JP2000208685A - Cooling parts for electronic device - Google Patents

Cooling parts for electronic device

Info

Publication number
JP2000208685A
JP2000208685A JP11006954A JP695499A JP2000208685A JP 2000208685 A JP2000208685 A JP 2000208685A JP 11006954 A JP11006954 A JP 11006954A JP 695499 A JP695499 A JP 695499A JP 2000208685 A JP2000208685 A JP 2000208685A
Authority
JP
Japan
Prior art keywords
copper alloy
cold
cooling
copper
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11006954A
Other languages
Japanese (ja)
Inventor
Naoki Kimura
直樹 木村
Jun Niekawa
潤 贄川
Kuniteru Mihara
邦照 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11006954A priority Critical patent/JP2000208685A/en
Publication of JP2000208685A publication Critical patent/JP2000208685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the capability of cooling by forming cooling parts of copper alloy containing the specific amount of copper to which cold-working is applied at a specific working rate. SOLUTION: It is desirable that cold-working rate be 97% or more because cold-working is applied to copper alloy at the increasing working temperature of 250 deg.C or less to significantly decrease a thermal expansion coefficient. It is also desirable that the copper alloy containing copper of 50 wt.% or more contain copper of 70 wt.% or more, if possible, 80 wt.% or more. The copper alloy may be, for example, copper alloy containing Cr of 10 to 30 wt.%, copper alloy containing the suitable amount of at least one element from among B, N, C, Si, P, Mg, Co, Ag, Be, Al, Ni, Zn, Ti, Sn, and Zr in addition to the above Cr, copper alloy of a Cu-Mo group, or copper alloy of a Cu-Cr-Mo group. Thus, since copper of 50 wt.% or more is contained, thermal conductivity is high, the cold-working rate of 70% or more decreases a thermal expansion coefficient, which makes the copper alloy suitable for cooling semiconductor elements, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子などの
冷却に適した、熱伝導率が高く、熱膨張係数が小さい電
子装置用冷却部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling component for electronic devices having a high thermal conductivity and a small thermal expansion coefficient, which is suitable for cooling semiconductor devices and the like.

【0002】[0002]

【従来の技術】例えば、半導体素子を搭載する基板に
は、半導体素子に熱歪みを生じさせないように熱膨張係
数が半導体素子のそれと同等程度に小さく、かつ半導体
素子からの発熱を外部に放散させて半導体素子を定格温
度以下に維持し得る高い熱伝導率を具備することが要求
される。熱膨張係数が小さく且つ高熱伝導率の材料とし
ては、W、Mo、コバール、42アロイなどの金属材
料、アルミナ、ベリリアなどのセラミックス材料の他、
W粉末焼結体中にCuを含浸させた材料(特開昭59−
21032号公報)や層状のCu−W粉体をホットプレ
スした材料(特開平2−142683号公報)などのW
−Cu系材料が提案されている。前記W−Cu系材料
は、Cuの含有量を調節することにより熱膨張係数を8
〜10ppm/Kの範囲に、熱伝導率を100〜160
W/mKの範囲に広く変化させ得る利点がある。
2. Description of the Related Art For example, a substrate on which a semiconductor element is mounted has a coefficient of thermal expansion as small as that of a semiconductor element so as not to cause thermal distortion in the semiconductor element, and dissipates heat generated from the semiconductor element to the outside. Therefore, it is required to have a high thermal conductivity that can maintain the semiconductor element at or below the rated temperature. Materials having a small coefficient of thermal expansion and high thermal conductivity include metal materials such as W, Mo, Kovar and 42 alloy, ceramic materials such as alumina and beryllia,
Material impregnated with Cu in W powder sintered body
21032) or a material obtained by hot-pressing a layered Cu-W powder (JP-A-2-142683).
-Cu-based materials have been proposed. The W-Cu-based material has a coefficient of thermal expansion of 8 by adjusting the Cu content.
In the range of 10 to 10 ppm / K, the thermal conductivity is 100 to 160
There is an advantage that it can be changed widely in the range of W / mK.

【0003】しかし、近年、半導体装置の大型化、高機
能化が進んだ結果、半導体素子からの発熱が大きくな
り、より熱伝導率の高い基板材料が要求されるようにな
り、その結果、295W/mK以上の高い熱伝導率が得
られる、Crを10〜30wt%含有する銅合金(特開平
10−8166号公報)が開発された。しかし、この銅
合金には、熱膨張係数が大きい(12ppm/K以上)
という問題があった。
However, in recent years, as semiconductor devices have become larger and more sophisticated, heat generation from semiconductor elements has increased, and substrate materials having higher thermal conductivity have been required. As a result, 295 W A copper alloy containing 10 to 30% by weight of Cr (Japanese Patent Application Laid-Open No. 10-8166), which can provide a high thermal conductivity of at least / mK, has been developed. However, this copper alloy has a large coefficient of thermal expansion (12 ppm / K or more).
There was a problem.

【0004】[0004]

【発明が解決しようとする課題】このようなことから、
本発明者等は、熱膨張係数が11ppm/K以下、熱伝
導率が295W/mK以上の冷却部品の研究開発に取組
み、その結果銅合金を冷間で加工していくと熱膨張係数
が低下することを知見し、更に研究を重ねて本発明を完
成させるに至った。
SUMMARY OF THE INVENTION
The present inventors have been working on research and development of cooling components having a thermal expansion coefficient of 11 ppm / K or less and a thermal conductivity of 295 W / mK or more. As a result, when copper alloys are cold worked, the thermal expansion coefficient decreases. The present inventor has found that the present invention is to be carried out, and has conducted further studies to complete the present invention.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
70%以上の加工率で冷間加工された、Cuを50wt%
以上含有する銅合金成形体からなることを特徴とする電
子装置用冷却部品である。
According to the first aspect of the present invention,
50% by weight of Cu cold-worked at a processing rate of 70% or more
A cooling component for an electronic device, comprising a copper alloy compact containing the above.

【0006】請求項2記載の発明は、97%以上の加工
率で冷間加工された、Cuを50wt%以上含有する銅合
金成形体からなることを特徴とする電子装置用冷却部品
である。
According to a second aspect of the present invention, there is provided a cooling component for an electronic device, comprising a copper alloy compact containing 50% by weight or more of Cu, which has been cold worked at a processing rate of 97% or more.

【0007】請求項3記載の発明は、請求項1または2
記載の銅合金成形体にヒートパイプが熱的に接続されて
いることを特徴とする電子装置用冷却部品である。
[0007] The third aspect of the present invention is the first or second aspect.
A cooling component for an electronic device, wherein a heat pipe is thermally connected to the copper alloy molded product described above.

【0008】請求項4記載の発明は、70%以上の加工
率で冷間加工された、Cuを50wt%以上含有する銅合
金で作製したヒートパイプからなることを特徴とする電
子装置用冷却部品である。
According to a fourth aspect of the present invention, there is provided a cooling component for an electronic device, comprising a heat pipe cold-worked at a working rate of 70% or more and made of a copper alloy containing 50% by weight or more of Cu. It is.

【0009】請求項5記載の発明は、97%以上の加工
率で冷間加工された、Cuを50wt%以上含有する銅合
金で作製したヒートパイプからなることを特徴とする電
子装置用冷却部品である。
According to a fifth aspect of the present invention, there is provided a cooling part for an electronic device, comprising a heat pipe cold-worked at a working ratio of 97% or more and made of a copper alloy containing 50% by weight or more of Cu. It is.

【0010】請求項6記載の発明は、ヒートパイプの少
なくとも1か所に被冷却部品を熱的に接続するための熱
接続変形部が設けられていることを特徴とする請求項4
または5記載の電子装置用冷却部品である。
The invention according to claim 6 is characterized in that a heat connection deforming portion for thermally connecting a component to be cooled is provided at at least one position of the heat pipe.
Or a cooling component for an electronic device according to item 5.

【0011】[0011]

【発明の実施の形態】請求項1および2に記載の発明
は、本発明者等が銅合金の物性について種々検討する中
で、銅合金を冷間で加工すると熱膨張係数が著しく小さ
くなることを見いだしてなされたものである。この発明
において、冷間加工率を70%以上に規定する理由は、
冷間加工率が70%未満では熱膨張係数が11ppm/
Kを超えてしまって本発明の目的が達成されなくなるた
めである。特に望ましい冷間加工率は97%以上であ
る。ここで冷間加工とは、加工上がり温度が250℃以
下の加工を言う。加工開始温度は200℃以下であれば
差し支えない。この発明において、圧延加工時の冷間加
工率Rは、R=〔(T−t)/T〕×100%の式で求
めた値とする。但しTは圧延加工前の厚さ(mm)、t
は圧延加工後の厚さ(mm)とする。
BEST MODE FOR CARRYING OUT THE INVENTION According to the inventions described in claims 1 and 2, the inventors of the present invention have variously studied the physical properties of a copper alloy. It was made by finding out. In the present invention, the reason for defining the cold working ratio to be 70% or more is as follows.
When the cold working ratio is less than 70%, the coefficient of thermal expansion is 11 ppm /
This is because the value exceeds K and the object of the present invention cannot be achieved. A particularly desirable cold working ratio is 97% or more. Here, the cold working refers to a working at a working temperature of 250 ° C. or lower. The processing start temperature may be 200 ° C. or less. In the present invention, the cold working ratio R at the time of rolling is a value obtained by the formula of R = [(Tt) / T] × 100%. Where T is the thickness (mm) before rolling, t
Is the thickness (mm) after rolling.

【0012】またCuを50wt%以上含有する銅合金成
形体に規定する理由は、50wt%未満では熱伝導率が小
さくて半導体素子を十分冷却できなくなるためである。
Cuの含有量は70wt%以上、更には80wt%以上が望
ましい。銅合金としては、例えば、Crを10〜30wt
%含有する銅合金、Crを10〜30wt%含有し、更に
B、N、C、Si、P、Mg、Co、Ag、Be、A
l、Ni、Zn、Ti、Sn、Zrの元素のうちの少な
くとも1元素を適量含有する銅合金、Cu−Mo系銅合
金、Cu−Cr−Mo系銅合金などである。本発明にお
いて、不可避不純物は含有されていても差し支えない。
銅合金成形体の形状は任意であるが、半導体素子などを
搭載する場合は平面部を有するものが望ましい。
[0012] The reason why the copper alloy compact containing 50 wt% or more of Cu is specified is that if it is less than 50 wt%, the thermal conductivity is so small that the semiconductor element cannot be cooled sufficiently.
The content of Cu is preferably 70% by weight or more, more preferably 80% by weight or more. As a copper alloy, for example, Cr is 10 to 30 wt.
%, A copper alloy containing 10 to 30 wt% of Cr, and B, N, C, Si, P, Mg, Co, Ag, Be, A
Examples thereof include a copper alloy, a Cu-Mo-based copper alloy, and a Cu-Cr-Mo-based copper alloy containing a proper amount of at least one of the elements of l, Ni, Zn, Ti, Sn, and Zr. In the present invention, unavoidable impurities may be contained.
The shape of the copper alloy compact is arbitrary, but when a semiconductor element or the like is mounted, the copper alloy compact preferably has a flat portion.

【0013】請求項3記載の冷却部品は、請求項1また
は2に記載の銅合金成形体にヒートパイプを熱的に接続
した冷却部品である。ヒートパイプは前記銅合金成形体
に穴を開け、そこに挿入しても、また銅合金成形体の裏
面(例えば素子搭載面と反対側の面)に接触させても良
い。銅合金成形体との熱的接続は、半田付けにより行う
のが熱伝導性に優れ望ましい。平面型ヒートパイプは銅
合金成形体との接触面積を広くとれて望ましい。この冷
却部品は、請求項1記載のものに比べて、ヒートパイプ
により冷却される分だけ冷却能力に優れる。
A cooling component according to a third aspect is a cooling component in which a heat pipe is thermally connected to the copper alloy compact according to the first or second aspect. The heat pipe may be formed by making a hole in the copper alloy compact and inserting it into the hole, or may be brought into contact with the back surface of the copper alloy compact (for example, the surface opposite to the element mounting surface). The thermal connection with the copper alloy compact is preferably performed by soldering because of its excellent thermal conductivity. A flat heat pipe is desirable because it has a large contact area with the copper alloy compact. This cooling component is superior in cooling capacity to the cooling component by the heat pipe as compared with the cooling component of the first aspect.

【0014】請求項4および5に記載の発明は、請求項
1または2記載の銅合金で作製したヒートパイプからな
る冷却部品である。この冷却部品は、請求項3記載のも
のに比べて、冷却媒体により直接冷却される分、冷却能
力が大きくなる。この発明のヒートパイプの形状は任意
でありパイプ形状でないものも含む。断面円形または楕
円形などのヒートパイプの場合は、熱的な接続面積をよ
り大きくするために被冷却部品と密着するように、例え
ば、被冷却部品が平面状の素子であれば、平面状の素子
用熱接続変形部をヒートパイプに設けるのが良い。断面
角形のもの(平面型ヒートパイプ)は平面部分が多く平
面状素子の搭載に有利である。前記熱接続変形部の形状
は、被冷却部品が密着する形状にすれば良く、平面状に
限らないことは言うまでもない。
According to the fourth and fifth aspects of the present invention, there is provided a cooling component comprising a heat pipe made of the copper alloy according to the first or second aspect. This cooling component is directly cooled by the cooling medium and has a higher cooling capacity than the cooling component of the third aspect. The shape of the heat pipe of the present invention is arbitrary, and includes a non-pipe shape. In the case of a heat pipe having a circular or elliptical cross section, for example, if the component to be cooled is a planar element, the planar shape is such that the component to be cooled is in close contact with the component to be cooled in order to increase the thermal connection area. It is preferable to provide the heat connection deforming portion for the element in the heat pipe. A rectangular cross section (flat heat pipe) has many flat portions, which is advantageous for mounting a flat element. It is needless to say that the shape of the heat connection deforming portion may be a shape in which the component to be cooled is in close contact, and is not limited to a planar shape.

【0015】[0015]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)比較的酸素量の少ない銅地金を真空溶解炉
にて溶解し、この銅溶湯中にCrなどの合金元素を所定
量添加し、これらの銅合金溶湯を十分攪拌して金型に鋳
込んで厚さ50mm、巾100mm長さ150mmの鋳
塊を得た。次にこの鋳塊を950℃に加熱して熱間圧延
し、厚さが33mm、27mm、23mm、13mm、
7mm、3mmの熱延板とした。次に前記熱延板の両面
を各々0.5mmづつ面削して酸化スケールを除去し、
次いで不活性ガス雰囲気中で950℃で30分間の加熱
処理を施したのち室温に急冷した。次にこれを450℃
で2時間不活性ガス雰囲気中で焼鈍後、厚さ0.5mm
の板材に冷間圧延した。前記厚さが33mm、27m
m、23mmの熱延板の冷間加工率は、それぞれ98.
4%、98.1%、97.7%、95.8%、91.7
%、75.0%である。
The present invention will be described below in detail with reference to examples. (Example 1) A copper base metal having a relatively small amount of oxygen is melted in a vacuum melting furnace, a predetermined amount of an alloying element such as Cr is added to the copper melt, and the copper alloy melt is sufficiently stirred to obtain gold. It was cast into a mold to obtain an ingot having a thickness of 50 mm, a width of 100 mm and a length of 150 mm. Next, the ingot was heated to 950 ° C. and hot-rolled to a thickness of 33 mm, 27 mm, 23 mm, 13 mm,
A hot rolled sheet of 7 mm and 3 mm was used. Next, both sides of the hot-rolled sheet were chamfered by 0.5 mm each to remove oxide scale,
Next, the resultant was subjected to a heat treatment at 950 ° C. for 30 minutes in an inert gas atmosphere, and then rapidly cooled to room temperature. Next, this is 450 ° C
0.5 mm after annealing in an inert gas atmosphere for 2 hours
Was cold rolled. The thickness is 33mm, 27m
The cold working ratio of the hot-rolled sheet of m.
4%, 98.1%, 97.7%, 95.8%, 91.7
%, 75.0%.

【0016】(比較例1)厚さ0.5mmの冷間圧延板
を450℃で2時間不活性ガス雰囲気中で焼鈍した。
Comparative Example 1 A cold-rolled sheet having a thickness of 0.5 mm was annealed at 450 ° C. for 2 hours in an inert gas atmosphere.

【0017】実施例1および比較例1で得られた各々の
冷間圧延板または焼鈍板について導電率、冷却能力、熱
膨張係数、引張強さを測定した。尚、導電率はJIS−
H0505に準じて、引張強さはJIS−Z2241に
準じてそれぞれ測定した。前記導電率は熱伝導率の代替
として測定した。導電率100%IACSは熱伝導率3
94W/mKに略相当し、導電率と熱伝導率は略正比例
する。冷却能力は、前記冷間圧延板または焼鈍板を基板
に用いて半導体装置を組立て、半導体素子搭載基板の温
度を測定して判定した。熱膨張係数は作動トランスを用
いる常法により測定した。結果を表1に示す。
The electrical conductivity, cooling capacity, coefficient of thermal expansion, and tensile strength of each of the cold-rolled sheets or the annealed sheets obtained in Example 1 and Comparative Example 1 were measured. The conductivity is JIS-
The tensile strength was measured according to JIS-Z2241 according to H0505. The conductivity was measured as an alternative to thermal conductivity. Conductivity 100% IACS is thermal conductivity 3
This is approximately equivalent to 94 W / mK, and the electrical conductivity and the thermal conductivity are substantially directly proportional. The cooling capacity was determined by assembling a semiconductor device using the cold-rolled plate or the annealed plate as a substrate and measuring the temperature of the semiconductor element mounting substrate. The coefficient of thermal expansion was measured by a conventional method using a working transformer. Table 1 shows the results.

【0018】[0018]

【表1】 (注)冷却部品:銅合金成形体。[Table 1] (Note) Cooling parts: Copper alloy compacts.

【0019】表1より明らかなように、本発明例のNo.1
〜8 は、いずれも導電率が75%IACS以上、熱膨張
係数が11ppm/K以下であった。これは銅合金成形
体がCuを50wt%以上含有し、冷間加工率が70%以
上の銅合金により構成されているためである。冷却部品
として必要な強度(引張強さ)も満足されている。中で
も冷間加工率が97%以上のNo.1〜5 は熱膨張係数が小
さく、引張強さが高い値を示した。なお、半導体装置の
基板温度は60℃程度で実用上特に問題はなかった。一
方、比較例のNo.9は冷間加工率が低いため熱膨張係数が
11ppm/Kを超え本発明の目標が達成されなかっ
た。
As is clear from Table 1, No. 1 of the present invention example
-8 had a conductivity of 75% IACS or more and a thermal expansion coefficient of 11 ppm / K or less. This is because the copper alloy compact contains 50 wt% or more of Cu and is made of a copper alloy having a cold working ratio of 70% or more. The strength (tensile strength) required as a cooling component is also satisfied. Among them, Nos. 1 to 5 having a cold work rate of 97% or more exhibited low values of thermal expansion coefficient and high values of tensile strength. The substrate temperature of the semiconductor device was about 60 ° C., and there was no practical problem. On the other hand, in Comparative Example No. 9, the cold working ratio was low, and the coefficient of thermal expansion exceeded 11 ppm / K, and the target of the present invention was not achieved.

【0020】(実施例2)実施例1で得たNo.1〜3 の厚
さ0.5mmの銅合金成形体の裏面にヒートパイプを1
本半田付けして冷却部品とした。ヒートパイプには銅
(OFC)製パイプに水を減圧封入した平面型ヒートパ
イプを用いた。
(Example 2) A heat pipe was placed on the back surface of the 0.5 mm thick copper alloy compact of Nos. 1-3 obtained in Example 1.
This was soldered to form a cooling component. As the heat pipe, a flat heat pipe in which water was sealed under reduced pressure in a copper (OFC) pipe was used.

【0021】実施例2で得られた各々の冷却部品につい
て、実施例1で行ったのと同じ測定を行った。結果を表
2に示す。
For each of the cooling components obtained in Example 2, the same measurement as in Example 1 was performed. Table 2 shows the results.

【0022】[0022]

【表2】 [Table 2]

【0023】表2より明らかなように、本発明例の No.
10〜12は、いずれもヒートパイプにより冷却されている
分だけ、実施例1の冷却部品より基板温度が低くなり、
冷却能力に優れることが分かる。引張強さも満足されて
いる。
As is clear from Table 2, No. 1
In each of 10 to 12, the substrate temperature is lower than that of the cooling component of the first embodiment because the substrate is cooled by the heat pipe.
It can be seen that the cooling capacity is excellent. The tensile strength is also satisfactory.

【0024】(実施例3)実施例1で鋳塊厚さを30m
mとし、熱延板厚さを13mm、9mmとした他は、実
施例1と同じ方法により、厚さ0.2mmの冷間圧延板
材を得、この板材を用いて平面型ヒートパイプを製造し
た。前記熱間圧延板(厚さ13mm、9mm)の冷間加
工率はそれぞれ98.3%、97.5%である。
(Example 3) In Example 1, the thickness of the ingot was 30 m.
m, and the thickness of the hot-rolled sheet was 13 mm and 9 mm, except that a cold-rolled sheet having a thickness of 0.2 mm was obtained in the same manner as in Example 1, and a flat heat pipe was manufactured using this sheet. . The cold working ratio of the hot-rolled plate (thickness 13 mm, 9 mm) is 98.3% and 97.5%, respectively.

【0025】実施例3で得られた各々の冷却部品につい
て、実施例1で行ったのと同じ測定を行った。結果を表
3に示す。
For each of the cooling components obtained in Example 3, the same measurements as in Example 1 were performed. Table 3 shows the results.

【0026】[0026]

【表3】 [Table 3]

【0027】表3より明らかなように、本発明例のNo.1
3,14はCuを50wt%以上含有し、冷間加工率が97%
以上の銅合金を用いたヒートパイプなので、熱膨張係数
が小さく、かつ冷媒により直接冷却されるため実施例2
のものより基板温度が低く、冷却能力が大きいことが明
らかである。引張強さも満足されている。
As is clear from Table 3, No. 1 of the present invention example
3,14 contain more than 50wt% Cu, 97% cold work rate
Since the heat pipe is made of the above-mentioned copper alloy, it has a low coefficient of thermal expansion and is directly cooled by a refrigerant.
It is clear that the substrate temperature is lower and the cooling capacity is higher than those of the above. The tensile strength is also satisfactory.

【0028】[0028]

【発明の効果】以上に述べたように、本発明の銅合金成
形体からなる電子装置用冷却部品は、銅を50wt%以上
含有するため熱伝導率(導電率)が高く、冷間加工率が
70%以上と大きいため熱膨張係数が小さい。従って半
導体素子などの冷却に適し、前記銅合金成形体にヒート
パイプを熱的に接続したもの、或いは前記銅合金で作製
したヒートパイプは、前記特性に加えて冷却能力が向上
する。依って、工業上顕著な効果を奏する。
As described above, the cooling parts for electronic devices made of the copper alloy compact of the present invention have a high thermal conductivity (conductivity) because they contain 50 wt% or more of copper, and have a low cold working rate. Is as large as 70% or more, the coefficient of thermal expansion is small. Therefore, a cooling element suitable for cooling a semiconductor element or the like and a heat pipe thermally connected to the copper alloy molded body or a heat pipe made of the copper alloy has improved cooling ability in addition to the above characteristics. Therefore, an industrially remarkable effect is achieved.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 70%以上の加工率で冷間加工された、
Cuを50wt%以上含有する銅合金成形体からなること
を特徴とする電子装置用冷却部品。
1. Cold-worked at a working ratio of 70% or more,
A cooling component for an electronic device, comprising a copper alloy compact containing 50% by weight or more of Cu.
【請求項2】 97%以上の加工率で冷間加工された、
Cuを50wt%以上含有する銅合金成形体からなること
を特徴とする電子装置用冷却部品。
2. Cold-worked at a working rate of 97% or more,
A cooling component for an electronic device, comprising a copper alloy compact containing 50% by weight or more of Cu.
【請求項3】 請求項1または2記載の銅合金成形体に
ヒートパイプが熱的に接続されていることを特徴とする
電子装置用冷却部品。
3. A cooling component for an electronic device, wherein a heat pipe is thermally connected to the copper alloy compact according to claim 1.
【請求項4】 70%以上の加工率で冷間加工された、
Cuを50wt%以上含有する銅合金で作製したヒートパ
イプからなることを特徴とする電子装置用冷却部品。
4. Cold-worked at a working ratio of 70% or more,
A cooling component for an electronic device, comprising a heat pipe made of a copper alloy containing 50 wt% or more of Cu.
【請求項5】 97%以上の加工率で冷間加工された、
Cuを50wt%以上含有する銅合金で作製したヒートパ
イプからなることを特徴とする電子装置用冷却部品。
5. Cold-worked at a working rate of 97% or more,
A cooling component for an electronic device, comprising a heat pipe made of a copper alloy containing 50 wt% or more of Cu.
【請求項6】 ヒートパイプの少なくとも1か所に被冷
却部品を熱的に接続するための熱接続変形部が設けられ
ていることを特徴とする請求項4または5記載の電子装
置用冷却部品。
6. A cooling component for an electronic device according to claim 4, wherein a heat connection deformation portion for thermally connecting the component to be cooled is provided at least at one position of the heat pipe. .
JP11006954A 1999-01-13 1999-01-13 Cooling parts for electronic device Pending JP2000208685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11006954A JP2000208685A (en) 1999-01-13 1999-01-13 Cooling parts for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11006954A JP2000208685A (en) 1999-01-13 1999-01-13 Cooling parts for electronic device

Publications (1)

Publication Number Publication Date
JP2000208685A true JP2000208685A (en) 2000-07-28

Family

ID=11652634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11006954A Pending JP2000208685A (en) 1999-01-13 1999-01-13 Cooling parts for electronic device

Country Status (1)

Country Link
JP (1) JP2000208685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112063A1 (en) * 2005-04-15 2006-10-26 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
JP2008142761A (en) * 2006-12-13 2008-06-26 Jfe Seimitsu Kk Cold temper rolling method for copper alloy sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112063A1 (en) * 2005-04-15 2006-10-26 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
EP1873272A1 (en) * 2005-04-15 2008-01-02 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
US7955448B2 (en) 2005-04-15 2011-06-07 Jfe Precision Corporation Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy
EP1873272B1 (en) * 2005-04-15 2015-06-10 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
JP2008142761A (en) * 2006-12-13 2008-06-26 Jfe Seimitsu Kk Cold temper rolling method for copper alloy sheet

Similar Documents

Publication Publication Date Title
KR100417756B1 (en) Copper alloy thin sheet for manufacturing connectors and connectors made of such thin sheets
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JPS6045698B2 (en) Lead material for semiconductor equipment
JPH01272733A (en) Lead frame material made of cu alloy for semiconductor device
JPH11256255A (en) High strength and high conductivity copper alloy excellent in shearing workability
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JP2000208685A (en) Cooling parts for electronic device
JPS61257443A (en) Cu alloy as lead material for semiconductor device
US4710349A (en) Highly conductive copper-based alloy
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JP4360832B2 (en) Copper alloy
JP5037352B2 (en) Iron-nickel alloy strips for integrated circuit leadframe grid manufacturing
JPS6142772B2 (en)
JPS59153853A (en) Matrial for lead frame
JPS58147139A (en) Lead wire of semiconductor device
JPS6311418B2 (en)
JPS58147140A (en) Lead wire of semiconductor device
JP2008519161A5 (en)
JPS6270541A (en) Cu-alloy lead material for semiconductor device
JP2000038628A (en) Copper alloy for semiconductor lead frame
JPS62164843A (en) Cu-alloy lead material for semiconductor device
JP2000038627A (en) Copper alloy for semiconductor lead frame
JPH108166A (en) Copper alloy for heat sink
JP2724418B2 (en) High-strength sealing alloy with excellent Ag braze flowability and method for producing the same