JP2008127998A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2008127998A
JP2008127998A JP2006310215A JP2006310215A JP2008127998A JP 2008127998 A JP2008127998 A JP 2008127998A JP 2006310215 A JP2006310215 A JP 2006310215A JP 2006310215 A JP2006310215 A JP 2006310215A JP 2008127998 A JP2008127998 A JP 2008127998A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
internal combustion
combustion engine
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006310215A
Other languages
English (en)
Inventor
Minehiro Murata
峰啓 村田
Yoshihisa Takeda
好央 武田
Hiroaki Fujita
博昭 藤田
Satoshi Hiranuma
智 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2006310215A priority Critical patent/JP2008127998A/ja
Publication of JP2008127998A publication Critical patent/JP2008127998A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】排ガスの撹拌と排圧増大の抑制とを両立させて、エンジンの運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により還元剤の拡散を十分に促進して良好な浄化性能を実現できる内燃機関の排気浄化装置を提供する。
【解決手段】排気通路11のSCR触媒の上流側に、排ガスの拡散性の高い低速側フィン装置43を備えた低速流路35及び拡散性が低い高速側フィン装置44を備えた高速流路36を独立して形成して、切換弁により排ガスを選択的に流通可能とし、エンジン1の低速運転領域では低速流路35側に切換え、高速運転領域では高速流路36側に切換える。
【選択図】図1

Description

本発明は内燃機関(以下、エンジンと称する)の排気浄化装置に係り、詳しくは排気通路に還元剤供給手段を設けて下流側の還元触媒に還元剤を供給する排気浄化装置に関するものである。
この種の還元剤を利用して排ガス中の有害成分を浄化する排気浄化装置としては、例えばSCR触媒(選択還元型NOx触媒)を備えたものがあり、排気通路のSCR触媒の上流側に噴射ノズルを配置し、噴射ノズルから噴射した尿素水溶液が排気熱及び排ガス中の水蒸気により加水分解されて生成されるNH(アンモニア)を利用して、SCR触媒上で排ガス中のNOxを還元している。この種の排気浄化装置において、排ガス中への尿素水溶液の拡散状況はSCR触媒の浄化性能に対して大きな影響を及ぼすことから、噴射ノズルの近傍に排ガスを撹拌するために撹拌手段を設けた対策が講じられる場合がある(例えば、特許文献1参照)。
特許文献1の技術では、その図1,2に示すように、排気通路の噴射ノズルの上流側に撹拌手段として4つのフィンを備えたフィン装置を設置し、排ガスがフィン装置を流通する際にフィンの作用で旋回流を生起させ、これにより排ガス中への尿素水溶液の拡散促進を図っている。
特開2006−29233号明細書(図1,2)
上記フィン装置が旋回流を生起させる原理は、排ガスの流通方向をフィンにより変化させることで得られるため、排ガスに強い旋回流を生起すべく、例えばフィン角度を深く設定(排ガスの流通方向に対してフィンを急角度(角度大)に配置)して排ガスの流通方向を急激に変化させるほど、エンジンの排圧は増大してしまい、旋回流の生起と排圧増大の抑制とはトレードオフの関係にある。
一方、エンジンの運転領域に応じて排気通路を流通する排ガス流量は大幅に変化し、エンジンの高回転・高負荷域ではフィン装置による排圧増大が無視できないものとなる。従って、特許文献1の排気浄化装置では、高回転高負荷域での排圧増大からエンジンを保護する目的で、排ガス流通方向に対してフィン角度を浅く(角度小)設定せざるを得ず、必然的に排ガス流量が低下する中低回転・中低負荷域では旋回流が弱められてしまう。通常エンジンは中低回転・中低負荷域で常用されるため、結果として肝心の常用域で十分な旋回流が得られず、尿素水溶液の拡散不足により良好なNOx浄化性能を達成できないという問題があった。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、排ガスの撹拌と排圧増大の抑制とを両立させて、エンジンの運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により還元剤の拡散を十分に促進して良好な浄化性能を実現することができる内燃機関の排気浄化装置を提供することにある。
上記目的を達成するため、請求項1の発明は、内燃機関の排気通路の一部を構成し、排気通路に設けられた還元触媒の上流側で相互に独立した流路を形成して、それぞれ内燃機関側と還元触媒側とを連通する第1の流路及び第2の流路と、内燃機関の排ガスを第1の流路または第2の流路に選択的に流通させる流路切換手段と、排気通路の還元触媒の上流側に設けられ、排気通路内に還元剤を供給する還元剤供給手段と、第1の流路に設けられて内部を流通する排ガスを撹拌する第1の撹拌手段と、第2の流路に設けられて内部を流通する排ガスを撹拌し、撹拌による排ガスの拡散性が第1の撹拌手段より低く設定された第2の撹拌手段と、内燃機関の運転領域に基づき流路切換手段を切換える制御手段とを備えたものである。
従って、内燃機関の運転領域に基づき制御手段により流路切換手段が切換えられて、内燃機関の排ガスが第1の流路または第2の流路に選択的に流通して内部の第1の撹拌手段または第2の撹拌手段により撹拌されると共に、還元剤供給手段から供給された還元剤が排ガス中に拡散し、この状態で還元触媒に到達して浄化作用に利用される。
撹拌手段により排ガスを撹拌する原理は、排ガスの流通方向を撹拌手段により変化させることで得られるため、強い撹拌作用(良好な拡散性)を得るには排ガスの流通方向を急激に変化させることになり、必然的に排圧の増大を生じ、排ガスの撹拌と排圧増大の抑制とはトレードオフの関係にある。第1の撹拌手段は排ガスの撹拌を優先して排ガスの拡散性を高めた特性であり、第2の撹拌手段は排圧増大の抑制を優先して排ガスの拡散性を低めた特性である。
一方、内燃機関の運転領域に応じて排ガス流量は変化し、本発明者は、排ガス流量に応じて排ガスの撹拌と排圧増大の抑制との必要性が変化する現象に着目した。従って、排ガスの拡散性が異なる第1の撹拌手段と第2の撹拌手段とを内燃機関の運転領域に応じて選択的に適用することにより、現在の運転領域に対して最適な撹拌手段が適用されることになり、結果として排ガスの撹拌と排圧増大の抑制とを両立可能となる。
請求項2の発明は、請求項1において、制御手段が、内燃機関が所定の低速運転領域のときに排ガスを第1の流路に流通させるように流路切換手段を切換え、内燃機関が所定の高速運転領域のときに排ガスを第2の流路に流通させるように流路切換手段を切換えるものである。
従って、排ガス流量が少ない低速運転領域では、排ガスの流速の低下と相俟って撹拌手段の撹拌により排ガスの拡散性を向上させる要求が高まる反面、排圧が増大する虞は低い。このときには第1の流路への切換により排ガスの拡散性が高い第1の撹拌手段により排ガスの撹拌が行われるため、排ガスは良好に撹拌されて排ガス中への還元剤の拡散が促進されると共に、第1の撹拌手段の撹拌により排圧が増大しても問題は生じない。
これに対して排ガス流量が多い高速運転領域では、排ガスの流速の増加と相俟って元々排ガスの拡散性が高くて撹拌手段による撹拌の必要はそれほどない反面、排圧増大を抑制する必要性が高い。このときには第2の流路への切換により排ガスの拡散性が低い第2の撹拌手段により排ガスの撹拌が行われるため、撹拌による排圧の増大が最小限に抑制されると共に、第2の撹拌手段による撹拌でも還元剤の拡散が不足することはない。
請求項3の発明は、内燃機関の排気通路に設けられた還元触媒と、排気通路の還元触媒の上流側に設けられ、排気通路内に還元剤を供給する還元剤供給手段と、排気通路の還元触媒の上流側に設けられて内部を流通する排ガスを撹拌すると共に、撹拌による排ガスの拡散性を可変可能な可変撹拌手段と、内燃機関の運転領域に基づき可変撹拌手段の拡散性を制御する制御手段とを備えたものである。
従って、内燃機関の排ガスは排気通路を流通して可変撹拌手段により撹拌されると共に、還元剤供給手段から供給された還元剤が排ガス中に拡散し、この状態で還元触媒に到達して浄化作用に利用され、このときの可変撹拌手段による排ガスの拡散性が制御手段により内燃機関の運転状態に応じて切換えられる。
撹拌手段により排ガスを撹拌する原理は、排ガスの流通方向を撹拌手段により変化させることで得られるため、強い撹拌作用(良好な拡散性)を得るには排ガスの流通方向を急激に変化させることになり、必然的に排圧の増大を生じ、排ガスの撹拌と排圧増大の抑制とはトレードオフの関係にある。可変拡散手段によれば排ガスの拡散性を制御することで、排ガスの撹拌を優先した特性とすることも排圧増大の抑制を優先した特性とすることも可能となる。
一方、内燃機関の運転領域に応じて排ガス流量は変化し、本発明者は、排ガス流量に応じて排ガスの撹拌と排圧増大の抑制との必要性が変化する現象に着目した。従って、可変撹拌手段の拡散性を内燃機関の運転領域に応じて制御することにより、現在の運転領域に対して最適な撹拌手段が適用されることになり、結果として排ガスの撹拌と排圧増大の抑制とを両立可能となる。
請求項4の発明は、請求項3において、制御手段が、内燃機関が所定の低速運転領域のときに可変撹拌手段の拡散性を増加側に制御し、内燃機関が所定の高速運転領域のときに可変撹拌手段の拡散性を低下側に制御するものである。
従って、排ガス流量が少ない低速運転領域では、排ガスの流速の低下と相俟って撹拌手段の撹拌により排ガスの拡散性を向上させる要求が高まる反面、排圧が増大する虞は低い。このときには可変撹拌手段の拡散性が増加側に制御されるため、排ガスは良好に撹拌されて排ガス中への還元剤の拡散が促進されると共に、排ガスの拡散性の増加により排圧が増大しても問題は生じない。
これに対して排ガス流量が多い高速運転領域では、排ガスの流速の増加と相俟って元々排ガスの拡散性が高くて撹拌手段による撹拌の必要はそれほどない反面、排圧増大を抑制する必要性が高い。このときには可変撹拌手段の拡散性が低下側に制御されるため、撹拌による排圧の増大が最小限に抑制されると共に、排ガスの拡散性が低下しても還元剤の拡散が不足することはない。
以上説明したように請求項1,2の発明の内燃機関の排気浄化装置によれば、内燃機関の運転領域に応じた最適な撹拌手段を排ガスの撹拌に適用することにより、排ガスの撹拌と排圧増大の抑制とを両立させ、もって、内燃機関の運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により還元剤の拡散を十分に促進して良好な浄化性能を実現することができる。
請求項3,4の発明の内燃機関の排気浄化装置によれば、内燃機関の運転領域に応じて可変撹拌手段の拡散性を制御することにより、排ガスの撹拌と排圧増大の抑制とを両立させ、もって、内燃機関の運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により還元剤の拡散を十分に促進して良好な浄化性能を実現することができる。
[第1実施形態]
以下、本発明をディーゼルエンジンの排気浄化装置に具体化した第1実施形態を説明する。
図1は本実施形態のディーゼルエンジンの排気浄化装置を示す全体構成図であり、エンジン1は直列6気筒機関として構成されている。エンジン1の各気筒には燃料噴射弁2が設けられ、各燃料噴射弁2は共通のコモンレール3から加圧燃料を供給され、機関の運転状態に応じたタイミングで開弁して各気筒の筒内に燃料を噴射する。
エンジン1の吸気側には吸気マニホールド4が装着され、吸気マニホールド4に接続された吸気通路5には、上流側よりエアクリーナ6、ターボチャージャ7のコンプレッサ7a、インタクーラ8、アクチュエータ9aにより開閉駆動される吸気絞り弁9が設けられている。また、エンジン1の排気側には排気マニホールド10が装着され、排気マニホールド10には上記コンプレッサ7aと同軸上に連結されたターボチャージャ7のタービン7bを介して排気通路11が接続されている。
エンジン1の運転中においてエアクリーナ6を経て吸気通路5内に導入された吸気はターボチャージャ7のコンプレッサ7aにより加圧された後にインタクーラ8、吸気絞り弁9、吸気マニホールド4を経て各気筒に分配され、各気筒の吸気行程で筒内に導入される。筒内では所定のタイミングで燃料噴射弁2から燃料が噴射されて圧縮上死点近傍で着火・燃焼し、燃焼後の排ガスは排気マニホールド10を経てタービン7bを回転駆動した後に排気通路11を経て外部に排出される。
一方、吸気マニホールド4と排気マニホールド10とはEGR通路17により接続され、EGR通路17にはアクチュエータ18aにより開閉駆動されるEGR弁18及びEGRクーラ19が設けられている。エンジン1の運転中にはEGR弁18の開度に応じて排気マニホールド10側から吸気マニホールド4側に排ガスの一部がEGRガスとして還流される。
吸気マニホールド4にはアクチュエータ20aにより開閉駆動されるスワール弁20が各気筒の吸気ポートに対応して設けられ、各スワール弁20の閉弁時には筒内にスワール流が生起される。
上記排気通路11には本発明の排気浄化装置が設けられている。上記ターボチャージャ7のタービン7bには第1パイプ31aを介して上流側ケーシング32が接続され、上流側ケーシング32内の上流側には前段酸化触媒33が収容され、下流側にはウォールフロー式のDPF(ディーゼルパティキュレートフィルタ)34が収容されている。後述するようにDPF34は排ガス中のパティキュレート(以下、PMと称する)を捕集する作用を奏する。
上流側ケーシング33の下流側の排気通路11は低速流路35(第1の流路)と高速流路36(第2の流路)とに分岐し、この分岐箇所には切換弁37(流路切換手段)が配設され、切換弁37の切換に応じて上流側ケーシング32が低速流路35側或いは高速流路36側と選択的に接続される。低速流路35及び高速流路36は相互に独立した流路を形成しながら車両後方に向けて所定距離だけ延設された後に相互に合流し、合流箇所には第2パイプ31bを介して下流側ケーシング39が接続されている。下流側ケーシング39内の上流側にはSCR触媒40(還元触媒)が収容され、下流側には後段酸化触媒41が収容され、後述するようにSCR触媒40は排ガス中のNOxを浄化する作用を奏する。
本実施形態では、低速流路35及び高速流路36の通路断面積を同一に設定しているが、後述するようにエンジン1の低速運転領域で使用される低速流路35に比較して高速運転領域で使用される高速流路36の方が大量の排ガスを流通させる必要があることから、低速流路35に対して高速流路36の通路断面積を大きく設定してもよい。
下流側ケーシング39の下流側は第3パイプ31cを介して図示しない消音器が接続され、消音器の後端は大気に開放されている。上記第2パイプ31bには噴射ノズル42(還元剤供給手段)が設置され、噴射ノズル42は、図示しないタンクから圧送される尿素水溶液を還元剤として第2パイプ31b内に任意に噴射可能に構成されている。
上記低速流路35内及び高速流路36内には、排ガスに旋回流を生起させるためのフィン装置43,44(撹拌手段)がそれぞれ設置されている。以下、低速流路35内のものを低速側フィン装置43(第1の撹拌手段)と称し、高速流路36内のものを高速側フィン装置44(第2の撹拌手段)と称するが、これらのフィン装置43,44は排ガスに対する拡散性(フィン装置による排ガスの撹拌の度合を意味する)を相互に相違させており、以下、その構成を詳述する。
図2は低速側フィン装置43を示す斜視図であり、全体として円盤状をなすように鋼板をプレス成型して製作され、低速流路35を閉鎖する姿勢で配置・固定されている。低速側フィン装置43上を4等分に区画した扇状の領域は、それぞれ扇状の1辺を起点として他の2辺をプレス成型により打ち抜かれて排気下流側に向けて折曲されている。これにより低速側フィン装置43には、上流側と下流側とを連通させる4つの流通孔43aが形成されると共に、各流通路に対応して4枚のフィン43bが立設されている。排ガスの流通方向に対して各フィン43bは同一方向に所定角度をなし、この低速側フィン装置43ではフィン角度がαに設定されている。
また、図3は高速側フィン装置44を示す斜視図であり、基本的な形状は低速側フィン装置43と相違することなく、4つの流通孔44a及びフィン44bを備え、フィン角度のみが異なっている。即ち、高速側フィン装置44のフィン角度は、低速側フィン装置43のフィン角度αに比較して小さな角度β(<α)に設定されている。
一方、上記吸気絞り弁9、排気絞り弁12、EGR弁18、スワール弁20の各アクチュエータ9a,12a,18a,20a、燃料噴射弁2、燃料ノズル14、噴射ノズル42、エンジン1の吸入空気量Qaを検出するエアフローセンサ52はECU51(電子コントロールユニット)に接続され、センサ類からの検出情報に基づいてECU51により駆動制御される。例えばECU51は機関回転速度や負荷等のエンジン1の運転状態に基づいて燃料噴射弁2の噴射量、噴射圧、噴射時期を制御してエンジン1を運転すると共に、アクチュエータ18aによりEGR弁18の開度を制御してEGR還流量を調整し、アクチュエータ20aによりスワール弁20の開度を制御してスワール流を調整する。
また、ECU51はDPF34の強制再生のためのポスト噴射、或いはSCR触媒40によるNOx浄化のための噴射ノズル38からの尿素供給等を制御しており、以下、これらのDPF34によるパティキュレートの浄化作用及びSCR触媒40によるNOxの浄化作用について述べる。
DPF34は排ガス中のPMを捕集する作用を奏し、エンジン1の排ガス温度が比較的高い運転状態では、前段酸化触媒33の酸化作用により排ガス中のNOからNO2が生成されて、NO2の酸化反応によりDPF34に捕集されたPMが連続的に焼却除去されることで、DPF34の再生が図られる。一方、このような連続再生作用が得られない運転状態が継続したときには、ECU51によりメイン噴射の後にポスト噴射が適宜実行され、前段酸化触媒32での酸化反応でDPF34を昇温してPMが焼却除去されることでDPF34が強制的に再生される。なお、強制再生でのPM燃焼の際に生じるCOは後段酸化触媒41によりCO2に酸化される。
また、SCR触媒40はNOx浄化のためにNH(アンモニア)の供給を要するため、ECU51はエンジン1の運転状態や図示しない温度センサにより検出される噴射ノズル42近傍の温度等に基づき、噴射ノズル42からの尿素水溶液の噴射量を制御する。噴射された尿素水溶液は排気熱及び排ガス中の水蒸気により加水分解されてNHを生成し、このNHによりSCR触媒40上では排ガス中のNOxが無害なNに還元されてNOxの浄化が行われる一方、このときの余剰NH3が後段酸化触媒41によりNOに酸化される。
なお、SCR触媒40の上流側に尿素をNHに加水分解する作用を奏する加水分解触媒を配置してもよいし、或いは、噴射ノズル42から尿素水溶液に代えてアンモニア水溶液を噴射するようにしてもよい。
また、尿素水溶液の噴射制御と並行して、ECU51は切換弁37により排ガスの流路を低速流路35と高速流路36との間で切換え、これによりエンジン1の運転領域に応じた適切なフィン装置43,44により排ガスに旋回流を生起させており、以下、このECU51の流路の切換制御について説明する。
ECU51はエアフローセンサ52により検出されるエンジン1の吸入空気量Qaを予め設定された判定値Qa0と比較し、吸入空気量Qaが判定値Qa0未満のとき、即ち、エンジン1が低速運転領域にあるときには、切換弁37を駆動制御して上流側ケーシング32を低速流路35側と接続させる。その結果、上流側ケーシング32の前段酸化触媒33及びDPF34を流通後の排ガスが低速流路35側に案内されて、低速側フィン装置43により排ガスに旋回流が生起される。図2に示すように低速側フィン装置43のフィン角度αは大きな値(フィン角度が深い)に設定されていることから、排ガスは流通方向を急激に変化されて比較的強い旋回流を生起する。この旋回流は低速流路35から第2パイプ31bに到達した時点でも維持されており、旋回流中に噴射ノズル42から尿素水溶液が噴射されて霧化・拡散され、上記のようにSCR触媒40上でNHを利用したNOxの浄化が行われる。
また、吸入空気量Qaが判定値Qa0以上のとき、即ち、エンジン1が高速運転領域にあるときには、ECU51は切換弁37を駆動制御して上流側ケーシング32を高速流路36側と接続させる。その結果、上流側ケーシング32の前段酸化触媒33及びDPF34を流通後の排ガスが高速流路36側に案内されて、高速側フィン装置44により排ガスに旋回流が生起される。図3に示すように高速側フィン装置44のフィン角度αは小さな値(フィン角度が浅い)に設定されていることから、排ガスは流通方向を緩やかに変化されて比較的弱い旋回流を生起し、この旋回流中に噴射ノズル42から尿素水溶液が噴射されて霧化・拡散されてSCR触媒40上でのNOx浄化に利用される。
以上のエンジン運転領域に応じたフィン装置43,44の選択は、以下に述べる知見に基づくものである。
エンジン1の低速運転領域では排ガス流量が少なく、このとき排ガスの流速の低下と相俟ってフィン装置43,44の旋回流により排ガスの拡散性を向上させる要求が高まる一方、排ガス流量が少ない状況ではエンジン1の排圧が増大する虞は低い。これに対して、エンジン1の高速運転領域では排ガス流量が多く、排ガスの流速の増加と相俟って元々排ガスの拡散性が高いため、フィン装置43,44の旋回流により排ガスの拡散性を向上させる必要はそれほどない一方、排ガス流量が多い状況ではエンジン1の排圧が増大して許容値を上回る虞が生じる。このように旋回流の生起と排圧増大の抑制との双方の必要性はトレードオフの関係にあってエンジン1の運転領域に応じて変化し、エンジン1の運転領域は排ガス流量と相関する吸入空気量Qaに基づいて判別可能である。
以上の知見に基づき本実施形態では、独立して形成した低速流路35と高速流路36とに低速側フィン装置43及び高速側フィン装置44を設けて、切換弁37の切換に応じて何れか一方のフィン装置43,44を選択可能に構成した上で、吸入空気量Qaに基づくエンジン1の運転領域(低速運転領域か高速運転領域か)に応じて切換弁37を駆動制御し、運転領域から要求される要件(旋回流の生起を重視するか排圧増大の抑制を重視するか)に適合するフィン装置43,44を選択するように構成した。
従って、低速運転領域では図2に示す低速側フィン装置43により比較的強い旋回流が生起されるため、排ガスの拡散性が低下傾向となるこの低速運転領域でも拡散性を向上して尿素水溶液を排ガス中に十分に拡散できる。また、大きなフィン角度αが設定された低速側フィン装置43では排圧が増大し易いが、元々排ガス流量が少ない低速運転領域では排圧がエンジン1の許容値を越える虞は全くない。
一方、高速運転領域では図3に示す小さなフィン角度βが設定された高速側フィン装置44が適用されるため、旋回流の生起に伴う排圧の増大は最小限に抑制されてエンジン1の許容値を越える事態を未然に防止できる。また、高速側フィン装置44により生起される旋回流は比較的弱いものであるが、元々高速運転領域では排ガスの拡散性が高いため、排ガス中への尿素水溶液の拡散不足が生じる虞は一切ない。
従って、本実施形態のエンジン1の排気浄化装置によれば、旋回流の生起と排圧増大の抑制とを両立させて、エンジン1の運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により尿素水溶液の拡散を十分に促進して良好なNOx浄化性能を実現することができる。
なお、エンジン1の排気流量は吸入空気量Qaから判定する他に、エンジン1の回転速度Ne及び燃料噴射量Qから推定することもできる。よって、予め設定されたマップに基づき回転速度Ne及び燃料噴射量Qからエンジン1の運転領域を判定し、判定した運転領域に対応するフィン装置43,44を選択するようにしてもよい。
また、本実施形態では低速流路35と高速流路36との分岐部に切換弁37を設けたが、これに代えて両流路35,36の合流部に切換弁37を設けてもよい。
また、本実施形態では第2パイプ31bに単一の噴射ノズル42を設けたが、これに限ることはなく、例えば低速流路35と高速流路36とに個別に噴射ノズル42を設けて切換弁37の切換に応じて何れか一方の噴射ノズル42を選択的に作動させてもよい。さらに、このように両流路35,36の個別に噴射ノズル42を設ける場合、それぞれの噴射ノズル42の位置はフィン装置43,44の下流側に限定されず上流側に配置してもよい。
[第2実施形態]
次に、本発明を別のディーゼルエンジン1の排気浄化装置に具体化した第2実施形態を説明する。
本実施形態の排気浄化装置は、第1実施形態で述べたものに比較して全体的な構成が共通であり、相違点はフィン装置及びその周辺の排気通路の構成にある。従って、構成が共通の箇所は同一部材番号を付して説明を省略し、相違点を重点的に述べる。
図4は本実施形態の排気浄化装置を示す部分的な構成図であり、図示しない箇所は第1実施形態のものと同様である。本実施形態では第1実施形態のように排気通路11を低速流路35と高速流路36とに分岐させずに1本の流路とし、単一のフィン装置を設けている。即ち、上流側ケーシング32と下流側ケーシング39とは第2パイプ31bにより直接的に接続され、この第2パイプ31bに上記噴射ノズル42と共に可変フィン装置61(可変撹拌手段)が配置されている。勿論、可変フィン装置61と噴射ノズル42との位置関係は図示に限定されるものではなく、双方の位置を逆転させてもよい。
図5は可変フィン装置61を示す斜視図であり、本実施形態の可変フィン装置61はフィン角度を変更可能に構成されている。詳述すると、第2パイプ31b内には一対の支軸62が90度交差した状態で配設され、両支軸62は中央の交差点を相互に溶接されると共に、両支軸62の両端はそれぞれ第2パイプ31bの内周壁に溶接されている。各支軸62により第2パイプ31b内は4等分に区画され、これにより形成された扇状の各流路63を排ガスが流通する。交差点を中心として支軸62の4箇所にはそれぞれフィン64の基端側が軸支され、各フィン64は四角板状をなして基端側から排気下流側に向けて延設され、支軸62を中心として先端側を揺動し得る。
全てのフィン64を内包するように第2パイプ31b内には円環状をなす操作リング65が配設され、操作リング65は各フィン64の先端側に対してピン66により相対回動可能に軸支されている。操作リング65の一側には操作ロッド67の一端が連結され、操作ロッド67の他端は、第2パイプ31bの内周壁を貫通して外部に配置されたアクチュエータ68に連結されている。
アクチュエータ68により操作ロッド67が軸方向に操作されると、矢印で示すように操作リング65が周方向に操作されて、各フィン64が支軸62を中心として一斉に同一方向に揺動操作される。アクチュエータ68によるフィン64の可動範囲は、第1実施形態で述べた低速側フィン装置43のフィン角度αと高速側フィン装置44のフィン角度βとの間に相当するように設定され、各フィン64はアクチュエータ68の一方のストロークエンドで角度αに調整され、他方のストロークエンドで角度βに調整される。なお、必ずしも第1実施形態と同一のフィン角度に設定する必要はなく、異なるフィン角度に設定してもよい。
このアクチュエータ68によるフィン角度の制御は、ECU51により以下の手順で実行される。
フィン角度の制御は第1実施形態と同じくエンジン1の吸入空気量Qaに基づいて実行されるが、無段階でフィン角度を調整可能な本実施形態の可変フィン装置61の特徴を活かして、吸入空気量Qaに対応するフィン角度(実際はアクチュエータ68の作動量)を算出して、その算出値に基づいてアクチュエータ68を駆動制御している。具体的には、低速運転領域に相当する吸入空気量Qaでは各フィンは大きな角度αに制御され、これにより排ガスの流通方向が急激に変化されて強い旋回流を生起する。この運転領域から吸入空気量Qaが増大するに従って次第にフィン角度が縮小され、それに伴ってフィンによる排ガスの流通方向の変化が次第に緩やかなものとなり、高速運転領域に相当する吸入空気量Qaでは小さな角度βに制御されて、生起される旋回流は弱いものとなると共に、排圧の増大は抑制される。
以上のECU51のフィン角度の制御によれば、第1実施形態と同様の作用効果が得られ、重複する説明はしないが、旋回流の生起と排圧増大の抑制とを両立させて、エンジン1の運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により尿素水溶液の拡散を十分に促進して良好なNOx浄化性能を実現することができる。
しかも、フィン角度を無段階で制御しているため、常にエンジン1の運転領域に対して最適なフィン角度をもって旋回流を生起でき、もって、旋回流の生起と排圧増大の抑制とを第1実施形態より一層高次元で両立させることができる。
なお、本実施形態の構成を採った場合、必ずしもフィン角度を無段階で制御する必要はなく、例えば第1実施形態と同様に角度αと角度βとの2位置間で切換制御してもよい。
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記各実施形態では、NOx浄化用にSCR触媒40を備えたディーゼルエンジン1の排気浄化装置に具体化したが、還元剤の供給を要する還元触媒を備えたエンジンであればこれに限ることはない。例えば排ガス中のNOxを吸蔵する吸蔵型NOx触媒を排気通路に備え、吸蔵したNOxをNOx触媒から放出還元するために、還元剤として燃料を排気通路内に噴射するNOxパージを定期的に実行する必要があるエンジンに適用してもよい。この場合には図1においてSCR触媒40を吸蔵型NOx触媒に置換した構成となるが、第1実施形態或いは第2実施形態のフィン装置43,44,61等の構成を採ることにより、各実施形態と同様に、旋回流の生起による排ガス中への燃料の拡散促進と排圧増大の抑制とを両立できる作用効果が得られる。
また、上記各実施形態では、撹拌手段として排ガスに旋回流を生起させるフィン装置43,44,61を設けたが、撹拌手段の構成はこれに限定されるものではない。例えば排ガスを撹拌する作用は、排ガス流通方向に対して所定角度に邪魔板を配置することでも得られ、邪魔板の角度に応じて排ガスの撹拌作用と排圧の発生状況とが変化する。従って、第1実施形態のように低速運転領域用の深い角度の邪魔板と高速運転領域用の浅い角度の邪魔板とを個別の流路に設けて、吸入空気量Qaなどに応じて切換えるようにしてもよいし、第2実施形態のように邪魔板の角度を吸入空気量Qaなどに応じて制御するようにしてもよい。
第1実施形態のディーゼルエンジンの排気浄化装置を示す全体構成図である。 第1実施形態の低速側フィン装置を示す斜視図である。 第1実施形態の高速側フィン装置を示す斜視図である。 第2実施形態のディーゼルエンジンの排気浄化装置を示す部分的な構成図である。 第2実施形態の可変フィン装置を示す斜視図である。
符号の説明
1 エンジン(内燃機関)
11 排気通路
35 低速流路(第1の流路)
36 高速流路(第2の流路)
37 切換弁(流路切換手段)
40 SCR触媒(還元触媒)
42 噴射ノズル(還元剤供給手段)
43 低速側フィン装置(第1の撹拌手段)
44 高速側フィン装置(第2の撹拌手段)
51 ECU(制御手段)
61 可変フィン装置(可変撹拌手段)

Claims (4)

  1. 内燃機関の排気通路の一部を構成し、該排気通路に設けられた還元触媒の上流側で相互に独立した流路を形成して、それぞれ上記内燃機関側と上記還元触媒側とを連通する第1の流路及び第2の流路と、
    上記内燃機関の排ガスを上記第1の流路または第2の流路に選択的に流通させる流路切換手段と、
    上記排気通路の上記還元触媒の上流側に設けられ、該排気通路内に還元剤を供給する還元剤供給手段と、
    上記第1の流路に設けられて内部を流通する排ガスを撹拌する第1の撹拌手段と、
    上記第2の流路に設けられて内部を流通する排ガスを撹拌し、該撹拌による排ガスの拡散性が上記第1の撹拌手段より低く設定された第2の撹拌手段と、
    上記内燃機関の運転領域に基づき上記流路切換手段を切換える制御手段と
    を備えたことを特徴とする内燃機関の排気浄化装置。
  2. 上記制御手段は、上記内燃機関が所定の低速運転領域のときに排ガスを上記第1の流路に流通させるように上記流路切換手段を切換え、上記内燃機関が所定の高速運転領域のときに排ガスを上記第2の流路に流通させるように上記流路切換手段を切換えることを特徴とする請求項1記載の内燃機関の排気浄化装置。
  3. 内燃機関の排気通路に設けられた還元触媒と、
    上記排気通路の上記還元触媒の上流側に設けられ、該排気通路内に還元剤を供給する還元剤供給手段と、
    上記排気通路の上記還元触媒の上流側に設けられて内部を流通する排ガスを撹拌すると共に、該撹拌による排ガスの拡散性を可変可能な可変撹拌手段と、
    上記内燃機関の運転領域に基づき上記可変撹拌手段の拡散性を制御する制御手段と
    を備えたことを特徴とする内燃機関の排気浄化装置。
  4. 上記制御手段は、上記内燃機関が所定の低速運転領域のときに上記可変撹拌手段の拡散性を増加側に制御し、上記内燃機関が所定の高速運転領域のときに上記可変撹拌手段の拡散性を低下側に制御することを特徴とする請求項3記載の内燃機関の排気浄化装置。
JP2006310215A 2006-11-16 2006-11-16 内燃機関の排気浄化装置 Withdrawn JP2008127998A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310215A JP2008127998A (ja) 2006-11-16 2006-11-16 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310215A JP2008127998A (ja) 2006-11-16 2006-11-16 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2008127998A true JP2008127998A (ja) 2008-06-05

Family

ID=39554119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310215A Withdrawn JP2008127998A (ja) 2006-11-16 2006-11-16 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP2008127998A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019082A (ja) * 2008-07-08 2010-01-28 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化システム
JP2012047119A (ja) * 2010-08-27 2012-03-08 Mitsubishi Motors Corp 内燃機関の排気浄化装置
GB2533353A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Mixer for an exhaust after-treatment system of an internal combustion engine
CN105917088A (zh) * 2013-12-17 2016-08-31 臼井国际产业株式会社 使用高浓度地含有硫成分的重油等低质燃料的船舶用柴油发动机的排气净化装置
CN106170610A (zh) * 2014-04-08 2016-11-30 臼井国际产业株式会社 使用含有高浓度硫成分的低质燃料的船舶用柴油发动机的排气处理装置
KR101992102B1 (ko) * 2018-01-31 2019-09-30 공주대학교 산학협력단 가변믹서를 적용한 배기시스템
JP2020056370A (ja) * 2018-10-03 2020-04-09 トヨタ自動車株式会社 内燃機関の制御装置
KR102220487B1 (ko) * 2019-09-18 2021-02-25 삼성중공업 주식회사 배기가스 처리 시스템
KR20210071604A (ko) * 2019-12-06 2021-06-16 삼성중공업 주식회사 배기가스 처리 시스템

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019082A (ja) * 2008-07-08 2010-01-28 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化システム
JP2012047119A (ja) * 2010-08-27 2012-03-08 Mitsubishi Motors Corp 内燃機関の排気浄化装置
CN105917088A (zh) * 2013-12-17 2016-08-31 臼井国际产业株式会社 使用高浓度地含有硫成分的重油等低质燃料的船舶用柴油发动机的排气净化装置
CN106170610A (zh) * 2014-04-08 2016-11-30 臼井国际产业株式会社 使用含有高浓度硫成分的低质燃料的船舶用柴油发动机的排气处理装置
GB2533353A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Mixer for an exhaust after-treatment system of an internal combustion engine
KR101992102B1 (ko) * 2018-01-31 2019-09-30 공주대학교 산학협력단 가변믹서를 적용한 배기시스템
JP2020056370A (ja) * 2018-10-03 2020-04-09 トヨタ自動車株式会社 内燃機関の制御装置
JP7206764B2 (ja) 2018-10-03 2023-01-18 トヨタ自動車株式会社 内燃機関の制御装置
KR102220487B1 (ko) * 2019-09-18 2021-02-25 삼성중공업 주식회사 배기가스 처리 시스템
KR20210071604A (ko) * 2019-12-06 2021-06-16 삼성중공업 주식회사 배기가스 처리 시스템
KR102538614B1 (ko) 2019-12-06 2023-05-31 삼성중공업 주식회사 배기가스 처리 시스템

Similar Documents

Publication Publication Date Title
JP2008127998A (ja) 内燃機関の排気浄化装置
JP4869161B2 (ja) 内燃機関の排気浄化装置
JP5090890B2 (ja) エンジンの排気浄化装置
US7640731B2 (en) Method for controlling exhaust gas flow and temperature through regenerable exhaust gas treatment devices
JP5244334B2 (ja) 内燃機関の排気浄化装置
JP5299572B2 (ja) 内燃機関
WO2007066835A1 (ja) 内燃機関の排気浄化システム
JP4485400B2 (ja) 内燃機関の排気浄化装置
JP2008128093A (ja) 内燃機関の排気浄化装置
WO2011108024A1 (ja) 内燃機関の排気浄化装置
JP2007162545A (ja) エンジンの過給器システム
JP2006200473A (ja) 排ガス後処理装置付きエンジンの制御装置
JP4502800B2 (ja) 内燃機関の排ガス攪拌装置
JP5716687B2 (ja) 内燃機関の排気浄化装置
JP2008127997A (ja) 内燃機関の排気浄化装置
CN112424459B (zh) 车载发动机的排气结构
JP2014005741A (ja) 内燃機関の排気浄化装置
JP5823842B2 (ja) ターボチャージャ付多気筒内燃機関の排気還流装置
JP4727472B2 (ja) 排気浄化装置
JP4500765B2 (ja) 内燃機関の排気浄化装置
JP2010127187A (ja) ディーゼルエンジン
JP2008038622A (ja) 内燃機関の排気浄化装置、及び方法
JP7080679B2 (ja) 内燃機関の添加剤分散システム
JP3714732B2 (ja) ディーゼルエンジンの排気浄化装置
JP2015121168A (ja) 内燃機関の排水装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202