JP2008135586A - 露光装置 - Google Patents

露光装置 Download PDF

Info

Publication number
JP2008135586A
JP2008135586A JP2006321042A JP2006321042A JP2008135586A JP 2008135586 A JP2008135586 A JP 2008135586A JP 2006321042 A JP2006321042 A JP 2006321042A JP 2006321042 A JP2006321042 A JP 2006321042A JP 2008135586 A JP2008135586 A JP 2008135586A
Authority
JP
Japan
Prior art keywords
space
optical system
projection optical
gas
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006321042A
Other languages
English (en)
Inventor
Tatsuya Hayashi
林  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006321042A priority Critical patent/JP2008135586A/ja
Publication of JP2008135586A publication Critical patent/JP2008135586A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】 極端紫外光を用いる露光装置内における投影光学系空間内のアウトガス分圧を減少させ、投影光学系ミラーの反射率低下を防ぐ。
【解決手段】 原版11からの光を基板22に投影する投影光学系2〜7の少なくとも一部を囲む空間18を包囲するチャンバと、該空間を排気する排気手段31〜34と、該空間に気体を供給する供給手段41とを有し、該原版および前記投影光学系を介して該基板を露光する露光装置において、前記供給手段により該空間に供給される気体の流量を0.05〜50Pa・m/sの範囲内に制御する制御手段42を設ける。
【選択図】 図1

Description

本発明は、真空雰囲気下において、光学素子を介して基板を露光する露光装置に関する。
近年、半導体を製造するための光リソグラフィ技術においては、露光光の短波長化が進められ、i線、g線からKrFエキシマレーザ、ArFエキシマレーザへと進化して来た。露光光の短波長化が進めば、より微細なマスクパターンをウエハに転写することが可能となる。しかし、細い線幅のパターンを露光するためには、紫外光を用いたリソグラフィでは原理的限界にある。そこで紫外光より短波長である極端紫外光(EUV光、13〜20nm)を用いたEUVリソグラフィが注目を集めている。
EUV光で用いられる代表的な波長は13.5nmであるため、これまでの光リソグラフィを遥かに上回る解像度を実現することが可能である。しかし、その反面、EUV光は、物質に吸収されやすいという性質を持つ。このため、従来のような紫外光を光源としたリソグラフィの様に、屈折光学系を用いた縮小露光を行うと、硝材によってEUV光が吸収されてしまい、ウエハ等の被露光体に到達する光量が極端に少なくなってしまう。そこで、EUV光を用いて露光を行う際には、反射光学系を用いた縮小露光を構成する必要がある。
図6に、従来のEUV光を用いた縮小投影露光装置の概略図(特許文献1参照)を示す。EUV露光装置200は、EUV光源210、照明光学系220、及び原版(マスク)230を搭載する原版ステージ250を備えている。また、ウエハ270を搭載するウエハステージ260、アライメント光学系240、及び反射型縮小投影光学系100を備えている。さらに、上記の光学系220、100、240、原版ステージ250、及びウエハステージ260等を収納する真空容器280や、真空容器280内のガスを排気する不図示の排気系等も備えている。反射型縮小投影光学系100は、第1のミラー110、第2のミラー120、第3のミラー130、第4のミラー140、第5のミラー150、第6のミラー160を有している。
EUV光源はいくつか種類があり、その中の一つであるレーザ生成プラズマ光源は、ターゲット材の選択により、ほぼ必要な波長帯のみの発光が可能である。例えば、Xeをターゲット材としてパルスノズルから噴出し、これにパルスレーザを照射してプラズマを発生させると、波長13〜14nmのEUV光が放射される。
照明光学系は複数枚の多層膜ミラーと、オプティカルインテグレータなどから構成されている。照明光学系の役割は光源から放射された光を効率よく集光すること、そして露光領域の照度を均一にすることなどが挙げられる。また、オプティカルインテグレータはマスクを均一に所定の開口数で照明する役割を持っている。
投影光学系はMo、Siが交互にコーティングされた多層膜ミラーを用いた反射光学系で構成される。このMo/Si多層膜は波長13nm付近で、67%程度の直入反射率を得ることができる。反射率を100%にすることは原理的に困難であり、吸収されたエネルギの大部分は熱に変わる。そのためミラーの基盤材料には低熱膨張ガラスなどが用いられる。反射光学系には、このようなMo/Si多層膜ミラーが収差補正のため複数枚用いられるが、EUV光の透過率を保つためには多層膜ミラーの枚数を極力少なくする必要がある。
EUV露光装置の原版ステージ及びウエハステージは真空環境下で駆動する機構を持ち、原版ステージとウエハステージは縮小倍率に比例した速度比で、同期して走査する。また、原版ステージ及びウエハステージの位置や姿勢は不図示のレーザ干渉計によって観測され、制御される。
原版チャックに保持された原版やウエハチャックに保持されたウエハは原版ステージ及びウエハステージに搭載された微動機構によって高精度に位置決めが行われる。
アライメント光学系は原版の位置と投影光学系の光軸との位置関係、そしてウエハと投影光学系の光軸との位置関係を検出する装置である。これにより、投影像がウエハ上の所定の位置に照射されるように原版ステージ及びウエハステージの位置と角度が設定される。また、フォーカス検出機構によりウエハ面に対して垂直方向のフォーカス位置が検出され、ウエハステージの位置、角度を制御することによって、ウエハ面の結像位置が常に保たれる。
EUV露光装置はEUV光の物質による吸収を避けるため、EUV光を照射する空間を真空に保つ必要がある。そのため露光装置には真空ポンプなどの排気系が複数台取り付けられている。
特開2003−45782号公報
EUV露光装置に使用されるEUV光は装置内の雰囲気によって吸収されやすい。特に酸素や水分はEUV光を強く吸収する。そのため、EUV光の透過率を高く保つために、真空ポンプ等を利用してチャンバ内を真空状態にする必要がある。EUV光が通過するチャンバ内の圧力は10−3Pa以下、且つ酸素及び水分の分圧が限りなく低いことが望ましい。しかし、水分などはウエハの搬送に伴って、ウエハに付着してきたものがチャンバ内で拡散する。さらに水分はチャンバ内壁に付着しやすく、排気しにくい。水分が光学素子に付着すると光学素子を酸化させ、光学素子の反射率を低下させる原因となる。
また、チャンバ内が真空状態になるとステージなどの機構部から炭化水素が発生する。さらに露光中、露光光とレジストが反応することでも炭化水素が発生し、これらの炭化水素が光学素子表面において露光光に照射されると、光学素子表面に炭素として付着する。光学素子に付着した炭素はEUV光を吸収し、光学素子の反射率を低下させてしまう。光学素子の反射率が低下するとスループットの低下へとつながる。以下では炭化水素と水分とを含めてアウトガスと表記する。
以上のことより、EUV露光装置内の光学素子が設置された空間内においては特に、アウトガス分圧を低く保つ必要がある。
露光装置内におけるアウトガス分圧を下げるには真空ポンプなど排気系の能力を高める措置も有効である。しかし、搬送されたウエハに付着した水分、レジストやステージの機構部から発生した炭化水素は拡散により、光学素子が設置されている空間に漂うことは免れないため、スループットの向上は難しい。
本発明は、上述の背景を考慮してなされたもので、露光雰囲気の汚染を軽減することを例示的目的とする。
上記の課題を解決するための露光方法は、投影光学系の少なくとも一部を囲む空間を減圧及び換気し、原版および該投影光学系を介して基板を露光する露光方法である。そして、本発明では、該空間に供給される気体の流量を0.05〜50Pa・m/sの範囲内とすることを特徴とする。
上記の課題を解決するための露光装置は、原版からの光を基板に投影する投影光学系と、前記投影光学系の少なくとも一部を囲む空間を包囲するチャンバとを有する。さらに、該空間を排気する排気手段と、該空間に気体を供給する供給手段とを有し、該原版および前記投影光学系を介して該基板を露光する露光装置である。そして、本発明では、前記供給手段により該空間に供給される気体の流量を0.05〜50Pa・m/sの範囲内に制御する制御手段を有することを特徴とする。
本発明によれば、例えば、露光雰囲気の汚染を軽減することができる。
本発明の好ましい実施の形態では、前記空間を複数の空間に分離する隔壁を備え、前記供給手段は、該複数の空間のうち前記基板を含む空間に隣接する空間に対し前記気体を供給する。また、前記制御手段は、前記供給手段または前記排気手段を制御する。あるいは、前記投影光学系の少なくとも一部を囲む空間内のコンダクタンスを変える手段を有してもよい。
前記投影光学系の少なくとも一部を囲む空間内の予め定められたガスの量を検出する検出手段を有する露光装置においては、前記制御手段は、前記検出手段からの信号に基づき、該気体の流量を制御するよう構成することが好ましい。
前記制御手段は、該基板を含む空間の圧力に対し前記投影光学系の少なくとも一部を囲む空間内の圧力が陽圧となる範囲内で、該気体の流量を制御する。
前記気体は、例えば、ヘリウムやアルゴン等の希ガスおよび水素のいずれかである。
また、前記基板を露光する光は極端紫外光である場合に本発明は特に有効である。
本発明の好ましい実施形態の特徴ならびにそれに対応した目的および優位性は、添付図面を参照してなされた後述の説明で明らかにされている。なお、当該図面において、同一または類似の符号は複数の図面を通して同一または類似の構成要素を表す。
以下に、本発明に係る実施の形態について添付図面に示す実施例を参照して詳細に説明する。
図1に本発明のEUV光(ここでは、0.1〜30nm、より好ましくは10〜15nmの波長の光)を用いた露光装置の実施例1を示す。
図1において、8は不図示のEUV光源から発し、不図示の照明光学系により導かれたEUV光であり、このEUV光8は、原版照明ミラー1を介して原版11に照射される。2は投影系第1ミラー、3は投影系第2ミラー、4は投影系第3ミラー、5は投影系第4ミラー、6は投影系第5ミラー、7は投影系第6ミラーである。また、12は原版保持装置、15は原版ステージ、16は原版アライメント光学系、17は原版ステージ15を囲む原版ステージ空間を示している。さらに、22はウエハ(基板)、24はウエハ保持装置、21はウエハステージ、25はウエハアライメント光学系、26はフォーカス位置検出機構、27はウエハステージ21を囲むウエハステージ空間を示している。ウエハステージ空間27は、ウエハ(基板)を含む空間である。31〜34は排気手段であるターボ分子ポンプ、41は気体供給部、42は気体流量制御部、61〜66は圧力センサ、72は開口部、74、75は気体成分検出部である。
不図示のEUV光源はいくつか種類があり、その中の一つであるレーザ生成プラズマ光源はターゲット材の選択により、ほぼ必要な波長帯のみの発光が可能である。例えば、Xeをターゲット材としてパルスノズルから噴出し、これにパルスレーザを照射してプラズマを発生させると、波長13〜14nmのEUV光が放射される。
不図示の照明光学系は、複数枚の多層膜ミラーとオプティカルインテグレータなどから構成されている。照明光学系の役割は光源から放射された光を効率よく集光すること、そして露光領域の照度を均一にすることなどが挙げられる。また、オプティカルインテグレータはマスクを均一に所定の開口数で照明する役割を持っている。
投影光学系はMo、Siが交互にコーティングされた複数枚の多層膜ミラーで構成される。この多層膜はEUV光の直入反射率が67%程度であるため、多層膜ミラーに吸収されたエネルギの大部分は熱に変わる。そのためミラーの基盤材料には低熱膨張ガラスなどが用いられる。
原版ステージ15及びウエハステージ21は真空環境下で駆動する機構を持ち、縮小倍率に比例した速度比により同期して走査する。また、原版ステージ15及びウエハステージ21の位置や姿勢は不図示のレーザ干渉計によって観測され、制御される。
原版11は原版ステージ15上の原版保持装置12に保持される。また、ウエハ22はウエハステージ21上のウエハ保持装置24に保持される。原版ステージ15及びウエハステージ21はそれぞれ微動機構を持ち、原版11またはウエハ22の位置決めが可能である。
アライメント検出機構16、25は、それぞれ、原版11の位置と投影光学系の光軸との位置関係、ウエハ22と投影光学系の光軸との位置関係を計測する。その結果に基づき、原版11の投映像がウエハ22上における所定の位置に一致するように、原版ステージ15及びウエハステージ21の位置、角度が調整される。
また、フォーカス位置検出機構26は投影光学系の結像位置をウエハ22面上に保つためにウエハ22面上における垂直方向のフォーカス位置を検出する。
一回の露光が終わるとウエハステージ21はX、Y方向にステップ移動して次の走査露光開始位置に移動し、再び露光を行う。
上述したが、安定したスループットを保つためには、アウトガスによる投影系ミラー2〜7の反射率低下を極力防ぐ必要がある。
本実施例の露光装置は上記の問題を解決し、露光性能及びスループットの低下を防ぐものである。
本実施例の露光装置は、投影光学系空間18内へ気体を供給する気体供給部41と、投影光学系空間18内の気体を外部へ排気するターボ分子ポンプ32、33を備えている。
投影光学系空間18内とウエハステージ空間27とはEUV光8を遮らない、連通した開口部72を有する。この開口部72は、EUV光8とレジストの反応によって発生したアウトガスやウエハステージ空間27内で発生したアウトガスが投影光学系空間18内へ進入する経路となる。この経路から進入するアウトガスを極力抑え、投影光学系空間18内のアウトガス分圧を低下させることで、投影光学系ミラー2〜7の反射率低下を防ぐことが可能となる。
開口部72を通り投影光学系空間18内へ進入するアウトガスを抑止する手段として、投影光学系空間18内へ気体を供給し、投影光学系空間18をウエハステージ空間27より陽圧に保ち、投影光学系空間18とウエハステージ空間27との圧力差を利用する方法が考えられる。投影光学系空間18とウエハステージ空間27との圧力差によって、投影光学系空間18内へ供給した気体がウエハステージ空間27内へ流れる。この開口部72を流れる気体によって、アウトガスが投影光学系空間18内への進入することを抑制することが可能となる。
開口部72における気体の流れをもう少しミクロに考えると、開口部72をウエハステージ空間27へ向かって流れる気体分子は、次々にアウトガス分子に衝突する。この分子同士の衝突によって、アウトガス分子が投影光学系空間18内へ進入することを抑止している。そのため、開口部72を流れる気体分子の平均自由行程は開口部72の開口幅よりも短いことが条件であり、気体の流れ場としては中間流領域もしくは粘性流領域が好ましい。
図2に投影光学系空間18内にヘリウムを供給した場合の開口幅と空間内圧力による気体の流れ場の状態を示す。この図2より投影光学系空間18内の圧力は開口幅に応じて、開口部72の流れ場が中間流領域もしくは粘性流領域を満たし、且つ図3に示すEUV光8の透過率を考慮した値を選択すれば良い。例えば、開口部72の開口幅を10mm程度とすると、図2より、投影光学系空間18内の圧力は、開口部72の流れ場が中間流領域もしくは粘性流領域を満たすためには約1Pa以上すれば良いことが分かる。また、図3より、EUV光8の透過率を90%程度確保するためには約10Pa以下(光路長1mの場合)にすれば良いことが分かる。投影光学系空間18内へ供給する気体はヘリウム、アルゴン等の希ガスもしくは水素が好ましい。中でも、ヘリウムはEUV光8の透過率が高いので、より好ましい。
EUV光8の透過率をより確保しやすくするために、投影光学系空間18を隔壁13によって分離し、気体が供給された空間を極力狭くすることが好ましい。さらに、投影光学系空間18内を二つ以上の空間に分離した場合、二つ以上の空間のうちウエハステージ空間27に隣接する空間に気体を供給することが好ましい。ウエハステージ空間27に隣接する空間は、開口部72によってウエハステージ空間27連通している。
投影光学系空間18内で発生したアウトガスは、投影光学系空間18に設置されたターボ分子ポンプ32、33によって排気される。本実施例における排気手段はターボ分子ポンプであるが、その他コールドトラップやイオンポンプ等を用いても構わない。
しかしながら、投影光学系空間18内の投影光学系ミラー2〜7をアウトガスから保護するためには、上述した投影光学系空間18内を陽圧にするだけでは不十分である。アウトガスは、ウエハ22上の不図示の露光エリアやウエハステージ21の駆動部以外に、投影光学系空間18内に位置する各投影光学系ミラー2〜7の不図示の微動機構や、センサ等からも発生する。図4は投影光学系空間18内圧力を1Paまたは10Paの一定値に保つ条件で、気体供給量による投影光学系空間18内のアウトガス分圧を見積もった値を示す。投影光学系空間18内で発生するアウトガス発生量は経験的な見積値を使用した。ここで、投影光学系空間18内圧力を一定に保ちながら気体の供給量を増やすと、投影光学系空間18内の排気速度も同時に増加することは言うまでもない。図4では投影光学系空間18内へ供給する気体の供給量が増加すれば、排気速度も増加するため投影光学系空間18内のアウトガス分圧は低下傾向にある。
上述したように、開口部72から投影光学系空間18内へ進入するアウトガスを抑止するため、投影光学系空間18内の圧力は、開口部72の流れ場が中間流領域もしくは粘性流領域を満たし、且つ図3に示すEUV光8の透過率を考慮した値を選択すれば良い。しかし、投影光学系空間18内圧力を図4にある1Paまたは10Paを維持していたとしても、投影光学系空間18内のアウトガス分圧は、投影光学系空間18内に供給する気体の供給量によって変化する。一方、投影光学系ミラー2〜7の反射率を維持し、安定したスループットを継続するためには、投影光学系空間18内のアウトガス分圧は10−4Pa以下であることが好ましく、10−5Pa以下であることがより好ましい。以上を考慮して、投影光学系空間18内に供給する気体の供給量は0.05〜50Pa・m/sの範囲内であることが好ましい。この範囲は、投影光学系空間18内のアウトガス分圧が10−4Pa以下で、上述した開口部72での流れ場を中間流領域または粘性流領域とし、且つEUV光8の透過率を90%程度確保するための前記気体の供給量として好ましい範囲である。
なお、本実施例において、投影光学系空間18内に供給する気体の供給量は、気体流量制御部42で任意の流量に制御される。さらに、EUV露光装置90に設置されている排気手段がなんらかの原因により停止した場合、気体流量制御部42は気体の供給を停止する。
本発明の第2の実施例について説明する。
本実施例は、先の実施例1において、EUV露光装置90のランニングコストを削減する構成を説明する。図5は、本発明の実施例2に係る露光装置に構成を示す。図1のものに対し、流路断面積制御部48及び流路面積可変部49を付加したものである。
図1及び図5に示される様に、投影光学系空間18内の気体成分を定期的もしくは連続して、管理するために、投影光学系空間18内に気体成分検出部74、75を設置する。この気体成分検出部74、75により、投影光学系空間18内の特定のアウトガス(水、炭化水素等、予め定められたガス)の分圧(量)を正確に計測することが可能となる。
少なくとも露光中においてEUV露光装置内90は、排気手段により真空排気されるため、長期間露光装置を使用すると、投影光学系空間18内から発生するアウトガスの発生量は漸減すると考えられる。投影光学系空間18内におけるアウトガス分圧が、許容値を大きく下回っているのであれば、投影光学系空間18内の圧力を一定に維持した状態で、アウトガス分圧が許容値程度になるまで、投影光学系空間18内へ供給する気体の流量と、投影光学系空間18内の気体を排気する排気手段の排気速度を低下させることが出来る。例えば、EUV透過率が高いヘリウムの場合、窒素、アルゴン等に比べて高価であるため、ヘリウムの消費量を減らすことで、装置のランニングコストを低下させることが可能である。
図5の露光装置において、投影光学系空間18内へ供給する気体の流量は、気体流量制御部42で制御される。また、投影光学系空間18内の排気速度は、排気手段の直前に設置された流路面積可変部49により排気手段33直前のコンダクタンスを変えることで調節し、流路面積制御部48によって制御される。流路面積可変部49は排気手段からの輻射熱が、投影光学系ミラー6、7へ影響を及ぼさないように、輻射熱を吸収する手段、例えば温調等を構成することが好ましい。
気体成分検出部74、75からの信号により、気体流量制御部42と流路面積制御部48を制御することで、投影光学系空間18内圧力を一定に保ち、且つアウトガス分圧を管理することが可能となる。アウトガス分圧に合わせて、気体の供給量及び排気量を制御すると、投影光学系空間18へ必要以上の気体の供給、排気を抑え、EUV露光装置90のランニングコストを低下させることが出来る。投影光学系空間18内へ供給する気体の流量制御方法及び、投影光学系空間内の気体を排気する排気速度制御方法は、上述の例に限らず様々なものを適用することができる。また、本実施例においては、気体の供給量と排気速度(流路面積)の双方を制御しているが、気体の供給量は供給バルブの開度を一定にして排気速度のみを制御する様にしても良い。
次に、上記露光装置を利用した微小デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造プロセスを説明する。
図7は半導体デバイスの製造のフローを示す。
ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(マスク製作)では設計したパターンを形成したマスクを製作する。
一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記用意したマスクを設置した露光装置とウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。
次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程である。後工程は、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、ステップ7でこれを出荷する。
上記ステップ4のウエハプロセスは、ウエハの表面を酸化させる酸化ステップ、ウエハ表面に絶縁膜を成膜するCVDステップ、ウエハ上に電極を蒸着によって形成する電極形成ステップステップを有する。また、ウエハにイオンを打ち込むイオン打ち込みステップ、ウエハに感光剤を塗布するレジスト処理ステップ、上記の露光装置によって回路パターンをレジスト処理ステップ後のウエハに焼付露光する露光ステップを有する。さらに、露光ステップで露光したウエハを現像する現像ステップ、現像ステップで現像したレジスト像以外の部分を削り取るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト剥離ステップを有する。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
本発明の実施例1に係るEUV露光装置の構成を概略的に示す図である。 空間における流れ場の状態を示す図である。 EUV光の透過率を示した図である。 気体供給量とアウトガス分圧の関係を示す図である。 本発明の実施例2に係るEUV露光装置の構成を概略的に示す図である。 従来のEUV露光装置の概略図である。 デバイスの製造プロセスのフローを説明する図である。
符号の説明
1:原版照明ミラー、2〜7:投影系第1〜6ミラー、8:EUV光、9:本体チャンバ、11:原版、12:原版保持装置、15:原版ステージ、16:原版アライメント光学系、17:原版ステージ空間、18:投影光学系空間、20:原版ロードロック空間、21:ウエハステージ、22:ウエハ、24ウエハ保持装置、25:ウエハアライメント光学系、26:フォーカス位置検出機構、27:ウエハステージ空間、28:ウエハロードロック空間、31〜36:ターボ分子ポンプ、41:気体供給部、42:気体流量制御部、48:流路断面積制御部、49:流路断面積可変部、61〜66:圧力センサ、72:開口部、74,75:気体成分検出部、90:露光装置。

Claims (11)

  1. 投影光学系の少なくとも一部を囲む空間を減圧及び換気し、原版および該投影光学系を介して基板を露光する露光方法であって、
    該空間に供給される気体の流量を0.05〜50Pa・m/sの範囲内とすることを特徴とする露光方法。
  2. 原版からの光を基板に投影する投影光学系と、前記投影光学系の少なくとも一部を囲む空間を包囲するチャンバと、該空間を排気する排気手段と、該空間に気体を供給する供給手段とを有し、該原版および前記投影光学系を介して該基板を露光する露光装置であって、
    前記供給手段により該空間に供給される気体の流量を0.05〜50Pa・m/sの範囲内に制御する制御手段を有することを特徴とする露光装置。
  3. 該空間を複数の空間に分離する隔壁を備え、前記供給手段は、該複数の空間のうち該基板を含む空間に隣接する空間に対し該気体を供給することを特徴とする請求項2に記載の露光装置。
  4. 前記制御手段は、前記供給手段を制御することを特徴とする請求項2または3に記載の露光装置。
  5. 前記制御手段は、前記排気手段を制御することを特徴とする請求項2または3に記載の露光装置。
  6. 前記制御手段は、前記投影光学系の少なくとも一部を囲む空間内のコンダクタンスを変える手段を有することを特徴とする請求項2または3に記載の露光装置。
  7. 前記投影光学系の少なくとも一部を囲む空間内の予め定められたガスの量を検出する検出手段を有し、前記制御手段は、前記検出手段からの信号に基づき、該気体の流量を制御することを特徴とする請求項2乃至6のいずれかに記載の露光装置。
  8. 前記制御手段は、該基板を含む空間の圧力に対し前記投影光学系の少なくとも一部を囲む空間内の圧力が陽圧となる範囲内で、該気体の流量を制御することを特徴とする請求項項2乃至7のいずれかに記載の露光装置。
  9. 該気体は希ガスおよび水素のいずれかであることを特徴とする請求項2乃至8のいずれかに記載の露光装置。
  10. 該基板を露光する光は極端紫外光であることを特徴とする請求項2乃至9のいずれかに記載の露光装置。
  11. 請求項2乃至10のいずれかに記載の露光装置を用いて基板を露光する工程と、該露光された基板を現像する工程とを有することを特徴とするデバイス製造方法。
JP2006321042A 2006-11-29 2006-11-29 露光装置 Withdrawn JP2008135586A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321042A JP2008135586A (ja) 2006-11-29 2006-11-29 露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321042A JP2008135586A (ja) 2006-11-29 2006-11-29 露光装置

Publications (1)

Publication Number Publication Date
JP2008135586A true JP2008135586A (ja) 2008-06-12

Family

ID=39560226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321042A Withdrawn JP2008135586A (ja) 2006-11-29 2006-11-29 露光装置

Country Status (1)

Country Link
JP (1) JP2008135586A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511769A (ja) * 2012-03-14 2015-04-20 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511769A (ja) * 2012-03-14 2015-04-20 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置

Similar Documents

Publication Publication Date Title
JP4369217B2 (ja) リソグラフィ装置およびデバイス製造方法
JP4922638B2 (ja) リソグラフィ装置、シール、デバイス製造方法、コンピュータプログラム、およびデータ記録媒体
JP4378357B2 (ja) 露光装置及びその圧力制御方法並びにデバイス製造方法
JP4445438B2 (ja) リソグラフィ装置およびデバイス製造方法
JP2006269942A (ja) 露光装置及びデバイス製造方法
JP2005101537A (ja) 露光装置及びそれを用いたデバイスの製造方法
JP2008252117A (ja) リソグラフィ装置
JP2007018931A (ja) 光源装置、露光装置及びデバイス製造方法
KR20190047058A (ko) 기판, 기판 홀더, 기판 코팅 장치, 기판 코팅 방법 및 코팅 제거 방법
JP2005057154A (ja) 露光装置
JP2005129898A (ja) 露光装置およびデバイス製造方法
US7633597B2 (en) Exposure method and apparatus, and device manufacturing method
JP2006100363A (ja) 露光装置、露光方法、及びデバイス製造方法。
JP4833953B2 (ja) リソグラフィ装置およびデバイス製造方法
JP2006222198A (ja) 露光装置
JP2010010380A (ja) 光学系、露光装置、及びデバイスの製造方法
JP2008135586A (ja) 露光装置
WO2007083686A1 (ja) 露光装置
JP2008258324A (ja) 露光装置及びデバイスの製造方法
US20040160584A1 (en) Exposure apparatus and purging method for the same
US7692762B2 (en) Exposure apparatus
JP2010267926A (ja) 基板処理装置及びデバイスの製造方法
JP2008034770A (ja) 露光装置
JP4174239B2 (ja) ガス供給装置、露光システムおよびデバイス製造方法
JP2003234281A (ja) 露光装置、デバイス製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110502