JP2008156706A - Method for producing shape memory member - Google Patents

Method for producing shape memory member Download PDF

Info

Publication number
JP2008156706A
JP2008156706A JP2006347234A JP2006347234A JP2008156706A JP 2008156706 A JP2008156706 A JP 2008156706A JP 2006347234 A JP2006347234 A JP 2006347234A JP 2006347234 A JP2006347234 A JP 2006347234A JP 2008156706 A JP2008156706 A JP 2008156706A
Authority
JP
Japan
Prior art keywords
shape memory
temperature
heat treatment
manufacturing
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006347234A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakurai
寛 桜井
Takashi Miyamoto
隆司 宮本
Sadao Yanagida
貞雄 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006347234A priority Critical patent/JP2008156706A/en
Publication of JP2008156706A publication Critical patent/JP2008156706A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a shape memory member where the shape recovering force in a member made of a shape memory alloy can be made high without taking high cost, and to provide a shape memory member produced by the method. <P>SOLUTION: When a member 1 made of a shape memory alloy is subjected to shape memorizing heat treatment, for example, a concentrated heat source B such as the defocus beam of an infrared wavelength laser is scanned, and heating is performed. In the case the shape memory alloy is an Ni-Ti based alloy, the above concentrated heat source B is scanned, and heating is performed after the member 1 made of the alloy is subjected to secondary working, so as to be an objective shape, or after recrystallization heat treatment is performed at ≥770°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、形状記憶部材の製造方法に係わり、より詳細には、レーザビームのような集中熱源を用いた形状記憶合金の形状記憶熱処理と、このような熱処理を施して成る形状記憶部材に関するものである。   The present invention relates to a method of manufacturing a shape memory member, and more particularly to a shape memory heat treatment of a shape memory alloy using a concentrated heat source such as a laser beam and a shape memory member formed by performing such a heat treatment. It is.

形状記憶合金は、Af点(形状回復温度)以上の温度に加熱することによって、加工前の形状に戻る形状記憶効果を有し、Af点を室温以下に設定することによって超弾性合金として機能するものであって、このような合金としては、Ni−Ti系(49〜51at%Ni)を始めとして、例えばCu−Al系、Cu−Zn系など種々のものが実用化されており、上記した超弾性を利用して、各種のばねやクリップ、眼鏡フレームなどに適用されると共に、形状記憶特性を利用して、感温型のファスナーやコネクター、温感スイッチなど、各種のサーマルアクチュエータに適用されている。
こうしたサーマルアクチュエータ用の形状記憶合金において、所定の温度で形状回復して、確実に所望の作動を行わせるためには、アクチュエータに組み込まれたバイアスばねなどの弾性力に打ち勝つだけの大きな回復力が要求されることになる。
The shape memory alloy has a shape memory effect of returning to the shape before processing by heating to a temperature equal to or higher than the Af point (shape recovery temperature), and functions as a superelastic alloy by setting the Af point below room temperature. As such alloys, various alloys such as Ni—Ti (49 to 51 at% Ni), Cu—Al, Cu—Zn, and the like have been put into practical use. It is applied to various springs, clips, eyeglass frames, etc. using superelasticity, and it is applied to various thermal actuators, such as temperature sensitive fasteners, connectors, thermal switches, etc., utilizing its shape memory characteristics. ing.
In such a shape memory alloy for a thermal actuator, in order to recover the shape at a predetermined temperature and to surely perform a desired operation, a large recovery force sufficient to overcome the elastic force such as a bias spring incorporated in the actuator is required. Will be required.

このような形状記憶合金を用いたアクチュエータに関しては、例えばシリカガラスから成る中実細線あるいは中空細線の外周に、形状記憶合金薄膜を蒸着あるいはスパッタリングによって作成し、研削、研磨あるいは溝切りによって分割した形状記憶合金成膜を作り、これらの形状記憶合金薄膜に配線して複数の駆動要素を作製する技術の提案がある(特許文献1参照)。   With regard to actuators using such shape memory alloys, for example, a shape obtained by forming a shape memory alloy thin film by vapor deposition or sputtering on the outer circumference of a solid thin wire or hollow thin wire made of silica glass, and dividing by grinding, polishing or grooving There is a proposal of a technique for making a memory alloy film and wiring a plurality of these shape memory alloy thin films to produce a plurality of driving elements (see Patent Document 1).

また、板バネ、クリップファスナー、コネクター等に用いられる形状記憶合金部材に関しては、例えばNi−Ti系形状記憶合金板材に、完成品の形状記憶合金部材と同じ形状にまで成形する二次加工を施し、この二次加工以前または二次加工と同時に200〜400℃の温度で低温熱処理を行った後、例えばレーザ加熱、直接通電加熱及び赤外線加熱のいずれかの方法によって、部分的に400〜700℃の温度に急速加熱し、次いで急速冷却処理を施すことが提案されている(特許文献1参照)。
特開2001−234846号公報 特開平09−291347号公報
For shape memory alloy members used for leaf springs, clip fasteners, connectors, etc., for example, Ni-Ti shape memory alloy plate material is subjected to secondary processing to form the same shape as the shape memory alloy member of the finished product. After the low temperature heat treatment at a temperature of 200 to 400 ° C. before this secondary processing or simultaneously with the secondary processing, it is partially 400 to 700 ° C., for example, by any of laser heating, direct current heating and infrared heating. It has been proposed to rapidly heat to a temperature of 1 and then to perform a rapid cooling treatment (see Patent Document 1).
Japanese Patent Laid-Open No. 2001-234846 JP 09-291347 A

しかしながら、上記特許文献1に記載の形状記憶合金薄膜については、従来のコイルによる全方位屈曲型アクチュエータに較べて、小型、安価、大量に作製することができるにしても、蒸着やスパッタリングによって作製していることから、厚肉のアクチュエータ駆動素子を作成しようとするときには、作製に時間がかかり、コストが嵩むという課題がある。また、形状記憶熱処理については、通常は450℃以上の温度で熱処理する旨の記載があるに過ぎなく、具体的な処理方法に関する記載はない。   However, the shape memory alloy thin film described in Patent Document 1 is produced by vapor deposition or sputtering, although it can be produced in a small size, at a low cost, and in large quantities as compared with a conventional omnidirectional actuator using a coil. For this reason, when attempting to create a thick actuator driving element, there is a problem that it takes time to manufacture and the cost increases. In addition, regarding shape memory heat treatment, there is usually only a description that heat treatment is performed at a temperature of 450 ° C. or higher, and there is no description regarding a specific treatment method.

一方、上記特許文献2に記載された技術は、板材に打ち抜きや切断などの二次加工を施した形状記憶合金部材における繰り返し特性や寿命が短いという問題に対処したものであって、アクチュエータとしての形状回復力の向上を課題とするものではなく、赤外線域のレーザを照射することによって、高い応力がかかる部位の繰り返し寿命を向上させることが記載されており、繰り返し使用する板バネ、クリップファスナー、コネクターなどに適用した場合の効果は大きいとしても、形状記憶合金が元の形状を回復する際に生じる形状回復力の向上に関しては開示がない。   On the other hand, the technique described in the above-mentioned Patent Document 2 addresses the problem of repeated characteristics and short life in a shape memory alloy member obtained by subjecting a plate material to secondary processing such as punching and cutting. It is not intended to improve the shape recovery force, but it is described that by irradiating a laser in the infrared region, the repeated life of the part where high stress is applied is improved. Even if the effect when applied to a connector or the like is great, there is no disclosure regarding the improvement in shape recovery force that occurs when the shape memory alloy recovers its original shape.

本発明は、従来の形状記憶合金における上記課題に着目してなされたものであって、その目的とするところは、形状記憶合金から成る部材における形状回復力をコストをかけることなく大きなものとすることができる形状記憶部材の製造方法と、このような方法により製造された形状記憶部材を提供することにある。   The present invention has been made by paying attention to the above-mentioned problems in conventional shape memory alloys, and the object thereof is to increase the shape recovery force of members made of shape memory alloys without increasing costs. The object is to provide a shape memory member manufacturing method that can be used, and a shape memory member manufactured by such a method.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、形状記憶合金から成る部材に形状記憶熱処理を施すに際して、レーザビームのような集中熱源を部材に照射しながら走査させるようにすることによって、上記課題が解決できることを見出し、本発明を完成するに到った。   As a result of intensive investigations to achieve the above object, the inventors of the present invention, when performing shape memory heat treatment on a member made of a shape memory alloy, scan the member while irradiating the member with a concentrated heat source such as a laser beam. Thus, the present inventors have found that the above problems can be solved, and have completed the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明の形状記憶部材の製造方法においては、形状記憶合金から成る部材に形状記憶熱処理を施すに際して、集中熱源を走査させて加熱するようにしたことを特徴としている。
また、Ni−Ti系形状記憶合金から成る部材に形状記憶熱処理を行うに際しては、当該部材に2次加工を施した後、又は770℃以上の温度で再結晶熱処理を施した後に、集中熱源を走査させて加熱することを特徴とする。
That is, the present invention is based on the above knowledge, and in the method of manufacturing a shape memory member of the present invention, when a shape memory heat treatment is performed on a member made of a shape memory alloy, the concentrated heat source is scanned and heated. It is characterized by that.
In addition, when performing shape memory heat treatment on a member made of a Ni-Ti type shape memory alloy, after subjecting the member to secondary processing or recrystallization heat treatment at a temperature of 770 ° C. or higher, a concentrated heat source is used. It is characterized by heating by scanning.

そして、本発明の形状記憶部材は、本発明の上記方法によって製造されていることを特徴とする。   And the shape memory member of this invention is manufactured by the said method of this invention, It is characterized by the above-mentioned.

本発明によれば、形状記憶合金部材に形状記憶熱処理を施すに際して、例えばレーザビームのような集中熱源を走査させて加熱するようにしたことから、部材の全体を加熱する処理に較べて、短時間で省エネルギな熱処理とすることができ、しかも大きな形状回復力を得ることができる。   According to the present invention, when the shape memory alloy member is subjected to shape memory heat treatment, it is heated by scanning a concentrated heat source such as a laser beam, for example. It is possible to achieve heat treatment that saves energy in time, and a great shape recovery force can be obtained.

以下、本発明の形状記憶合金部材と、その製造方法について、さらに詳細かつ具体的に説明する。   Hereinafter, the shape memory alloy member of the present invention and the manufacturing method thereof will be described in more detail and specifically.

本発明においては、上記したように、形状記憶合金に対する形状記憶熱処理に際して、集中熱源を走査することによって形状記憶合金から成る部材を加熱するようにしており、部材全体を昇温して形状記憶熱処理を行うよりも省エネルギな熱処理となると共に、従来の形状記憶合金に比べて大きな回復力が得られることになる。   In the present invention, as described above, in the shape memory heat treatment for the shape memory alloy, the member made of the shape memory alloy is heated by scanning the concentrated heat source. Thus, the heat treatment is energy saving compared to the above, and a greater recovery force is obtained as compared with the conventional shape memory alloy.

このような大きな形状回復力が得られることは、熱弾性型マルテンサイトによる形状記憶合金では、マルテンサイト変態と高温母相への逆変態が部材全体の温度上昇・降下によって生じ、これに伴う変態・逆変態が材料自体の熱膨張・収縮、あるいは変態に伴う結晶の密度変化によって複雑な拘束下で行われるのに対し、集中熱源を走査させることによって、熱源部分が移動する方向に選択的に逆変態と変態によって順に形状記憶処理が行われることになり、従来よりも低い温度でも部分的な変態点以上への昇温が行われることから、全体を熱処理して形状記憶処理を行うよりも、方向性を持った形状記憶効果に有利な合金組織を与えることができるものと考えられる。   The fact that such a large shape recovery force can be obtained is that in the shape memory alloy by thermoelastic martensite, the martensite transformation and the reverse transformation to the high temperature matrix occur due to the temperature rise and fall of the whole member, and the transformation accompanying this・ While reverse transformation is performed under complicated constraints due to thermal expansion / contraction of the material itself or crystal density change accompanying transformation, by selectively scanning the concentrated heat source, the heat source part is selectively moved in the moving direction. Shape memory processing will be performed in order by reverse transformation and transformation, and since the temperature is raised to a partial transformation point or higher even at a lower temperature than conventional, the shape memory processing is performed rather than heat-treating the whole It is considered that an alloy structure advantageous for the shape memory effect having directionality can be provided.

このとき、上記した集中熱源としては、短時間処理、省エネという観点から、赤外線波長のレーザのデフォーカスビームとすることが望ましい。
また、このような集中熱源による走査は、少なくとも1回行い、熱処理対象部材をAf点以上の温度に加熱するようにすることが好ましい。
At this time, the concentrated heat source is preferably a defocused beam of an infrared wavelength laser from the viewpoint of short-time processing and energy saving.
Further, it is preferable that the scanning with such a concentrated heat source is performed at least once to heat the member to be heat-treated to a temperature higher than the Af point.

また、集中熱源照射による熱処理対象部材の加熱温度としては、当該形状記憶合金の平衡状態図における液相発現温度(℃)の1/2以下の温度に加熱することが望ましい。   Further, as the heating temperature of the heat treatment target member by the concentrated heat source irradiation, it is desirable to heat to a temperature of 1/2 or less of the liquid phase onset temperature (° C.) in the equilibrium diagram of the shape memory alloy.

また、本発明の形状記憶部材の製造方法においては、上記のような形状記憶熱処理を形状記憶合金から成る部材に2次加工を施した後、あるいは上記2次加工の後、さらに再結晶熱処理を施したあとに、施すことが望ましい。   In the shape memory member manufacturing method of the present invention, the recrystallization heat treatment is further performed after the shape memory heat treatment as described above is performed on the member made of the shape memory alloy or after the secondary work. It is desirable to apply after applying.

本発明の形状記憶部材の製造方法において、形状記憶合金として、Ni−Ti系合金を用いる場合には、当該Ni−Ti系合金から成る部材に2次加工を施した後、あるいは770℃以上の温度で再結晶熱処理を施した後に上記のような集中熱源を走査させて加熱するようになすことができる。
また、このときの走査処理は、1回以上行うことによって、部材を130℃以上に加熱するようになすことが望ましい。
In the manufacturing method of the shape memory member of the present invention, when a Ni—Ti alloy is used as the shape memory alloy, after the secondary processing is performed on the member made of the Ni—Ti alloy, or at least 770 ° C. After performing the recrystallization heat treatment at a temperature, the above concentrated heat source can be scanned and heated.
In addition, it is desirable that the scanning process at this time be performed at least once so that the member is heated to 130 ° C. or higher.

さらに、部材の加熱温度としては、200℃以上、さらには425℃以下とすることがより望ましい。
なお、Ni−Ti系形状記憶合金の形状記憶熱処理における加熱温度が130℃未満では、当該部材を所望の形状に形状記憶させることができず、425℃を超えると、形状回復時の回復力が低下する傾向があり、アクチュエータとしての駆動力が得られなくなることがある。
Furthermore, the heating temperature of the member is more preferably 200 ° C. or higher, and more preferably 425 ° C. or lower.
In addition, when the heating temperature in the shape memory heat treatment of the Ni—Ti-based shape memory alloy is less than 130 ° C., the shape of the member cannot be memorized in a desired shape. It tends to decrease, and the driving force as an actuator may not be obtained.

以下、本発明を実施例に基づいて、さらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

(1)形状記憶熱処理
(実施例1〜4)
図1に示すように、Ni−Ti系形状記憶合金(Ni49.5%のNi−Ti合金)から成る板厚0.5mmの板状部材1を真空炉中で800℃×1時間の再結晶熱処理を施した後、所望の記憶形状に拘束する治具(図示せず)に固定し、伝送用の光ファイバー2を介して、図外のレーザ発振機に接続されたレーザ照射ヘッド3から、YAGレーザを部材1の表面上で焦点をぼかしたデフォーカスビームBとして照射し、それぞれの温度に加熱することによって、形状記憶熱処理を行った。
このとき、加熱部分の酸化を防止するため、ガスノズル4からアシストガスとしてアルゴンガスを供給することによって、アルゴン雰囲気中で加熱を行うようにした。
(1) Shape memory heat treatment (Examples 1 to 4)
As shown in FIG. 1, a plate-like member 1 made of a Ni—Ti-based shape memory alloy (Ni 49.5% Ni—Ti alloy) and having a thickness of 0.5 mm is recrystallized in a vacuum furnace at 800 ° C. for 1 hour. After the heat treatment, the YAG is fixed to a jig (not shown) constrained to a desired memory shape, and from a laser irradiation head 3 connected to a laser oscillator (not shown) via an optical fiber 2 for transmission. The shape memory heat treatment was performed by irradiating the laser beam as a defocused beam B with the focus being defocused on the surface of the member 1 and heating it to the respective temperatures.
At this time, in order to prevent oxidation of the heated portion, heating was performed in an argon atmosphere by supplying argon gas as an assist gas from the gas nozzle 4.

なお、レーザ出力は20KWとし、デフォーカスしたレーザビームBの径を5mmとすると共に、走査速度を0.025m/秒〜0.0833m/秒の範囲で変えることによって、形状記憶熱処理温度を変化させた。   The laser output is 20 KW, the diameter of the defocused laser beam B is 5 mm, and the shape memory heat treatment temperature is changed by changing the scanning speed in the range of 0.025 m / sec to 0.0833 m / sec. It was.

また、部材1の温度上昇を観測するためには熱電対を使用したが、レーザビームBの照射部分では、レーザビームBが熱電対5を直接加熱してしまい、正確な温度計測ができないため、図2に示すように、部材1の裏面に熱電対5を設置して温度計測を行うことにした。
なお、予備実験として、レーザビームBから外れた照射面側とその裏面、前後部分などに熱電対を設けて各部位の温度計測を行った結果、部材1の厚さが薄いため、試料温度の板厚方向の温度勾配は、ほとんど無視できる程、小さいことが確認された。
Moreover, although the thermocouple was used in order to observe the temperature rise of the member 1, in the irradiation part of the laser beam B, since the laser beam B heats the thermocouple 5 directly, accurate temperature measurement cannot be performed. As shown in FIG. 2, the thermocouple 5 is installed on the back surface of the member 1 and temperature measurement is performed.
As a preliminary experiment, the temperature of each part was measured by providing thermocouples on the irradiation surface side deviated from the laser beam B, the back surface thereof, the front and rear portions, and the like. It was confirmed that the temperature gradient in the plate thickness direction was small enough to be ignored.

(比較例1〜2)
上記実施例と同じNi−Ti系形状記憶合金から成る板厚0.5mmの板状部材に同様の再結晶化熱処理を施した後、同様の拘束治具に固定し、真空炉中で400℃及び800℃でそれぞれ 時間の形状記憶熱処理を施し、これら比較例の形状記憶部材とした。
(Comparative Examples 1-2)
The same recrystallization heat treatment was applied to a plate member having a thickness of 0.5 mm made of the same Ni—Ti-based shape memory alloy as in the above example, and then fixed to the same restraining jig and 400 ° C. in a vacuum furnace. And shape memory members of these comparative examples were subjected to shape memory heat treatment at 800 ° C. and time, respectively.

上記実施例及び比較例によって形状記憶熱処理を行った部材に対して、室温において、インストロン型引張り試験機により5%の伸びひずみを与えたのち、当該引張り試験機から一旦外し、図3に示すように、温度測定用の熱電対5を取り付けると共に、通電による加熱手段10に接続した状態で、再び引張り試験機にチャックした。
そして、通電加熱によって部材温度を200℃まで昇温させることによって、形状記憶合金が形状記憶時の形状に回復するときに発生する力をロードセルで測定し、測定した荷重を5%引張りひずみを導入する前の部材断面積で除した応力を形状記憶による回復力として評価した。
The members subjected to shape memory heat treatment according to the above examples and comparative examples were given 5% elongation strain by an Instron type tensile tester at room temperature, and then temporarily removed from the tensile tester and shown in FIG. As described above, the thermocouple 5 for temperature measurement was attached and the tensile tester was chucked again in a state where the thermocouple 5 was connected to the heating means 10 by energization.
Then, by raising the member temperature to 200 ° C. by energization heating, the force generated when the shape memory alloy recovers to the shape at the time of shape memory is measured with a load cell, and a 5% tensile strain is introduced into the measured load. The stress divided by the member cross-sectional area before the evaluation was evaluated as the recovery force by shape memory.

レーザ走査による形状記憶熱処理温度と上記定義に基づく回復力の関係を真空炉加熱による比較例の結果と併せて図4に示す。   FIG. 4 shows the relationship between the shape memory heat treatment temperature by laser scanning and the recovery force based on the above definition together with the result of the comparative example by vacuum furnace heating.

この結果、真空炉中400℃で形状記憶熱処理を行った部材と、同じく真空炉中800℃で形状記憶熱処理を行った部材の形状回復力がそれぞれ約300MPaであるのに対して、デフォーカスビームにより、130℃、230℃、425℃、550℃の各最高到達温度で熱処理した部材の回復応力を比較すると、デフォーカスビーム加熱による形状記憶熱処理を施した部材の形状回復力の方が大きな値を示しており、その大きさは炉中熱処理の場合に比べて1.49倍から1.9倍になっている。
このような大きな回復力は薄膜以外では得られた例が無く、例えば、230℃といった低温でも十分大きな形状回復力を得られることが判明した。
As a result, the shape recovery force of the member subjected to the shape memory heat treatment in the vacuum furnace at 400 ° C. and the member subjected to the shape memory heat treatment in the vacuum furnace at 800 ° C. is about 300 MPa, respectively. By comparing the recovery stress of the members heat-treated at the highest temperatures of 130 ° C., 230 ° C., 425 ° C. and 550 ° C., the shape recovery force of the members subjected to shape memory heat treatment by defocus beam heating is larger. The size is 1.49 times to 1.9 times that in the case of the heat treatment in the furnace.
There has been no example of such a large recovery force except for a thin film, and it has been found that a sufficiently large shape recovery force can be obtained even at a low temperature of 230 ° C., for example.

すなわち、Ni‐Ti系形状記憶合金の形状記憶熱処理温度は、通常400℃近傍で行われるが、デフォーカスビーム走査による最高到達温度が130℃のときの回復力が440MPaであり、同じく最高到達温度が230℃及び425℃のときの回復力がそれぞれ570MPa及び560MPaであった。
一方、デフォーカスビーム走査による最高到達温度が555℃の場合の回復力は370MPaとなり、通常の形状記憶合金の回復力に比べて20%程度の増加にとどまる結果となった。
That is, the shape memory heat treatment temperature of the Ni—Ti-based shape memory alloy is usually performed in the vicinity of 400 ° C., but the recovery force when the maximum temperature reached by the defocus beam scanning is 130 ° C. is 440 MPa, which is also the maximum temperature reached. The recovery power when the temperature was 230 ° C. and 425 ° C. was 570 MPa and 560 MPa, respectively.
On the other hand, when the maximum temperature reached by defocus beam scanning was 555 ° C., the recovery force was 370 MPa, resulting in an increase of only about 20% compared to the recovery force of a normal shape memory alloy.

以上示したように、形状記憶部材の製造方法における形状記憶熱処理を集中熱源の走査によって部材を加熱するようにし、例えば形状記憶熱処理の集中熱源を赤外線波長のレーザのデフォーカスビームを用いることとし、この集中熱源を用いて形状記憶合金のAf点以上、平衡状態図における液相発現温度の1/2以下、例えばNi‐Ti系形状記憶合金の場合には、130℃以上425℃以下の範囲の温度で走査熱処理を行うことによって、従来にない大きな回復力を得ることができることが確認された。   As described above, the shape memory heat treatment in the method of manufacturing the shape memory member is heated by scanning the concentrated heat source, and for example, the concentrated heat source of the shape memory heat treatment uses a defocused beam of an infrared wavelength laser, Using this concentrated heat source, the Af point of the shape memory alloy is not less than ½ of the liquid phase onset temperature in the equilibrium diagram, for example, in the case of a Ni-Ti shape memory alloy, the temperature ranges from 130 ° C to 425 ° C. It was confirmed that by performing the scanning heat treatment at a temperature, a large recovery force that has not been possible in the past can be obtained.

本発明の形状記憶部材の製造方法におけるレーザビーム照射による形状記憶熱処理要領を示す斜視図である。It is a perspective view which shows the shape memory heat treatment point by laser beam irradiation in the manufacturing method of the shape memory member of this invention. レーザビーム走査による部材の最高到達温度の測定要領を示す斜視図である。It is a perspective view which shows the measuring point of the highest reached temperature of the member by laser beam scanning. 形状記憶部材の形状回復時に発生する回復力の測定要領を示す概略図である。It is the schematic which shows the measuring point of the recovery force generate | occur | produced at the time of shape recovery of a shape memory member. 本発明による形状記憶部材の形状回復力を比較例の回復力と較べて示すグラフである。It is a graph which shows the shape recovery force of the shape memory member by this invention compared with the recovery force of a comparative example.

符号の説明Explanation of symbols

1 部材(形状記憶合金)
B レーザビーム
1 Member (shape memory alloy)
B Laser beam

Claims (12)

形状記憶合金から成る部材に形状記憶熱処理を行うに際して、当該部材に集中熱源を走査させて加熱することを特徴とする形状記憶部材の製造方法。   A method of manufacturing a shape memory member, wherein when performing shape memory heat treatment on a member made of a shape memory alloy, the member is heated by scanning a concentrated heat source. 上記集中熱源として、赤外線波長のレーザのデフォーカスビームを用いることを特徴とする請求項1に記載の形状記憶部材の製造方法。   2. The method of manufacturing a shape memory member according to claim 1, wherein a defocused beam of an infrared wavelength laser is used as the concentrated heat source. 集中熱源による走査を少なくとも1回行ない、上記部材の温度をそのAf点以上に至らしめることを特徴とする請求項1又は2に記載の形状記憶部材の製造方法。   3. The method of manufacturing a shape memory member according to claim 1, wherein the scanning with the concentrated heat source is performed at least once to bring the temperature of the member to the Af point or higher. 形状記憶合金から成る部材をその平衡状態図における液相発現温度(℃)の1/2以下の温度に加熱することを特徴とする請求項2に記載の形状記憶部材の製造方法。   3. The method of manufacturing a shape memory member according to claim 2, wherein the member made of the shape memory alloy is heated to a temperature equal to or lower than a half of a liquid phase onset temperature (° C.) in the equilibrium diagram. 形状記憶合金から成る部材に2次加工を施した後、又は2次加工後、さらに再結晶熱処理を施したあとに、請求項1〜4のいずれか1つの項に記載の形状記憶熱処理を行うことを特徴とする形状記憶部材の製造方法。   The shape memory heat treatment according to any one of claims 1 to 4 is performed after the secondary processing is performed on the member made of the shape memory alloy, or after the secondary processing and further the recrystallization heat treatment. A method of manufacturing a shape memory member. 請求項1〜5のいずれか1つの項に記載の方法によって製造されたことを特徴とする形状記憶部材。   A shape memory member manufactured by the method according to claim 1. Ni−Ti系形状記憶合金から成る部材に形状記憶熱処理を行うに際して、当該部材に2次加工を施した後、又は770℃以上の温度で再結晶熱処理を施した後に、集中熱源を走査させて加熱することを特徴とする形状記憶部材の製造方法。   When performing shape memory heat treatment on a member made of a Ni-Ti type shape memory alloy, after subjecting the member to secondary processing or recrystallization heat treatment at a temperature of 770 ° C. or higher, scan the concentrated heat source. A method of manufacturing a shape memory member, comprising heating. 上記集中熱源として、赤外線波長のレーザのデフォーカスビームを用いることを特徴とする請求項7に記載の形状記憶部材の製造方法。   8. The method of manufacturing a shape memory member according to claim 7, wherein a defocused beam of an infrared wavelength laser is used as the concentrated heat source. 集中熱源による走査を少なくとも1回行ない、上記部材の温度を130℃以上に至らしめることを特徴とする請求項7又は8に記載の形状記憶部材の製造方法。   The method of manufacturing a shape memory member according to claim 7 or 8, wherein scanning with a concentrated heat source is performed at least once to bring the temperature of the member to 130 ° C or higher. 上記部材を425℃以下の温度に加熱することを特徴とする請求項9に記載の形状記憶部材の製造方法。   The method for manufacturing a shape memory member according to claim 9, wherein the member is heated to a temperature of 425 ° C. or less. 上記部材を200℃以上の温度に加熱することを特徴とする請求項9又は10に記載の形状記憶部材の製造方法。   The method of manufacturing a shape memory member according to claim 9 or 10, wherein the member is heated to a temperature of 200 ° C or higher. 請求項7〜11のいずれか1つの項に記載の方法によって製造されたことを特徴とする形状記憶部材。   A shape memory member manufactured by the method according to any one of claims 7 to 11.
JP2006347234A 2006-12-25 2006-12-25 Method for producing shape memory member Pending JP2008156706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347234A JP2008156706A (en) 2006-12-25 2006-12-25 Method for producing shape memory member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347234A JP2008156706A (en) 2006-12-25 2006-12-25 Method for producing shape memory member

Publications (1)

Publication Number Publication Date
JP2008156706A true JP2008156706A (en) 2008-07-10

Family

ID=39657946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347234A Pending JP2008156706A (en) 2006-12-25 2006-12-25 Method for producing shape memory member

Country Status (1)

Country Link
JP (1) JP2008156706A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500864A (en) * 2009-08-07 2013-01-10 イノベーティブ プロセッシング テクノロジーズ インコーポレーテッド Method and apparatus for processing material including shape memory material
CN107937700A (en) * 2017-12-25 2018-04-20 杭州电子科技大学 A kind of high-rate laser defocus quenching strengthening method for miniature shaving tool
CN109365810A (en) * 2018-11-22 2019-02-22 华中科技大学 Laser in-situ prepares the method and product of arbitrary shape copper-based shape memory alloy
DE102018128438A1 (en) * 2018-11-13 2020-05-14 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Method for producing one-piece components from shape memory material and one-piece components from shape memory material and their use
CN112899596A (en) * 2021-03-09 2021-06-04 清华大学 Method for improving refrigeration performance by regulating stress-strain response of nickel-titanium alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500864A (en) * 2009-08-07 2013-01-10 イノベーティブ プロセッシング テクノロジーズ インコーポレーテッド Method and apparatus for processing material including shape memory material
CN107937700A (en) * 2017-12-25 2018-04-20 杭州电子科技大学 A kind of high-rate laser defocus quenching strengthening method for miniature shaving tool
CN107937700B (en) * 2017-12-25 2019-05-31 杭州电子科技大学 A kind of high-rate laser defocus quenching strengthening method for miniature shaving tool
DE102018128438A1 (en) * 2018-11-13 2020-05-14 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Method for producing one-piece components from shape memory material and one-piece components from shape memory material and their use
CN109365810A (en) * 2018-11-22 2019-02-22 华中科技大学 Laser in-situ prepares the method and product of arbitrary shape copper-based shape memory alloy
CN112899596A (en) * 2021-03-09 2021-06-04 清华大学 Method for improving refrigeration performance by regulating stress-strain response of nickel-titanium alloy

Similar Documents

Publication Publication Date Title
JP6923402B2 (en) Monolith nitinol alloy
EP1141423B1 (en) Method for treating with laser an objet consisting of a shape memory material
JP2008156706A (en) Method for producing shape memory member
KR100807393B1 (en) Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby
KR101599869B1 (en) Laser-based marking method and apparatus
Vásquez-Ojeda et al. Bending of stainless steel thin sheets by a raster scanned low power CO2 laser
JP5249329B2 (en) Method for increasing the formability of magnesium alloys
JP5115234B2 (en) Replication apparatus and replication method
JP2011006743A (en) Method for controlling crystal structure of metallic material
JP2009517217A (en) Laser cutting method
Elahinia et al. Manufacturing of shape memory alloys
JP5932431B2 (en) Heating apparatus and heating method
Panton Laser processing, thermomechanical processing, and thermomechanical fatigue of NiTi shape memory alloys
RU2692711C1 (en) METHOD OF MANUFACTURING FUNCTIONAL MATERIAL WITH REVERSIBLE SHAPE MEMORY FROM TiNi-TiCu INTERMETALLIC SYSTEM QUASI-BINARY ALLOY (EMBODIMENTS)
JP2007181849A (en) Method for linearly heating steel sheet
Villa Manufacturing of Shape Memory Alloys
Nikolov et al. Hardening in laser forming under the temperature gradient mechanism
Ishida et al. Bimorph-type microactuator using TiNi shape-memory thin film
JP4465480B2 (en) Laser imprint apparatus and method
JP2003342703A (en) Two way shape memory alloy wire and production method therefor
JPS6263657A (en) Method for stabilizing shape memory characteristic of shape memory ti-ni alloy
Bechtold et al. Analysis and application of micro shockwave adjustment using ultrashort laser pulses
Schmidt et al. Laser micro adjustment technology–Possiblities and challenges for novel applications
JPH07216446A (en) Heat treatment method of large steel
Meng et al. Paper 6: Functionally Graded NiTi Strips Prepared by Laser Surface Anneal