダイオード電極用拡散領域25上に高融点金属シリサイド膜58を備えてなる第2ダイオード電極とを有する第1ショットキーバリアダイオードD1が形成される。高融点金属シリサイド膜57と第3ウェル5の活性領域との界面でショットキー接合SJが形成され、ショットキー接合SJの高融点金属シリサイド膜57側を第1ダイオード電極(アノード電極又はカソード電極)とし、ショットキー接合SJの第3ウェル5側を第1ダイオード電極とは異なる第2ダイオード電極(第1ダイオード電極がアノード電極であればカソード電極)とするショットキーバリアダイオードが構成されている。ここで、第3ウェル5と同じ第2導電型の拡散領域で形成されるダイオード電極用拡散領域25は第3ウェル5と電気的に接続されており、ダイオード電極用拡散領域25上に形成される高融点金属シリサイド膜58はダイオード電極用拡散領域25と電気的に接続されているため、ショットキー接合SJの第3ウェル側5と高融点金属シリサイド膜58とは電気的に接続される。即ち、高融点金属シリサイド膜58は、ショットキーバリアダイオードの第2ダイオード電極を構成する。尚、図1(a)では、ショットキーバリアダイオードの第1ダイオード電極と接続させるためのコンタクトプラグ62が記載されており、このコンタクトプラグ62と電気的に接続される配線層63が層間絶縁膜61上に形成されている。
一般的に、高集積化を図る場合、素子寸法の微細化が行われる結果、拡散領域或いはゲート電極の寸法が短縮化されることで導通時の抵抗が増加するという問題があるが、本発明装置1の構成によれば、同一半導体基板2上に形成される第1MOSトランジスタT1、第2MOSトランジスタT2、及び第1ショットキーバリアダイオードD1の各電極上には、高融点金属シリサイド膜が形成されているため、拡散領域或いはゲート電極における低抵抗化が図られる。従って、拡散領域或いはゲート電極との電気的接続を形成する際の抵抗値の増加を抑制しつつ高集積化を図ることができる。
尚、図1の構成において、第1導電型をP型、第2導電型をN型とした場合には、本発明装置1は、高融点金属シリサイド膜57をアノード電極、高融点金属シリサイド膜58をカソード電極とする第1ショットキーバリアダイオードD1を備えることとなる。
又、図1では、同一基板上に異なる導電型の2つのMOSトランジスタ、及びショットキーバリアダイオードが形成されるものとしたが、同一半導体基板上にMOSトランジスタとショットキーバリアダイオードが構成されていれば良く、基板上に構成されるMOSトランジスタ及びショットキーバリアダイオードの数はこの数に限定されるものではない。従って、例えば半導体基板上には、第2導電型の第2ウェルと第3ウェルとが形成されており(第1導電型の第1ウェルが形成されていない)、第2ウェル上に第1MOSトランジスタが、第3ウェル上に第1ショットキーバリアダイオードが構成されるものとしても良い。
又、図1の構成では、第1ゲート電極8、第2ゲート電極11、第1ソース・ドレイン拡散領域DZ1、第2ソース・ドレイン拡散領域DZ2、ダイオード電極用拡散領域25、及び第3ウェル5の拡散領域で構成される第1ダイオード電極構成領域の夫々の面上に高融点金属シリサイド膜が形成されるものとしたが(高融点金属シリサイド膜51〜58)、必ずしもこれら全ての領域に高融点金属シリサイド膜が形成される必要はなく、何れかの領域に高融点シリサイド膜が形成される構成であっても良い。
[本発明方法の説明]
以下において、上述した本発明装置1を製造する本発明方法について、図2〜図14の各図を参照して説明する。図2〜図12の各図は、本発明装置1を製造する際の一過程における概略断面構造図であり、図13及び図14は、本発明装置1の製造工程を示すフローチャートである(紙面の都合上2図面に分かれている)。又、以下の文中に示される各ステップは、図13及び図14内のフローチャートの一ステップを表すものとする。
まず、図2に示されるように、半導体基板2上に素子分離絶縁膜6を形成し、所定領域に低濃度の不純物イオンを注入することで、第1導電型(以下、「P型」とする)の第1ウェル3、第2導電型(以下、「N型」とする)の第2ウェル4、及び第2導電型(N型)の第3ウェル5を夫々形成する。又、第3ウェル5上には、素子分離絶縁膜6で分離された第1ダイオード電極形成領域5a、及び第2ダイオード電極形成領域5bを夫々形成する(ステップ#1)。
ここで、半導体基板2がP型基板である場合には、第2ウェル領域及び第3ウェル領域に対してN型不純物イオンを注入することで第2ウェル4及び第3ウェル5を夫々形成するものとして良い。この場合、基板面で構成されるP型低濃度領域によって第1ウェル3が構成されることとなる。又、P型不純物イオンを注入することで第1ウェル3を形成し、N型不純物イオンを注入することで第2ウェル4及び第3ウェル5を形成するものとしても良い。
尚、第2ウェル4は、第1MOSトランジスタT1の活性領域を構成し、第1ウェル3は、第2MOSトランジスタT2の活性領域を構成する。又、第3ウェル5の内、第1ダイオード電極形成領域5aには第1ショットキーバリアダイオードD1の第1ダイオード電極が、第2ダイオード電極形成領域5bには第1ショットキーバリアダイオードD1の第2ダイオード電極がその後に構成される。尚、第3ウェル5がN型である場合、第1ダイオード電極がアノード電極、第2ダイオード電極がカソード電極を構成する。
次に、図3に示されるように、半導体基板2の活性領域表面を熱酸化してシリコン酸化膜を堆積した後、非晶質又は多結晶のシリコン膜を堆積し、所定の形状にパターニングすることで、第2ウェル上に第1ゲート絶縁膜7及び第1ゲート電極8を、第1ウェル3上に第2ゲート絶縁膜9及び第2ゲート電極11を夫々形成する(ステップ#2)。
次に、図4に示されるように、第2ウェル4及び第1ダイオード電極形成領域5aを夫々レジスト膜15及び16でマスクした状態で、第2導電型(N型)の中間濃度不純物イオン(後述するステップ#6で注入する高濃度不純物イオンよりは低濃度であるとする)を注入し、第1ウェル3内に、拡散領域12及び13を、第3ウェル5内の第2ダイオード電極形成領域5bに拡散領域14を夫々形成する(ステップ#3)。その後、レジスト膜15及び16を剥離する。
尚、ステップ#3のイオン注入工程においては、レジスト膜16によって第3ウェル5の全体をマスクしても構わない。
次に、図5に示されるように、第1ウェル3及び第3ウェル5をレジスト膜19でマスクした状態で、第1導電型(P型)の中間濃度不純物イオン(後述するステップ7で注入する高濃度不純物イオンよりは低濃度であるとする)を注入し、第2ウェル4内に拡散領域17及び18を形成する(ステップ#4)。その後、レジスト膜19を剥離する。
次に、図6に示されるように、半導体基板2の全面にシリコン酸化膜を例えばCVD法によって堆積後、エッチバックすることで第1ゲート電極8(及び第1ゲート絶縁膜7)の側壁部分、並びに第2ゲート電極11(及び第2ゲート絶縁膜9)の側壁部分にのみシリコン酸化膜を残存させることで、サイドウォール絶縁膜21及びサイドウォール絶縁膜22を形成する(ステップ#5)。
次に、図7に示されるように、第2ウェル4及び第1ダイオード電極形成領域5aを夫々レジスト膜27及び28でマスクした状態で、第2導電型(N型)の高濃度不純物イオン(ステップ#3で注入した中間濃度不純物イオンよりも高濃度であるとする)を注入し、第1ウェル3内に、第2ソース・ドレイン拡散領域23及び24を、第3ウェル5内の第2ダイオード電極形成領域5bにダイオード電極用拡散領域25を夫々形成する(ステップ#6)。当該工程により、第1ウェル3上に第2MOSトランジスタT2が形成される。尚、第1ウェル3内においては、サイドウォール絶縁膜22において一部領域がマスクされた状態となっているため、ソース・ドレイン拡散領域23及び24の第2ゲート電極11側端部に、ステップ#3で注入された中間濃度の拡散領域12及び13が形成され、当該領域にLDD(Lightly Doped Drain)構造が形成される。これにより、ソース・ドレイン拡散領域23及び24と、これらの領域に挟まれたチャネル領域との境界部分の電界を緩和させる効果がある。
次に、レジスト膜27及び28を剥離した後、図8に示されるように、第1ウェル3及び第3ウェル5をレジスト膜31でマスクした状態で、第1導電型(P型)の高濃度不純物イオン(ステップ#4で注入した中間濃度不純物イオンよりも高濃度であるとする)を注入し、第2ウェル4内に、第2ソース・ドレイン拡散領域32及び33を形成する(ステップ#7)。当該工程により、第2ウェル4上に第1MOSトランジスタT1が形成される。尚、第1MOSトランジスタT1においても、第2MOSトランジスタT2と同様、中間濃度の拡散領域17及び18が高濃度のソース・ドレイン拡散領域32及び33の第1ゲート電極8側端部に形成されることで、LDD構造が形成される。
次に、レジスト膜31を剥離した後、希ガス系元素、又は半導体基板2の構成元素と同一の元素で構成されるイオンを注入することで、図9に示されるように露出された活性領域面、並びに第1ゲート電極8及び第2ゲート電極11の表面をアモルファス化し、アモルファス層41〜48を形成する処理を行う(ステップ#8)。このアモルファス化の工程は、後のシリサイド膜形成工程において、抵抗値を低下させるための結晶相の相転移を容易にするために行う。
例えば、ドーズ量を5.0×1014ions/cmとした場合、注入イオン種毎のイオン注入エネルギを、Arイオンの場合で10keV程度、Neイオンの場合で5keV程度、Xeイオンの場合で33keV程度、Rnイオンの場合で56keV程度、Siイオンの場合で7keV程度、Geイオンの場合で18keV程度としてイオン注入を行う。これにより注入飛程(Rp)を12nm程度、注入分布(Rp+3ΔRp)を30nm程度とすることができる。尚、前記注入飛程とは、注入の入射軸に沿った半導体基板表面からの射影飛程を表し、前記注入分布とは、入射軸に垂直な方向のガウス分布の射影飛程に投影飛程の統計的ゆらぎ射影分散の3倍を加算したものを表すものとする。
ステップ#8で注入されるイオンの構成元素は、P型或いはN型の特性を示さない元素であるため、各拡散領域の導電型に対して影響を与えることがない。従って、特に第1ダイオード電極形成領域5a内にイオン注入が行われた場合であっても、当該領域内の導電型に対して影響を与えることがないため、その後の工程で当該領域に形成されるショットキー接合の電気的特性に対して影響を及ぼすことがない。これに対し、例えばP型の特性を示す元素のイオンを注入してアモルファス化を行うとすれば、N型の拡散領域が構成されている第1ウェル3及び第3ウェル5をマスクする必要があり、N型の特性を示す元素のイオンを注入してアモルファス化を行うとすれば、P型の拡散領域が構成されている第2ウェル4をマスクする必要がある。即ち、何れかの導電型の特性を示す元素のイオンを用いてアモルファス化を行う場合には、所定の領域をマスクするためのレジスト膜形成過程並びに当該レジスト膜剥離過程を必要とする上、P型の拡散領域とN型の拡散領域の双方の界面をアモルファス化するためには、注入イオンの構成元素を変更して2回に分けてイオン注入を行う必要がある。従って、ステップ#8のように、何れの導電型の特性も示さない元素で構成されるイオンを注入することで、アモルファス化の工程を大幅に短縮することができる。
次に、図10に示されるように、半導体基板2の全面にTi或いはCo等の高融点金属膜40を堆積する(ステップ#9)。
次に、アニール処理を施して、図11に示されるように、高融点金属膜40と活性領域或いはゲート電極との界面をシリサイド化する(ステップ#10)。これにより、高融点金属シリサイド膜51〜58が高融点金属膜40と活性領域或いはゲート電極との界面に形成される。尚、アニール処理の条件としては、例えば高融点金属膜40がTiである場合には、650℃〜700℃の温度条件下で1分間程度、Coである場合には、450℃〜530℃の温度条件下で1分間程度の熱処理を行うものとして良い。
次に、図12に示されるように、未反応の高融点金属膜40をウェットエッチング処理により除去する(ステップ#11)。その後、再度アニール処理を行うことで高融点シリサイド膜51〜58の相転移処理を行う(ステップ#12)。当該処理により、高融点シリサイド膜51〜58が低抵抗の結晶相に相転移される。特にステップ#8においてアモルファス化が施されているため、ステップ#12のアニール処理によって効率的に高融点シリサイド膜が相転移される。ステップ#12に係るアニール処理の条件としては、高融点金属膜40がTi、Coの何れの種類であっても、例えば650℃〜700℃の温度条件下で30秒程度の熱処理を行うものとして良い。
その後、図1に示されるように、層間絶縁膜61を堆積後、所定のコンタクトプラグ形成領域にコンタクトプラグ62等を形成し、配線層63を形成する。これにより、第1MOSトランジスタT1、第2MOSトランジスタT2、及び第1ショットキーバリアダイオードD1が導通抵抗が低減化された状態で同一半導体基板2上に形成される。
上述した本発明方法によれば、ソース・ドレイン拡散領域、ダイオード電極用拡散領域、並びに高融点金属シリサイド膜の形成後に層間絶縁膜が形成される構成であり、イオン注入並びに金属膜堆積のためのコンタクトホールを形成する必要がない。従って、従来方法のように、素子特性を設計段階の範囲内に収めるためにエッチング誤差を考慮した十分な孔径のコンタクトホールを形成する必要がないため、素子と素子との間隔を狭めることができる。これにより、集積度を更に高めることができる。
尚、上述の実施形態では、第1ウェル3、第2ウェル4、及び第3ウェル5上の全拡散領域の露出面、及び第1ゲート電極8及び第2ゲート電極11の露出面の全てがステップ#7に係る工程でアモルファス化される(アモルファス層41〜48が形成される)ものとしたが、必ずしもこれら全ての露出面がアモルファス化される必要はない。同様に、ステップ#10に係る工程によって、これらの露出面と高融点金属膜40との界面の全領域がシリサイド化される(高融点金属シリサイド膜51〜58が形成される)ものとしたが、必ずしもこれらの全ての界面がシリサイド化される必要はない。但し、導通抵抗を低減させる効果を高めるためには、全界面に高融点金属シリサイド膜が形成されるのが好ましい。
[別実施形態]
以下に、別実施形態について説明を行う。
〈1〉 上述した実施形態において、ステップ#4又はステップ#7の少なくとも何れか一方の第1導電型(P型)不純物イオンの注入工程の際、第3ウェル内の第1ダイオード電極形成領域5aの内の、素子分離絶縁膜6と接する端縁部分についても併せて第1導電型の不純物イオン注入を行うものとしても良い(図15参照)。図15は、ステップ#7において前記端縁部分に対しても併せて第1導電型(P型)不純物イオンを注入する場合の、当該過程に係る本発明装置1の概略断面構造図である。図15に示されるように、図8のレジスト膜31に代えて、レジスト膜31a、31b、31cが形成された状態で第1導電型(P型)不純物イオンを打ち込むことで、第1ソース・ドレイン拡散領域32及び33と共に、第1ダイオード電極形成領域5aの端縁部分に高濃度拡散領域71を形成する。このように構成することで、高濃度拡散領域71と第3ウェル5との間に、後の工程で形成されるショットキー接合の整流方向と同方向のPN接合が形成されるため、整流作用を補完的に高めることができる。
〈2〉 上述した実施形態では、第1導電型をP型とし、第2導電型をN型として説明したが、第1導電型をN型とし、第2導電型をP型としても良い。この場合、本発明装置1は、第3ウェル5上に、第1ダイオード電極をカソード電極とし、第2ダイオード電極をアノード電極とするショットキーバリアダイオードD1を有する構成となる。
本発明装置の概略構成を示す構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程の一過程における概略断面構造図 本発明に係る半導体装置の製造工程を示すフローチャート 本発明に係る半導体装置の製造工程を示すフローチャート 本発明に係る半導体装置の製造工程の一過程における概略断面構造図
符号の説明
1: 本発明に係る半導体装置
2: 半導体基板
3: 第1ウェル
4: 第2ウェル
5: 第3ウェル
5a: 第1ダイオード電極形成領域
5b: 第2ダイオード電極形成領域
6: 素子分離絶縁膜
7: 第1ゲート絶縁膜
8: 第1ゲート電極
9: 第2ゲート絶縁膜
11: 第2ゲート電極
12: 拡散領域
13: 拡散領域
14: 拡散領域
15: レジスト膜
16: レジスト膜
17: 拡散領域
18: 拡散領域
19: レジスト膜
21: サイドウォール絶縁膜
22: サイドウォール絶縁膜
23: 第2ソース・ドレイン拡散領域
24: 第2ソース・ドレイン拡散領域
25: ダイオード電極用拡散領域
27: レジスト膜
28: レジスト膜
32: 第1ソース・ドレイン拡散領域
33: 第1ソース・ドレイン拡散領域
41: アモルファス層
42: アモルファス層
43: アモルファス層
44: アモルファス層
45: アモルファス層
46: アモルファス層
47: アモルファス層
48: アモルファス層
51: 高融点金属シリサイド膜
52: 高融点金属シリサイド膜
53: 高融点金属シリサイド膜
54: 高融点金属シリサイド膜
55: 高融点金属シリサイド膜
56: 高融点金属シリサイド膜
57: 高融点金属シリサイド膜
58: 高融点金属シリサイド膜
61: 層間絶縁膜
62: コンタクトプラグ
63: 配線層
71: 高濃度拡散領域
D1: 第1ショットキーバリアダイオード
DZ1: 第1ソース・ドレイン拡散領域
DZ2: 第2ソース・ドレイン拡散領域
SJ: ショットキー接合
T1: 第1MOSトランジスタ
T2: 第2MOSトランジスタ

Claims (7)

  1. 半導体基板上にMOSトランジスタとショットキーバリアダイオードを備えてなる半導体装置の製造方法であって、
    前記半導体基板上に素子分離絶縁膜で分離された活性領域を形成し、前記半導体基板上の所定領域に低濃度不純物イオンを注入することで、第1導電型の第1ウェル、前記第1導電型とは異なる第2導電型の第2ウェル、及び前記第2導電型の第3ウェルを形成することにより、前記第1ウェルと前記第2ウェル上に夫々MOSトランジスタ形成用の活性領域を形成し、第3ウェル上に素子分離絶縁膜で分離された第1ダイオード電極形成領域及び第2ダイオード電極形成領域の2領域を形成する第1工程と、
    前記第1工程終了後、前記半導体基板上にゲート絶縁膜を介してゲート電極膜を堆積した後、所定の形状にパターニングすることで、前記第2ウェル上の所定領域に第1MOSトランジスタのゲート電極となる第1ゲート電極を、前記第1ウェル上の所定領域に第2MOSトランジスタのゲート電極となる第2ゲート電極を、夫々形成する第2工程と、
    前記第2工程終了後、前記第1ウェル、及び前記第2ダイオード電極形成領域に対して、前記第2導電型の高濃度不純物イオンを注入することで、前記第2MOSトランジスタのソース・ドレイン拡散領域となる第2ソース・ドレイン拡散領域、及びダイオード電極用拡散領域を形成し、前記第2ウェルに対して前記第1導電型の高濃度不純物イオンを注入することで、前記第1MOSトランジスタのソース・ドレイン拡散領域となる第1ソース・ドレイン拡散領域を形成する第3工程と、
    前記第3工程終了後、希ガス系元素、又は、前記半導体基板と同一元素で構成されるイオンを注入することで、少なくとも前記第1ゲート電極、前記第1ソース・ドレイン拡散領域、前記第2ゲート電極、前記第2ソース・ドレイン拡散領域、及び前記ダイオード電極用拡散領域の内の何れか一の領域の表面をアモルファス化する第4工程と、
    前記第4工程終了後、前記半導体基板の全面に高融点金属膜を堆積することで、前記第1ダイオード電極形成領域と前記高融点金属膜との界面にショットキー接合を形成し、前記ショットキー接合の前記高融点金属膜側を第1ダイオード電極とし、前記ショットキー接合の前記第1ダイオード電極形成領域側と前記ダイオード電極用拡散領域を介して電気的に接続する前記第2ダイオード電極形成領域に接触形成された前記高融点金属膜を第2ダイオード電極とする第1ショットキーバリアダイオードを形成する第5工程と、
    前記第5工程終了後、アニール処理を施すことで、少なくとも前記第1ゲート電極、前記第1ソース・ドレイン拡散領域、前記第2ゲート電極、前記第2ソース・ドレイン拡散領域、及び前記ダイオード電極用拡散領域の内の何れか一の領域と、前記高融点金属膜との界面をシリサイド化した後、未反応の前記高融点金属膜を除去する第6工程と、を有することを特徴とする半導体装置の製造方法。
  2. 前記第4工程が、
    前記半導体基板の全面にイオン注入を行う工程であることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記第1工程において、
    前記第2ウェルと、前記第3ウェルとが電気的に絶縁されていることを特徴とする請求項1又は請求項2に記載の半導体装置の製造方法。
  4. 前記第3工程において、
    更に前記第1ダイオード電極形成領域の端縁部分に対して前記第1導電型の高濃度不純物イオンを注入することで、前記第1ダイオード電極形成領域内にPN接合を形成することを特徴とする請求項1〜請求項3の何れか1項に記載の半導体装置の製造方法。
  5. 半導体基板上に、第1導電型の第1ウェル、前記第1導電型とは異なる第2導電型の第2ウェル、及び前記第2導電型の第3ウェルを、各ウェル内の表面近傍領域が素子分離絶縁膜で分離された状態で備えると共に、前記第3ウェル内の表面近傍領域に、素子分離絶縁膜で分離されてなる第1ダイオード電極形成領域及び第2ダイオード電極形成領域の2領域を有し、前記第2ダイオード電極形成領域には前記第2導電型の高濃度不純物イオン注入によりダイオード電極用拡散領域が形成され、
    前記第2ウェル上の所定領域に下から順に形成される第1ゲート絶縁膜及び第1ゲート電極と、少なくとも前記第1ゲート電極下部領域の近接外側に係る前記第2ウェル内の表面近傍領域に前記第1導電型の高濃度不純物イオン注入により形成される第1ソース・ドレイン拡散領域とを有して構成される第1MOSトランジスタと、
    前記第1ウェル上の所定領域に下から順に形成される第2ゲート絶縁膜及び第2ゲート電極と、少なくとも前記第1ゲート電極下部領域の近接外側に係る前記第1ウェル内の表面近傍領域に前記第2導電型の高濃度不純物イオン注入により形成される第2ソース・ドレイン拡散領域とを有して構成される第2MOSトランジスタと、
    前記第1ダイオード電極形成領域の上面に接触するように形成された高融点金属膜又は高融点金属シリサイド膜を第1ダイオード電極とし、前記ダイオード電極用拡散領域の上面に接触するように形成された高融点金属膜又は高融点金属シリサイド膜を第2ダイオード電極とする第1ショットキーバリアダイオードと、を備え、
    少なくとも前記第1ゲート電極、前記第1ソース・ドレイン拡散領域、前記第2ゲート電極、前記第2ソース・ドレイン拡散領域、及び前記ダイオード電極用拡散領域の内の何れか一の領域の界面に高融点金属シリサイド膜が形成されていることを特徴とする半導体装置。
  6. 前記第2ウェルと、前記第3ウェルとが電気的に絶縁されていることを特徴とする請求項5に記載の半導体装置。
  7. 前記第1ダイオード電極形成領域の端縁部分において、少なくとも一部の上面が前記高融点金属膜又は前記高融点金属シリサイド膜と接触する前記第1導電型の高濃度拡散領域を有しており、
    前記第1ダイオード電極形成領域内において、PN接合が構成されることを特徴とする請求項5又は請求項6に記載の半導体装置。
JP2006355364A 2006-12-28 2006-12-28 半導体装置及びその製造方法 Pending JP2008166560A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355364A JP2008166560A (ja) 2006-12-28 2006-12-28 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355364A JP2008166560A (ja) 2006-12-28 2006-12-28 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2008166560A true JP2008166560A (ja) 2008-07-17

Family

ID=39695623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355364A Pending JP2008166560A (ja) 2006-12-28 2006-12-28 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2008166560A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325884A1 (en) * 2009-11-23 2011-05-25 Nxp B.V. Schottky diode and method of manufacture
JP2013153170A (ja) * 2013-02-12 2013-08-08 Renesas Electronics Corp 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163373A (ja) * 1997-12-01 1999-06-18 Mitsubishi Electric Corp ショットキーバリアダイオードを有する半導体装置およびその製造方法
JPH11330271A (ja) * 1998-05-15 1999-11-30 Nec Corp 半導体装置の製造方法
JP2001168352A (ja) * 1999-12-08 2001-06-22 Hitachi Ltd 半導体装置およびその製造方法
JP2002231971A (ja) * 2001-02-02 2002-08-16 Sharp Corp 半導体集積回路装置、その製造方法、icモジュール、icカード

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163373A (ja) * 1997-12-01 1999-06-18 Mitsubishi Electric Corp ショットキーバリアダイオードを有する半導体装置およびその製造方法
JPH11330271A (ja) * 1998-05-15 1999-11-30 Nec Corp 半導体装置の製造方法
JP2001168352A (ja) * 1999-12-08 2001-06-22 Hitachi Ltd 半導体装置およびその製造方法
JP2002231971A (ja) * 2001-02-02 2002-08-16 Sharp Corp 半導体集積回路装置、その製造方法、icモジュール、icカード

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325884A1 (en) * 2009-11-23 2011-05-25 Nxp B.V. Schottky diode and method of manufacture
WO2011061696A1 (en) * 2009-11-23 2011-05-26 Nxp B.V. Schottky diode and method of manufacture
US8709885B2 (en) 2009-11-23 2014-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. Schottky diode and method of manufacture
JP2013153170A (ja) * 2013-02-12 2013-08-08 Renesas Electronics Corp 半導体装置

Similar Documents

Publication Publication Date Title
JP5079687B2 (ja) Soiデバイスの製造方法
CN102117774B (zh) 集成电路元件的形成方法
US6642132B2 (en) Cmos of semiconductor device and method for manufacturing the same
CN104241389B (zh) 薄膜晶体管和有源矩阵有机发光二极管组件及制造方法
TWI257649B (en) Semiconductor device and manufacturing method of the same
JP5544367B2 (ja) トランジスタにおいて進歩したシリサイド形成と組み合わされる凹型のドレイン及びソース区域
TWI588902B (zh) 形成包含矽化及非矽化電路元件之半導體結構的方法
KR20130010427A (ko) 단일 게이트 비휘발성 메모리 장치의 구조 및 방법
US7964457B2 (en) Semiconductor integrated circuit device and a manufacturing method for the same
JP2006165435A (ja) 半導体装置及びその製造方法
US8012821B2 (en) Semiconductor embedded resistor generation
CN111370306B (zh) 晶体管的制作方法及全包围栅极器件结构
US8063439B2 (en) Semiconductor device and fabrication method thereof
TW574746B (en) Method for manufacturing MOSFET with recessed channel
KR100576464B1 (ko) 반도체소자의 도전배선 형성방법
CN109119473B (zh) 一种晶体管及其制作方法
JP2008166560A (ja) 半導体装置及びその製造方法
TWI682502B (zh) 半導體裝置之形成方法
JP2008085082A (ja) パワーmosfet及び同パワーmosfetを有する半導体装置及び同パワーmosfetの製造方法
JP2005322730A (ja) 半導体装置及びその製造方法
US20110309424A1 (en) Structure of memory device and process for fabricting the same
JP5499780B2 (ja) 半導体装置及びその製造方法
JP2005191327A (ja) 横型mosトランジスタの製造方法
JP2005123216A (ja) 半導体装置及びその製造方法
JP2001358336A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321