JP2007142126A - Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same - Google Patents

Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same Download PDF

Info

Publication number
JP2007142126A
JP2007142126A JP2005333500A JP2005333500A JP2007142126A JP 2007142126 A JP2007142126 A JP 2007142126A JP 2005333500 A JP2005333500 A JP 2005333500A JP 2005333500 A JP2005333500 A JP 2005333500A JP 2007142126 A JP2007142126 A JP 2007142126A
Authority
JP
Japan
Prior art keywords
copper
composite
alloy
composite material
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005333500A
Other languages
Japanese (ja)
Inventor
Masayuki Ito
正幸 伊藤
Norio Hirayama
典男 平山
Yoshinari Amano
良成 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2005333500A priority Critical patent/JP2007142126A/en
Publication of JP2007142126A publication Critical patent/JP2007142126A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device heat dissipating board which has a low thermal expansion coefficient and a higher thermal conductivity than usual, is improved in plastic processing (rolling work) properties, has a fractured surface improved in smoothness at press cutting, is improved in adhesion to a semiconductor device when soldered to the semiconductor device, capable of preventing solder from flowing out, and furthermore excellent in weight reduction and cost-effectiveness. <P>SOLUTION: A composite material is a clad material of Cu/Cu-Mo composite alloy/Cu structure composed of a core material 10 of composite alloy consisting of 30 to 70 mass% Cu and the rest consisting substantially of Mo and Cu plates which clad the upper and lower surface of the core material 10. The composite alloy is formed of a Cu pooling phase 3 and a Mo-Cu alloy phase 2. The semiconductor-mounted heat dissipating board is formed of composite material and previously given a warp of 15 μm or below per 10 mm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銅プール相を有する銅−モリブデン複合合金を芯材とし、その塑性加工された上下の主平面(圧延面)に、さらに銅板をクラッド(圧接とも云う)した複合材料に関し、更に、詳しくは、銅プール相を有する複合合金を芯材に用いることによって、特に熱伝導率の向上や塑性加工(圧延)性の向上、さらに打抜き加工性の向上、軽量化、低コスト化を図った複合材料及び半導体搭載用放熱基板、及びそれを用いたセラミックパッケージに関する。   The present invention relates to a composite material in which a copper-molybdenum composite alloy having a copper pool phase is used as a core material, and a copper plate is further clad (also referred to as pressure welding) on upper and lower main planes (rolled surfaces) that are plastically processed. Specifically, by using a composite alloy having a copper pool phase as a core material, particularly improved thermal conductivity, improved plastic workability (rolling), further improved punchability, reduced weight, and reduced costs. The present invention relates to a composite material, a semiconductor mounting heat dissipation board, and a ceramic package using the same.

半導体搭載用放熱基板としては、タングステン−銅系及び、モリブデン−銅系材料が好適に用いられている。その理由は、半導体素子のSiやGaAs並びに各種パッケージ材料、特にアルミナ、ALNと熱膨張係数を整合させることができ、高集積化、小型化に対応できる特長を持っているためである。   As the semiconductor mounting heat dissipation substrate, tungsten-copper and molybdenum-copper materials are preferably used. This is because the thermal expansion coefficient can be matched with Si and GaAs of semiconductor elements and various package materials, particularly alumina and ALN, and it has the feature that can be highly integrated and miniaturized.

半導体搭載用放熱基板に要求される特性をさらに詳しく述べると、(ア)搭載した半導体素子から発生される熱を効率よく放熱するため、高い熱伝導率を有すること。(イ)熱応力を極力小さくするため、半導体素子や各種パッケージ材料と熱膨張係数が近似していること。(ウ)パッケージの気密性維持や接合部の劣化防止などの信頼性を確保し、且つ、所望の放熱性などを確実にするため、空孔や亀裂などの欠陥が存在しないこと。(エ)当該放熱基板を所望のサイズにプレスで打抜き加工した際に断面が平滑であること。(オ)更に半導体素子に放熱基板をハンダ付けした際の良好な密着性、が挙げられる。   The characteristics required for a semiconductor mounting heat dissipation board will be described in more detail. (A) In order to efficiently dissipate heat generated from the mounted semiconductor element, it must have high thermal conductivity. (A) In order to minimize the thermal stress, the thermal expansion coefficient is close to that of the semiconductor element and various package materials. (C) To ensure reliability such as maintaining the hermeticity of the package and preventing deterioration of the joint, and to ensure desired heat dissipation, there are no defects such as holes or cracks. (D) When the heat dissipation board is punched into a desired size with a press, the cross section is smooth. (E) Furthermore, good adhesion when soldering the heat dissipation substrate to the semiconductor element is mentioned.

従来より提供されている半導体搭載用放熱基板には、特許文献1に示されるタングステン−銅系、またはモリブデン−銅系などの2相合金がある。   2. Description of the Related Art Conventionally provided semiconductor mounting heat dissipation substrates include two-phase alloys such as tungsten-copper or molybdenum-copper as disclosed in Patent Document 1.

この技術は、1〜50%の気孔率を有するタングステンまたはモリブデンの強固な中間焼結体(多孔質の焼結体)を得て、当該気孔に銅を溶浸し所望の複合合金を作製するものである。この複合合金の合金組成が、例えば銅40重量%−タングステン60重量%の場合、熱膨張係数11.8×10−6/℃、熱伝導率0.73cal/cm.sec.℃(=305W/m・K)が得られている。また、銅50重量%、モリブデン50重量%の場合、熱膨張係数11.5×10−6/℃、熱伝導率0.66cal/cm.sec.℃(=276W/m・K)が得られている。以下の明細書の記載において、タングステンを単に「W」、モリブデンを「Mo」、銅を「Cu」と表記する。 This technique obtains a strong intermediate sintered body (porous sintered body) of tungsten or molybdenum having a porosity of 1 to 50%, and infiltrates copper into the pores to produce a desired composite alloy It is. When the alloy composition of this composite alloy is, for example, 40% by weight of copper and 60% by weight of tungsten, the coefficient of thermal expansion is 11.8 × 10 −6 / ° C. and the thermal conductivity is 0.73 cal / cm. sec. ° C. (= 305 W / m · K) is obtained. Further, in the case of 50% by weight of copper and 50% by weight of molybdenum, the coefficient of thermal expansion is 11.5 × 10 −6 / ° C. and the thermal conductivity is 0.66 cal / cm. sec. ° C. (= 276 W / m · K) is obtained. In the description of the following specification, tungsten is simply expressed as “W”, molybdenum as “Mo”, and copper as “Cu”.

また、特許文献2において、Mo板の両面にそれぞれCu板を一体に接合(クラッドと同意語)したCu/Mo/Cuからなる放熱基板(一般にCMCと称す)が提案されている。   Patent Document 2 proposes a heat dissipation substrate (generally referred to as CMC) made of Cu / Mo / Cu in which a Cu plate is integrally joined to both surfaces of a Mo plate (synonymous with clad).

この技術によれば、芯材となるMo板および各Cu板の厚さを0.03〜0.3mmの範囲内に設定することで、200〜260W/m・Kの熱伝導率が得られ、且つ接合される半導体素子にクラックや反り発生が少なくできる、と記載されている。   According to this technique, the thermal conductivity of 200 to 260 W / m · K can be obtained by setting the thicknesses of the Mo plate and each Cu plate as the core material within the range of 0.03 to 0.3 mm. In addition, it is described that generation of cracks and warpage can be reduced in the semiconductor elements to be joined.

また、前述した特許文献1の技術を改良した特許文献3において、WまたはMoの多孔体にCuを溶浸した芯材(W−Cuまたは、Mo−Cu)の両面にCu板を接合したCu/W−Cu/Cu及びCu/Mo−Cu/Cuからなる放熱基板が提案されている。   Further, in Patent Document 3 in which the technique of Patent Document 1 described above is improved, Cu is obtained by bonding a Cu plate to both surfaces of a core material (W-Cu or Mo-Cu) in which Cu is infiltrated into a porous body of W or Mo. Heat dissipation substrates made of / W-Cu / Cu and Cu / Mo-Cu / Cu have been proposed.

この技術によれば、芯材の合金組成が例えば、Mo−Cu10wt.%の場合、熱膨張係数10.5×10−6/℃、熱伝導率330W/m・Kが得られる、と記載されている。 According to this technique, the alloy composition of the core material is, for example, Mo—Cu 10 wt. %, It is described that a coefficient of thermal expansion of 10.5 × 10 −6 / ° C. and a thermal conductivity of 330 W / m · K are obtained.

上記の各技術においては、熱膨張係数や熱伝導率は所望の値を得ることができる。しかし、下記の(i)から(vi)に示される問題点がある。   In each of the above techniques, desired values can be obtained for the thermal expansion coefficient and the thermal conductivity. However, there are problems shown in the following (i) to (vi).

(i)WやMoは延性に乏しく、多量に用いると塑性加工(圧延加工)性が悪くなる。   (I) W and Mo are poor in ductility, and if used in a large amount, the plastic working (rolling) property deteriorates.

(ii)また、プレスによる打ち抜き加工時に、破断面(切断面)が平滑にならない。   (Ii) In addition, the fracture surface (cut surface) does not become smooth during punching with a press.

(iii)また、半導体素子に放熱基板をハンダ付けした際に、反りが生じて良好な密着性が得られない。   (Iii) Further, when a heat dissipation substrate is soldered to a semiconductor element, warpage occurs and good adhesion cannot be obtained.

(iv)また、半導体素子に放熱基板をハンダ付けした際に、ハンダが表面傷部に沿って流れ出て例えばALNの接合が不安定になり接合信頼性を損なうことがある。   (Iv) Further, when the heat dissipation board is soldered to the semiconductor element, the solder may flow out along the surface flaws, for example, the bonding of ALN becomes unstable, and the bonding reliability may be impaired.

(v)近年、例えば電気自動車のインバーターでは、大きな発熱を伴う大容量の半導体素子が用いられるため、低熱膨張率と高熱伝導率を備えることは勿論、特に軽量化された放熱基板が求められているが、WやMoは密度が高く、これを多量に用いる上記の何れもの従来技術では放熱基板の軽量化には限界がある。   (V) In recent years, for example, an inverter of an electric vehicle uses a large-capacity semiconductor element that generates a large amount of heat, so that it has a low thermal expansion coefficient and a high thermal conductivity. However, W and Mo are high in density, and any of the above-described conventional techniques using a large amount thereof has a limit in reducing the weight of the heat dissipation board.

(vi)一方、放熱基板材料に用いるWやMoは希少金属のため高価であることや、近時は、特にMo原料が高騰傾向にあるため、生産コスト及び供給面での問題が顕在化している状況にある。   (Vi) On the other hand, W and Mo used for the heat dissipation substrate material are expensive because they are rare metals, and recently, since the Mo raw material tends to be particularly high, problems in production cost and supply have become obvious. Is in a situation.

そこで、放熱基板としての特性を維持し、且つ、Mo使用量を減らす技術の提供が強く求められている。   Therefore, there is a strong demand for providing a technique for maintaining the characteristics as a heat dissipation substrate and reducing the amount of Mo used.

特公平2−31863号公報Japanese Patent Publication No. 2-31863 特開平5−29507号公報Japanese Patent Laid-Open No. 5-29507 特開平6−268117号公報JP-A-6-268117 国際公開第2004/038049号パンフレットInternational Publication No. 2004/038049 Pamphlet

従って、本発明の一般的な技術的課題は、低熱膨張率で且つ従来以上の高熱伝導率を備えると共に、塑性加工性、例えば、圧延加工性の向上、プレス打ち抜き時の破断面の平滑性の向上、半導体素子と放熱基板をハンダ付けした際の密着性の向上とハンダ流れの防止、更に近時の要求、即ち、放熱基板の軽量化とコスト性に優れる半導体装置用放熱基板を提供することにある。   Therefore, the general technical problem of the present invention is that it has a low thermal expansion coefficient and a higher thermal conductivity than the conventional one, and also has improved plastic workability, for example, improved rolling workability, and smoothness of the fracture surface during press punching. To provide a heat dissipation board for a semiconductor device which is improved, improved adhesion when soldering a semiconductor element and a heat dissipation board and prevention of solder flow, and more recent requirements, i.e., weight reduction and cost effectiveness of the heat dissipation board. It is in.

本発明の具体的な技術的課題は、上記の課題を満足するCuをクラッドしたCu/Cu−Mo/Cuなる構造を備えた複合材料及び半導体搭載用放熱基板、及びそれを用いたセラミックパッケージを提供することにある。   Specific technical problems of the present invention include a composite material having a Cu / Cu—Mo / Cu structure clad with Cu that satisfies the above-described problems, a semiconductor mounting heat dissipation board, and a ceramic package using the same. It is to provide.

本発明者らは先に、特許文献4にて、Mo−Cu複合圧延材料において、Mo−Cuの合金構造を変えることによりMo含有量が少なくても、熱伝導が高く、且つ、熱膨張が小さい材料を提供する技術を開示した。   In the Patent Document 4, the present inventors previously described that, in the Mo—Cu composite rolled material, even if the Mo content is small by changing the alloy structure of Mo—Cu, the heat conduction is high and the thermal expansion is high. A technique for providing a small material has been disclosed.

この材料の構造は、材料中にCuプール相とCu−Mo複合相とを含むため熱特性が優れている。   The structure of this material has excellent thermal characteristics because the material contains a Cu pool phase and a Cu—Mo composite phase.

しかし、上記材料は、一方向(X方向)のみの圧延であり、その圧延方向にCuプール相とCu−Mo複合相が繊維状に伸びているため、プレスで所望の形状に打ち抜きを行うと、圧延方向の破断面が歪み、凹凸が激しく平滑な破断面が得られない。ときにはクラック状になる場合がある。この結果、寸法精度あるいは、ニッケルめっき後、当該打抜き破断面にシミなどが発生するため適用が限られている。   However, the material is rolled only in one direction (X direction), and the Cu pool phase and the Cu-Mo composite phase extend in a fiber shape in the rolling direction, so when punching into a desired shape with a press The fracture surface in the rolling direction is distorted, and unevenness is severe and a smooth fracture surface cannot be obtained. Sometimes it becomes cracked. As a result, the application is limited because dimensional accuracy or a stain or the like occurs on the punched fracture surface after nickel plating.

本発明者らは、Cu/Cu−Mo/Cuの複合材料の芯材となるCu−Mo材に、上記の合金構造材を適用することにより、熱膨張が小さく、且つ熱伝導が高くできること。また、X方向とY方向の合金組織を等しく形成することで、プレスの打ち抜き破断面も平滑で寸法精度が向上、また、めっき後のシミなど実使用上も問題がなく、さらに全体としてMo使用量を少なくできることを確認し本発明を完成するに到った。   The present inventors are able to reduce thermal expansion and increase thermal conductivity by applying the alloy structural material described above to a Cu-Mo material as a core material of a composite material of Cu / Cu-Mo / Cu. In addition, by forming the alloy structure in the X and Y directions equally, the punched torn surface of the press is smooth and the dimensional accuracy is improved. In addition, there is no problem in actual use such as stains after plating. It was confirmed that the amount could be reduced, and the present invention was completed.

即ち、本発明の複合材料及び半導体搭載用放熱基板、及びそれを用いたセラミックパッケージは、次の通りの特徴を有している。   That is, the composite material, the semiconductor mounting heat dissipation board of the present invention, and the ceramic package using the same have the following characteristics.

また、本発明によれば、30〜70質量%の銅(Cu)と残部が実質的にモリブデン(Mo)とからなる複合合金を芯材とし、前記芯材の上下主平面に銅板を夫々クラッドして銅/銅−モリブデン複合合金/銅なる構造を形成したクラッド材であって、前記複合合金は、銅プール相とモリブデン−銅合金相で形成されていることを特徴とする複合材料が得られる。   Further, according to the present invention, a composite alloy composed of 30 to 70% by mass of copper (Cu) and the balance substantially consisting of molybdenum (Mo) is used as a core material, and copper plates are clad on the upper and lower main planes of the core material, respectively. A clad material having a copper / copper-molybdenum composite alloy / copper structure, wherein the composite alloy is formed of a copper pool phase and a molybdenum-copper alloy phase. It is done.

また、本発明によれば、前記複合材料において、前記芯材となる複合合金の銅プール相が5〜30質量%であることを特徴とする複合材料が得られる。   Moreover, according to this invention, the composite material characterized by the copper pool phase of the composite alloy used as the said core material being 5-30 mass% in the said composite material is obtained.

本発明によれば、前記いずれか一つの複合材料において、前記芯材となる複合合金の中の銅プール相の粒子径が30〜200μmであることを特徴とする複合材料が得られる。   According to the present invention, in any one of the composite materials, a composite material is obtained in which the particle diameter of the copper pool phase in the composite alloy serving as the core material is 30 to 200 μm.

また、本発明によれば、前記いずれか1つの複合材料において、前記複合合金中のモリブデン粒子及び銅プール相は、前記主平面から見ると円板状に略等しく延ばされており且つX及びY方向から板の端面を見ると扁平に押し潰されて形成されていることを特徴とする複合材料が得られる。   According to the present invention, in any one of the composite materials, the molybdenum particles and the copper pool phase in the composite alloy are substantially equally extended in a disk shape when viewed from the main plane, and X and When the end surface of the plate is viewed from the Y direction, a composite material characterized by being flattened and formed is obtained.

また、本発明によれば、前記いずれか1つの複合材料において、前記芯材及び銅板のクラッド材は塑性加工によって形成されていることを特徴とする複合材料が得られる。   According to the present invention, in any one of the composite materials, the core material and the clad material of the copper plate are formed by plastic working, and a composite material is obtained.

また、本発明によれば、前記いずれか1つの複合材料において、前記銅/銅−モリブデン複合合金/銅のクラッド材の各層厚の比率が1:1:1〜1:5:1からなることを特徴とする複合材料が得られる。   Further, according to the present invention, in any one of the composite materials, a ratio of each layer thickness of the copper / copper-molybdenum composite alloy / copper cladding material is 1: 1: 1 to 1: 5: 1. Is obtained.

また、本発明によれば、前記いずれか1つの複合材料において、前記銅/銅−モリブデン複合合金/銅のクラッド材の上下銅層の厚みをそれぞれS上、S下としたときに、その比を1.0<S上/S下<1.5の範囲としたことを特徴とする複合材料が得られる。   Further, according to the present invention, in any one of the composite materials, when the thicknesses of the upper and lower copper layers of the copper / copper-molybdenum composite alloy / copper cladding material are set to S upper and S lower, respectively, Is obtained in the range of 1.0 <S upper / S lower <1.5.

また、本発明によれば、前記いずれか1つの複合材料を用いた半導体搭載用放熱基板であって、前記基板は予め10mm当たり15μm以下の反りが付与されていることを特徴とする半導体搭載用放熱基板が得られる。   Further, according to the present invention, there is provided a semiconductor mounting heat dissipation board using any one of the composite materials, wherein the board is preliminarily provided with a warp of 15 μm or less per 10 mm. A heat dissipation substrate is obtained.

また、本発明によれば、前記半導体搭載用放熱基板において、前記基板の面粗度がRa1.0以下であることを特徴とする半導体搭載用放熱基板が得られる。   According to the present invention, there is provided a semiconductor mounting heat dissipation board, wherein the substrate mounting heat dissipation board has a surface roughness Ra of 1.0 or less.

また、本発明によれば、前記いずれか1つの半導体搭載用放熱基板を用いていることを特徴とするセラミックパッケージが得られる。   In addition, according to the present invention, a ceramic package characterized in that any one of the semiconductor mounting heat dissipation substrates is used.

本発明に係る複合材料及びそれを用いた放熱基板によれば、半導体素子のSiやGaAsならびに各種パッケージ材料、特にアルミナあるいはALNと熱膨張係数を簡単且つ精密に整合させることができる。   According to the composite material and the heat dissipation substrate using the same according to the present invention, the thermal expansion coefficient can be easily and precisely matched with Si and GaAs of semiconductor elements and various package materials, particularly alumina or ALN.

本発明の複合材料及びそれを用いた放熱基板によれば、低熱膨張率で且つ従来以上の高熱伝導率を備えると共に、軽量化に優れるため、移動体通信関係のマイクロ波、光関係の放熱基板として、あるいは、大きな発熱を伴う大容量の半導体素子が用いられる電気を駆動力とする自動車のインバーター用放熱基板として好適に使用できる。   According to the composite material of the present invention and the heat dissipation board using the same, it has a low thermal expansion coefficient and a higher thermal conductivity than the conventional one, and is excellent in weight reduction. Alternatively, it can be suitably used as a heat dissipation substrate for an inverter of an automobile using electricity as a driving force in which a large-capacity semiconductor element with large heat generation is used.

本発明の複合材料及びそれを用いた放熱基板によれば、塑性加工性、例えば、圧延加工性やプレス打ち抜き時の寸法精度や破断面の平滑性が向上する。さらに、打抜き破断面の平滑性の向上によってニッケルめっき後のシミの発生が解消されるため、生産性向上に大きく寄与する。   According to the composite material of the present invention and the heat dissipation substrate using the same, plastic workability, for example, rolling workability, dimensional accuracy at the time of press punching, and smoothness of a fractured surface are improved. Furthermore, since the occurrence of spots after nickel plating is eliminated by improving the smoothness of the punched fracture surface, it greatly contributes to the improvement of productivity.

本発明の複合材料及びそれを用いた放熱基板によれば、半導体素子と放熱基板をハンダ付けした際の密着性の向上とハンダ流れが防止できるため、例えばALNの接合が安定になり接合信頼性が向上する。   According to the composite material of the present invention and the heat dissipation board using the same, the adhesion of the semiconductor element and the heat dissipation board can be improved and the solder flow can be prevented. Will improve.

本発明の複合材料及びそれを用いた放熱基板によれば、特に、高価なWやMoの使用量、つまり含有量を少なくできるため、低コストの放熱基板を提供できる。さらに、WやMoの原料高騰下においても安定して提供できるため、工業的意義は極めて高い。   According to the composite material of the present invention and the heat dissipation substrate using the composite material, since the amount of expensive W or Mo used, that is, the content can be reduced, a low-cost heat dissipation substrate can be provided. Furthermore, since it can be stably provided even when the raw materials for W and Mo are soaring, the industrial significance is extremely high.

以下に、本発明の複合材料及び半導体搭載用放熱基板の実施の形態について説明する。   Hereinafter, embodiments of the composite material and the semiconductor-mounted heat dissipation substrate of the present invention will be described.

図1は本発明の実施の形態による銅/銅−モリブデン複合合金/銅の複合材料を示す斜視図である。図1を参照すると、複合材料20は、銅−モリブデン複合合金の芯材10の両面に銅11を圧延等の塑性加工によって形成してなる。   FIG. 1 is a perspective view showing a copper / copper-molybdenum composite alloy / copper composite material according to an embodiment of the present invention. Referring to FIG. 1, a composite material 20 is formed by forming copper 11 on both surfaces of a core material 10 of a copper-molybdenum composite alloy by plastic working such as rolling.

図2は図1の芯材の塑性加工前の状態を示す概略斜視図である。図2を参照すると、芯材10は小さなモリブデン粒子1と銅2とによって形成された複合相の空隙に銅が溶浸されて、大きな粒子からなる銅プール相3が形成されている。   FIG. 2 is a schematic perspective view showing a state of the core material of FIG. 1 before plastic working. Referring to FIG. 2, in the core material 10, copper is infiltrated into voids of a composite phase formed by small molybdenum particles 1 and copper 2 to form a copper pool phase 3 composed of large particles.

図3は、図1の芯材の塑性加工後の状態を示す概略斜視図である。図3を参照すると、芯材10は、塑性加工を施されて、複合相中のモリブデン粒子1と銅プール相3が押しつぶされて、主平面から見ると円板状に且つX方向及びY方向の断面から見ると扁平に形成されている。   FIG. 3 is a schematic perspective view showing a state after plastic processing of the core material of FIG. Referring to FIG. 3, the core material 10 is subjected to plastic working so that the molybdenum particles 1 and the copper pool phase 3 in the composite phase are crushed so as to have a disk shape when viewed from the main plane, and in the X direction and the Y direction. When viewed from the cross-section of, it is formed flat.

次に、本発明の半導体搭載用放熱基板の具体的製造工程について順を追って説明する。   Next, a specific manufacturing process of the semiconductor-mounted heat dissipation board of the present invention will be described in order.

I.粉末の混合:
先ず、芯材となるMo−Cu合金の製造方法について説明する。
I. Powder mixing:
First, the manufacturing method of the Mo-Cu alloy used as a core material is demonstrated.

30〜200μmのCu粉末と1〜10μmのMo粉末をCu5〜30質量%で秤量し、次いで、V型ミキサーで混合する。   30 to 200 μm Cu powder and 1 to 10 μm Mo powder are weighed at 5 to 30% by mass of Cu, and then mixed with a V-type mixer.

混合はV型ミキサー等で均一混合する。なお、粉砕混合ではCu粉末が変形し、Cuプール形状も変化するため好ましくない。   Mixing is performed with a V-type mixer or the like. Note that pulverization and mixing are not preferable because the Cu powder is deformed and the shape of the Cu pool is also changed.

II.成形体の作製及び空隙量の調整:
次に、上記の混合粉末をプレスで成形する。空隙量は成形時の圧力によって調整する。圧力が設備能力を超える場合には、800〜1400℃の還元ガス雰囲気中で中間焼結して空隙量を調整する。
II. Preparation of molded body and adjustment of void volume:
Next, the mixed powder is formed by pressing. The amount of voids is adjusted by the pressure during molding. When the pressure exceeds the equipment capacity, the amount of voids is adjusted by intermediate sintering in a reducing gas atmosphere at 800 to 1400 ° C.

なお、混合粉末の成形は、プレスあるいはCIP成形いずれでも可能であり、最終形状によって適宜選択できる。   The mixed powder can be molded by either pressing or CIP molding, and can be appropriately selected depending on the final shape.

III.Cuプール相の形成:
上記のプレスによる成形体、あるいは中間焼結による中間焼結体の空隙量に対しCu板を配し、1400℃までの温度範囲で、好ましくは1150〜1300℃の水素雰囲気中で加熱し、溶融したCuを空隙内に溶浸させて各種組成のCu−Mo複合合金を得る。
III. Formation of Cu pool phase:
A Cu plate is arranged with respect to the void amount of the compact formed by the above press or the intermediate sintered body by the intermediate sintering, and heated in a hydrogen atmosphere at a temperature range up to 1400 ° C, preferably 1150 to 1300 ° C, and melted. Cu infiltrated into the voids to obtain Cu-Mo composite alloys having various compositions.

上記の空隙にCuを30〜70質量%溶浸させることによりCu粉末部分がCuプール(溜まり)となり、Cuプール相の比率が5〜30%からなる芯材用素材としての本発明のMo−Cu合金を得る。   By infiltrating 30 to 70% by mass of Cu into the voids, the Cu powder portion becomes a Cu pool (reservoir), and the ratio of the Cu pool phase is 5 to 30%. A Cu alloy is obtained.

図2に示すように、芯材10としてのモリブデン粒子1及び銅2からなるCu−Mo中間焼結体(複合相)の空隙部に溶浸によるCuプール相3が形成されている。   As shown in FIG. 2, a Cu pool phase 3 is formed by infiltration in a void portion of a Cu—Mo intermediate sintered body (composite phase) made of molybdenum particles 1 and copper 2 as a core material 10.

IV.芯材の作製:
上記で得たCu−Mo複合合金からなる芯材10の素材に加工率30〜98%の冷間圧延ロールあるいは温間圧延ロールにて塑性加工(温間圧延温度は後述)を施し、図3に示す所定の厚みを有するMo−Cu複合圧延板を得る。
IV. Production of core material:
The material of the core material 10 made of the Cu—Mo composite alloy obtained above is subjected to plastic working (warm rolling temperature will be described later) with a cold rolling roll or a warm rolling roll with a processing rate of 30 to 98%, and FIG. A Mo—Cu composite rolled sheet having a predetermined thickness shown in FIG.

図3を参照すると、上記の塑性加工は、Cu板をクラッドした後の芯材10の加工度が等しくなるように圧延方向及び、この圧延方向と直角の方向への加工度、つまり、クロス率を調整する。このクロス率の調整によって、圧延された芯材(板状)10の面内でのCuプール相3及び複合相中のMo粒子1を芯材10の主平面から見て円板状に略等しく延ばすことができ、且つX及びY方向から板の端面を見ると扁平に押し潰し形成することができる。この結果、熱膨張係数を等方的にし、且つ、打抜き時の破断面を平滑にすることができる。   Referring to FIG. 3, the plastic working described above is performed in a rolling direction and a working degree in a direction perpendicular to the rolling direction so that the working degree of the core material 10 after the Cu plate is clad is equal, that is, the cross ratio. Adjust. By adjusting the cross ratio, the Cu pool phase 3 and the Mo particles 1 in the composite phase in the plane of the rolled core material (plate shape) 10 are substantially equal to a disk shape when viewed from the main plane of the core material 10. It can be extended, and when viewed from the X and Y directions, the plate can be flattened and formed. As a result, the thermal expansion coefficient can be made isotropic, and the fractured surface at the time of punching can be made smooth.

なお、上記の加工率とは、加工量/初期形状×100%(加工量=初期形状−加工後形状)のことである。   The processing rate is processing amount / initial shape × 100% (processing amount = initial shape−post-processing shape).

Mo−Cu複合圧延板のクロス率(例えばクロス率50%とは、圧延面の互いの直角方向の加工率が同じことを指す)は20〜80%になるように、クラッドの前後で途中クロス圧延する。   The cross ratio of the Mo-Cu composite rolled sheet (for example, the cross ratio of 50% means that the processing ratio in the direction perpendicular to the rolling surface is the same) is 20 to 80%. Roll.

クロス率が20%未満、あるいは80%を超えるとプレスによる打ち抜き時の破断面が2次剪断を伴なったり、層状クラックが発生する。従って、クロス率の望ましい範囲は20以上、80%以下である。   If the cross rate is less than 20% or exceeds 80%, the fracture surface at the time of punching with a press is accompanied by secondary shear or a layered crack is generated. Therefore, a desirable range of the cross rate is 20 or more and 80% or less.

芯材の表面の酸化物はブラシなどを用いて除去し、且つ、還元性雰囲気中700〜850℃でアニールして表面の清浄化を行う。   The oxide on the surface of the core material is removed using a brush or the like, and the surface is cleaned by annealing at 700 to 850 ° C. in a reducing atmosphere.

V.銅板のクラッド(圧接)加工:
次に、上記で得た芯材の上下の各主平面にCu板を配置し、還元雰囲気中700〜950℃にて、加熱し、加工率10〜50%の塑性加工(圧延加工)を施して、図1に示す所定の厚みのCuクラッド板を得る。
V. Copper plate cladding (pressure welding) processing:
Next, Cu plates are placed on the upper and lower principal planes of the core material obtained above, heated in a reducing atmosphere at 700 to 950 ° C., and subjected to plastic working (rolling) at a working rate of 10 to 50%. Thus, a Cu clad plate having a predetermined thickness shown in FIG. 1 is obtained.

加熱温度が700℃以下では圧接後に剥がれが生じやすく、また、950℃以上ではCuクラッド後のCPCの層比が場所によって変化が起こり特性が安定しないためである。   When the heating temperature is 700 ° C. or lower, peeling is likely to occur after pressure welding, and when the heating temperature is 950 ° C. or higher, the CPC layer ratio after Cu cladding changes depending on the location and the characteristics are not stable.

加工率10%未満ではCuクラッド後剥がれが生じやすく、また、50%を超えるとCuクラッド後のCPCの層比が場所によって変化し、安定しないためである。   If the processing rate is less than 10%, peeling after Cu cladding is likely to occur, and if it exceeds 50%, the layer ratio of CPC after Cu cladding changes depending on the location and is not stable.

トータルの加工率を選択することによってCuクラッド板の熱膨張係数を概ねALNやGaAsの熱膨張係数と合致させることができる。得られたCuクラッド板は、ALNやGaAs等の半導体素子とロー付けあるいはハンダ接合され、外囲材とビス止めを行う。   By selecting the total processing rate, the thermal expansion coefficient of the Cu clad plate can be made to substantially match the thermal expansion coefficient of ALN or GaAs. The obtained Cu clad plate is brazed or soldered to a semiconductor element such as ALN or GaAs, and is screwed to the surrounding material.

この外囲材とのビス止めで放熱性を損なう空間をなくするために、クラッドする上下Cu板の板厚比を1.0<S上/S下<1.5の範囲で変化させる(S上、S下は上下銅板の各々の厚みを示す)。   In order to eliminate the space that impairs the heat dissipation by screwing with the surrounding material, the thickness ratio of the upper and lower Cu plates to be clad is changed in the range of 1.0 <S upper / S lower <1.5 (S The upper and lower S indicate the thickness of each of the upper and lower copper plates).

あるいは、Cuクラッド板を後述の打抜き加工した後、予め反りを長さ10mm当たり15μm以下に付与せしめてロー付けあるいはハンダ付け後の反りを調整する。   Alternatively, after the Cu clad plate is punched as described later, the warp is adjusted to 15 μm or less per 10 mm length in advance to adjust the warp after brazing or soldering.

VI.冷間圧延及びプレス打抜き
Cuクラッド板の表面スケールを除去した後、冷間圧延にて所定の厚みにし、打ち抜きプレスして最終形状に打ち抜きする。
VI. Cold rolling and press punching After removing the surface scale of the Cu clad plate, it is cold rolled to a predetermined thickness, punched and pressed into a final shape.

VII.めっき前の面粗度仕上げ:
上記の打ち抜き後、砥粒入りブラシ(商品名:デュポン社 タイネックスTX−C)にて研磨を行い所定の面粗度に仕上げる。
VII. Surface roughness finish before plating:
After the above punching, polishing is performed with a brush containing abrasive grains (trade name: Dunex Tynex TX-C) to finish to a predetermined surface roughness.

めっき前のCu板面の面粗度はRa1.0以下にする必要がある。その理由はCu板面の面粗度がRa1.0を超えるとロー材あるいはハンダ流れが調整できず、ロー材あるいはハンダが表面傷部に沿って流れ出てALNの接合が不安定になり接合信頼性を損なうことがあるためである。ロー材あるいはハンダを調整できる好ましい面粗度は、実験によりRa1.0以下が好ましいことが判明した。   The surface roughness of the Cu plate surface before plating needs to be Ra 1.0 or less. The reason for this is that if the surface roughness of the Cu plate exceeds Ra 1.0, the solder or solder flow cannot be adjusted, and the solder or solder flows out along the surface flaws, resulting in unstable bonding of the ALN. This is because the sex may be impaired. The preferable surface roughness capable of adjusting the brazing material or solder is found to be preferably Ra 1.0 or less by experiment.

この面粗度はブラシ研磨後の粗さが製品の粗さを支配するため、前述のとおりRa1.0以下にすることが必要である。   This surface roughness needs to be Ra 1.0 or less as described above because the roughness after brush polishing dominates the roughness of the product.

VIII.めっき:
次に、Cu/Cu−Mo/Cuをプレスによって打ち抜いて得られた板の平面部にニッケルめっきを施し放熱基板を得る。ニッケルめっきを行う理由は、Cuの酸化による経時変化の防止およびハンダの流れを良くするためである。ニッケルめっき厚は2〜8.5μmが好ましい。2μm未満ではロー材あるいはハンダの濡れが安定しないためである。
VIII. Plating:
Next, nickel plating is applied to the flat portion of the plate obtained by punching Cu / Cu—Mo / Cu by pressing to obtain a heat dissipation substrate. The reason for performing nickel plating is to prevent change with time due to oxidation of Cu and improve the flow of solder. The nickel plating thickness is preferably 2 to 8.5 μm. If the thickness is less than 2 μm, the wetting of the brazing material or the solder is not stable.

通常、IGBT(Insulated Gate Bipolar Transistor)などの場合には、この面にALNとのハンダ付けを行う。   Usually, in the case of an IGBT (Insulated Gate Bipolar Transistor) or the like, soldering with ALN is performed on this surface.

次に、本発明の複合材料が有する特性等について説明する。   Next, characteristics and the like possessed by the composite material of the present invention will be described.

Mo−Cu複合合金の合金構造をCuプール相とMo−Cu複合相の2相の構成にすることで、Moの含有量を少なくでき、且つ熱伝導率を維持しながら、熱膨張係数が大幅に低下させることができる。   By making the alloy structure of the Mo-Cu composite alloy into a two-phase structure of the Cu pool phase and the Mo-Cu composite phase, the Mo content can be reduced and the thermal conductivity is maintained, while the thermal expansion coefficient is greatly increased. Can be lowered.

例えば、下記表1の試料1に示すとおり、Mo粒子が均一に分散した70%Mo−30%Cu合金(以下、均一分散Mo−Cu合金をPCMと称し、その中で30%Cuを含むものをPCM30と称する)を90%圧延加工した複合圧延板の熱膨張係数は7×10−6/℃で熱伝導率は200W/m・Kである。 For example, as shown in Sample 1 of Table 1 below, a 70% Mo-30% Cu alloy in which Mo particles are uniformly dispersed (hereinafter, the uniformly dispersed Mo-Cu alloy is referred to as PCM, and includes 30% Cu. Is referred to as PCM30), and has a coefficient of thermal expansion of 7 × 10 −6 / ° C. and a thermal conductivity of 200 W / m · K.

なお、このPCMの作製方法は、Mo圧粉体にCuを含浸して放熱基板材料を得る技術であり、本出願人の特許文献4に開示した実施例に準じて作製した。   This PCM production method is a technique for obtaining a heat dissipation substrate material by impregnating Cu into a Mo green compact, and was produced according to the example disclosed in Patent Document 4 of the present applicant.

また、下記表1の試料3に示すとおり、Cuプール相を10%有する70%Mo−30%Cu合金(以下、Cuプール相を有するMo−Cu合金をLCMと称し、30%CuでCuプール相を10%有するものをその数値を採って、LCM30−10と称する)を90%圧延加工した圧延板の熱膨張係数は6.2×10−6/℃と低下し、熱伝導率は200W/m・Kとなる。 Further, as shown in Sample 3 of Table 1 below, 70% Mo-30% Cu alloy having 10% Cu pool phase (hereinafter, Mo-Cu alloy having Cu pool phase is referred to as LCM, and Cu pool is formed with 30% Cu. The coefficient of thermal expansion of a rolled sheet obtained by rolling 90% of a sheet having 10% phase is referred to as LCM30-10) is reduced to 6.2 × 10 −6 / ° C., and the thermal conductivity is 200 W. / M · K.

Cuプール相の量は、研磨加工を施した試料断面を50倍の光学顕微鏡写真を撮り、同視野中のCuの部分を画像処理してその中のCuプール相に該当する視野の面積比率を出し、これを分析された全Cu量値との結果より算定した値である。   The amount of Cu pool phase is determined by taking a 50 × optical micrograph of the polished sample cross section, processing the Cu portion in the same field, and processing the area ratio of the field corresponding to the Cu pool phase in the image. This is a value calculated from the result of analyzing the total Cu content value.

また、下記表1の試料1と試料4の比較から分かるとおり、Mo粒子が均一に分散した70%Mo−30%Cuと同一の熱膨張係数となるCuプール相を有するLCMの組成はCuプール相が10%のLCM40−10でよく、Cu含有量が多いことから熱伝導率が222W/m・Kと約一割高い。   Further, as can be seen from the comparison between Sample 1 and Sample 4 in Table 1 below, the composition of LCM having a Cu pool phase having the same thermal expansion coefficient as 70% Mo-30% Cu in which Mo particles are uniformly dispersed is Cu pool. The phase may be 10% LCM40-10, and since the Cu content is high, the thermal conductivity is about 10% higher at 222 W / m · K.

このLCM40を芯材として上下に銅を被せ層比を2:3:2にてクラッドする(以下、Cu/Cu−Mo/Cuクラッド材をその数値を採って、CPCと称し、層比を3桁で示し、芯材のCu%が40%でCuプール相が10%のクラッドをCPC232(40−10)と称する)ことにより、熱膨張係数は7.5×10−6/℃、熱伝導率310W/m・Kとなり、パッケージ材料として汎用されているアルミナとの組み合わせで許容できる熱膨張の範囲を確保できる。 Using this LCM 40 as a core material, copper is covered on the upper and lower sides and the layer ratio is 2: 3: 2 (hereinafter, the Cu / Cu—Mo / Cu clad material is referred to as CPC, and the layer ratio is 3). The coefficient of thermal expansion is 7.5 × 10 −6 / ° C., which is indicated by a digit, and the clad of Cu% of the core material is 40% and the Cu pool phase is 10% is called CPC232 (40-10)) The rate is 310 W / m · K, and an allowable thermal expansion range can be secured in combination with alumina, which is widely used as a package material.

一方、Moが均一に分散したPCMの場合、CPC232(40−10)と同じ熱膨張係数を得るためには、PCM30を芯材とするCPC232(30)となる。   On the other hand, in the case of PCM in which Mo is uniformly dispersed, in order to obtain the same thermal expansion coefficient as CPC232 (40-10), CPC232 (30) having PCM30 as a core material is obtained.

従って、熱膨張係数をアルミナと整合させるため、例えば、7.5×10−6/℃に定める場合、従来のMo−Cu焼結合金では芯材は70Mo−30Cu合金が必要で、必然的にコスト高で熱伝導率も255W/m・Kと低くなる。 Therefore, in order to match the thermal expansion coefficient with that of alumina, for example, when it is set to 7.5 × 10 −6 / ° C., the core material of the conventional Mo—Cu sintered alloy requires a 70 Mo-30Cu alloy. The cost is high and the thermal conductivity is as low as 255 W / m · K.

しかし、本発明のLCMを芯材に用いることによって、60%Mo−40%Cuの少ないMo含有量でよく、しかもCu含有量の増加によって熱伝導率は310W/m・Kと増加した放熱基板を得ることができる。   However, by using the LCM of the present invention for the core material, a low Mo content of 60% Mo-40% Cu is sufficient, and the heat conductivity is increased to 310 W / m · K by increasing the Cu content. Can be obtained.

このようにLCMを芯材に用いた本発明のCPC放熱基板は、Moが均一に分散したMo−Cu合金つまり、PCMを芯材とする試料番号6及び15のCPCに比べ、熱膨張率が同一でありながら熱伝導率を増加させることができ、且つMo含有量を減らしCu含有量を増加させることが出来るため、より低コストの放熱基板を提供することが可能となる。   Thus, the CPC heat dissipation board of the present invention using LCM as the core material has a coefficient of thermal expansion compared to the Mo-Cu alloy in which Mo is uniformly dispersed, that is, the CPCs of Sample Nos. 6 and 15 using PCM as the core material. Although it is the same, the thermal conductivity can be increased, and the Mo content can be reduced and the Cu content can be increased. Therefore, it is possible to provide a lower cost heat dissipation substrate.

また、本発明の放熱基板では、Mo含有量の低減によりMo−Cu複合合金の密度が低くなり、同程度の熱膨張を持つW−Cu合金あるいはMo−Cu合金に比べ密度が低くなるので半導体装置の軽量化が可能となる。   Further, in the heat dissipation substrate of the present invention, the density of the Mo—Cu composite alloy is lowered by the reduction of the Mo content, and the density is lower than that of the W—Cu alloy or Mo—Cu alloy having the same thermal expansion. The weight of the apparatus can be reduced.

さらに、同一の熱膨張率を持つMo−Cu合金に比べ熱伝導率が高いため、合金体積を減少できるので半導体装置の軽量化が可能となる。   Furthermore, since the thermal conductivity is higher than that of the Mo—Cu alloy having the same thermal expansion coefficient, the volume of the alloy can be reduced, so that the weight of the semiconductor device can be reduced.

本発明に関わる芯材のMo−Cu複合合金のCu含有量は、放熱基板としてMo基板に比べて利用価値のある30質量%以上であり、且つ、熱膨張係数の点で放熱基板として通常利用できる範囲を考慮して70質量%以下とする。   The Cu content of the Mo—Cu composite alloy of the core material according to the present invention is 30% by mass or more, which is useful as a heat dissipation substrate compared to the Mo substrate, and is usually used as a heat dissipation substrate in terms of thermal expansion coefficient. Considering the possible range, the content is made 70% by mass or less.

特に、パッケージ材料として最も広く使用されているアルミナと組み合わせる場合には、熱膨張係数の整合を得るためCu含有量を40〜60質量%とすることが好ましい。   In particular, when combined with alumina, which is most widely used as a package material, the Cu content is preferably 40 to 60% by mass in order to obtain matching of thermal expansion coefficients.

また、前述のとおり、Cu−Mo複合合金中のCuプールの大きさは30〜200μmが好ましい。30μm以下では熱伝導向上効果が少なく、200μm以上ではCuプール分散がまばらになるため場所による熱伝導、熱膨張のバラツキが大きくなるためである。   As described above, the size of the Cu pool in the Cu—Mo composite alloy is preferably 30 to 200 μm. When the thickness is 30 μm or less, the effect of improving the heat conduction is small, and when the thickness is 200 μm or more, the dispersion of the Cu pool becomes sparse, so that variation in heat conduction and thermal expansion varies depending on the location.

同じく、Cuプール相の量は、CuプールとMo−Cu複合相の合計に対し5〜30質量%が好ましい。5質量%以下では熱伝導向上効果が少なく、Mo−Cu複合相中のMo量が多く熱膨張が低くなるが、30質量%以上ではMo−Cu複合相の絶対量が少なくなり、結果として熱膨張が大きくなるためである。   Similarly, the amount of the Cu pool phase is preferably 5 to 30% by mass with respect to the total of the Cu pool and the Mo—Cu composite phase. If it is 5% by mass or less, the effect of improving heat conduction is small and the amount of Mo in the Mo—Cu composite phase is large and the thermal expansion is low. This is because the expansion increases.

これらCuプール相を持つ焼結合金の熱膨張係数は、Cuプール量の大きさと塑性加工の加工率で精密に調整することができる。但し、全加工率については99%以下、いずれでも特性上問題はない。   The thermal expansion coefficient of these sintered alloys having a Cu pool phase can be precisely adjusted by the amount of Cu pool and the processing rate of plastic working. However, the total processing rate is 99% or less.

しかし、99%を超えると塑性加工の幅方向端での割れが生じやすくなるので99%以下が好ましい。   However, if it exceeds 99%, cracking at the end in the width direction of plastic working tends to occur, so 99% or less is preferable.

Cu層とMo−Cu複合合金基材の比率は1:1:1〜1:5:1が実用範囲である。Cu層比率が1:1:1以下になると熱膨張係数が大きくなりすぎアルミナとのマッチングが悪くセラミックの破壊が起きる。また、1:5:1を超えるとCuをクラッドして熱伝導率を向上させる効果が少なくなるためである。   The ratio of the Cu layer to the Mo—Cu composite alloy substrate is 1: 1: 1 to 1: 5: 1. When the Cu layer ratio is 1: 1: 1 or less, the thermal expansion coefficient becomes too large, and the matching with alumina is poor, and the ceramic breaks down. Moreover, when it exceeds 1: 5: 1, it is because the effect which clads Cu and improves thermal conductivity will decrease.

クラッドする上下Cu板の板厚比は1.0<S上/S下<1.5の範囲である。上下Cu板の板厚比が1.5を超えるとロー材あるいはハンダ接合後の反りが多くなりすぎビス止めなどで、アルミナ、ALNが破壊するため1.5を超えないことが好ましい。   The thickness ratio of the upper and lower Cu plates to be clad is in the range of 1.0 <S upper / S lower <1.5. If the thickness ratio of the upper and lower Cu plates exceeds 1.5, warpage after soldering or soldering increases too much, and it is preferable not to exceed 1.5 because alumina and ALN break down due to screwing or the like.

反りの付与について、ロールレベラー(例えば、理工社製 上4本、下5本ローラータイプ)にて、長手方向、短手方向に反りを長さ10mm当たり15μm以下付与せしめる。15μmを超えると接合後の反りが大きくなり同様にALNが破損しやすくなるためである。   About the provision of warpage, a roll leveler (for example, Riko Co., Ltd., top 4 and bottom 5 roller type) warps in the longitudinal direction and the lateral direction with a thickness of 15 μm or less per 10 mm in length. This is because if the thickness exceeds 15 μm, warping after joining becomes large and the ALN is likely to be damaged.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
平均粒径100μmのCu粉末と平均粒径3μmのMo粉末を20〜60%Cu−残部Moの割合でV型ミキサーにて30分混合した。混合粉末を39.2〜245MPa(0.4〜2.5ton/cm)でプレス成形し、型押密度が4.6〜8×10kg/m(g/cm)からなる50×100×10mmの成形体を作製した。この成形体に空隙量に対し1.1倍のCu板を配し1300℃、水素雰囲気中で加熱し、溶融したCuを成形体の空隙内に溶浸させて各種組成のCu−Mo合金(LCM30−10、LCM40−10と20、LCM50−10と20、LCM60−20、LCM70−20)を得た。
Example 1
Cu powder having an average particle diameter of 100 μm and Mo powder having an average particle diameter of 3 μm were mixed at a ratio of 20 to 60% Cu—balance Mo by a V-type mixer for 30 minutes. The mixed powder is press-molded at 39.2 to 245 MPa (0.4 to 2.5 ton / cm 2 ), and the pressing density is 4.6 to 8 × 10 3 kg / m 3 (g / cm 3 ) 50 A molded body of × 100 × 10 mm was produced. A Cu plate 1.1 times as large as the amount of voids was placed on this molded body, heated in a hydrogen atmosphere at 1300 ° C., and molten Cu was infiltrated into the voids of the molded body to obtain Cu—Mo alloys having various compositions ( LCM30-10, LCM40-10 and 20, LCM50-10 and 20, LCM60-20, LCM70-20) were obtained.

この合金の表面の余剰Cuや汚れを除去するためホーニングした後、250℃で温間圧延加工により加工率60%の塑性加工をそれぞれ施した。LCM30−10、LCM40−10と20に塑性加工後の圧延体から試料片を切り出し、熱伝導率及び熱膨張係数を測定した。その結果を下記表1に示す。尚、熱伝導率は塑性加工の前後で変化はなかった。   After honing to remove excess Cu and dirt on the surface of this alloy, plastic working was performed at a processing rate of 60% at 250 ° C. by warm rolling. Sample pieces were cut out from the rolled bodies after plastic processing into LCM30-10 and LCM40-10 and 20, and the thermal conductivity and the thermal expansion coefficient were measured. The results are shown in Table 1 below. The thermal conductivity did not change before and after the plastic working.

Figure 2007142126
Figure 2007142126

上記の熱伝導率の測定は、真空理工製熱定数測定装置TC−3000型を用い、レーザーフラッシュ法によって板状試片にてその厚み方向で計量した値である。   The measurement of the thermal conductivity is a value measured in the thickness direction with a plate-like specimen by a laser flash method using a vacuum constant thermal apparatus TC-3000 type manufactured by Riko.

熱膨張係数の測定は、圧延方向に切り出した板状試片の平面で計量された値で、ブルカー・エイエックス(株)横型熱膨張測定装置TD5000Sを用い測定した。   The coefficient of thermal expansion was measured using a Bruker Ax Co., Ltd. horizontal thermal expansion measuring device TD5000S, which was a value measured on the plane of a plate specimen cut in the rolling direction.

この圧延板の上下に銅板をリベットで固定し、900℃、水素雰囲気中で30分加熱し、その後、25%圧下率でクラッドした。芯材の圧延板とCu板の比率を1:4:1及び2:3:2の2種に変化させた。   Copper plates were fixed on the upper and lower sides of the rolled plate with rivets, heated in a hydrogen atmosphere at 900 ° C. for 30 minutes, and then clad at a 25% rolling reduction. The ratio of the rolled plate and the Cu plate of the core material was changed to two types of 1: 4: 1 and 2: 3: 2.

Cuをクラッドした板の表面の酸化皮膜をブラシで研磨除去した後、厚み3mmまで冷間圧延を行った。その後、打ち抜き加工を施し砥粒入りブラシにて研磨を行い表面粗度をRa0.5とし、放熱基板を作製した。この打ち抜き体の端面は平滑であり、Niめっき後もシミがなく良好であった。また、この3mmの圧延体から試料片を切り出し、熱伝導率とX方向及びY方向の熱膨張係数を測定した。この結果を上記表1に示す。   The oxide film on the surface of the Cu-clad plate was polished and removed with a brush, and then cold-rolled to a thickness of 3 mm. Thereafter, punching was performed, and polishing was performed with a brush containing abrasive grains, the surface roughness was set to Ra 0.5, and a heat dissipation substrate was manufactured. The end face of the punched body was smooth, and was good without any stain even after Ni plating. Moreover, a sample piece was cut out from this 3 mm rolled body, and the thermal conductivity and the thermal expansion coefficient in the X direction and the Y direction were measured. The results are shown in Table 1 above.

尚、比較のため、銅を予配合せずに、その他は上記実施例と同一の方法、条件にて製作した均一分散の30%.40%Cu−Mo合金(PCM30、PCM40)を用いCuクラッド材を作製し、実施例1と同様に熱伝導率と熱膨張係数を測定した。   For comparison, other than 30% of the uniform dispersion produced by the same method and conditions as in the above example without pre-mixing copper. A Cu clad material was prepared using 40% Cu—Mo alloy (PCM30, PCM40), and the thermal conductivity and the thermal expansion coefficient were measured in the same manner as in Example 1.

上記表1の試料6と7の比較及び15と16の比較から分かるとおり、最終組成のCu量が同一でも本発明材に用いられる合金構成にすることにより、熱膨張係数は0.8×10−6/℃程度低くなる。 As can be seen from the comparison between samples 6 and 7 and the comparison between 15 and 16 in Table 1 above, the thermal expansion coefficient is 0.8 × 10 6 by adopting the alloy structure used for the material of the present invention even when the amount of Cu in the final composition is the same. -6 / ° C.

また、アルミナの熱膨張係数に近い7.5×10−6/℃の特性はCPC232(40−10)で達成でき、従来の均一分散タイプのCPC232(PCM30)に比べ熱膨張係数は同一でも熱伝導率が55watt高く、密度も50kg/m(×10−3g/cm)と低く、且つ、全体のMo含有量も4.3%少なくできるため軽量化、低コスト化も可能であることが分かる。 Moreover, the characteristic of 7.5 × 10 −6 / ° C., which is close to the thermal expansion coefficient of alumina, can be achieved with CPC232 (40-10), and even though the thermal expansion coefficient is the same as that of the conventional uniform dispersion type CPC232 (PCM30), Conductivity is high at 55 watts, density is as low as 50 kg / m 3 (× 10 −3 g / cm 3 ), and the overall Mo content can be reduced by 4.3%, so weight and cost can be reduced. I understand that.

(実施例2)
実施例1と同様の方法で、銅板の上下厚みのみを変化させたCPC232(LCM40−10)を作製した。
(Example 2)
In the same manner as in Example 1, CPC232 (LCM40-10) in which only the upper and lower thicknesses of the copper plate were changed was produced.

この圧延板から10×40mmサイズの試験片を切り出し、ニッケルめっきを施して、99.5%以上のアルミナを含むセラミックス枠(一方の面をタングステンでメタライズした後、ニッケルめっきしたもの)とを銀−銅の共晶組成の銀ローにて850℃に加熱ロー付けし、CPC板の反りを測定した値を表2に示す。   A test piece of 10 × 40 mm size was cut out from this rolled plate, nickel-plated, and a ceramic frame containing 99.5% or more of alumina (one surface was metallized with tungsten and then nickel-plated) and silver. -Table 2 shows the values obtained by measuring the warpage of the CPC plate by heating to 850 ° C with a silver solder having a copper eutectic composition.

また、上下銅層が等しいCPC232(LCM40−10)圧延板に対し前述のロールレベラーにて、長手方向に反りを付与した。   Moreover, the warp was given to the longitudinal direction with the above-mentioned roll leveler with respect to the CPC232 (LCM40-10) rolled sheet with the same upper and lower copper layers.

この圧延板から10×40mmサイズの試験片を切り出し、ニッケルめっきを施し、上記と同様にロー付けして、反りを測定した値を合せて下記表2に示す。   A test piece having a size of 10 × 40 mm is cut out from the rolled plate, nickel-plated, brazed in the same manner as described above, and values obtained by measuring warpage are shown in Table 2 below.

Figure 2007142126
Figure 2007142126

本例によって、接合する上下銅板の板厚比が1.5以下であれば実用的に問題が無いことが確認できた。   According to this example, it was confirmed that there is no practical problem if the thickness ratio of the upper and lower copper plates to be joined is 1.5 or less.

また、長手方向に反りを10mm当たり15μm付与することで、ハンダ接合後の反り及び、ALNに破損が発生しないことが確認できた。   Moreover, it was confirmed that warping after soldering and damage to the ALN did not occur by applying warpage in the longitudinal direction of 15 μm per 10 mm.

本発明に係る複合材料は、セラミックパッケージ等の半導体パッケージにおける半導体搭載用放熱基板に適用される。   The composite material according to the present invention is applied to a semiconductor mounting heat dissipation substrate in a semiconductor package such as a ceramic package.

本発明の実施の形態による銅/銅−モリブデン複合合金/銅の複合材料を示す斜視図である。1 is a perspective view showing a copper / copper-molybdenum composite alloy / copper composite material according to an embodiment of the present invention. FIG. 図1の芯材の塑性加工前の状態を示す概略斜視図である。It is a schematic perspective view which shows the state before plastic working of the core material of FIG. 図1の芯材の塑性加工後の状態を示す概略斜視図である。It is a schematic perspective view which shows the state after plastic working of the core material of FIG.

符号の説明Explanation of symbols

1 モリブデン粒子
2 銅
3 銅プール相
10 芯材
11 銅
20 複合材料
DESCRIPTION OF SYMBOLS 1 Molybdenum particle 2 Copper 3 Copper pool phase 10 Core material 11 Copper 20 Composite material

Claims (10)

30〜70質量%の銅(Cu)と残部が実質的にモリブデン(Mo)とからなる複合合金を芯材とし、前記芯材の上下主平面に銅板をクラッドして銅/銅−モリブデン複合合金/銅なる構造を形成したクラッド材であって、前記複合合金は、銅プール相とモリブデン−銅合金相で形成されていることを特徴とする複合材料。   A copper / copper-molybdenum composite alloy in which a composite alloy consisting of 30 to 70% by mass of copper (Cu) and the balance substantially consisting of molybdenum (Mo) is used as a core, and a copper plate is clad on the upper and lower main planes of the core. A clad material having a copper structure, wherein the composite alloy is formed of a copper pool phase and a molybdenum-copper alloy phase. 請求項1に記載の複合材料において、前記芯材となる複合合金の銅プール相が5〜30質量%であることを特徴とする複合材料。   The composite material according to claim 1, wherein a copper pool phase of the composite alloy serving as the core material is 5 to 30% by mass. 請求項1又は2に記載の複合材料において、前記芯材となる複合合金の中の銅プール相の粒子径が30〜200μmであることを特徴とする複合材料。   3. The composite material according to claim 1, wherein the copper pool phase in the composite alloy serving as the core material has a particle size of 30 to 200 μm. 請求項1〜3の内のいずれか1つに記載の複合材料において、前記複合合金中のモリブデン粒子及び銅プール相は、前記主平面から見ると円板状に略等しく延ばされており且つX及びY方向から板の端面を見ると扁平に押し潰されて形成されていることを特徴とする複合材料。   The composite material according to any one of claims 1 to 3, wherein the molybdenum particles and the copper pool phase in the composite alloy extend substantially equally in a disk shape when viewed from the main plane; A composite material characterized by being flattened when viewed from the X and Y directions. 請求項1〜4の内のいずれか1つに記載の複合材料において、前記芯材及び銅板のクラッド材は塑性加工によって形成されていることを特徴とする複合材料。   5. The composite material according to claim 1, wherein the core material and the clad material of the copper plate are formed by plastic working. 6. 請求項1〜5の内のいずれか1つに記載の複合材料において、前記銅/銅−モリブデン複合合金/銅のクラッド材の各層厚の比率が1:1:1〜1:5:1からなることを特徴とする複合材料。   The composite material according to any one of claims 1 to 5, wherein a ratio of each layer thickness of the copper / copper-molybdenum composite alloy / copper cladding material is from 1: 1: 1 to 1: 5: 1. A composite material characterized by: 請求項1〜6の内のいずれか1つに記載の複合材料において、前記銅/銅−モリブデン複合合金/銅のクラッド材の上下銅層の厚みをそれぞれS上、S下で表したときに、その比を1.0<S上/S下<1.5の範囲としたことを特徴とする複合材料。   In the composite material according to any one of claims 1 to 6, when the thicknesses of the upper and lower copper layers of the copper / copper-molybdenum composite alloy / copper clad material are respectively expressed as S above and S below. The composite material is characterized in that the ratio is in the range of 1.0 <S upper / S lower <1.5. 請求項1〜7の内のいずれか1つに記載の複合材料を用いた半導体搭載用放熱基板であって、前記基板は予め10mm当たり15μm以下の反りが付与されていることを特徴とする半導体搭載用放熱基板。   A semiconductor mounting heat dissipation substrate using the composite material according to any one of claims 1 to 7, wherein the substrate is preliminarily provided with a warp of 15 µm or less per 10 mm. Mounting heat dissipation board. 請求項8に記載の半導体搭載用放熱基板において、前記基板の面粗度がRa1.0以下であることを特徴とする半導体搭載用放熱基板。   9. The semiconductor mounting heat dissipation board according to claim 8, wherein the substrate has a surface roughness Ra of 1.0 or less. 請求項8又は9に記載の半導体搭載用放熱基板を用いていることを特徴とするセラミックパッケージ。
A ceramic package using the semiconductor mounting heat dissipation board according to claim 8.
JP2005333500A 2005-11-18 2005-11-18 Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same Pending JP2007142126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333500A JP2007142126A (en) 2005-11-18 2005-11-18 Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333500A JP2007142126A (en) 2005-11-18 2005-11-18 Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same

Publications (1)

Publication Number Publication Date
JP2007142126A true JP2007142126A (en) 2007-06-07

Family

ID=38204644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333500A Pending JP2007142126A (en) 2005-11-18 2005-11-18 Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same

Country Status (1)

Country Link
JP (1) JP2007142126A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224715A (en) * 2008-03-18 2009-10-01 Toyota Central R&D Labs Inc Heat dissipation plate, and module equipped with the same
WO2011040044A1 (en) * 2009-10-01 2011-04-07 Jfe精密株式会社 Heat sink for electronic device, and process for production thereof
JP2014502059A (en) * 2011-01-05 2014-01-23 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electronic assembly with improved thermal management
WO2016111206A1 (en) * 2015-01-07 2016-07-14 新日鉄住金マテリアルズ株式会社 Heat dissipation substrate
WO2016111207A1 (en) * 2015-01-07 2016-07-14 新日鉄住金マテリアルズ株式会社 Heat dissipation substrate
KR20170010816A (en) 2014-05-29 2017-02-01 가부시끼가이샤 아라이도 마테리아루 Heat spreader and process for producing same
JP6455896B1 (en) * 2017-11-18 2019-01-23 Jfe精密株式会社 Heat sink and manufacturing method thereof
JP6462172B1 (en) * 2018-08-02 2019-01-30 Jfe精密株式会社 Heat sink and manufacturing method thereof
WO2021040030A1 (en) * 2019-08-29 2021-03-04 Jfe精密株式会社 Heat dissipation plate, semiconductor package and semiconductor module
WO2022138711A1 (en) * 2020-12-24 2022-06-30 住友電気工業株式会社 Composite material, semiconductor package, and method for manufacturing composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529507A (en) * 1991-07-18 1993-02-05 Toshiba Corp Board for semiconductor
JPH06268117A (en) * 1993-03-15 1994-09-22 Sumitomo Electric Ind Ltd Heat radiating substrate for semiconductor device and its manufacture
JPH06316707A (en) * 1993-03-11 1994-11-15 Tokyo Tungsten Co Ltd Metal composite parts, production thereof and semiconductor equipment
WO2004038049A1 (en) * 2002-10-28 2004-05-06 A.L.M.T.Corp. Composite material, method for producing same and member using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529507A (en) * 1991-07-18 1993-02-05 Toshiba Corp Board for semiconductor
JPH06316707A (en) * 1993-03-11 1994-11-15 Tokyo Tungsten Co Ltd Metal composite parts, production thereof and semiconductor equipment
JPH06268117A (en) * 1993-03-15 1994-09-22 Sumitomo Electric Ind Ltd Heat radiating substrate for semiconductor device and its manufacture
WO2004038049A1 (en) * 2002-10-28 2004-05-06 A.L.M.T.Corp. Composite material, method for producing same and member using same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224715A (en) * 2008-03-18 2009-10-01 Toyota Central R&D Labs Inc Heat dissipation plate, and module equipped with the same
WO2011040044A1 (en) * 2009-10-01 2011-04-07 Jfe精密株式会社 Heat sink for electronic device, and process for production thereof
EP2485257A1 (en) * 2009-10-01 2012-08-08 Jfe Precision Corporation Heat sink for electronic device, and process for production thereof
EP2485257A4 (en) * 2009-10-01 2014-03-12 Jfe Prec Corp Heat sink for electronic device, and process for production thereof
US9299636B2 (en) 2009-10-01 2016-03-29 Jfe Precision Corporation Heat sink for electronic device and process for production thereof
JP2014502059A (en) * 2011-01-05 2014-01-23 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electronic assembly with improved thermal management
US8933546B2 (en) 2011-01-05 2015-01-13 Robert Bosch Gmbh Electronic assembly with improved thermal management
EP3147384A4 (en) * 2014-05-29 2018-02-14 A.L.M.T. Corp. Heat spreader and process for producing same
KR20170010816A (en) 2014-05-29 2017-02-01 가부시끼가이샤 아라이도 마테리아루 Heat spreader and process for producing same
US10215512B2 (en) 2014-05-29 2019-02-26 A.L.M.T. Corp. Heat spreader and method for manufacturing the same
WO2016111207A1 (en) * 2015-01-07 2016-07-14 新日鉄住金マテリアルズ株式会社 Heat dissipation substrate
WO2016111206A1 (en) * 2015-01-07 2016-07-14 新日鉄住金マテリアルズ株式会社 Heat dissipation substrate
JP6455896B1 (en) * 2017-11-18 2019-01-23 Jfe精密株式会社 Heat sink and manufacturing method thereof
JP2019096654A (en) * 2017-11-18 2019-06-20 Jfe精密株式会社 Radiator plate and manufacturing method for the same
EP3712935A4 (en) * 2017-11-18 2021-01-06 JFE Precision Corporation Heat dissipation plate and manufacturing process therefor
US11646243B2 (en) 2017-11-18 2023-05-09 Jfe Precision Corporation Heat sink and method for manufacturing same
JP6462172B1 (en) * 2018-08-02 2019-01-30 Jfe精密株式会社 Heat sink and manufacturing method thereof
JP2019096860A (en) * 2018-08-02 2019-06-20 Jfe精密株式会社 Radiator plate and manufacturing method for the same
WO2021040030A1 (en) * 2019-08-29 2021-03-04 Jfe精密株式会社 Heat dissipation plate, semiconductor package and semiconductor module
WO2022138711A1 (en) * 2020-12-24 2022-06-30 住友電気工業株式会社 Composite material, semiconductor package, and method for manufacturing composite material

Similar Documents

Publication Publication Date Title
JP2007142126A (en) Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same
EP3471517A1 (en) Ceramic circuit board and method for manufacturing ceramic circuit board
JP5759152B2 (en) Aluminum-diamond composite and method for producing the same
EP2305400B1 (en) Method for producing aluminum-diamond composite
TWI357788B (en)
JP5988977B2 (en) Heat dissipation parts for semiconductor elements
JP6755879B2 (en) Aluminum-diamond composite and its manufacturing method
JP2000281468A (en) Silicon carbide complex, its production and radiator article uisng the same
EP2282334A1 (en) Substrate for power module, power module, and method for producing substrate for power module
KR20190042676A (en) Heat sink and manufacturing method thereof
EP3104406B1 (en) Power module
WO2007094507A1 (en) Cr-Cu ALLOY, PROCESS FOR PRODUCING THE SAME, HEAT SINK FOR SEMICONDUCTOR, AND HEAT DISSIPATING COMPONENT FOR SEMICONDUCTOR
JP5531329B2 (en) Package based on semiconductor heat dissipation parts
JP5818045B1 (en) Heat dissipation board and semiconductor package and semiconductor module using it
JP2011139000A (en) Power module structure and method of manufacturing the same
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
JP4138844B2 (en) Cr-Cu alloy, manufacturing method thereof, heat sink for semiconductor, and heat dissipation component for semiconductor
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP5286507B2 (en) Method for producing Cr-Cu alloy plate
JP5211314B2 (en) Cr-Cu alloy plate, heat radiating plate for electronic device using the same, and heat radiating component for electronic device
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP2016111328A (en) Heat-dissipating substrate, and semiconductor package and semiconductor module using the same
JP2003268482A (en) Al-SiC COMPOSITE MATERIAL
JP2001284508A (en) Al-SiC COMPOSITE BODY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101215