JP2008142761A - Cold temper rolling method for copper alloy sheet - Google Patents

Cold temper rolling method for copper alloy sheet Download PDF

Info

Publication number
JP2008142761A
JP2008142761A JP2006335552A JP2006335552A JP2008142761A JP 2008142761 A JP2008142761 A JP 2008142761A JP 2006335552 A JP2006335552 A JP 2006335552A JP 2006335552 A JP2006335552 A JP 2006335552A JP 2008142761 A JP2008142761 A JP 2008142761A
Authority
JP
Japan
Prior art keywords
rolling
copper alloy
cold
cold rolling
temper rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006335552A
Other languages
Japanese (ja)
Other versions
JP4861151B2 (en
Inventor
Seimei Terao
星明 寺尾
Hiroki Ota
裕樹 太田
Hideaki Kohiki
英明 小日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Precision Corp
Original Assignee
JFE Steel Corp
JFE Precision Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Precision Corp filed Critical JFE Steel Corp
Priority to JP2006335552A priority Critical patent/JP4861151B2/en
Publication of JP2008142761A publication Critical patent/JP2008142761A/en
Application granted granted Critical
Publication of JP4861151B2 publication Critical patent/JP4861151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively producing a copper alloy having a satisfactory flatness which is suitable as the stock for a heat radiation sheet having compatibility between a low thermal expansion coefficient and a high thermal conductivity rate, and also having excellent workability. <P>SOLUTION: First cold rolling where the roll spacing between rolling rolls is set to a prescribed value, and a copper alloy sheet is subjected to thickness reduction is performed one time, and thereafter, first temper rolling is performed one or more times at the roll spacing same as that in the first cold rolling, and next, second cold rolling where the roll spacing is reduced and the copper alloy sheet is subjected to thickness reduction is performed for one time, and subsequently, second temper rolling is performed one or more times at the roll spacing same as that in the second cold rolling. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、銅合金板を所定の厚さに減厚する冷間圧延と平坦かつ平滑な表面を得る調質圧延とを組み合わせた圧延方法(以下、冷間調質圧延方法という)に関するものであり、特に電子機器に搭載される半導体素子等の発熱体から発生する熱を速やかに放散させるために用いられる放熱板(いわゆるヒートシンク材)の素材として好適な銅合金板の冷間調質圧延方法に関するものである。   The present invention relates to a rolling method (hereinafter referred to as a cold temper rolling method) that combines cold rolling to reduce a copper alloy sheet to a predetermined thickness and temper rolling to obtain a flat and smooth surface. In particular, a cold temper rolling method for a copper alloy plate suitable as a material for a heat radiating plate (so-called heat sink material) used to quickly dissipate heat generated from a heating element such as a semiconductor element mounted on an electronic device. It is about.

半導体素子等の電子部品を搭載した電子機器を作動させる際には、電子回路への通電に伴い電子部品が発熱する。電子機器の高出力化が進み、作動時の発熱量はますます増加する傾向にあるが、温度が上昇し過ぎると半導体素子の特性が変化し、電子機器の動作が不安定になるという問題が生じる。また長時間にわたって使用することによって過剰な高温に曝されると、電子部品の接合材(たとえばハンダ等)や絶縁材(たとえば合成樹脂等)が変質して、電子機器の故障の原因になる。そのため、電子部品から発生する熱を速やかに放散させる必要がある。そこで、放熱板を介して熱を放散させる技術が種々検討されている。   When an electronic device equipped with an electronic component such as a semiconductor element is operated, the electronic component generates heat as the electronic circuit is energized. As the output of electronic equipment increases, the amount of heat generated during operation tends to increase, but if the temperature rises too much, the characteristics of the semiconductor elements change and the operation of the electronic equipment becomes unstable. Arise. Further, when exposed to an excessively high temperature after being used for a long period of time, a bonding material (for example, solder) or an insulating material (for example, synthetic resin) of an electronic component is altered, causing a failure of the electronic device. Therefore, it is necessary to quickly dissipate heat generated from the electronic component. Therefore, various techniques for dissipating heat through a heat sink have been studied.

半導体は、たとえば窒化アルミニウム(AlN)にAl電極をダイレクトボンディングした基板(いわゆるDBA基板)の上にハンダ付けあるいはロウ付けされた後、放熱板の上に同様の方法で固定される。その際、DBA基板の熱膨張率は5〜7×10-6-1であるから、接合される放熱板としてはこれに近い熱膨張率を有することが要求される。一般に使用されているW−Cu系複合材料の放熱板の熱膨張率は6〜9×10-6-1であり、Mo−Cu系複合材料の放熱板の熱膨張率は7〜14×10-6-1である。 The semiconductor is soldered or brazed on a substrate (so-called DBA substrate) obtained by directly bonding an Al electrode to aluminum nitride (AlN), for example, and then fixed on the heat sink in the same manner. At this time, the coefficient of thermal expansion of the DBA substrate is 5 to 7 × 10 −6 K −1 , so that the heat sink to be joined is required to have a coefficient of thermal expansion close to this. The thermal expansion coefficient of the heat sink of the commonly used W-Cu based composite material is 6-9 × 10 −6 K −1 , and the thermal expansion coefficient of the heat sink of the Mo—Cu based composite material is 7-14 ×. 10 −6 K −1 .

様々な種類の基板と放熱板の中から熱膨張率の近いものを選択して接合すれば、半導体素子の発熱に起因する熱応力の影響を小さく抑制することができる。
つまり放熱板は、セラミックスを主体とする基板(たとえばDBA基板)と同等の低い熱膨張率を有する素材を使用する必要がある。さらに、熱を放散する機能を果たすために高い熱伝導率を有することが求められる。したがって放熱板の素材は、低熱膨張率と高熱伝導率とを両立させなければならない。
By selecting and bonding various types of substrates and heat sinks having a similar thermal expansion coefficient, it is possible to reduce the influence of thermal stress caused by heat generation of the semiconductor element.
That is, it is necessary to use a material having a low coefficient of thermal expansion equivalent to that of a substrate mainly made of ceramics (for example, a DBA substrate). Furthermore, it is required to have a high thermal conductivity in order to perform the function of dissipating heat. Therefore, the material of the heat sink must satisfy both a low thermal expansion coefficient and a high thermal conductivity.

しかし単一の素材で低熱膨張率と高熱伝導率とを両立させることは困難であるから、現状では放熱板を製造するにあたって、低熱膨張率の素材と高熱伝導率の素材とを併用した合金板あるいは複合材料が使用されている。また放熱板は、半導体やDBA基板あるいは放熱板に取付けられることの多い冷却フィンや冷却装置とは、隙間なく接合する必要があるため、平面度の高い板が所望される。   However, since it is difficult to achieve both a low thermal expansion coefficient and a high thermal conductivity with a single material, at present, when manufacturing a heat sink, an alloy plate that uses a combination of a low thermal expansion coefficient material and a high thermal conductivity material. Alternatively, composite materials are used. Further, since the heat sink needs to be joined to a cooling fin or a cooling device often attached to a semiconductor, a DBA substrate, or a heat sink without a gap, a plate with high flatness is desired.

たとえば特許文献1には、放熱板として使用するW−Cu,Mo−Cu等の合金板が開示されている。これらは熱膨張率が低いWやMoと、熱伝導率が高いCuとを併用したものである。しかしながらW,Moは高価であるから、これら放熱板の製造コストの上昇は避けられない。しかもW,Moは硬度が高いので、放熱板を所定の形状に加工するのは容易ではない。
特許文献2には、SiC−Al,Cu2O−Cu等のセラミックス−金属系複合材料が開示されている。これらは熱膨張率が低いセラミックスと、熱伝導率が高い金属とを併用したものである。しかしながらセラミックスは変形し難く切削加工も難しいので、放熱板を所定の形状に加工するのは困難である。
For example, Patent Document 1 discloses an alloy plate such as W—Cu and Mo—Cu used as a heat sink. These are a combination of W and Mo having a low coefficient of thermal expansion and Cu having a high thermal conductivity. However, since W and Mo are expensive, an increase in the manufacturing cost of these heat sinks is inevitable. Moreover, since W and Mo have high hardness, it is not easy to process the heat sink into a predetermined shape.
Patent Document 2 discloses a ceramic-metal composite material such as SiC-Al and Cu 2 O—Cu. These are a combination of a ceramic having a low coefficient of thermal expansion and a metal having a high thermal conductivity. However, since ceramics are difficult to deform and difficult to cut, it is difficult to process the heat sink into a predetermined shape.

さらに特許文献3には、低熱膨張率と高熱伝導率とを両立させたCr−Cu合金板が開示されている。この技術は、2〜50質量%のCrを含有する銅合金にて第2相として存在するCr相のアスペクト比を10以上とすることによって、複合則から予想されるよりも低い熱膨張率を得るものである。しかしながら鋳造法ではCrの含有量が増加するとCrが偏析し、しかも銅合金の融点が高くなるので、均質な銅合金の製造は困難である。またCr相のアスペクト比を10以上とするためには、冷間圧延で90%以上の総圧下率となるような圧下を必要とするので、冷間圧延のパス回数が増加する。このような理由によって、特許文献3に開示されたCr−Cu合金板は製造コストが上昇するばかりでなく、製造可能な寸法が大幅な制約を受ける。
特公平5-38457号公報 特開2002-212651号公報 特開2000-239762号公報
Further, Patent Document 3 discloses a Cr—Cu alloy plate that achieves both a low thermal expansion coefficient and a high thermal conductivity. This technology has a lower coefficient of thermal expansion than expected from the composite law by setting the aspect ratio of the Cr phase present as the second phase to 10 or more in a copper alloy containing 2 to 50% by mass of Cr. To get. However, in the casting method, when the Cr content increases, Cr segregates and the melting point of the copper alloy increases, so that it is difficult to produce a homogeneous copper alloy. Further, in order to make the aspect ratio of the Cr phase 10 or more, since it is necessary to reduce the total reduction ratio of 90% or more by cold rolling, the number of cold rolling passes increases. For these reasons, the production cost of the Cr—Cu alloy sheet disclosed in Patent Document 3 is not only increased, but the manufacturable dimensions are greatly restricted.
Japanese Patent Publication No. 5-38457 JP 2002-212651 A JP 2000-239762

本発明は、低熱膨張率と高熱伝導率とを両立させ、かつ優れた加工性を有する放熱板の素材として好適な平面度の良好な銅合金板を安価に製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a copper alloy plate having good flatness suitable for a heat sink material having both low thermal expansion coefficient and high thermal conductivity and excellent workability at low cost. And

本発明は、圧延ロールのロール間隔を所定の値に設定して銅合金板に減厚を施す第1冷間圧延を1回行なった後、第1冷間圧延と同じロール間隔で第1調質圧延を1回以上行なう第1圧下スケジュールと、次にロール間隔を減少して銅合金板に減厚を施す第2冷間圧延を1回行なった後、第2冷間圧延と同じロール間隔で第2調質圧延を1回以上行なう第2圧下スケジュールとを行なう銅合金板の冷間調質圧延方法である。   In the present invention, after performing the first cold rolling for reducing the thickness of the copper alloy sheet by setting the roll interval of the rolling rolls to a predetermined value, the first adjustment is performed at the same roll interval as the first cold rolling. The same rolling interval as the second cold rolling after performing the first rolling schedule for performing quality rolling at least once and then performing the second cold rolling for reducing the thickness of the copper alloy sheet by reducing the roll interval once. In the cold temper rolling method for copper alloy sheet, the second temper rolling is performed at least once and the second rolling reduction schedule is performed.

本発明の冷間調質圧延方法においては、ロール間隔が同一である冷間圧延と調質圧延とを組み合わせた圧下スケジュールを、3組以上行なうことが好ましい。また、Cr:30質量%超え80質量%以下を含有し、残部がCuおよび不可避的不純物からなる銅合金板を使用することが好ましい。   In the cold temper rolling method of the present invention, it is preferable to perform three or more sets of rolling schedules in which cold rolling and temper rolling with the same roll interval are combined. Moreover, it is preferable to use a copper alloy plate containing Cr: more than 30% by mass and 80% by mass or less, with the balance being Cu and inevitable impurities.

本発明によれば、低熱膨張率と高熱伝導率とを両立させ、かつ優れた加工性を有する放熱板の素材として好適な平面度の良好な銅合金板を安価に製造できる。   ADVANTAGE OF THE INVENTION According to this invention, the copper alloy board with favorable flatness suitable as a raw material of the heat sink which can make low thermal expansion coefficient and high thermal conductivity compatible, and has the outstanding workability can be manufactured cheaply.

本発明で使用する銅合金板は、熱膨張率の低い金属(たとえばCr等)と熱伝導率の高いCuとの合金からなる金属板である。ここではCr−Cu系の銅合金板について説明する。
Cr−Cu系の銅合金板の熱膨張率αALLOYは、下記の(1)式に示す複合則で算出される(特許文献3参照)。この(1)式によれば、Cr−Cu系の銅合金板にて放熱板として使用する際に要求される低い熱膨張率(すなわち13×10-6-1以下)を得るためのCr含有量がVCR値から算出でき、その計算値は40質量%以上となる。そのようなCrを40質量%以上含有する銅合金を製造するにあたって、従来のようなアーク溶解法を採用すると、銅合金板の製造コストの上昇を招く。
The copper alloy plate used in the present invention is a metal plate made of an alloy of a metal having a low thermal expansion coefficient (such as Cr) and Cu having a high thermal conductivity. Here, a Cr-Cu-based copper alloy plate will be described.
The coefficient of thermal expansion α ALLOY of the Cr—Cu-based copper alloy plate is calculated according to the composite rule shown in the following equation (1) (see Patent Document 3). According to this formula (1), Cr for obtaining a low coefficient of thermal expansion (that is, 13 × 10 −6 K −1 or less) required when used as a heat sink in a Cr—Cu based copper alloy plate. The content can be calculated from the VCR value, and the calculated value is 40% by mass or more. In producing such a copper alloy containing 40 mass% or more of Cr, if a conventional arc melting method is employed, the production cost of the copper alloy plate is increased.

αALLOY=αCR×VCR+αCU×(1−VCR) ・・・(1)
αALLOY:銅合金板の熱膨張率
αCR :Crの熱膨張率
αCU :Cuの熱膨張率
CR :Cr相の体積分率
そこで本発明では粉末冶金法を採用する。その粉末冶金法の原料粉は、
(a)Cr粉
(b)Cr粉とCu粉の混合粉
に大別される。いずれの原料粉も型枠に充填して成形するが、加圧成形は行なわなくても良い。
α ALLOY = α CR × V CR + α CU × (1−V CR ) (1)
α ALLOY : Thermal expansion coefficient of copper alloy plate α CR : Thermal expansion coefficient of Cr α CU : Thermal expansion coefficient of Cu V CR : Volume fraction of Cr phase Therefore, in the present invention, the powder metallurgy method is adopted. The raw powder of the powder metallurgy method is
(a) Cr powder
(b) Broadly divided into mixed powders of Cr powder and Cu powder. Any raw material powder is filled in a mold and molded, but pressure molding may not be performed.

Cr粉を原料粉として銅合金板を製造する場合は、Cr粉を金型成形あるいは型枠に充填し、焼結する。得られた多孔質焼結体に溶解したCuを含浸させる。Cr粉は、JIS規格Z2510:2004に準拠して篩分けした粒度250μm以下(JIS規格Z8801-1:2006に規定される公称目開き寸法),純度99質量%以上のものを使用するのが好ましい。Cuは、工業的に生産されるタフピッチ銅,リン脱酸銅,無酸素銅等を使用する。   When producing a copper alloy plate using Cr powder as raw material powder, Cr powder is molded into a mold or filled into a mold and sintered. The obtained porous sintered body is impregnated with dissolved Cu. It is preferable to use Cr powder having a particle size of 250 μm or less (nominal opening size specified in JIS standard Z8801-1: 2006) and a purity of 99% by mass or more, which is sieved according to JIS standard Z2510: 2004. . Cu uses industrially produced tough pitch copper, phosphorus deoxidized copper, oxygen-free copper, and the like.

Cr粉とCu粉の混合粉を原料粉として銅合金板を製造する場合は、混合粉を金型成形あるいは型枠に充填し、さらに焼結する。必要に応じて、溶解したCuを含浸させても良い。Cr粉は、JIS規格Z2510:2004に準拠して篩分けした粒度250μm以下(JIS規格Z8801-1:2006に規定される公称目開き寸法),純度99質量%以上のものを使用するのが好ましい。Cu粉は、工業的に生産される電解銅粉,アトマイズ銅粉等を使用する。含浸させるCuは、工業的に生産されるタフピッチ銅,リン脱酸銅,無酸素銅等を使用する。   When a copper alloy plate is produced using a mixed powder of Cr powder and Cu powder as raw material powder, the mixed powder is filled into a mold or a mold and further sintered. If necessary, dissolved Cu may be impregnated. It is preferable to use Cr powder having a particle size of 250 μm or less (nominal opening size specified in JIS standard Z8801-1: 2006) and a purity of 99% by mass or more, which is sieved according to JIS standard Z2510: 2004. . As the Cu powder, industrially produced electrolytic copper powder, atomized copper powder, or the like is used. As the impregnated Cu, industrially produced tough pitch copper, phosphorus deoxidized copper, oxygen-free copper, or the like is used.

このようにして銅合金板におけるCr含有量を調整する。本発明の場合、Cr含有量が30質量%超えで、低熱膨張率を達成できる。一方、80質量%以下で高熱伝導率を達成できる。したがって、銅合金板のCr含有量は30質量%超え80質量%以下であり、残部はCuおよび不可避的不純物であることが好ましい。
不可避的不純物は、銅合金板の加工性改善の観点から、可能な限り低減することが好ましい。特にOが銅合金板の加工性に多大な影響を及ぼすので、O含有量は0.01質量%以下が好ましい。
In this way, the Cr content in the copper alloy sheet is adjusted. In the present invention, when the Cr content exceeds 30% by mass, a low coefficient of thermal expansion can be achieved. On the other hand, high thermal conductivity can be achieved at 80 mass% or less. Therefore, the Cr content of the copper alloy sheet is preferably more than 30% by mass and 80% by mass or less, and the balance is Cu and inevitable impurities.
Inevitable impurities are preferably reduced as much as possible from the viewpoint of improving the workability of the copper alloy sheet. In particular, O has a great influence on the workability of the copper alloy plate, so the O content is preferably 0.01% by mass or less.

このようにして得られた銅合金板に、その表面に残留した余分なCuを除去した後で、冷間圧延を施して所定の厚さに仕上げる。ただし、圧延ロールで圧下をかけて1回減厚する毎に圧延ロールのロール間隔を減少し、連続して圧下をかけると、銅合金板の波打ち現象(いわゆる腹伸び,耳伸び)による形状不良が発生する。このような波打ちは、銅合金板の幅方向中央部と幅方向端部の減厚量の違いが原因となって発生するものであり、銅合金板から放熱板を製造する際の切断加工やプレス加工にて様々なトラブルを引き起こす。   After removing the excess Cu remaining on the surface of the copper alloy plate thus obtained, it is cold-rolled and finished to a predetermined thickness. However, each time the thickness is reduced by rolling with a rolling roll, the roll interval between the rolling rolls is reduced, and when the rolling is continuously reduced, the shape defect due to the wavy phenomenon (so-called belly stretch, ear stretch) of the copper alloy sheet. Will occur. Such undulation is caused by the difference in thickness reduction between the width direction center part and the width direction end part of the copper alloy plate, and the cutting process when manufacturing the heat sink from the copper alloy plate Causes various troubles in press working.

そこで本発明では、圧延ロールのロール間隔を所定の値に設定して銅合金板に圧下をかけて減厚する冷間圧延を1回行なった後、ロール間隔を変更せず、銅合金板の表層部に軽度の圧下をかける調質圧延を1回行なう。この冷間圧延を第1冷間圧延と記し、調質圧延を第1調質圧延と記す。第1調質圧延は2回以上繰り返しても良い。ただし第1調質圧延を2回以上繰り返す場合は、ロール間隔を変更せず、第1冷間圧延と同じロール間隔で行なう。   Therefore, in the present invention, after performing the cold rolling in which the roll interval of the rolling rolls is set to a predetermined value to reduce the thickness by reducing the copper alloy plate, the roll interval is not changed, and the copper alloy plate Temper rolling is applied once to apply a slight reduction to the surface layer. This cold rolling is referred to as first cold rolling, and temper rolling is referred to as first temper rolling. The first temper rolling may be repeated two or more times. However, when repeating 1st temper rolling twice or more, it does not change a roll space | interval and it carries out with the same roll space | interval as 1st cold rolling.

このように、一定のロール間隔で行なう第1冷間圧延と第1調質圧延の組み合わせを第1圧下スケジュールと記す。
第1圧下スケジュールに引き続き、圧延ロールのロール間隔を第1圧下スケジュールより減少して銅合金板に圧下をかけて減厚する冷間圧延を1回行なう。これを第2冷間圧延と記す。第2冷間圧延が終了した後、ロール間隔を変更せず、銅合金板の表層部に軽度の圧下をかける調質圧延を1回行なう。これを第2調質圧延と記す。第2調質圧延は2回以上繰り返しても良い。ただし第2調質圧延を2回以上繰り返す場合は、ロール間隔を変更せず、第2冷間圧延と同じロール間隔で行なう。
Thus, the combination of the 1st cold rolling and 1st temper rolling performed with a fixed roll space | interval is described as a 1st rolling reduction schedule.
Subsequent to the first reduction schedule, cold rolling is performed once by reducing the roll interval of the rolling rolls from the first reduction schedule and reducing the thickness by reducing the copper alloy sheet. This is referred to as second cold rolling. After the second cold rolling is completed, the temper rolling is performed once by applying a slight reduction to the surface layer portion of the copper alloy sheet without changing the roll interval. This is referred to as second temper rolling. The second temper rolling may be repeated two or more times. However, when the second temper rolling is repeated two or more times, the roll interval is not changed and the same roll interval as in the second cold rolling is performed.

このように、一定のロール間隔で行なう第2冷間圧延と第2調質圧延の組み合わせを第2圧下スケジュールと記す。
これらの第1圧下スケジュールと第2圧下スケジュールを行なった後、さらに第3圧下スケジュールを行なっても良い。
第3圧下スケジュールを行なう場合は、第2圧下スケジュールに引き続き、圧延ロールのロール間隔を第2圧下スケジュールより減少して銅合金板に圧下をかけて減厚する冷間圧延を1回行なう。これを第3冷間圧延と記す。第3冷間圧延が終了した後、ロール間隔を変更せず、銅合金板の表層部に軽度の圧下をかける調質圧延を1回行なう。これを第3調質圧延と記す。第3調質圧延は2回以上繰り返しても良い。ただし第3調質圧延を2回以上繰り返す場合は、ロール間隔を変更せず、第3冷間圧延と同じロール間隔で行なう。
Thus, the combination of the 2nd cold rolling performed by a fixed roll space | interval and the 2nd temper rolling is described as a 2nd rolling reduction schedule.
After performing the first reduction schedule and the second reduction schedule, a third reduction schedule may be further performed.
In the case of performing the third reduction schedule, cold rolling is performed once, following the second reduction schedule, by reducing the roll interval of the rolling rolls from the second reduction schedule and reducing the thickness by reducing the copper alloy sheet. This is referred to as third cold rolling. After the third cold rolling is completed, the temper rolling is performed once to apply a slight reduction to the surface layer portion of the copper alloy sheet without changing the roll interval. This is referred to as third temper rolling. The third temper rolling may be repeated twice or more. However, when the third temper rolling is repeated two or more times, the roll interval is not changed and the same roll interval as the third cold rolling is performed.

以上は一定のロール間隔で冷間圧延と調質圧延を行なう圧下スケジュールを3組連続して行なう例であるが、本発明ではそのような圧下スケジュールを4組以上行なっても良い。その場合は、第3圧下スケジュールに引き続き、第4圧下スケジュール以降を行なう。第4圧下スケジュール以降は上記した圧下スケジュールと同じであるから説明を省略する。   The above is an example in which three sets of rolling schedules for performing cold rolling and temper rolling at a constant roll interval are continuously performed. However, in the present invention, four or more sets of such rolling schedules may be performed. In that case, the fourth and subsequent rolling schedules are performed after the third rolling schedule. Since the fourth reduction schedule is the same as the above-described reduction schedule, the description thereof is omitted.

このようにして、銅合金板の板厚が大きい圧延初期の段階(すなわち第1圧下スケジュール)から調質圧延を行なうことによって、平坦かつ平滑な平面度の良好な銅合金板が得られる。その銅合金板は、熱膨張率の低い金属(たとえばCr等)と熱伝導率の高いCuとの合金からなる金属板であるから、低熱膨張率と高熱伝導率とを両立させ、かつ優れた加工性を有する。しかもW,Mo等の高価な金属を使用しないので、安価に製造できる。さらに、潤滑油を使用しなくても良いので、冷間調質圧延が終了した後、銅合金板の洗浄工程を省略でき、生産性の向上,製造コストの削減の効果も得られる。しかしながら、潤滑油を使用することで形状がさらに改善される。また、表面のキズ等を防止できる。したがって上記した効果を得るためには、潤滑油を圧延ロールおよび/または銅合金板に塗布することが好ましい。   Thus, by performing temper rolling from the initial rolling stage (ie, the first reduction schedule) where the thickness of the copper alloy sheet is large, a copper alloy sheet having a flat and smooth flatness can be obtained. Since the copper alloy plate is a metal plate made of an alloy of a metal having a low thermal expansion coefficient (such as Cr) and Cu having a high thermal conductivity, it has both a low thermal expansion coefficient and a high thermal conductivity and is excellent. Has processability. Moreover, since expensive metals such as W and Mo are not used, they can be manufactured at low cost. Furthermore, since it is not necessary to use lubricating oil, after the cold temper rolling is completed, the cleaning process of the copper alloy sheet can be omitted, and the effects of improving productivity and reducing manufacturing costs can be obtained. However, the shape is further improved by using lubricating oil. Further, scratches on the surface can be prevented. Therefore, in order to obtain the effects described above, it is preferable to apply the lubricating oil to the rolling roll and / or the copper alloy plate.

なお銅合金板の板厚が小さくなる(すなわち第2圧下スケジュール以降)につれて、調質圧延の回数を増加することによって、銅合金板の表面が著しく改善される。一方で調質圧延の回数を増加すれば、銅合金板の生産効率が低下する。したがって、銅合金板に要求される表面性状や成分等に応じて、各圧下スケジュールにおける調質圧延の回数を設定することが好ましい。   In addition, the surface of a copper alloy plate is remarkably improved by increasing the frequency | count of temper rolling as the plate | board thickness of a copper alloy plate becomes small (namely, after the 2nd reduction schedule). On the other hand, if the number of temper rolling is increased, the production efficiency of the copper alloy sheet is lowered. Therefore, it is preferable to set the number of times of temper rolling in each rolling schedule according to the surface properties and components required for the copper alloy sheet.

本発明を適用する銅合金板の板厚が0.2mm未満では、各圧下スケジュールにおける冷間圧延の減厚を十分に付与できないので、調質圧延の効果が十分に得られなくなる。これは圧下率が増加するのに伴い銅合金板の加工硬化が著しくなることが原因の一つと考えられる。板厚が0.2mm未満となる場合には、小径のロールを用いたり、圧延油の使用や張力圧延の適用を併用することが好ましい。   If the thickness of the copper alloy sheet to which the present invention is applied is less than 0.2 mm, the thickness of the cold rolling in each rolling schedule cannot be sufficiently provided, so that the effect of the temper rolling cannot be obtained sufficiently. This is considered to be one of the causes that the work hardening of the copper alloy sheet becomes remarkable as the rolling reduction increases. When the plate thickness is less than 0.2 mm, it is preferable to use a small-diameter roll, or use rolling oil or applying tension rolling.

一方、本発明を適用できる板厚に上限はないが、総圧下率{(T0−T)/T0×100;T0は初期板厚,Tは圧下後の板厚を示す}を90%未満とすることが形状改善の観点から好ましい。 On the other hand, there is no upper limit to the sheet thickness to which the present invention can be applied, but the total reduction ratio {(T 0 −T) / T 0 × 100; T 0 indicates the initial sheet thickness, and T indicates the sheet thickness after reduction} is 90. It is preferable from a viewpoint of shape improvement to set it as less than%.

Cr粉を型枠(180mm×200mmの大きさ)に充填し、加圧成形を行なわず、水素雰囲気中1300℃で焼結して多孔質焼結体(180mm×200mm)を作製し、型枠から取り出した。その多孔質焼結体の上にCu板を載置し、真空中1200℃でCuを溶解して、多孔質焼結体にCuを含浸させた。次いで、熱処理(600℃,1hr)を施して焼きなましを行なった。その後、フライス盤を用いて余分なCuを除去し、さらに切削加工して銅合金板(板厚5mm)とした。得られた銅合金板のCr含有量は50質量%であった。   Fill the mold (180mm x 200mm) with Cr powder and sinter at 1300 ° C in a hydrogen atmosphere without pressure molding to produce a porous sintered body (180mm x 200mm). It was taken out from. A Cu plate was placed on the porous sintered body, Cu was melted at 1200 ° C. in a vacuum, and the porous sintered body was impregnated with Cu. Next, annealing was performed by heat treatment (600 ° C., 1 hr). Then, excess Cu was removed using a milling machine, and further cut to obtain a copper alloy plate (plate thickness 5 mm). The obtained copper alloy sheet had a Cr content of 50% by mass.

2ロール圧延機を用いて、この銅合金板に第1圧下スケジュールの冷間圧延と調質圧延を施した。使用した2ロール圧延機は、上下1対のロール(直径200mm)を有するものである。
第1圧下スケジュールでは、ロール間隔を4.8mmに設定して第1冷間圧延(1回)を行ない、さらにロール間隔を変更せず第1調質圧延(1回)を行なった。引き続き、ロール間隔を4.6mmに変更して第2冷間圧延(1回)と第2調質圧延(1回)を行なった(すなわち第2圧下スケジュール)。
Using a two-roll mill, the copper alloy sheet was subjected to cold rolling and temper rolling according to the first reduction schedule. The used 2-roll rolling mill has a pair of upper and lower rolls (diameter 200 mm).
In the first reduction schedule, the first cold rolling (one time) was performed with the roll interval set to 4.8 mm, and the first temper rolling (one time) was performed without changing the roll interval. Subsequently, the roll interval was changed to 4.6 mm, and the second cold rolling (one time) and the second temper rolling (one time) were performed (that is, the second reduction schedule).

その後、ロール間隔が2mmになるまで、ロール間隔を0.2mmずつ減少して第3圧下スケジュール以降の冷間圧延と調質圧延を行なった。いずれの圧下スケジュールにおいても、冷間圧延と調質圧延は1回ずつ行なった。ロール間隔を2mmとした圧下スケジュールを終了した後の銅合金板の板厚は2.5mmであった。
次に、ロール間隔を1.9mmに設定して第N冷間圧延(1回)を行ない、さらにロール間隔を変更せず第N調質圧延(2回)を行なった(すなわち第N圧下スケジュール)。引き続き、ロール間隔を1.8mmに変更して第N+1冷間圧延(1回)と第N+1調質圧延(2回)を行なった(すなわち第N+1圧下スケジュール)。なお、Nは整数である。
Then, until the roll interval became 2 mm, the roll interval was decreased by 0.2 mm and cold rolling and temper rolling after the third reduction schedule were performed. In any rolling schedule, cold rolling and temper rolling were performed once. The thickness of the copper alloy sheet after finishing the rolling schedule with a roll interval of 2 mm was 2.5 mm.
Next, the Nth cold rolling (one time) was performed with the roll interval set to 1.9 mm, and the Nth temper rolling (twice) was performed without changing the roll interval (that is, the Nth reduction schedule). . Subsequently, the roll interval was changed to 1.8 mm, and the (N + 1) th cold rolling (1 time) and the (N + 1) temper rolling (2 times) were performed (that is, the (N + 1) rolling reduction schedule). N is an integer.

その後、銅合金板の板厚が0.8mmになるまで、ロール間隔を0.1mmずつ減少して第N+2圧下スケジュール以降の冷間圧延と調質圧延を行なった。いずれの圧下スケジュールにおいても、冷間圧延は1回,調質圧延は2回ずつ行なった。
以上を発明例とする。
一方、比較例として、発明例と同じ方法で銅合金板を作製し、発明例と同じ2ロール圧延機を用いて冷間圧延のみを行なった。すなわち、ロール間隔を4.8mmに設定して第1冷間圧延(1回)を行ない、引き続きロール間隔を4.6mmに変更して第2冷間圧延(1回)を行なった。その後、ロール間隔が2mmになるまで、ロール間隔を0.2mmずつ減少して第3冷間圧延以降の冷間圧延を1回ずつ行なった。ロール間隔を2mmとした圧下スケジュールを終了した後の銅合金板の板厚は2.5mmであった。
Thereafter, until the plate thickness of the copper alloy plate became 0.8 mm, the roll interval was decreased by 0.1 mm and cold rolling and temper rolling after the N + 2 reduction schedule were performed. In any rolling schedule, cold rolling was performed once and temper rolling was performed twice.
The above is an invention example.
On the other hand, as a comparative example, a copper alloy plate was produced by the same method as the inventive example, and only cold rolling was performed using the same two-roll rolling mill as the inventive example. That is, the first cold rolling (one time) was performed with the roll interval set at 4.8 mm, and the second cold rolling (one time) was subsequently performed with the roll interval changed to 4.6 mm. Thereafter, until the roll interval became 2 mm, the roll interval was decreased by 0.2 mm and cold rolling after the third cold rolling was performed once. The thickness of the copper alloy sheet after finishing the rolling schedule with a roll interval of 2 mm was 2.5 mm.

次に、ロール間隔を1.9mmに設定して第N冷間圧延(1回)を行ない、引き続きロール間隔を1.8mmに変更して第N+1冷間圧延(1回)を行なった。その後、銅合金板の板厚が0.8mmになるまで、ロール間隔を0.1mmずつ減少して第N+2冷間圧延以降の冷間圧延を1回ずつ行なった。
発明例で得られた銅合金板(板厚0.8mm)の写真を図1に示し、比較例で得られた銅合金板(板厚0.8mm)の写真を図2に示す。図1から明らかなように、発明例では平坦かつ平滑な表面を有する銅合金板が得られた。図1は冷間調質圧延が終了した状態を撮影したものであり、そのまま放熱板の製造工程へ供給して切断加工やプレス加工を支障なく行なうことが可能である。
Next, the N-th cold rolling (once) was performed with the roll interval set at 1.9 mm, and the N + 1-th cold rolling (once) was subsequently performed with the roll interval changed to 1.8 mm. Thereafter, until the thickness of the copper alloy plate became 0.8 mm, the roll interval was decreased by 0.1 mm and cold rolling after the N + 2 cold rolling was performed once.
A photograph of the copper alloy plate (plate thickness 0.8 mm) obtained in the inventive example is shown in FIG. 1, and a photograph of the copper alloy plate (plate thickness 0.8 mm) obtained in the comparative example is shown in FIG. As is clear from FIG. 1, a copper alloy plate having a flat and smooth surface was obtained in the inventive example. FIG. 1 is a photograph of a state in which cold temper rolling has been completed, and can be directly supplied to the manufacturing process of the heat sink to perform cutting and pressing without hindrance.

一方、図2に示すように、比較例では波打ちが発生した。そこで比較例の銅合金板(すなわち図2)の長手方向両端部を切断除去し、レベラーに供して矯正を行なった。得られた銅合金板の写真を図3に示す。
図1と図3を比べて見ると、発明例(すなわち図1)の表面性状は、比較例(すなわち図3)より優れている。
On the other hand, as shown in FIG. Therefore, both ends in the longitudinal direction of the copper alloy plate of the comparative example (that is, FIG. 2) were cut and removed and subjected to correction using a leveler. A photograph of the obtained copper alloy plate is shown in FIG.
Comparing FIG. 1 and FIG. 3, the surface property of the inventive example (ie, FIG. 1) is superior to that of the comparative example (ie, FIG. 3).

発明例で得られた銅合金板の写真である。It is a photograph of the copper alloy plate obtained in the invention example. 比較例で得られた銅合金板の写真である。It is a photograph of the copper alloy plate obtained in the comparative example. 図2の銅合金板を矯正した写真である。It is the photograph which corrected the copper alloy plate of FIG.

Claims (3)

圧延ロールのロール間隔を所定の値に設定して銅合金板に減厚を施す第1冷間圧延を1回行なった後、前記第1冷間圧延と同じロール間隔で第1調質圧延を1回以上行なう第1圧下スケジュールと、次にロール間隔を減少して前記銅合金板に減厚を施す第2冷間圧延を1回行なった後、前記第2冷間圧延と同じロール間隔で第2調質圧延を1回以上行なう第2圧下スケジュールとを行なうことを特徴とする銅合金板の冷間調質圧延方法。   After performing the first cold rolling for reducing the thickness of the copper alloy sheet by setting the roll interval of the rolling rolls to a predetermined value, the first temper rolling is performed at the same roll interval as the first cold rolling. After the first rolling schedule to be performed once or more, and then the second cold rolling for reducing the thickness of the copper alloy sheet by reducing the roll interval once, the roll interval is the same as that for the second cold rolling. A cold temper rolling method for a copper alloy sheet, wherein the second temper rolling is performed one or more times. 前記ロール間隔が同一である冷間圧延と調質圧延とを組み合わせた圧下スケジュールを、3組以上行なうことを特徴とする請求項1に記載の銅合金板の冷間調質圧延方法。   The cold temper rolling method for copper alloy sheets according to claim 1, wherein three or more sets of rolling schedules in which cold rolling and temper rolling with the same roll interval are combined are performed. 前記銅合金板が、Cr:30質量%超え80質量%以下を含有し、残部がCuおよび不可避的不純物からなる銅合金板であることを特徴とする請求項1または2に記載の銅合金板の冷間調質圧延方法。   3. The copper alloy plate according to claim 1, wherein the copper alloy plate is a copper alloy plate containing Cr: more than 30 mass% and not more than 80 mass%, with the balance being Cu and inevitable impurities. Cold temper rolling method.
JP2006335552A 2006-12-13 2006-12-13 Cold temper rolling method for copper alloy sheet Expired - Fee Related JP4861151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335552A JP4861151B2 (en) 2006-12-13 2006-12-13 Cold temper rolling method for copper alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335552A JP4861151B2 (en) 2006-12-13 2006-12-13 Cold temper rolling method for copper alloy sheet

Publications (2)

Publication Number Publication Date
JP2008142761A true JP2008142761A (en) 2008-06-26
JP4861151B2 JP4861151B2 (en) 2012-01-25

Family

ID=39603510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335552A Expired - Fee Related JP4861151B2 (en) 2006-12-13 2006-12-13 Cold temper rolling method for copper alloy sheet

Country Status (1)

Country Link
JP (1) JP4861151B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169106A (en) * 1988-12-22 1990-06-29 Nippon Mining Co Ltd Manufacture of lead frame stock
JP2000208685A (en) * 1999-01-13 2000-07-28 Furukawa Electric Co Ltd:The Cooling parts for electronic device
JP2005330583A (en) * 2004-04-15 2005-12-02 Jfe Seimitsu Kk Cu-Cr ALLOY AND Cu-Cr ALLOY PRODUCTION METHOD
JP2007321240A (en) * 2006-06-05 2007-12-13 Yamaha Metanikusu Kk Heat dissipation material and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169106A (en) * 1988-12-22 1990-06-29 Nippon Mining Co Ltd Manufacture of lead frame stock
JP2000208685A (en) * 1999-01-13 2000-07-28 Furukawa Electric Co Ltd:The Cooling parts for electronic device
JP2005330583A (en) * 2004-04-15 2005-12-02 Jfe Seimitsu Kk Cu-Cr ALLOY AND Cu-Cr ALLOY PRODUCTION METHOD
JP2007321240A (en) * 2006-06-05 2007-12-13 Yamaha Metanikusu Kk Heat dissipation material and its manufacturing method

Also Published As

Publication number Publication date
JP4861151B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
KR102516917B1 (en) Ceramic circuit board, manufacturing method thereof and module using the same
EP3632879B1 (en) Ceramic circuit board and method of production
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
JP3115238B2 (en) Silicon nitride circuit board
WO2020122230A1 (en) Pure copper sheet, member for electronic/electric device, and member for heat dissipation
WO2013008920A1 (en) Ceramic circuit board
JP6151813B1 (en) Vapor chamber manufacturing method
JP2004249589A (en) Copper-molybdenum composite material and heat sink using the same
JP2019029631A (en) Heat radiation plate and manufacturing method thereof
JP6446011B2 (en) Copper alloy plate for heat dissipation parts and heat dissipation parts
JPWO2013047199A1 (en) Sputtering target and manufacturing method thereof
JP2007066995A (en) Ceramic wiring board and its manufacturing method, and semiconductor module
JP2011124585A (en) Ceramic wiring board and manufacturing method and semiconductor module of the same
JP2004241765A (en) Composite material and manufacturing method therefor
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
JP5216981B2 (en) Semiconductor heat dissipating component, semiconductor case with the heat dissipating component, semiconductor carrier
JP2007142126A (en) Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same
JP6031576B2 (en) Copper alloy plate for heat dissipation parts
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
TW201827613A (en) Copper alloy sheet for heat radiation component
JP4138844B2 (en) Cr-Cu alloy, manufacturing method thereof, heat sink for semiconductor, and heat dissipation component for semiconductor
CN112020406B (en) Rolled joined body and method for producing rolled joined body
JP4861151B2 (en) Cold temper rolling method for copper alloy sheet
JP4568092B2 (en) Cu-Ni-Ti copper alloy and heat sink
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Ref document number: 4861151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees