JP2008164305A - Electrochemical sensor, target gas monitor device, and concentration detection method of electrochemical sensor - Google Patents

Electrochemical sensor, target gas monitor device, and concentration detection method of electrochemical sensor Download PDF

Info

Publication number
JP2008164305A
JP2008164305A JP2006350707A JP2006350707A JP2008164305A JP 2008164305 A JP2008164305 A JP 2008164305A JP 2006350707 A JP2006350707 A JP 2006350707A JP 2006350707 A JP2006350707 A JP 2006350707A JP 2008164305 A JP2008164305 A JP 2008164305A
Authority
JP
Japan
Prior art keywords
electrochemical sensor
conductor film
proton conductor
generated
target gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006350707A
Other languages
Japanese (ja)
Inventor
Masato Kondo
正登 近藤
Kazu Mochizuki
計 望月
Kaoru Ogino
薫 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2006350707A priority Critical patent/JP2008164305A/en
Publication of JP2008164305A publication Critical patent/JP2008164305A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To use an electrochemical sensor, even in a narrow space that repeats a temperature change, from the normal temperature to a high temperature. <P>SOLUTION: This electrochemical sensor 1, which has a proton conductor film 13 and is provided in an exhaust cylinder for discharging the combustion exhaust gas produced by the combustion of a combustion device, has a supply part for supplying steam in the exhaust cylinder to the proton conductor film 13 and generates a current corresponding to the concentration of the target gas in the exhaust cylinder in between a detection electrode 13a and a counter electrode 13b due to the oxidation reaction of a target gas in the proton conductive film 13 for utilizing the moisture of the steam produced at the detection electrode 13a of the proton conductive film 13 and supplied from a supply part and the reduction reaction of the proton produced at the counter electrode 13b of the proton conductive film 13 by oxidation reaction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、一酸化炭素等の対象ガスの濃度を検出する電気化学式センサ、対象ガス監視装置、及び、電気化学式センサの濃度検出方法に関するものである。   The present invention relates to an electrochemical sensor that detects the concentration of a target gas such as carbon monoxide, a target gas monitoring device, and a concentration detection method for the electrochemical sensor.

燃焼機器の不完全燃焼等による一酸化炭素(CO)ガスの発生を監視する燃焼機器用監視装置やCOガスを検出し警報するCO警報器は、従来から電気化学式COセンサを内蔵したものが知られている。   Conventional monitoring devices for combustion equipment that monitor the generation of carbon monoxide (CO) gas due to incomplete combustion of combustion equipment and CO alarms that detect and alarm CO gas have built-in electrochemical CO sensors. It has been.

図6に断面図で示すように、従来の電気化学式COセンサ101は、内部に水105が収容された金属製の容器102の上部開口104にプロトン導電体膜103を設置して、その対極132を容器102内に露出させると共に、反対側の検知極131にガス吸着フィルタ107cを内蔵した金属製のキャップ108を重ねて容器102の上部開口104にかしめ固定して構成されている。   As shown in a cross-sectional view in FIG. 6, the conventional electrochemical CO sensor 101 has a proton conductor film 103 installed in an upper opening 104 of a metal container 102 containing water 105 therein, and a counter electrode 132 thereof. Is exposed to the inside of the container 102, and a metal cap 108 containing a gas adsorption filter 107 c is overlapped on the opposite detection electrode 131 and is caulked and fixed to the upper opening 104 of the container 102.

上述した構成の電気化学式COセンサ101では、周辺雰囲気中のCOが、キャップ108の導入孔108aから内部に導入されて、活性炭やシリカゲル、ゼオライト等からなるガス吸着フィルタ107cや導出孔108b、そして、キャップ108とプロトン導電体膜103との間に介設した拡散防止板107の拡散制御孔107aを通過して検知極131に到達し、ここで、対極132側からプロトン導電体膜103に供給される容器102内の水105の水分を利用した酸化反応を起こして、検知極131にプロトン(2H+)と電子(2e-)を発生させる。 In the electrochemical CO sensor 101 configured as described above, CO in the ambient atmosphere is introduced into the inside through the introduction hole 108a of the cap 108, the gas adsorption filter 107c made of activated carbon, silica gel, zeolite, or the like, the outlet hole 108b, and It passes through the diffusion control hole 107a of the diffusion preventing plate 107 interposed between the cap 108 and the proton conductor film 103 and reaches the detection electrode 131, where it is supplied to the proton conductor film 103 from the counter electrode 132 side. Oxidation reaction using the water in the water 105 in the container 102 is caused to generate protons (2H + ) and electrons (2e ) at the detection electrode 131.

検知極131に発生した電子(2e-)はプロトン導電体膜103の内部を通過できないので検知極131に滞留し、一方、プロトン(2H+)は、プロトン導電体膜103の内部を通過して対極132に移動し、ここで、容器2内の酸素と還元反応を起こして、対極132に水(H2O)を生成する。 The electrons (2e ) generated in the detection electrode 131 cannot pass through the proton conductor film 103 and thus stay in the detection electrode 131, while the proton (2H + ) passes through the proton conductor film 103. It moves to the counter electrode 132, where it causes a reduction reaction with oxygen in the container 2 to generate water (H 2 O) at the counter electrode 132.

したがって、検知極131と対極132との間に負荷(図示せず)を接続すると、検知極131に滞留した電子(2e-)の対極132に向かう流れが負荷に生じ、これにより対極132から負荷を経て検知極131に向かう短絡電流の流れが生じるので、この負荷に流れる短絡電流を電流−電圧変換することで、周辺雰囲気中のCO濃度に応じた電圧値のCO濃度信号が得られる(例えば特許文献1,2)。 Therefore, when a load (not shown) is connected between the detection electrode 131 and the counter electrode 132, a flow of electrons (2e ) staying in the detection electrode 131 toward the counter electrode 132 is generated in the load, thereby causing the load from the counter electrode 132 to load. Since a short-circuit current flows toward the detection electrode 131 through the current, a current-voltage conversion is performed on the short-circuit current flowing through the load to obtain a CO concentration signal having a voltage value corresponding to the CO concentration in the ambient atmosphere (for example, Patent Documents 1 and 2).

このような検出原理の構成による電気化学式COセンサ101は、それ自身では、CO濃度信号の元となる、周辺雰囲気中のCO濃度に応じた大きさの短絡電流を発生させるために、外部からの電力供給を必要としないことから、電池によって長期間駆動する必要のあるCO警報器での利用に適している。
特開2004−170101号公報 特開2004−279293号公報
The electrochemical CO sensor 101 having such a detection principle configuration itself generates a short-circuit current having a magnitude corresponding to the CO concentration in the ambient atmosphere, which is a source of the CO concentration signal. Since it does not require power supply, it is suitable for use in a CO alarm device that needs to be driven by a battery for a long period of time.
JP 2004-170101 A JP 2004-279293 A

しかしながら、上述した電気化学式COセンサは、水分を常に供給する必要があるため、センサ部分の数倍にもなる大きさの容器102を設ける必要があり、小型化することが困難であった。そのため、燃焼機器の排気筒等の狭い空間に設置することが困難であり、あらゆるサイズ等の排気筒に設けることができず、使用適合範囲の制約が大きかった。また、排気筒内は常温から250度程度の高温を繰り返し変化するため、密閉された水タンクである容器102からの水漏れ等の問題も懸念されていた。   However, since the above-described electrochemical CO sensor needs to constantly supply moisture, it is necessary to provide a container 102 that is several times larger than the sensor portion, and it is difficult to reduce the size. Therefore, it is difficult to install it in a narrow space such as an exhaust pipe of a combustion device, and it cannot be provided in an exhaust pipe of any size, so that there are large restrictions on the usable compatibility range. Further, since the inside of the exhaust pipe is repeatedly changed from room temperature to a high temperature of about 250 degrees, there has been a concern about problems such as water leakage from the container 102 which is a sealed water tank.

よって本発明は、上述した問題点に鑑み、常温から高温の温度変化を繰り返す狭い空間内でも使用することができる電気化学式センサ、対象ガス監視装置、及び、電気化学式センサの濃度検出方法を提供することを課題としている。   Therefore, in view of the above-described problems, the present invention provides an electrochemical sensor, a target gas monitoring device, and a method for detecting the concentration of an electrochemical sensor that can be used in a narrow space where temperature changes from room temperature to high temperature are repeated. It is an issue.

上記課題を解決するため本発明によりなされた請求項1記載の電気化学式センサは、プロトン導電体膜を有し、燃焼機器の燃焼によって発生した燃焼排ガスを排出する排気筒内に設けられる電気化学式センサであって、前記排気筒内中の水蒸気を前記プロトン導電体膜に供給する供給部を有し、前記プロトン導電体膜の検知極で発生し且つ前記供給部から供給された水蒸気の水分を利用した前記プロトン導電体膜における対象ガスの酸化反応と、前記プロトン導電体膜の対極で発生し且つ前記酸化反応によって発生したプロトンの還元反応とにより、前記排気筒内の対象ガスの濃度に応じた電流を、前記検知極と前記対極との間に発生するようにしたことを特徴とする。   In order to solve the above-mentioned problems, an electrochemical sensor according to claim 1 according to the present invention has a proton conductor film and is provided in an exhaust cylinder for discharging combustion exhaust gas generated by combustion of combustion equipment. And having a supply part for supplying water vapor in the exhaust pipe to the proton conductor film, and utilizing the moisture of the water vapor generated at the detection electrode of the proton conductor film and supplied from the supply part In accordance with the concentration of the target gas in the exhaust pipe, the oxidation reaction of the target gas in the proton conductor film and the reduction reaction of the proton generated at the counter electrode of the proton conductor film and generated by the oxidation reaction An electric current is generated between the detection electrode and the counter electrode.

上記課題を解決するため本発明によりなされた請求項2記載の対象ガス監視装置は、請求項1に記載の電気化学式センサを有し、前記電気化学式センサの前記検知極と前記対極との間に発生する電流を監視して対象ガスの発生を監視することを特徴とする。   The object gas monitoring device according to claim 2, which has been made according to the present invention in order to solve the above problem, has the electrochemical sensor according to claim 1, and is provided between the detection electrode and the counter electrode of the electrochemical sensor. The generation of the target gas is monitored by monitoring the generated current.

上記課題を解決するため本発明によりなされた請求項3記載の電気化学式センサの濃度検出方法は、プロトン導電体膜を有する電気化学式センサの濃度検出方法であって、燃焼機器の燃焼によって発生した燃焼排ガスを排出する排気筒内に設けられ、前記排気筒内中の水蒸気を前記プロトン導電体膜に供給し、前記プロトン導電体膜の検知極で発生し且つ前記供給部から供給された水蒸気の水分を利用した前記プロトン導電体膜における対象ガスの酸化反応と、前記プロトン導電体膜の対極で発生し且つ前記酸化反応によって発生したプロトンの還元反応とにより、前記排気筒内の対象ガスの濃度に応じた電流を前記検知極と前記対極との間に発生することを特徴とする。   The method for detecting the concentration of an electrochemical sensor according to claim 3, which has been made in accordance with the present invention to solve the above-mentioned problem, is a method for detecting the concentration of an electrochemical sensor having a proton conductor film, which is a combustion generated by combustion of a combustion device. Moisture of water vapor provided in an exhaust pipe for discharging exhaust gas, supplying water vapor in the exhaust pipe to the proton conductor film, generated at a detection electrode of the proton conductor film, and supplied from the supply unit The concentration of the target gas in the exhaust pipe is reduced by the oxidation reaction of the target gas in the proton conductor film using the oxygen and the reduction reaction of the proton generated at the counter electrode of the proton conductor film and generated by the oxidation reaction. A corresponding current is generated between the detection electrode and the counter electrode.

以上説明したように請求項1,3に記載した本発明によれば、排気筒内の水蒸気をプロトン導電体膜に供給する供給部を設け、その水蒸気の水分を利用して検知極に酸化反応を発生させ且つ対極に還元反応を発生させることで、検知極と対極との間に対象ガスの濃度に応じた電流を発生するようにしたことから、従来の水タンクを不要とすることができる。また、密閉された水タンクを有していないことから、水漏れ等の問題もなくなり、給湯器の排気筒等の常温から高温を繰り返す空間内にも設置することができる。従って、電気化学式センサを小型化でき且つ水漏れ等の問題も解消できるため、給湯器の排気筒等の狭く厳しい空間でも設置することが可能なり、使用適合範囲の制約を低減させることができる。   As described above, according to the first and third aspects of the present invention, the supply portion for supplying the water vapor in the exhaust pipe to the proton conductor film is provided, and the oxidation reaction is performed on the detection electrode using the water content of the water vapor. By generating a reduction reaction at the counter electrode and generating a current according to the concentration of the target gas between the detection electrode and the counter electrode, a conventional water tank can be eliminated. . In addition, since it does not have a sealed water tank, there is no problem of water leakage and the like, and it can be installed in a space that repeats from normal temperature to high temperature such as an exhaust pipe of a water heater. Therefore, since the electrochemical sensor can be reduced in size and problems such as water leakage can be solved, it can be installed in a narrow and severe space such as an exhaust pipe of a water heater, and the restriction on the usable range can be reduced.

以上説明したように請求項2に記載した本発明の対象ガス監視装置によれば、排気筒内の水蒸気の水分を利用することで、使用適合範囲の制約を低減した電気化学式センサの検知極と対極との間に発生する電流を監視して対象ガスの発生を監視するようにしたことから、給湯器の排気筒の常温から高温を繰り返す空間内等における対象ガスの発生を監視することができる。従って、電気化学式センサをより所望の箇所に設置して対象ガスを監視することができるため、監視精度の向上に貢献することができる。   As described above, according to the target gas monitoring device of the present invention described in claim 2, by using the moisture of the water vapor in the exhaust pipe, the detection electrode of the electrochemical sensor that reduces the limitation of the usable compatibility range, Since the generation of the target gas is monitored by monitoring the current generated between the counter electrode, the generation of the target gas can be monitored in a space where the exhaust pipe of the water heater repeats from normal temperature to high temperature. . Accordingly, the target gas can be monitored by installing the electrochemical sensor at a more desired location, which can contribute to improvement in monitoring accuracy.

以下、本発明に係る電気化学式センサの一実施の形態を、図1〜図5の図面を参照して説明する。   Hereinafter, an embodiment of an electrochemical sensor according to the present invention will be described with reference to the drawings of FIGS.

図1に示す電気化学式センサ1は、ハウジングとしての陰極12と、プロトン導電体膜13と、取込部材14と、上述した拡散防止板17と、を有している。電気化学式センサ1は、図3に示すように、例えば略ボタン電池と同様の形状に形成されている。   The electrochemical sensor 1 shown in FIG. 1 includes a cathode 12 as a housing, a proton conductor film 13, an intake member 14, and the diffusion prevention plate 17 described above. As shown in FIG. 3, the electrochemical sensor 1 is formed, for example, in a shape substantially similar to that of a button battery.

陰極12は、底部12aと、該底部12の縁部から図1中上方に向かって立設する側壁12bと、側壁12bの端部から底部12aに対して平行且つ底部12aの周縁の一部を覆うように連接する連接部12cと、を有し、導電性部材で形成している。該連接部12cは、底部12aと対向する開口12dを形成している。即ち、陰極12が、プロトン導電体膜13、取込部材14等の他の部材を収容する収容部材(ハウジング)として機能している。   The cathode 12 includes a bottom portion 12a, a side wall 12b erected upward from the edge of the bottom portion 12 in FIG. 1, and a part of the periphery of the bottom portion 12a parallel to the bottom portion 12a from the end of the side wall 12b. And a connecting portion 12c that is connected so as to be covered, and is formed of a conductive member. The connecting portion 12c forms an opening 12d that faces the bottom portion 12a. That is, the cathode 12 functions as a housing member (housing) that houses other members such as the proton conductor film 13 and the capturing member 14.

プロトン導電体膜13は、検知極13aと、対極13bと、を有している。プロトン導電体膜13は、拡散防止板17よりも小さな略円盤状に形成している。プロトン導電体膜13は、対極13bと陰極12の底部12aの内面が接した状態で底部12a上に設けられることで、対極13bと陰極12と電気的に接続している。そして、プロトン導電体膜13の検知極13a上には、拡散防止板17を積層している。   The proton conductor film 13 has a detection electrode 13a and a counter electrode 13b. The proton conductor film 13 is formed in a substantially disk shape smaller than the diffusion preventing plate 17. The proton conductor film 13 is electrically connected to the counter electrode 13b and the cathode 12 by being provided on the bottom 12a in a state where the counter electrode 13b and the inner surface of the bottom 12a of the cathode 12 are in contact with each other. A diffusion prevention plate 17 is laminated on the detection electrode 13 a of the proton conductor film 13.

取込部材14は、活性炭フィルタ14aと、該活性炭フィルタ14aを収容する収容部14bと、複数の取込孔14cと、供給部としての供給孔14dと、を有している。活性炭フィルタ14aは、検知対象ガスである一酸化炭素と水蒸気を通過するものであれば、シリカゲル、ゼオライト等の他の部材を用いることもできる。   The intake member 14 includes an activated carbon filter 14a, a housing portion 14b that accommodates the activated carbon filter 14a, a plurality of intake holes 14c, and a supply hole 14d as a supply portion. As the activated carbon filter 14a, other members such as silica gel and zeolite can be used as long as they pass carbon monoxide and water vapor which are detection target gases.

収容部14bは、導電性部材によって形成しており、上ケース14b1と下ケース14b2とを有している。そして、上ケース14b1と下ケース14b2とは、内部に活性炭フィルタ14aを収容して覆った状態でかしめ固定している。収容部14bは、陰極12内に収容され且つ拡散防止板17を介して検知極13aに積層されることで、検知極13aと電気的に接続している。   The accommodating portion 14b is formed of a conductive member and has an upper case 14b1 and a lower case 14b2. The upper case 14b1 and the lower case 14b2 are caulked and fixed in a state in which the activated carbon filter 14a is accommodated and covered. The accommodating portion 14 b is accommodated in the cathode 12 and is stacked on the detection electrode 13 a via the diffusion prevention plate 17 so as to be electrically connected to the detection electrode 13 a.

収容部材14は、絶縁性のガスケット15によって対極13b内に固定することで、陰極12(対極13b)とは絶縁している。収容部材14は、陰極12に収容固定されると、開口12dから外部に上ケース14b1の一部が若干突出する構造となっており、その突出量は任意に設定することができる。そして、上ケース14b1が電気化学式センサ1の陽極となっている。   The housing member 14 is insulated from the cathode 12 (counter electrode 13b) by being fixed in the counter electrode 13b by an insulating gasket 15. When the accommodating member 14 is accommodated and fixed in the cathode 12, a part of the upper case 14b1 protrudes slightly from the opening 12d to the outside, and the protruding amount can be arbitrarily set. The upper case 14b1 serves as the anode of the electrochemical sensor 1.

複数の取込孔14cは、上ケース14b1に設けられて外部から水蒸気、COガス等を取込部材14内に取り込んでいる。供給孔14dは、取込部材14内に取り込んだ水蒸気、COガス等を拡散防止板17の供給部17aを介してプロトン導電体膜13に供給する。即ち、電気化学式センサ1の周囲の水蒸気、COガス等は、取込部材14の取込孔14cから取込部材14内に取り込まれ、活性炭フィルタ14a、供給孔14d、拡散防止板17の供給部17aを通過してプロトン導電体膜13に到達する。   The plurality of intake holes 14c are provided in the upper case 14b1 and take in water vapor, CO gas, and the like from the outside into the intake member 14. The supply hole 14 d supplies water vapor, CO gas, or the like taken into the take-in member 14 to the proton conductor film 13 through the supply part 17 a of the diffusion prevention plate 17. That is, water vapor, CO gas, etc. around the electrochemical sensor 1 are taken into the take-in member 14 from the take-in hole 14c of the take-in member 14, and are supplied to the activated carbon filter 14a, the supply hole 14d, and the diffusion prevention plate 17 It passes through 17a and reaches the proton conductor film 13.

プロトン導電体膜13に供給される水蒸気の水分を利用した酸化反応を起こして、検知極13aにプロトン(2H+)と電子(2e-)を発生させる。検知極13aに発生した電子(2e-)はプロトン導電体膜13の内部を通過できないので検知極13aに滞留し、一方、プロトン(2H+)は、プロトン導電体膜13の内部を通過して対極13bに移動し、ここで、酸素と還元反応を起こして対極13bに水(H2O)を生成する。 Oxidation reaction using the moisture of water vapor supplied to the proton conductor film 13 is caused to generate protons (2H + ) and electrons (2e ) at the detection electrode 13a. The electrons (2e ) generated in the detection electrode 13a cannot pass through the proton conductor film 13 and thus stay in the detection electrode 13a, while the proton (2H + ) passes through the proton conductor film 13 and passes through the proton conductor film 13. It moves to the counter electrode 13b where it undergoes a reduction reaction with oxygen to produce water (H 2 O) at the counter electrode 13b.

即ち、検知極13aでは、供給孔14dから供給された水蒸気の水分を利用したプロトン導電体膜13におけるCOガス(対象ガス)の酸化反応が発生する。対極13bでは、その酸化反応によって発生したプロトンの還元反応が発生する。よって、検知極13aと対極13bとの間には、取り込んだCOガスの濃度に応じた電流を発生する。   That is, in the detection electrode 13a, an oxidation reaction of the CO gas (target gas) occurs in the proton conductor film 13 using the moisture of the water vapor supplied from the supply hole 14d. At the counter electrode 13b, a reduction reaction of protons generated by the oxidation reaction occurs. Therefore, a current corresponding to the concentration of the captured CO gas is generated between the detection electrode 13a and the counter electrode 13b.

したがって、陽極である上ケース14b1と陰極12を介して検知極13aと対極13bとの間に負荷を接続すると、検知極13aに滞留した電子(2e-)の対極13bに向かう流れが負荷に生じ、これにより対極13bから負荷を経て検知極13aに向かう短絡電流の流れが生じるので、この負荷に流れる短絡電流を電流−電圧変換することで、周辺雰囲気中のCOガスの濃度に応じた電圧値のCO濃度信号が得られる。 Therefore, when a load is connected between the detection electrode 13a and the counter electrode 13b via the upper case 14b1 which is an anode and the cathode 12, a flow of electrons (2e ) staying in the detection electrode 13a toward the counter electrode 13b is generated in the load. As a result, a short-circuit current flows from the counter electrode 13b through the load to the detection electrode 13a, so that the voltage value corresponding to the concentration of CO gas in the ambient atmosphere is obtained by performing current-voltage conversion on the short-circuit current flowing through the load. The CO concentration signal is obtained.

上述した構造の電気化学式センサ1は、図2及び図3に示すように、燃焼機器である給湯器2に接続された排気筒3内に設けられる。該排気筒3は、給湯器2の燃焼室2aにおける燃焼により発生した燃焼排ガスと水蒸気を屋外へ導いて屋外に排出する。そして、本最良の形態では、電気化学式センサ1の天井部分、つまり、陰極12の開口12dが排気筒3内の流れ方向Xに向かうように、排気筒3内に配置した場合について説明するが、電気化学式センサ1は流れ方向Xに対して任意の向きで配置することができる。   As shown in FIGS. 2 and 3, the electrochemical sensor 1 having the above-described structure is provided in an exhaust pipe 3 connected to a water heater 2 that is a combustion device. The exhaust tube 3 guides the combustion exhaust gas and water vapor generated by the combustion in the combustion chamber 2a of the water heater 2 to the outdoors and discharges them to the outdoors. And in this best mode, although the ceiling part of the electrochemical sensor 1, that is, the case where the opening 12d of the cathode 12 is arranged in the exhaust pipe 3 so as to face the flow direction X in the exhaust pipe 3, will be described. The electrochemical sensor 1 can be arranged in an arbitrary direction with respect to the flow direction X.

電気化学式センサ1は、排気筒3を貫通した一対の端子6の各々が、陽極である上ケース14b1と陰極12を介して検知極13aと対極13bとに電気的に接続されている。一対の端子6は、排気筒3内に設けられることから、常温から高温の変化に対応することが可能な部材で形成しており、排気筒3の外側に取り付けられた台座4を貫通している。台座4は、耐熱性の部材によって形成しており、一対の端子6が貫通する部分から排気筒3内の各種ガスが外部に漏れないように一対の端子6に密着している。   In the electrochemical sensor 1, each of a pair of terminals 6 penetrating the exhaust tube 3 is electrically connected to a detection electrode 13a and a counter electrode 13b via an upper case 14b1 that is an anode and a cathode 12. Since the pair of terminals 6 are provided in the exhaust tube 3, the pair of terminals 6 is formed of a member that can cope with a change from normal temperature to high temperature, and penetrates the pedestal 4 attached to the outside of the exhaust tube 3. Yes. The pedestal 4 is formed of a heat-resistant member, and is in close contact with the pair of terminals 6 so that various gases in the exhaust tube 3 do not leak outside from the portion through which the pair of terminals 6 penetrate.

対象ガス監視装置5は、排気筒3内に配置した電気化学式センサ1を有している。対象ガス監視装置5は、一対の端子6を介して電気化学式センサ1に電気的に接続すると共に、給湯器2にケーブル等を介して電気的に接続している。対象ガス監視装置5は、電気化学式センサ1の検知極13aと対極13bとの間に発生する電流を監視して対象ガスの発生を監視し、その濃度に応じたガス濃度信号(濃度レベル、異常の有無などの信号)を給湯器2に出力する。そして、給湯器2は、入力されたガス濃度信号に基づいて、遮断弁の遮断、COガス漏れ警報等の各種処理を行う。   The target gas monitoring device 5 has an electrochemical sensor 1 disposed in the exhaust tube 3. The target gas monitoring device 5 is electrically connected to the electrochemical sensor 1 via a pair of terminals 6 and is electrically connected to the water heater 2 via a cable or the like. The target gas monitoring device 5 monitors the current generated between the detection electrode 13a and the counter electrode 13b of the electrochemical sensor 1 to monitor the generation of the target gas, and a gas concentration signal (concentration level, abnormal) according to the concentration. A signal such as the presence or absence of) is output to the water heater 2. Then, the water heater 2 performs various processes such as shut-off of the shut-off valve and CO gas leak alarm based on the input gas concentration signal.

(試験結果)
次に、上述した電気化学式センサ1のプロトン導電体膜13とその環境の水分量を比較する試験結果を、以下に説明する。なお、窒素(N2)=100%、CO=500ppmのN2ドライガスを排気筒3内に流した結果、図4,5に示すN2ドライガスの特性を得ることができた。なお、図4において、縦軸は電気化学式センサ1のセンサ出力(V)、横軸は時間(秒)をそれぞれ示している。また、図5において、縦軸は電気化学式センサ1のセンサ出力(V)、横軸は時間(分)をそれぞれ示している。
(Test results)
Next, test results comparing the proton conductor film 13 of the electrochemical sensor 1 and the amount of water in the environment will be described below. As a result of flowing N 2 dry gas of nitrogen (N 2 ) = 100% and CO = 500 ppm into the exhaust tube 3, the characteristics of the N 2 dry gas shown in FIGS. 4 and 5 were obtained. In FIG. 4, the vertical axis indicates the sensor output (V) of the electrochemical sensor 1, and the horizontal axis indicates time (seconds). In FIG. 5, the vertical axis indicates the sensor output (V) of the electrochemical sensor 1, and the horizontal axis indicates time (minutes).

図4,5の各グラフから、プロトン導電体膜13中の水分を計算する。このとき、図4中の領域1は遷移領域と考え、領域2においてプロトン導電体膜13の水分が消費されたものと考えた。そして、電気化学式センサ1の濃度出力は、1.10〜3.75(nA/ppm)であり、平均値を3(nA/ppm)とすると、500(ppm)では1500(nA)であり、リニアに出力が低下すると仮定すると、平均をとって750(nA)となる。   The moisture in the proton conductor film 13 is calculated from the graphs of FIGS. At this time, the region 1 in FIG. 4 was considered as a transition region, and the water in the proton conductor film 13 was considered to be consumed in the region 2. The concentration output of the electrochemical sensor 1 is 1.10 to 3.75 (nA / ppm). If the average value is 3 (nA / ppm), 500 (ppm) is 1500 (nA). Assuming that the output decreases linearly, the average is 750 (nA).

図4における領域2の時間を約8時間とすると、電気量は750*10-9*8*3600=9.0216(C)と算出することができる。そして、電子は、0.0216/96500=2.24*10-7(mol)を消費する。H2Oの単位物質量当たりの質量を18(g/mol)とし、電子2個でH2O1個とすると、水分は18*0.5*2.24*10-7=2.016(μg)と求められる。つまり、8時間で2.016(μg)の水分が消費されたことになる。 If the time of region 2 in FIG. 4 is about 8 hours, the amount of electricity can be calculated as 750 * 10 −9 * 8 * 3600 = 9.0216 (C). And an electron consumes 0.0216 / 96500 = 2.24 * 10 < -7 > (mol). When the mass per unit amount of H 2 O is 18 (g / mol) and two electrons are H 2 O, the moisture content is 18 * 0.5 * 2.24 * 10 −7 = 2.016 ( μg). That is, 2.016 (μg) of water was consumed in 8 hours.

一方、図4中の領域2に対応した図5のグラフを示す式y=−0.001x+2.6559より、水分が完全になくなり、出力=0になる時間を算出すると、x=2655.9(分)となる。即ち、8時間で2.016(μg)が消費されたので、2655.9(分)では、11.15(μg)が消費され、これがプロトン導電体膜13中の全水分と考えられる。   On the other hand, from the equation y = −0.001x + 2.6559 showing the graph of FIG. 5 corresponding to the region 2 in FIG. 4, when the time when the water is completely removed and the output = 0 is calculated, x = 2655.9 ( Min). That is, since 2.016 (μg) was consumed in 8 hours, 11.65 (μg) was consumed at 2655.9 (minutes), which is considered to be the total moisture in the proton conductor film 13.

ここで、使用されるプロトン導電体膜13をNafion117とすると、360(g/m2)となる。膜の直径をφ8(mm)とすると、膜の質量は360*π/4(8*10-32=0.018(g)となり、水分量は0.1(wt%)となる。 Here, when the proton conductor film 13 to be used is Nafion 117, 360 (g / m 2 ) is obtained. When the diameter of the film is φ8 (mm), the mass of the film is 360 * π / 4 (8 * 10 −3 ) 2 = 0.018 (g), and the water content is 0.1 (wt%).

次に、環境の水分量は、5度における水蒸気量が6.8(g/m3)であり、20度の空気密度は1.205(kgf/m3)なので、6.8/1205*100=0.56(wt%)となる。この値は、上述したプロトン導電体膜13中の水分量0.1(wt%)よりも高くなっている。従って、プロトン導電体膜13中の水分は冬季を想定した湿度よりも低いため、従来の水タンクがなくても電気化学式センサ1の性能を維持できることを確認することができた。 Next, the amount of water in the environment is 6.8 (g / m 3 ) at 5 degrees, and the air density at 20 degrees is 1.205 (kgf / m 3 ), so 6.8 / 1205 * 100 = 0.56 (wt%). This value is higher than the water content 0.1 (wt%) in the proton conductor film 13 described above. Therefore, since the moisture in the proton conductor film 13 is lower than the humidity assumed in winter, it has been confirmed that the performance of the electrochemical sensor 1 can be maintained without a conventional water tank.

また、ドライガス→水蒸気を含んだガス→ドライガスの順で各ガスを流し、電気化学式センサ1のセンサ出力(検知極13aと対極13bとの間の電位差)の過渡特性を測定した結果、ドライガスと水蒸気を含んだガスとの過渡特性に同一であることが確認できた。さらに、ドライガスを10時間連続で流しながらセンサ出力の過渡特性を測定した結果、大きな変化がないことを確認できた。   Further, as a result of measuring the transient characteristics of the sensor output of the electrochemical sensor 1 (potential difference between the detection electrode 13a and the counter electrode 13b) by flowing each gas in the order of dry gas → gas containing water vapor → dry gas, It was confirmed that the transient characteristics of the gas and the gas containing water vapor were the same. Furthermore, as a result of measuring the transient characteristics of the sensor output while flowing dry gas continuously for 10 hours, it was confirmed that there was no significant change.

このような試験結果から、本発明のように電気化学式センサ1の構成から従来の水タンクを削除しても、排気筒3内の水蒸気をプロトン導電体膜13に供給する構成とすることで、図6に示すような従来の水タンクを有する電気化学式センサと同様のセンサ出力を得ることができることを確認できた。   From such a test result, even if the conventional water tank is deleted from the configuration of the electrochemical sensor 1 as in the present invention, the configuration in which the water vapor in the exhaust tube 3 is supplied to the proton conductor film 13 is as follows. It was confirmed that a sensor output similar to that of an electrochemical sensor having a conventional water tank as shown in FIG. 6 can be obtained.

以上説明した電気化学式センサ1によれば、排気筒3内の水蒸気をプロトン導電体膜13に供給する供給孔(供給部)16を設け、その水蒸気の水分を利用して検知極13aに酸化反応を発生させ且つ対極13bに還元反応を発生させることで、検知極13aと対極13bとの間に対象ガスの濃度に応じた電流を発生するようにしたことから、従来の水タンクを不要とすることができる。また、密閉された水タンクを有していないことから、水漏れ等の問題もなくなり、給湯器2の排気筒3等の常温から高温を繰り返す空間内にも設置することができる。従って、電気化学式センサ1を小型化でき且つ水漏れ等の問題も解消できるため、給湯器2の排気筒等の狭く厳しい空間でも設置することが可能なり、使用適合範囲の制約を低減させることができる。   According to the electrochemical sensor 1 described above, the supply hole (supply part) 16 for supplying water vapor in the exhaust tube 3 to the proton conductor film 13 is provided, and the detection electrode 13a is oxidized using the water content of the water vapor. And generating a reduction reaction at the counter electrode 13b, a current corresponding to the concentration of the target gas is generated between the detection electrode 13a and the counter electrode 13b, so that a conventional water tank is not required. be able to. Moreover, since it does not have a sealed water tank, there is no problem of water leakage and the like, and it can be installed in a space where the exhaust pipe 3 of the water heater 2 repeats from normal temperature to high temperature. Therefore, since the electrochemical sensor 1 can be reduced in size and problems such as water leakage can be solved, it can be installed even in a narrow and severe space such as the exhaust pipe of the water heater 2, and the restriction of the usable range can be reduced. it can.

また、排気筒3内の水蒸気の水分を利用することで、使用適合範囲の制約を低減した電気化学式センサ1の検知極13aと対極13bとの間に発生する電流を監視して対象ガスの発生を監視するようにしたことから、給湯器2の排気筒3の常温から高温を繰り返す空間内等における対象ガスの発生を監視することができる。従って、電気化学式センサ1をより所望の箇所に設置して対象ガスを監視することができるため、監視精度の向上に貢献することができる。   In addition, by using the moisture of the water vapor in the exhaust tube 3, the current generated between the detection electrode 13a and the counter electrode 13b of the electrochemical sensor 1 with reduced restrictions on the applicable range of use is monitored to generate the target gas. Therefore, it is possible to monitor the generation of the target gas in a space where the exhaust tube 3 of the water heater 2 repeats from normal temperature to high temperature. Therefore, since the target gas can be monitored by installing the electrochemical sensor 1 at a more desired location, it is possible to contribute to improvement of monitoring accuracy.

なお、上述した実施形態では、本発明の電気化学式センサ1を燃焼機器である給湯器2に取り付けられた排気筒3内に設ける場合について説明したが、本発明はこれに限定するものではなく、例えば給湯器2内に組み込まれた排気筒内に設けるなど種々異なる実施形態とすることができる。   In the above-described embodiment, the case where the electrochemical sensor 1 of the present invention is provided in the exhaust pipe 3 attached to the water heater 2 that is a combustion device has been described, but the present invention is not limited thereto. For example, it can be set as various different embodiments, such as providing in the exhaust pipe integrated in the water heater 2. FIG.

また、上述した実施形態では、請求項中の供給部を拡散防止板17の供給部17aとした場合について説明したが、本発明はこれに限定するものではなく、例えば陰極12に孔として設けて排気筒3内から直接水蒸気を供給するなど種々異なる実施形態とすることができる。   Further, in the above-described embodiment, the case where the supply portion in the claims is the supply portion 17a of the diffusion prevention plate 17 has been described. However, the present invention is not limited to this, and for example, the cathode 12 is provided as a hole. Various embodiments such as supplying water vapor directly from the inside of the exhaust tube 3 can be adopted.

さらに、上述した本最良の形態では、対象ガス監視装置5を給湯器2の外部に設ける場合について説明するが、本発明はこれに限定するものではなく、対象ガス監視装置5内に内蔵したり、COガス警報装置に内蔵又は接続するなど種々異なる実施形態とすることができる。   Further, in the above-described best mode, the case where the target gas monitoring device 5 is provided outside the water heater 2 will be described. However, the present invention is not limited to this, and the target gas monitoring device 5 may be built in the target gas monitoring device 5. Various embodiments may be employed such as being built in or connected to a CO gas alarm device.

このように上述した実施例は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   As described above, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

本発明の電気化学式センサの断面を示す断面図である。It is sectional drawing which shows the cross section of the electrochemical type sensor of this invention. 図1中の電気化学式センサの配置と対象ガス監視装置の関係を説明するための図である。It is a figure for demonstrating the relationship between arrangement | positioning of the electrochemical type sensor in FIG. 1, and a target gas monitoring apparatus. 図1中の電気化学式センサの排気筒に対する取付例を説明するための部分断面図である。It is a fragmentary sectional view for demonstrating the example of attachment with respect to the exhaust pipe of the electrochemical sensor in FIG. 図1中の電気化学式センサのセンサ出力と時間との関係を示すグラフである。It is a graph which shows the relationship between the sensor output of the electrochemical sensor in FIG. 1, and time. 図1中のプロトン導電膜の水分の消費に対応したセンサ出力と時間との関係を示すグラフである。It is a graph which shows the relationship between the sensor output corresponding to the consumption of the water | moisture content of the proton conductive film in FIG. 1, and time. 一般的な従来の電気化学式COセンサの構成を示す断面図である。It is sectional drawing which shows the structure of a general conventional electrochemical CO sensor.

符号の説明Explanation of symbols

1 電気化学式センサ
2 燃焼機器(給湯器)
3 排気筒
5 対象ガス監視装置
12 陰極
13 プロトン導電体膜
13a 検知極
13b 対極
14 収容部材
17 拡散防止板
17a 供給部(孔)
1 Electrochemical sensor 2 Combustion equipment (water heater)
3 Exhaust cylinder 5 Target gas monitoring device 12 Cathode 13 Proton conductor membrane 13a Detection electrode 13b Counter electrode 14 Housing member 17 Diffusion prevention plate 17a Supply section (hole)

Claims (3)

プロトン導電体膜を有し、燃焼機器の燃焼によって発生した燃焼排ガスを排出する排気筒内に設けられる電気化学式センサであって、
前記排気筒内中の水蒸気を前記プロトン導電体膜に供給する供給部を有し、
前記プロトン導電体膜の検知極で発生し且つ前記供給部から供給された水蒸気の水分を利用した前記プロトン導電体膜における対象ガスの酸化反応と、前記プロトン導電体膜の対極で発生し且つ前記酸化反応によって発生したプロトンの還元反応とにより、前記排気筒内の対象ガスの濃度に応じた電流を、前記検知極と前記対極との間に発生するようにしたことを特徴とする電気化学式センサ。
An electrochemical sensor that has a proton conductor film and is provided in an exhaust cylinder that discharges combustion exhaust gas generated by combustion of combustion equipment,
A supply unit for supplying water vapor in the exhaust pipe to the proton conductor film;
Oxidation reaction of the target gas in the proton conductor film generated at the detection electrode of the proton conductor film and using the moisture of water vapor supplied from the supply unit, and generated at the counter electrode of the proton conductor film and the An electrochemical sensor characterized in that a current corresponding to the concentration of the target gas in the exhaust pipe is generated between the detection electrode and the counter electrode by a reduction reaction of protons generated by the oxidation reaction. .
請求項1に記載の電気化学式センサを有し、前記電気化学式センサの前記検知極と前記対極との間に発生する電流を監視して対象ガスの発生を監視することを特徴とする対象ガス監視装置。   A target gas monitor comprising the electrochemical sensor according to claim 1, wherein current generated between the detection electrode and the counter electrode of the electrochemical sensor is monitored to monitor generation of the target gas. apparatus. プロトン導電体膜を有する電気化学式センサの濃度検出方法であって、
燃焼機器の燃焼によって発生した燃焼排ガスを排出する排気筒内に設けられ、前記排気筒内中の水蒸気を前記プロトン導電体膜に供給し、前記プロトン導電体膜の検知極で発生し且つ前記供給部から供給された水蒸気の水分を利用した前記プロトン導電体膜における対象ガスの酸化反応と、前記プロトン導電体膜の対極で発生し且つ前記酸化反応によって発生したプロトンの還元反応とにより、前記排気筒内の対象ガスの濃度に応じた電流を前記検知極と前記対極との間に発生することを特徴とする電気化学式センサの濃度検出方法。
A method for detecting the concentration of an electrochemical sensor having a proton conductor film,
Provided in an exhaust cylinder for discharging combustion exhaust gas generated by combustion of combustion equipment, supplying water vapor in the exhaust cylinder to the proton conductor film, generated at the detection electrode of the proton conductor film and the supply The oxidation reaction of the target gas in the proton conductor film using the moisture of the water vapor supplied from the unit, and the reduction reaction of the proton generated at the counter electrode of the proton conductor film and generated by the oxidation reaction, A method for detecting a concentration of an electrochemical sensor, wherein a current corresponding to a concentration of a target gas in a cylinder is generated between the detection electrode and the counter electrode.
JP2006350707A 2006-12-26 2006-12-26 Electrochemical sensor, target gas monitor device, and concentration detection method of electrochemical sensor Abandoned JP2008164305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350707A JP2008164305A (en) 2006-12-26 2006-12-26 Electrochemical sensor, target gas monitor device, and concentration detection method of electrochemical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350707A JP2008164305A (en) 2006-12-26 2006-12-26 Electrochemical sensor, target gas monitor device, and concentration detection method of electrochemical sensor

Publications (1)

Publication Number Publication Date
JP2008164305A true JP2008164305A (en) 2008-07-17

Family

ID=39694016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350707A Abandoned JP2008164305A (en) 2006-12-26 2006-12-26 Electrochemical sensor, target gas monitor device, and concentration detection method of electrochemical sensor

Country Status (1)

Country Link
JP (1) JP2008164305A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907595A (en) * 2010-07-15 2010-12-08 合肥工业大学 Electrochemical CO gas sensor
JP2011220716A (en) * 2010-04-05 2011-11-04 Osaka Gas Co Ltd Filter, gas sensor and gas detector
WO2017047316A1 (en) * 2015-09-17 2017-03-23 フィガロ技研株式会社 Electrochemical gas sensor
WO2018003308A1 (en) * 2016-07-01 2018-01-04 フィガロ技研株式会社 Electrochemical gas sensor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587003A (en) * 1983-05-19 1986-05-06 City Technology Limited Gas sensor
US4820386A (en) * 1988-02-03 1989-04-11 Giner, Inc. Diffusion-type sensor cell containing sensing and counter electrodes in intimate contact with the same side of a proton-conducting membrane and method of use
JPH0815209A (en) * 1994-06-28 1996-01-19 Matsushita Electric Works Ltd Electrochemical gas sensor
US5958200A (en) * 1997-04-23 1999-09-28 Dragerwerk Ag Electrochemical gas sensor
JP2000146908A (en) * 1998-09-29 2000-05-26 Atwood Ind Inc Gas sensor with electrically conductive, hydrophobic membrane
WO2001014864A2 (en) * 1999-08-24 2001-03-01 Central Research Laboratories Ltd. A gas sensor and its method of manufacture
JP2001153355A (en) * 1999-11-30 2001-06-08 Japan Gas Association Monitor for gas combustor
JP2002350393A (en) * 2001-05-25 2002-12-04 Figaro Eng Inc Gas sensor using proton conductive material
WO2002097420A1 (en) * 2001-05-25 2002-12-05 Figaro Engineering Inc. Protonic conductive membrane gas sensor
JP2004170100A (en) * 2002-11-18 2004-06-17 Figaro Eng Inc Proton conductive material gas sensor and its manufacturing method
JP2004279293A (en) * 2003-03-18 2004-10-07 Figaro Eng Inc Self-diagnosis method for proton conductor gas sensor, and gas detector

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587003A (en) * 1983-05-19 1986-05-06 City Technology Limited Gas sensor
US4820386A (en) * 1988-02-03 1989-04-11 Giner, Inc. Diffusion-type sensor cell containing sensing and counter electrodes in intimate contact with the same side of a proton-conducting membrane and method of use
JPH0815209A (en) * 1994-06-28 1996-01-19 Matsushita Electric Works Ltd Electrochemical gas sensor
US5958200A (en) * 1997-04-23 1999-09-28 Dragerwerk Ag Electrochemical gas sensor
JP2000146908A (en) * 1998-09-29 2000-05-26 Atwood Ind Inc Gas sensor with electrically conductive, hydrophobic membrane
WO2001014864A2 (en) * 1999-08-24 2001-03-01 Central Research Laboratories Ltd. A gas sensor and its method of manufacture
JP2001153355A (en) * 1999-11-30 2001-06-08 Japan Gas Association Monitor for gas combustor
JP2002350393A (en) * 2001-05-25 2002-12-04 Figaro Eng Inc Gas sensor using proton conductive material
WO2002097420A1 (en) * 2001-05-25 2002-12-05 Figaro Engineering Inc. Protonic conductive membrane gas sensor
JP2004170100A (en) * 2002-11-18 2004-06-17 Figaro Eng Inc Proton conductive material gas sensor and its manufacturing method
JP2004279293A (en) * 2003-03-18 2004-10-07 Figaro Eng Inc Self-diagnosis method for proton conductor gas sensor, and gas detector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220716A (en) * 2010-04-05 2011-11-04 Osaka Gas Co Ltd Filter, gas sensor and gas detector
CN101907595A (en) * 2010-07-15 2010-12-08 合肥工业大学 Electrochemical CO gas sensor
WO2017047316A1 (en) * 2015-09-17 2017-03-23 フィガロ技研株式会社 Electrochemical gas sensor
CN108027342A (en) * 2015-09-17 2018-05-11 费加罗技研株式会社 Electrochemical gas sensor
GB2556836A (en) * 2015-09-17 2018-06-06 Figaro Eng Electrochemical gas sensor
GB2556836B (en) * 2015-09-17 2021-09-22 Figaro Eng Electrochemical gas sensor
WO2018003308A1 (en) * 2016-07-01 2018-01-04 フィガロ技研株式会社 Electrochemical gas sensor
CN109313159A (en) * 2016-07-01 2019-02-05 费加罗技研株式会社 Electrochemical gas sensor
GB2566198A (en) * 2016-07-01 2019-03-06 Figaro Eng Electrochemical gas sensor
CN109313159B (en) * 2016-07-01 2020-12-01 费加罗技研株式会社 Electrochemical gas sensor
US10976280B2 (en) 2016-07-01 2021-04-13 Figaro Engineering Inc. Electrochemical gas sensor
GB2566198B (en) * 2016-07-01 2021-10-06 Figaro Eng Electrochemical gas sensor

Similar Documents

Publication Publication Date Title
US10062915B2 (en) Electrochemical reactor, such as a fuel cell or an electrolyser, provided with a device for measuring a parameter of a gas specific to the operation of said reactor
US20080179199A1 (en) Economical and Reliable Gas Sensor
US20060113198A1 (en) Gas detection apparatus and method for controlling gas sensor
US11289725B2 (en) Fuel cell module arrangement with leak recovery and methods of use
JPS6055777B2 (en) Combustible sensor
CN101477076A (en) Sensor apparatus for measuring and detecting acetylene and hydrogen dissolved in a fluid
JP4585402B2 (en) Gas sensor
JPH11223617A (en) Sulfur dioxide gas sensor
JP5230127B2 (en) Fuel cell system and control method of fuel cell system
US20080145722A1 (en) Economical and Reliable Gas Sensor
JP4606948B2 (en) Gas sensor
JP2008164305A (en) Electrochemical sensor, target gas monitor device, and concentration detection method of electrochemical sensor
JP2013130540A (en) Gas detector
JP2005091321A (en) Control device of gas sensor
JP2007040757A (en) Gas sensor
JP2008101923A (en) Electrochemical sensor
JP4021827B2 (en) Gas sensor
CN115047037A (en) Portable detection device and detection method based on microfluidic gas sensor
JP2008164309A (en) Co detector for combustor, and co alarm device
US20030177815A1 (en) Pellet resistor sensor
JP4430520B2 (en) Gas sensor
JP2007278876A (en) Hydrogen sensor
JP2006010622A (en) Gas detection system and fuel cell vehicle
JP2006179224A (en) Fuel cell system
JP2019132685A (en) Oxygen measurement device for storage container and oxygen sensor thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110822