JP2008153021A5 - - Google Patents

Download PDF

Info

Publication number
JP2008153021A5
JP2008153021A5 JP2006338696A JP2006338696A JP2008153021A5 JP 2008153021 A5 JP2008153021 A5 JP 2008153021A5 JP 2006338696 A JP2006338696 A JP 2006338696A JP 2006338696 A JP2006338696 A JP 2006338696A JP 2008153021 A5 JP2008153021 A5 JP 2008153021A5
Authority
JP
Japan
Prior art keywords
electron
manufacturing
catalyst layer
emitting device
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006338696A
Other languages
Japanese (ja)
Other versions
JP5300193B2 (en
JP2008153021A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006338696A priority Critical patent/JP5300193B2/en
Priority claimed from JP2006338696A external-priority patent/JP5300193B2/en
Publication of JP2008153021A publication Critical patent/JP2008153021A/en
Publication of JP2008153021A5 publication Critical patent/JP2008153021A5/ja
Application granted granted Critical
Publication of JP5300193B2 publication Critical patent/JP5300193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (5)

導電性を有する触媒層上に、カーボン材料を含み繊維状または管状を成すとともに側部にグラフェンシートの端面が露出している電子放出部を形成することを特徴とする電子放出素子の製造方法であって、
前記触媒層を加熱し、
減圧雰囲気下において、前記触媒層の周囲に混合ガスを導入し、
プラズマを発生させてCVDを行い、前記電子放出部を形成することを特徴とする電子放出素子の製造方法。
A method for manufacturing an electron-emitting device, comprising: forming an electron-emitting portion that includes a carbon material and has a fibrous or tubular shape and has an exposed end surface of a graphene sheet on a side portion on a conductive catalyst layer. There,
Heating the catalyst layer;
In a reduced pressure atmosphere, a mixed gas is introduced around the catalyst layer,
A method of manufacturing an electron-emitting device, wherein plasma is generated to perform CVD to form the electron-emitting portion.
導電性を有する触媒層上に、カーボン材料を含み繊維状または管状を成す電子放出部を形成することを特徴とする電子放出素子の製造方法であって、
前記触媒層を加熱し、
減圧雰囲気下において、前記触媒層の周囲に混合ガスを導入し、
プラズマを発生させてCVDを行うとともに、
前記電子放出部を形成するに際して、前記触媒層の触媒の核の大きさまたは形状を調整することを特徴とする電子放出素子の製造方法。
A method for manufacturing an electron-emitting device, comprising: forming an electron-emitting portion that includes a carbon material and forms a fibrous or tubular shape on a conductive catalyst layer,
Heating the catalyst layer;
In a reduced pressure atmosphere, a mixed gas is introduced around the catalyst layer,
While generating plasma and performing CVD,
A method of manufacturing an electron-emitting device, wherein the size or shape of a catalyst nucleus of the catalyst layer is adjusted when forming the electron-emitting portion.
前記加熱の際の温度と前記混合ガスの混合比のうち少なくともいずれか1つを制御することにより、前記触媒の核の形状又は大きさを制御することを特徴とする請求項2記載の電子放出素子の製造方法。   The electron emission according to claim 2, wherein the shape or size of the core of the catalyst is controlled by controlling at least one of a temperature during the heating and a mixing ratio of the mixed gas. Device manufacturing method. 前記触媒の核の大きさを50nm以上とし、前記電子放出部としてグラファイトナノチューブを形成することを特徴とする請求項3記載の電子放出素子の製造方法。   4. The method of manufacturing an electron-emitting device according to claim 3, wherein a size of a nucleus of the catalyst is 50 nm or more, and a graphite nanotube is formed as the electron-emitting portion. 前記触媒の核の大きさを10nm以上、かつ、50nm未満とし、前記電子放出部としてグラファイトナノファイバを形成することを特徴とする請求項3記載の電子放出素子の製造方法。   4. The method of manufacturing an electron-emitting device according to claim 3, wherein a size of a nucleus of the catalyst is 10 nm or more and less than 50 nm, and a graphite nanofiber is formed as the electron-emitting portion.
JP2006338696A 2006-12-15 2006-12-15 Method for manufacturing electron-emitting device Expired - Fee Related JP5300193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338696A JP5300193B2 (en) 2006-12-15 2006-12-15 Method for manufacturing electron-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338696A JP5300193B2 (en) 2006-12-15 2006-12-15 Method for manufacturing electron-emitting device

Publications (3)

Publication Number Publication Date
JP2008153021A JP2008153021A (en) 2008-07-03
JP2008153021A5 true JP2008153021A5 (en) 2010-02-04
JP5300193B2 JP5300193B2 (en) 2013-09-25

Family

ID=39654992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338696A Expired - Fee Related JP5300193B2 (en) 2006-12-15 2006-12-15 Method for manufacturing electron-emitting device

Country Status (1)

Country Link
JP (1) JP5300193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151586B (en) * 2011-05-13 2013-04-24 天津大学 Method for preparing thermal-instability material supported catalyst by using low-temperature plasma and application of catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289086A (en) * 2001-03-27 2002-10-04 Canon Inc Electron emitting element, electron source, image forming device and manufacturing method for electron emitting element
JP4680406B2 (en) * 2001-04-06 2011-05-11 双葉電子工業株式会社 Double-sided fluorescent light emitting device
JP3768937B2 (en) * 2001-09-10 2006-04-19 キヤノン株式会社 Electron emitting device, electron source, and manufacturing method of image display device
US7767185B2 (en) * 2003-09-30 2010-08-03 Nec Corporation Method of producing a carbon nanotube and a carbon nanotube structure
KR100682864B1 (en) * 2005-02-19 2007-02-15 삼성에스디아이 주식회사 Method of preparing catalyst layer for synthesis of carbon nanotubes and method of synthesizing carbon nanotubes using the same
JP2006286622A (en) * 2005-03-09 2006-10-19 Sonac Kk Electric field electron emission material and its manufacturing method

Similar Documents

Publication Publication Date Title
Kim et al. Fabrication of an ultralow-resistance ohmic contact to MWCNT–metal interconnect using graphitic carbon by electron beam-induced deposition (EBID)
WO2005065218A3 (en) Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
JP2007051059A (en) Apparatus and method for growing array of single-wall carbon nanotube
Smiljanic et al. Growth of carbon nanotubes on Ohmically heated carbon paper
JP2008255003A (en) Carbon nanotube composite utilizing carbide-derived carbon, its production method, electron emission source containing it, and electron emission device provided with the electron emission source
Jeong et al. Narrow diameter distribution of singlewalled carbon nanotubes grown on Ni–MgO by thermal chemical vapor deposition
WO2008093661A1 (en) Nanocarbon aggregate and method for producing the same
Chen et al. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays
Kumar et al. Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically-written Si features with arbitrary shape
JP2010516620A5 (en)
Yun et al. Field emission from a large area of vertically-aligned carbon nanofibers with nanoscale tips and controlled spatial geometry
CN111170309A (en) Preparation method of ultra-long few-wall carbon nanotube array
TW201641418A (en) Producing method of graphene and applications thereof
Sridhar et al. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst
Guo et al. Effects of carbon nanotubes on wear of WC/Co micropunches
Hu et al. Highly enhanced field emission from CuO nanowire arrays by coating of carbon nanotube network films
Yu et al. Change of surface morphology and field emission property of carbon nanotube films treated using a hydrogen plasma
KR101313753B1 (en) Method for growth of carbon nanoflakes and carbon nanoflakes structure
JP2008153021A5 (en)
Yuge et al. Carbon nanotubes forming cores of fibrous aggregates of carbon nanohorns
JP2010077007A (en) Base material for forming carbon nanotube, carbon nanotube orientedly grown on the base material and their production method
Lin et al. Field emission properties of tapered carbon nanotubes synthesized by the pyrolysis of poly (ethylene glycol) using a nickel catalyst
Jayatissa et al. Synthesis of carbon nanotubes at low temperature by filament assisted atmospheric CVD and their field emission characteristics
Mann et al. Controlling the growth of carbon nanotubes for electronic devices
Kholmanov et al. Growth of curved graphene sheets on graphite by chemical vapor deposition