JP2008126293A - Equipment and method for cooling steel plate - Google Patents

Equipment and method for cooling steel plate Download PDF

Info

Publication number
JP2008126293A
JP2008126293A JP2006315911A JP2006315911A JP2008126293A JP 2008126293 A JP2008126293 A JP 2008126293A JP 2006315911 A JP2006315911 A JP 2006315911A JP 2006315911 A JP2006315911 A JP 2006315911A JP 2008126293 A JP2008126293 A JP 2008126293A
Authority
JP
Japan
Prior art keywords
steel sheet
cooling water
steel plate
width
nozzle row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006315911A
Other languages
Japanese (ja)
Other versions
JP4858113B2 (en
Inventor
Naoki Nakada
直樹 中田
Takashi Kuroki
高志 黒木
Teruo Fujibayashi
晃夫 藤林
Satoshi Kamioka
悟史 上岡
Akihiro Okuno
昭博 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006315911A priority Critical patent/JP4858113B2/en
Publication of JP2008126293A publication Critical patent/JP2008126293A/en
Application granted granted Critical
Publication of JP4858113B2 publication Critical patent/JP4858113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide equipment and a method for cooling a steel plate by which cooling water is uniformly supplied in the width direction of the steel plate and the whole steel plate is cooled uniformly even when the thickness of the steel plate is varied in the hot-rolling line of the steel plate. <P>SOLUTION: In full width nozzle trains 22<SB>-1</SB>to 22<SB>-6</SB>, by changing the arrangement of a nozzle train facing the left end and a nozzle train facing the right end little by little, injection direction branch points P1-P6 are shifted by δ each in the width direction of the steel plate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼板の冷却設備および冷却方法に関するものである。   The present invention relates to a steel sheet cooling facility and a cooling method.

鋼板(特に厚鋼板)の熱間圧延ラインにおいては、合金元素の削減や材質の向上および生産能率の向上を目的に、加速冷却装置や制御冷却装置など種々の冷却装置が用いられている。これら厚鋼板の冷却方法は、厚鋼板を搬送ロール上を搬送させながら上下面に冷却水を供給するのが一般的であり、いずれの冷却装置においても板幅方向、搬送方向に均一な冷却を行うことが重要である。   In a hot rolling line for steel plates (particularly thick steel plates), various cooling devices such as an acceleration cooling device and a control cooling device are used for the purpose of reducing alloy elements, improving material quality, and improving production efficiency. In these cooling methods for thick steel plates, cooling water is generally supplied to the upper and lower surfaces while transporting the thick steel plates on a transport roll. In any cooling device, uniform cooling is performed in the plate width direction and the transport direction. It is important to do.

そのために、例えば特許文献1に記載されたような冷却装置が提案されている。特許文献1に記載の冷却装置は、上下一対の鋼板拘束ロール二組からなる冷却ユニットを厚鋼板の搬送方向に複数配設した冷却装置において、出側拘束ロールや出側拘束ロールの出側に設けたエアースリットノズルだけではロールと鋼板の隙間から漏出する冷却水を完全に除去することができないので、出側拘束ロールの出側に板幅方向へ延びる冷却ヘッダを配設し、ヘッダに厚鋼板の搬送方向に相対向させ、かつ搬送方向に対し左右相反方向へ噴射口を向け冷却液噴射ノズルを傾斜配設した冷却装置である。   Therefore, for example, a cooling device as described in Patent Document 1 has been proposed. The cooling device described in Patent Document 1 is a cooling device in which a plurality of cooling units each composed of a pair of upper and lower steel plate restraining rolls are arranged in the conveying direction of the thick steel plate, on the exit side of the exit side restraint roll and the exit side restraint roll. Since the cooling water leaking from the gap between the roll and the steel plate cannot be completely removed with the provided air slit nozzle alone, a cooling header extending in the plate width direction is disposed on the exit side of the exit side restraining roll, and the header is thick. This is a cooling device that is opposed to the conveying direction of the steel sheet, and in which cooling liquid injection nozzles are inclinedly arranged with the injection ports facing in the opposite direction to the conveying direction.

すなわち、特許文献1に記載の冷却装置では、出側拘束ロールの出側で完全な水切りを行うために板幅方向へ多数ノズルを配設し、噴出する冷却水によって漏出した冷却水を強制的に厚鋼板の板幅方向へ押し流し、さらにエアースリットノズルより圧縮エアーを噴射して厚鋼板上の残留水を皆無にしている。   That is, in the cooling device described in Patent Document 1, in order to completely drain water on the exit side of the exit-side restraining roll, a large number of nozzles are arranged in the plate width direction, and the cooling water leaked by the ejected cooling water is forced. Then, the steel sheet is washed away in the width direction of the thick steel plate, and further compressed air is sprayed from the air slit nozzle to eliminate any residual water on the thick steel plate.

しかし、その際に、冷却ユニットにおける水量密度を大きくすると十分に水が切れず、水切り能力を上げるためには設備を大きくしなければならず、また、厚鋼板の形状が悪い場合には、厚鋼板がノズルに衝突する危険性がある。   However, at that time, if the water density in the cooling unit is increased, the water cannot be sufficiently drained, and the equipment must be enlarged in order to increase the drainage capacity. There is a risk of the steel plate colliding with the nozzle.

そこで、本出願人は、特願2006−227404(未公開出願1)において、新たな鋼板の冷却技術を提案している。   Therefore, the present applicant has proposed a new steel plate cooling technique in Japanese Patent Application No. 2006-227404 (Unpublished Application 1).

すなわち、図1に側面図、図2に平面図を示すように、鋼板10の上面に対して冷却水(棒状冷却水)23を所定の噴射角度(伏角)θで噴射する上ノズル群22を有する上ヘッダ21を鋼板搬送方向に一対配置し、それぞれの上ヘッダ21a、21bの上ノズル群22a、22bから噴射される冷却水23a、23bが鋼板搬送方向に鋼板上で所定の間隔を置いて互いに対向するようにするとともに、上方から見た噴射線が鋼板搬送方向となす角で定義される角度(外向き角)αを有するようにしている。   That is, as shown in a side view in FIG. 1 and a plan view in FIG. 2, an upper nozzle group 22 for injecting cooling water (rod-like cooling water) 23 at a predetermined injection angle (deflection angle) θ with respect to the upper surface of the steel plate 10 is provided. A pair of upper headers 21 are arranged in the steel plate conveying direction, and cooling waters 23a and 23b sprayed from the upper nozzle groups 22a and 22b of the upper headers 21a and 21b are placed at a predetermined interval on the steel plate in the steel plate conveying direction. While facing each other, the spray line seen from above has an angle (outward angle) α defined by an angle formed with the steel plate conveyance direction.

一例として、図2においては、冷却水23の外向き角αを一定とし、冷却水23が鋼板10に衝突する位置(衝突点)が鋼板幅方向に等間隔となるように各ノズルを設置している。その際、鋼板幅方向中央付近では、左右の両幅方向外側に向けて噴射するノズルを設置しなくてはならないので、ノズルを取り付ける穴の加工が可能となるように、鋼板幅方向左端外側に向けて噴射するノズル列(例えば、図2中の上ヘッダ21a、21bにおいて上方向に噴射速度成分をもつノズル列)と鋼板幅方向右端外側に向けて噴射するノズル列(例えば、図2中の上ヘッダ21a、21bにおいて下方向に噴射速度成分をもつノズル列)を、鋼板搬送方向に交互に所定間隔ずらして設置している。すなわち、鋼板幅方向左端外側に向けて噴射するノズル(左端向ノズル)を鋼板幅方向に所定の間隔Wで鋼板幅方向左端から鋼板幅方向中央部近傍まで配置し、鋼板幅方向左端外側に向けて噴射するノズル(右端向ノズル)を鋼板幅方向に所定の間隔Wで鋼板幅方向右端から鋼板幅方向中央部近傍まで配置し、鋼板幅方向中央部近傍で、左端向ノズルからの冷却水の噴射線と右端向ノズルからの冷却水の噴射線が搬送方向に垂直な面に投影した際に交差するようにしている。つまり、左端向ノズル列と右端向ノズル列の各1列を組み合わせて、鋼板幅全体に対するノズル列(全幅ノズル列)を形成するようにしている。ちなみに、図1、図2では、上ヘッダ21a、21bについて、全幅ノズル列を鋼板搬送方向で6列ずつ設置している。   As an example, in FIG. 2, the nozzles are installed so that the outward angle α of the cooling water 23 is constant and the positions where the cooling water 23 collides with the steel plate 10 (collision points) are equally spaced in the steel plate width direction. ing. In that case, in the vicinity of the center in the width direction of the steel plate, a nozzle that sprays toward the outside in both the left and right width directions must be installed. Nozzle row (for example, a nozzle row having a jet velocity component upward in the upper headers 21a and 21b in FIG. 2) and a nozzle row (for example, in FIG. In the upper headers 21a and 21b, nozzle rows having a jet velocity component in the downward direction are alternately shifted by a predetermined interval in the steel plate conveyance direction. That is, a nozzle (left end-facing nozzle) that injects toward the left end in the steel sheet width direction is arranged from the left end in the steel sheet width direction to the vicinity of the center in the steel sheet width direction at a predetermined interval W in the steel sheet width direction, and toward the left end in the steel sheet width direction. The nozzle (right end-facing nozzle) for spraying is disposed from the right end of the steel sheet width direction to the vicinity of the central portion of the steel sheet width direction at a predetermined interval W in the steel sheet width direction. The jet line and the jet line of the cooling water from the right end nozzle intersect with each other when projected onto a plane perpendicular to the transport direction. That is, a nozzle row (full width nozzle row) for the entire steel plate width is formed by combining each of the left end nozzle row and the right end nozzle row. Incidentally, in FIG. 1 and FIG. 2, six full width nozzle rows are installed in the steel plate conveyance direction for the upper headers 21a and 21b.

これによって、未公開出願1においては、供給された冷却水23自身が鋼板10上の滞留冷却水24を堰き止めて適切に水切りを行うことになり、安定した冷却領域が得られ、鋼板10を均一に冷却することができる。
特開昭60−206516号公報
As a result, in the unpublished application 1, the supplied cooling water 23 itself dams up the staying cooling water 24 on the steel plate 10 and drains it appropriately, and a stable cooling region is obtained. It can cool uniformly.
JP 60-206516 A

ただし、前記未公開出願1において、上ノズル22を鋼板幅方向端部外側に向けて噴射することによって冷却水23に鋼板幅方向成分を持たせると、冷却水23の排水性はよくなるが、鋼板10の厚みが変わると、冷却水23の衝突点が鋼板幅方向に移動するという問題がある。   However, in the unpublished application 1, when the cooling water 23 has a steel plate width direction component by injecting the upper nozzle 22 toward the outer end of the steel plate width direction, the drainage of the cooling water 23 is improved. When the thickness 10 changes, there is a problem that the collision point of the cooling water 23 moves in the steel plate width direction.

すなわち、図3に示すように、噴射高さ(テーブルローラ上端から上ノズル先端までの高さ)Hの上ノズル22からの冷却水噴射線aについてみれば、板厚h1の鋼板1から板厚h2の鋼板2(ここでは、h1<h2)に変わると、鋼板1に対する衝突点Aから鋼板2に対する衝突点Bに変化することになり、伏角θの影響で衝突点は鋼板搬送方向に移動することになるが、それとともに、図4に示すように、外向き角αの影響で衝突点が鋼板幅方向中央部側に移動することになる。そのため、鋼板1に対して鋼板幅方向で冷却水の衝突点が等間隔Wとなるように上ノズル22が設置されている場合には、鋼板2に対して一部で衝突点の間隔が等間隔でない個所が生じることになる。   That is, as shown in FIG. 3, when the cooling water injection line a from the upper nozzle 22 of the injection height (height from the upper end of the table roller to the upper nozzle tip) is seen, the plate thickness from the steel plate 1 having the plate thickness h1 is obtained. When the steel plate 2 changes to h2 (here, h1 <h2), it changes from the collision point A to the steel plate 1 to the collision point B to the steel plate 2, and the collision point moves in the steel plate conveyance direction due to the influence of the depression angle θ. At the same time, as shown in FIG. 4, the collision point is moved to the center side in the steel sheet width direction due to the influence of the outward angle α. Therefore, when the upper nozzle 22 is installed so that the collision points of the cooling water are equally spaced W in the width direction of the steel sheet 1 with respect to the steel sheet 1, the distance between the collision points is partially equal to the steel sheet 2. There will be places that are not spaced.

具体的には、図4において、鋼板1に対する衝突点Aの間隔Wが等間隔となっているとすると、鋼板2に対する衝突点Bは、衝突点Aよりも鋼板幅方向中央側にΔWだけ移動することになり、その際に、鋼板幅方向中央部近傍以外では、同じ方向に噴射しているので、各衝突点が同方向にΔW移動することから、衝突点間隔はWを維持することになるが、鋼板幅方向中央部近傍では、異なる方向に噴射しているので、それらの衝突点が互いに接近する方向にΔWずつ移動し、衝突点間隔がW−2ΔWとなって狭くなることになる。なお、鋼板板厚の変化量をΔhとすれば、衝突点移動量ΔWは次式で表される。   Specifically, in FIG. 4, assuming that the distance W between the collision points A with respect to the steel plate 1 is equal, the collision point B with respect to the steel plate 2 moves by ΔW to the center side in the steel plate width direction from the collision point A. At that time, since the jetting is performed in the same direction except in the vicinity of the central portion in the steel plate width direction, each collision point moves ΔW in the same direction, so that the collision point interval is maintained at W. However, in the vicinity of the central portion in the width direction of the steel sheet, since the injection is performed in different directions, the collision points move by ΔW in the direction in which they approach each other, and the collision point interval becomes W−2ΔW and becomes narrower. . If the amount of change in the steel plate thickness is Δh, the collision point movement amount ΔW is expressed by the following equation.

Figure 2008126293
Figure 2008126293

その結果、鋼板2に対しては、鋼板幅方向中央部の冷却水供給量が他の部分に比べて多くなり、鋼板幅方向中央部が過冷却となって、鋼板幅方向に不均一な温度分布となり、品質の高い鋼板を製造できなくなる。   As a result, for the steel plate 2, the amount of cooling water supplied in the central portion in the width direction of the steel plate is larger than in other portions, the central portion in the width direction of the steel plate is overcooled, and the temperature is not uniform in the width direction of the steel plate. It becomes distribution, and it becomes impossible to manufacture a high-quality steel sheet.

本発明は、上記のような事情に鑑みてなされたものであり、鋼板の熱間圧延ラインにおいて、鋼板の板厚が変わっても冷却水を鋼板幅方向に均一に供給でき、鋼板全体を均一に冷却することができる鋼板の冷却設備および冷却設備方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and in a hot rolling line for steel sheets, even if the thickness of the steel sheet changes, cooling water can be supplied uniformly in the width direction of the steel sheet, and the entire steel sheet is uniform. It is an object of the present invention to provide a steel plate cooling facility and a cooling facility method that can be cooled to each other.

上記課題を解決するために、本発明者らは鋭意検討を行った結果、左端向ノズル列と右端向ノズル列の各1列を組み合わせて形成した全幅ノズル列が鋼板搬送方向に複数列設置されている場合に、全幅ノズル列毎に、鋼板板厚が変わると衝突点間隔が変動する個所を鋼板幅方向にずらすようにすれば、鋼板の板厚が変わった場合でも、鋼板幅全体でみると、各全幅ノズル列における衝突点間隔の変動の影響が緩和されて、冷却水を鋼板幅方向に比較的均一に供給できるとの考えに至った。   In order to solve the above problems, the present inventors have conducted intensive studies. As a result, a plurality of full-width nozzle rows formed by combining each of the left-end nozzle row and the right-end nozzle row are installed in the steel plate conveyance direction. If the steel plate thickness changes for each full-width nozzle row, the location where the collision point interval fluctuates is shifted in the steel plate width direction, so even if the thickness of the steel plate changes, the entire steel plate width is seen. And the influence of the fluctuation | variation of the collision point space | interval in each full width nozzle row was eased, and it came to the idea that a cooling water can be supplied comparatively uniformly in the steel plate width direction.

上記の考え方に基づいて、本発明は以下の特徴を有している。   Based on the above concept, the present invention has the following features.

[1]鋼板の熱間圧延ラインで使用する冷却設備であって、
鋼板の表面に対して、鋼板の一方の幅方向端部外側に向かう成分をもたせて冷却水を噴射するノズルが鋼板幅方向に所定の間隔で配置された一端方向ノズル列と、鋼板の他方の幅方向端部外側に向かう成分をもたせて冷却水を噴射するノズルが鋼板幅方向に所定の間隔で配置された他端方向ノズル列を各1列ずつ組み合わせて、鋼板の幅方向全体に冷却水を噴射する全幅ノズル列が形成され、
その全幅ノズル列が鋼板搬送方向に複数列設置されているとともに、任意の全幅ノズル列について、鋼板表面において、一端方向ノズル列から噴射された冷却水の衝突点と、他端方向ノズル列から噴射された冷却水の衝突点とが隣り合う個所における両衝突点の中間点を噴射方向分岐点とし、その噴射方向分岐点が全幅ノズル列毎に鋼板幅方向にずれていることを特徴とする鋼板の冷却設備。
[1] A cooling facility used in a hot rolling line for steel plates,
One end direction nozzle row in which nozzles for injecting cooling water with a component toward the outer side of one width direction end of the steel sheet are arranged at predetermined intervals in the steel sheet width direction with respect to the surface of the steel sheet, and the other side of the steel sheet Combine nozzles for injecting cooling water with a component toward the outside in the width direction end and arranged at predetermined intervals in the width direction of the steel sheet, one by one in each direction, and the cooling water is applied to the entire width direction of the steel sheet. A full-width nozzle row is formed to inject
A plurality of full-width nozzle rows are installed in the steel plate conveyance direction, and for any full-width nozzle row, the collision point of the cooling water jetted from the one-end nozzle row and the other-end nozzle row are jetted on the steel plate surface. An intermediate point between the two collision points at a location adjacent to the collision point of the cooled cooling water is an injection direction branch point, and the injection direction branch point is shifted in the steel plate width direction for each full width nozzle row Cooling equipment.

[2]全幅ノズル列毎に噴射方向分岐点がノズルの配置間隔の1/2以上ずれているとともに、全ての噴射方向分岐点が鋼板の幅を3等分した中央部分に含まれていることを特徴とする前記[1]に記載の鋼板の冷却設備。   [2] The injection direction branch points are shifted by 1/2 or more of the nozzle arrangement interval for each full width nozzle row, and all the injection direction branch points are included in the central portion of the steel sheet divided into three equal parts. The steel sheet cooling equipment according to [1] above, wherein:

[3]前記冷却水が棒状冷却水であることを特徴とする前記[1]または[2]に記載の鋼板の冷却設備。   [3] The steel sheet cooling facility according to [1] or [2], wherein the cooling water is a rod-shaped cooling water.

[4]鋼板の熱間圧延ラインで使用する冷却方法であって、
鋼板の表面に対して、鋼板の一方の幅方向端部外側に向かう成分をもたせて冷却水を噴射するノズルを鋼板幅方向に所定の間隔で配置した一端方向ノズル列と、鋼板の他方の幅方向端部外側に向かう成分をもたせて冷却水を噴射するノズルを鋼板幅方向に所定の間隔で配置した他端方向ノズル列を各1列ずつ組み合わせて、鋼板の幅方向全体に冷却水を噴射する全幅ノズル列を形成し、
その全幅ノズル列が鋼板搬送方向に複数列設置するとともに、任意の全幅ノズル列について、鋼板表面において、一端方向ノズル列から噴射された冷却水の衝突点と、他端方向ノズル列から噴射された冷却水の衝突点とが隣り合う個所における両衝突点の中間点を噴射方向分岐点とし、その噴射方向分岐点を全幅ノズル列毎に鋼板幅方向にずらすことを特徴とする鋼板の冷却方法。
[4] A cooling method used in a hot rolling line for steel plates,
One end direction nozzle row in which nozzles for injecting cooling water with a component toward the outer side of one end in the width direction of the steel sheet with respect to the surface of the steel sheet are arranged at predetermined intervals in the steel sheet width direction, and the other width of the steel sheet Combine nozzles for spraying cooling water with a component toward the outside in the direction direction at predetermined intervals in the steel sheet width direction, and inject cooling water to the entire width direction of the steel sheet. Forming a full width nozzle row,
The full width nozzle row is installed in a plurality of rows in the steel plate conveyance direction, and for any full width nozzle row, the collision point of the cooling water jetted from the one end direction nozzle row and the other end direction nozzle row is jetted on the steel plate surface. A method of cooling a steel sheet, characterized in that an intermediate point between the two collision points at a location where the cooling water collision point is adjacent is an injection direction branch point, and the injection direction branch point is shifted in the steel sheet width direction for each full width nozzle row.

[5]全幅ノズル列毎に噴射方向分岐点をノズルの配置間隔の1/2以上ずらすとともに、全ての噴射方向分岐点が鋼板の幅を3等分した中央部分に含まれるようにすることを特徴とする前記[4]に記載の鋼板の冷却方法。   [5] For each full-width nozzle row, the injection direction branch point is shifted by 1/2 or more of the nozzle arrangement interval, and all the injection direction branch points are included in the central portion obtained by dividing the width of the steel plate into three equal parts. The method for cooling a steel sheet according to [4], which is characterized in that

[6]前記冷却水が棒状冷却水であることを特徴とする前記[4]または[5]に記載の鋼板の冷却方法。   [6] The method for cooling a steel sheet according to [4] or [5], wherein the cooling water is rod-shaped cooling water.

本発明を用いることにより、鋼板の板厚が変わっても冷却水を鋼板幅方向に比較的均一な流量分布で供給でき、鋼板全体をほぼ均一に冷却することができる。その結果、品質の高い鋼板を製造することができる。   By using the present invention, even if the plate thickness of the steel sheet changes, the cooling water can be supplied with a relatively uniform flow rate distribution in the width direction of the steel sheet, and the entire steel sheet can be cooled almost uniformly. As a result, a high quality steel plate can be manufactured.

本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の一実施形態における鋼板の冷却設備の基本的構成は、図1に側面図、図2に平面図を示したものである。   A basic configuration of a steel sheet cooling facility according to an embodiment of the present invention is shown in a side view in FIG. 1 and a plan view in FIG.

すなわち、この実施形態における冷却設備は、鋼板の熱間圧延ライン上に設置される通過式の冷却設備であり、鋼板10の上面に向けて冷却水を供給するための一対の上ヘッダ21(第1上ヘッダ21a、第2上ヘッダ21b)と、鋼板10の下面に向けて冷却水を供給するための2個の下ヘッダ31を備えている。なお、図1中、13はテーブルローラである。   That is, the cooling facility in this embodiment is a passing-type cooling facility installed on a hot rolling line for steel plates, and a pair of upper headers 21 (seconds) for supplying cooling water toward the upper surface of the steel plate 10. 1 upper header 21 a, second upper header 21 b), and two lower headers 31 for supplying cooling water toward the lower surface of the steel plate 10. In FIG. 1, reference numeral 13 denotes a table roller.

そして、それぞれの上ヘッダ21a、21bには複数列の円管ノズル22(第1上ノズル22a、第2上ノズル22b)が取り付けられており、第1上ノズル22aから噴射角度(伏角)θで供給される棒状の冷却水23aと第2上ノズル22bから噴射角度(伏角)θで供給される棒状の冷却水23bが鋼板搬送方向に鋼板上で所定の間隔を置いて互いに対向するようにするとともに、棒状冷却水23(23a、23b)が鋼板幅方向外側に向かう速度成分を持つように、鋼板幅方向両外側に向けて所定の噴射角度(外向き角)αを有するようにしている。   A plurality of rows of circular tube nozzles 22 (first upper nozzle 22a and second upper nozzle 22b) are attached to the upper headers 21a and 21b, respectively, and an injection angle (deflection angle) θ from the first upper nozzle 22a. The supplied rod-shaped cooling water 23a and the rod-shaped cooling water 23b supplied from the second upper nozzle 22b at an injection angle (deflection angle) θ are made to face each other at a predetermined interval on the steel plate in the steel plate conveyance direction. At the same time, the rod-shaped cooling water 23 (23a, 23b) has a predetermined injection angle (outward angle) α toward both outer sides in the steel plate width direction so as to have a velocity component toward the outer side in the steel plate width direction.

そして、その外向き角αを一定にし、棒状冷却水23が鋼板10に衝突する位置(衝突点)が鋼板幅方向に等間隔となるように各ノズル22を設置している。その際、ノズルを取り付ける穴の加工が可能となるように、鋼板幅方向左端外側に向けて噴射するノズル列(例えば、図2中の上ヘッダ21a、21bにおいて上方向に噴射速度成分をもつノズル列)と鋼板幅方向右端外側に向けて噴射するノズル列(例えば、図2中の上ヘッダ21a、21bにおいて下方向に噴射速度成分をもつノズル列)を、鋼板搬送方向に交互に所定間隔ずらして設置している。すなわち、鋼板幅方向左端外側に向けて噴射するノズル(左端向ノズル)を鋼板幅方向に所定の間隔Wで鋼板幅方向左端から鋼板幅方向中央部近傍まで配置し、鋼板幅方向左端外側に向けて噴射するノズル(右端向ノズル)を鋼板幅方向に所定の間隔Wで鋼板幅方向右端から鋼板幅方向中央部近傍まで配置し、鋼板幅方向中央部近傍で、左端向ノズルからの冷却水の噴射線と右端向ノズルからの冷却水の噴射線が搬送方向に垂直な面に投影した際に交差するようにしている。つまり、左端向ノズル列と右端向ノズル列の各1列を組み合わせて、鋼板幅全体に対するノズル列(全幅ノズル列)を形成するようにしている。ちなみに、図1、図2では、上ヘッダ21a、21bについて、全幅ノズル列を鋼板搬送方向で6列ずつ設置している。   And each nozzle 22 is installed so that the outward angle | corner (alpha) may be made constant and the position (collision point) where the rod-shaped cooling water 23 collides with the steel plate 10 may become equal intervals in the steel plate width direction. At that time, a nozzle row (for example, a nozzle having an injection speed component in the upper direction in the upper headers 21a and 21b in FIG. 2) is injected toward the outer left end in the width direction of the steel sheet so that the hole for attaching the nozzle can be processed. 2) and nozzle rows (for example, nozzle rows having a jet velocity component in the lower direction in the upper headers 21a and 21b in FIG. 2) that are ejected toward the outer right end of the steel plate width direction are alternately shifted by a predetermined interval in the steel plate conveyance direction. Installed. That is, a nozzle (left end-facing nozzle) that injects toward the left end in the steel sheet width direction is arranged from the left end in the steel sheet width direction to the vicinity of the center in the steel sheet width direction at a predetermined interval W in the steel plate width direction, The nozzle (right end-facing nozzle) for spraying is disposed from the right end of the steel sheet width direction to the vicinity of the central portion of the steel sheet width direction at a predetermined interval W in the steel sheet width direction. The jet line and the jet line of the cooling water from the right end nozzle intersect with each other when projected onto a plane perpendicular to the transport direction. That is, a nozzle row (full width nozzle row) for the entire width of the steel sheet is formed by combining each of the left end nozzle row and the right end nozzle row. Incidentally, in FIG. 1 and FIG. 2, six full width nozzle rows are installed in the steel plate conveyance direction for the upper headers 21a and 21b.

一方、下ヘッダ31については、ここでは、2個の下ヘッダ31が配置されており、それぞれに円管ノズル群32が取り付けられ、テーブルローラ13の隙間から棒状の冷却水33を噴射して、通過する鋼板10の全幅に冷却水を供給するようになっている。その際、各円管ノズル群32は、それぞれの棒状冷却水33が鋼板10に衝突する位置(衝突点)が鋼板幅方向に等間隔となるように設置されている。   On the other hand, for the lower header 31, here, two lower headers 31 are arranged, and a circular tube nozzle group 32 is attached to each, and a rod-shaped cooling water 33 is sprayed from the gap between the table rollers 13, Cooling water is supplied to the entire width of the passing steel plate 10. At that time, each circular tube nozzle group 32 is installed such that the positions (collision points) at which the respective rod-shaped cooling waters 33 collide with the steel plate 10 are equally spaced in the steel plate width direction.

ちなみに、本発明の棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口から噴射される冷却水のことを指している。また、本発明の棒状冷却水は、スプレー状の噴流や膜状のラミナーフローでなく、ノズル噴出口から鋼板に衝突するまでの水流の断面がほぼ円形に保たれ、連続性で直進性のある水流の冷却水をいう。   Incidentally, the rod-shaped cooling water of the present invention refers to cooling water that is injected from a circular (including elliptical or polygonal) nozzle outlet. In addition, the rod-shaped cooling water of the present invention is not a spray-like jet or a film-like laminar flow, but the cross section of the water flow from the nozzle outlet to the steel plate is maintained in a substantially circular shape, and is continuous and straight. Refers to water cooling water.

その上で、この実施形態においては、任意の全幅ノズル列について、鋼板上面において、左端向ノズル列から噴射された棒状冷却水の衝突点と、右端向ノズル列から噴射された棒状冷却水の衝突点とが隣り合う個所における両衝突点の中間点を噴射方向分岐点と定義し、その噴射方向分岐点を全幅ノズル列毎に鋼板幅方向にずらすようにしている。ちなみに、左端向ノズル列と右端向ノズル列から噴射される棒状冷却水の衝突点は鋼板の板厚が変わると左右同じ距離だけ動くが、噴射方向分岐点は鋼板幅方向に動かない。   In addition, in this embodiment, for an arbitrary full width nozzle row, on the upper surface of the steel plate, the collision point of the rod-shaped cooling water sprayed from the left end nozzle row and the collision of the bar cooling water jetted from the right end nozzle row An intermediate point between both collision points at a point adjacent to the point is defined as an injection direction branch point, and the injection direction branch point is shifted in the steel plate width direction for each full width nozzle row. Incidentally, the collision point of the rod-shaped cooling water injected from the left end nozzle row and the right end nozzle row moves by the same distance when the plate thickness of the steel plate changes, but the injection direction branch point does not move in the steel plate width direction.

今、例えば、図5に示すように、噴射方向分岐点が鋼板幅方向中央部になるように、第1列目の全幅ノズル列22−1と第3列目の全幅ノズル列22−3と第5列目の全幅ノズル列22−5における左端向ノズル列と右端向ノズル列の配置を同一とし、第2列目の全幅ノズル列22−2と第4列目の全幅ノズル列22−4と第6列目の全幅ノズル列22−6における左端向ノズル列と右端向ノズル列の配置を同一とした場合は、図5中に×印で示すように、第1列目の全幅ノズル列22−1の噴射方向分岐点P1と第3列目の全幅ノズル列22−3の噴射方向分岐点P3と第5列目の全幅ノズル列22−5の噴射方向分岐点P5とが鋼板幅方向で同じ位置となり、第2列目の全幅ノズル列22−2の噴射方向分岐点P2と第4列目の全幅ノズル列22−4の噴射方向分岐点P4と第6列目の全幅ノズル列22−6の噴射方向分岐点P6とが鋼板幅方向で同じ位置となる。 Now, for example, as shown in FIG. 5, the first row full-width nozzle row 22-1 and the third row full-width nozzle row 22-3 so that the injection direction branch point is at the center in the steel plate width direction. the the same arrangement of the left end toward the nozzle array and the right end toward the nozzle arrays in the fifth column of the total width nozzle array 22 -5, the second column of the total width nozzle array 22-2 and the fourth row of the full width nozzle array 22 -4 When the arrangement of the left end nozzle row and the right end nozzle row in the sixth full width nozzle row 22-6 is the same, as shown by x in FIG. 5, the first full width nozzle row 22 -1 between the injection direction the branch point P1 third row of full width nozzle array 22 and the injection direction branching point P3 -3 fifth column of the total width nozzle array 22 -5 steel plate width direction and the injection direction branch point P5 of in be the same position, the injection direction the branch point P2 of the second row of full width nozzle row 22-2 in the fourth column all The injection direction branch point P4 of the nozzle rows 22 -4 and spray direction the branch point P6 in the sixth row of the full width nozzle array 22 -6 is the same position in the steel plate width direction.

そのため、鋼板の板厚が厚くなって衝突点が鋼板幅方向にΔWだけ移動すると、噴射方向分岐点P1〜P6のそれぞれにおいて衝突点間隔が狭くなって冷却水供給量が他の個所に比べて多くなることになるが、鋼板幅方向でP1とP3とP5が重なり、同じくP2とP4とP6が重なっていることから、噴射方向分岐点P1〜P6が存在する領域(鋼板幅方向中央部)の冷却水供給量が他の個所に比べてより一層多くなる。   Therefore, when the plate thickness of the steel plate is increased and the collision point moves by ΔW in the width direction of the steel plate, the collision point interval is narrowed at each of the injection direction branch points P1 to P6, and the cooling water supply amount is smaller than that of other parts. Although it will increase, since P1, P3, and P5 overlap in the steel plate width direction, and P2, P4, and P6 also overlap, the region where the injection direction branch points P1 to P6 exist (central portion in the steel plate width direction) The amount of cooling water supplied is much greater than other locations.

これに対して、この実施形態においては、図6に示すように、第1列目の全幅ノズル列22−1から第6列目の全幅ノズル列22−6までの各全幅ノズル列において、左端向ノズル列と右端向ノズル列の配置を少しずつ変更して、図6中に×印で示すように、噴射方向分岐点P1〜P6が鋼板幅方向にδずつずれるようにしている。 On the other hand, in this embodiment, as shown in FIG. 6, in each full width nozzle row from the first full width nozzle row 22-1 to the sixth full width nozzle row 22-6 , the left end The arrangement of the direct nozzle row and the right end nozzle row is changed little by little so that the injection direction branch points P1 to P6 are shifted by δ in the steel plate width direction as indicated by x in FIG.

これによって、鋼板の板厚が厚くなって衝突点が鋼板幅方向にΔWだけ移動すると、噴射方向分岐点P1〜P6のそれぞれにおいて衝突点間隔が狭くなって冷却水供給量が他の個所に比べて多くなることになるが、鋼板幅方向で噴射方向分岐点P1〜P6が重なっていないので、鋼板幅全体でみれば、その影響を軽微に抑えることができる。   As a result, when the plate thickness of the steel plate is increased and the collision point moves by ΔW in the width direction of the steel plate, the collision point interval is narrowed at each of the injection direction branch points P1 to P6, and the cooling water supply amount is compared with other parts. However, since the injection direction branch points P1 to P6 do not overlap in the steel plate width direction, the influence can be suppressed to a minimum when viewed in the whole steel plate width.

そのため、鋼板の板厚が変わっても、冷却水を鋼板幅方向に比較的均一な流量分布で供給でき、鋼板全体をほぼ均一に冷却することができるようになる。その結果、品質の高い鋼板を製造することが可能となる。   Therefore, even if the plate thickness of the steel plate changes, the cooling water can be supplied in a relatively uniform flow rate distribution in the steel plate width direction, and the entire steel plate can be cooled almost uniformly. As a result, it becomes possible to manufacture a high-quality steel sheet.

なお、噴射方向分岐点のずらし量δは、ノズルの配置間隔Wの1/2以上とするのが好ましい。ただし、上ヘッダや鋼板の幅は有限であるので、ずらし量δは大きくするほどよいというわけではない。   In addition, it is preferable that the shift amount δ of the injection direction branch point is ½ or more of the nozzle arrangement interval W. However, since the widths of the upper header and the steel plate are finite, the shift amount δ is not necessarily as good as possible.

冷却水は、図2に示すZ方向の両方に流出していくことが望ましいので、噴射方向変化点は、鋼板幅中央部近傍に分散させて配置した方がよい。具体的には、鋼板の幅を3分割した中央部分に全ての噴射方向変化点が含まれるようにするのが好適である。もし、噴射方向変化点が中央部分よりも外側にあれば、どちらかの鋼板幅端部での冷却水の流出が悪くなり、滞留水が鋼板搬送方向外側に漏れてしまい、大きな温度むらが生じるからである。   Since it is desirable that the cooling water flows out in both the Z directions shown in FIG. 2, it is better to disperse the injection direction change points in the vicinity of the central portion of the steel plate width. Specifically, it is preferable that all the injection direction change points are included in the central portion obtained by dividing the width of the steel plate into three. If the injection direction change point is outside the center portion, the cooling water outflow at either of the steel plate width ends worsens and the stagnant water leaks outside the steel plate conveyance direction, resulting in large temperature unevenness. Because.

なお、この実施形態では、棒状冷却水を外向きに噴射する場合を示したが、本発明はこれに限るものではなく、例えばスプレーノズルなどの噴霧状冷却水を外向きに噴射する場合に用いてもよい。その場合には、ノズルをはめ込む配管の軸心を噴射方向と考えればよい。   In this embodiment, the case where the rod-shaped cooling water is jetted outward has been shown, but the present invention is not limited to this, and is used, for example, when the spray-like cooling water such as a spray nozzle is jetted outward. May be. In that case, the axis of the pipe into which the nozzle is fitted may be considered as the injection direction.

また、この実施形態では、厚鋼板の熱間圧延ラインを念頭においており、板厚が変わってもパスライン(鋼板下面の高さ位置)は変わらないので、本発明を鋼板上面の冷却にのみ適用したが、例えば、薄鋼板の熱間圧延の仕上スタンド間でルーパが動いてパスラインが変わるような場合には、鋼板下面の高さ位置が変わるので、本発明を鋼板下面の冷却にも適用することができる。   Also, in this embodiment, the hot rolling line for thick steel plates is taken into consideration, and even if the plate thickness changes, the pass line (height position of the steel plate lower surface) does not change, so the present invention is applied only to cooling of the steel plate upper surface. However, for example, when a looper moves between the finishing stands for hot rolling of a thin steel plate and the pass line changes, the height position of the steel plate lower surface changes, so the present invention is also applied to cooling the steel plate lower surface. can do.

本発明の実施例を以下に述べる。   Examples of the present invention are described below.

ここでは、図1、図2に示す基本的構成を備えた冷却設備を用いて、板厚が20mm、60mm、100mmの鋼板に対して、その順序で冷却を行った。   Here, using the cooling equipment having the basic configuration shown in FIG. 1 and FIG. 2, the steel plates having thicknesses of 20 mm, 60 mm, and 100 mm were cooled in that order.

その際、上ノズル22の噴射角度θを45°、外向き角αを20°、噴射高さHを1020mmとし、その時に板厚20mmの鋼板において、鋼板上面の冷却水衝突点が鋼板幅方向に60mmピッチで等間隔になるようにした。   At that time, the injection angle θ of the upper nozzle 22 is 45 °, the outward angle α is 20 °, and the injection height H is 1020 mm. Further, the pitch was set to be equally spaced at a pitch of 60 mm.

そして、本発明例1として、上記の本発明の一実施形態に基づいて、図6に示すように、噴射方向分岐点P1〜P6を鋼板幅方向にδ=30mmずつずらすようにして(すなわち、ずらし量δ=30mmにして)冷却を行った。   Then, as Example 1 of the present invention, based on one embodiment of the present invention described above, as shown in FIG. 6, the injection direction branch points P1 to P6 are shifted by δ = 30 mm in the steel plate width direction (that is, Cooling was performed (with a shift amount δ = 30 mm).

また、本発明例2として、上記の本発明の一実施形態に基づいて、図6に示すように、噴射方向分岐点P1〜P6を鋼板幅方向に90mmずつずらすようにして(すなわち、ずらし量δ=90mmにして)冷却を行った。   Further, as Invention Example 2, based on one embodiment of the present invention described above, as shown in FIG. 6, the injection direction branch points P1 to P6 are shifted by 90 mm in the steel plate width direction (that is, the shift amount). Cooling was performed (with δ = 90 mm).

これに対して、比較例として、図5に示すように、噴射方向分岐点P1、P3、P5の鋼板幅方向位置が重なり、噴射方向分岐点P2、P4、P6の鋼板幅方向位置が重なるようにして冷却を行った。P1とP2の間隔δは30mmとした。   On the other hand, as a comparative example, as shown in FIG. 5, the steel plate width direction positions of the injection direction branch points P1, P3, and P5 overlap, and the steel plate width direction positions of the injection direction branch points P2, P4, and P6 overlap. And cooled. The interval δ between P1 and P2 was 30 mm.

なお、冷却開始温度は800℃とし、冷却終了温度が目標の600℃となるように、冷却水量や冷却時間を調整した。   The cooling water amount and the cooling time were adjusted so that the cooling start temperature was 800 ° C. and the cooling end temperature was the target 600 ° C.

その結果を表1および図7に示す。   The results are shown in Table 1 and FIG.

Figure 2008126293
Figure 2008126293

まず、比較例においては、板厚が20mmの時には、板幅最端部(耳きり対象で製品にならない部分)を除いた部分(製品部)の冷却終了時の温度ムラが10℃であったが、板厚が厚くなるとともに、板幅方向中央部への冷却水供給量が多くなったために、板幅方向中央部が過冷却となり、板幅方向温度分布が図8(a)に示すようになって、冷却終了時の製品部の温度ムラが大きくなった。すなわち、板厚60mmの時には60℃、板厚100mmの時には100℃になっている。   First, in the comparative example, when the plate thickness is 20 mm, the temperature unevenness at the end of cooling of the portion (product portion) excluding the extreme end portion of the plate width (the portion that does not become a product in the ear picking target) was 10 ° C. However, as the plate thickness is increased and the amount of cooling water supplied to the central portion in the plate width direction is increased, the central portion in the plate width direction is overcooled, and the temperature distribution in the plate width direction is as shown in FIG. As a result, the temperature unevenness of the product part at the end of cooling became large. That is, the temperature is 60 ° C. when the plate thickness is 60 mm, and 100 ° C. when the plate thickness is 100 mm.

これに対して、本発明例1においては、板厚が60mm、100mmと厚くなっても、鋼板幅全体でみると、各全幅ノズル列における衝突点間隔の変動の影響が緩和されて、冷却水が鋼板幅方向に比較的均一に供給され、板幅方向温度分布が図7(b)中の(ア)に示すように比較的均一になった。これにより、製品部の温度ムラが、板厚60mmの時には18℃、板厚100mmの時には40℃に抑えられた。   On the other hand, in Example 1 of the present invention, even when the plate thickness is increased to 60 mm and 100 mm, the influence of the fluctuation of the collision point interval in each full width nozzle row is alleviated when viewed in the entire width of the steel plate. Was supplied relatively uniformly in the width direction of the steel plate, and the temperature distribution in the width direction of the plate became relatively uniform as shown in FIG. Thereby, the temperature unevenness of the product part was suppressed to 18 ° C. when the plate thickness was 60 mm, and to 40 ° C. when the plate thickness was 100 mm.

同様に、本発明例2においては、板厚が60mm、100mmと厚くなっても、冷却水が鋼板幅方向にほぼ均一に供給され、板幅方向温度分布が図7(b)中の(イ)に示すようにほぼ均一になった。これにより、製品部の温度ムラが、板厚60mmの時には13℃、板厚100mmの時には20℃に抑えられた。   Similarly, in Example 2 of the present invention, even when the plate thickness is increased to 60 mm and 100 mm, the cooling water is supplied almost uniformly in the width direction of the steel plate, and the temperature distribution in the plate width direction is shown in FIG. ) Was almost uniform as shown in FIG. Thereby, the temperature unevenness of the product portion was suppressed to 13 ° C. when the plate thickness was 60 mm, and to 20 ° C. when the plate thickness was 100 mm.

以上のことから、本発明の有効性を確認することができた。   From the above, the effectiveness of the present invention could be confirmed.

本発明の一実施形態における冷却設備の基本的構成を示す側面図である。It is a side view which shows the basic composition of the cooling equipment in one Embodiment of this invention. 本発明の一実施形態における冷却設備の基本的構成を示す平面図である。It is a top view which shows the basic composition of the cooling equipment in one Embodiment of this invention. 冷却水の衝突点を表す側面図である。It is a side view showing the collision point of cooling water. 冷却水の衝突点を表す平面図である。It is a top view showing the collision point of cooling water. 噴射方向分岐点を示す平面図である。It is a top view which shows an injection direction branch point. 本発明の一実施形態における噴射方向分岐点を示す平面図である。It is a top view which shows the injection direction branch point in one Embodiment of this invention. 本発明の実施例における鋼板幅方向温度分布を示す図である。It is a figure which shows the steel plate width direction temperature distribution in the Example of this invention.

符号の説明Explanation of symbols

10 鋼板
13 テーブルローラ
21 上ヘッダ
21a 第1上ヘッダ
21b 第2上ヘッダ
22 上ノズル
22a 第1上ノズル
22b 第2上ノズル
22−1〜22−6 全幅ノズル列
23 棒状冷却水
23a 棒状冷却水
23b 棒状冷却水
24 滞留冷却水
31 下ヘッダ
32 下ノズル
33 棒状冷却水
10 steel 13 table rollers 21 over the header 21a first upper header 21b second upper header 22 upper nozzle 22a first upper nozzle 22b second upper nozzle 22 -1 to 22 -6 entire width nozzle array 23 rodlike cooling water 23a rodlike cooling water 23b Rod-shaped cooling water 24 Stagnant cooling water 31 Lower header 32 Lower nozzle 33 Rod-shaped cooling water

Claims (6)

鋼板の熱間圧延ラインで使用する冷却設備であって、
鋼板の表面に対して、鋼板の一方の幅方向端部外側に向かう成分をもたせて冷却水を噴射するノズルが鋼板幅方向に所定の間隔で配置された一端方向ノズル列と、鋼板の他方の幅方向端部外側に向かう成分をもたせて冷却水を噴射するノズルが鋼板幅方向に所定の間隔で配置された他端方向ノズル列を各1列ずつ組み合わせて、鋼板の幅方向全体に冷却水を噴射する全幅ノズル列が形成され、
その全幅ノズル列が鋼板搬送方向に複数列設置されているとともに、任意の全幅ノズル列について、鋼板表面において、一端方向ノズル列から噴射された冷却水の衝突点と、他端方向ノズル列から噴射された冷却水の衝突点とが隣り合う個所における両衝突点の中間点を噴射方向分岐点とし、その噴射方向分岐点が全幅ノズル列毎に鋼板幅方向にずれていることを特徴とする鋼板の冷却設備。
A cooling facility used in a hot rolling line for steel sheets,
One end direction nozzle row in which nozzles for injecting cooling water with a component toward the outer side of one width direction end of the steel sheet are arranged at predetermined intervals in the steel sheet width direction with respect to the surface of the steel sheet, and the other side of the steel sheet Combine nozzles for injecting cooling water with a component toward the outside in the width direction end and arranged at predetermined intervals in the width direction of the steel sheet, one by one in each direction, and the cooling water is applied to the entire width direction of the steel sheet. A full-width nozzle row is formed to inject
A plurality of full-width nozzle rows are installed in the steel plate conveyance direction, and for any full-width nozzle row, the collision point of the cooling water jetted from the one-end nozzle row and the other-end nozzle row are jetted on the steel plate surface. An intermediate point between the two collision points at a location adjacent to the collision point of the cooled cooling water is an injection direction branch point, and the injection direction branch point is shifted in the steel plate width direction for each full width nozzle row Cooling equipment.
全幅ノズル列毎に噴射方向分岐点がノズルの配置間隔の1/2以上ずれているとともに、全ての噴射方向分岐点が鋼板の幅を3等分した中央部分に含まれていることを特徴とする請求項1に記載の鋼板の冷却設備。   The jetting direction branch point is shifted by 1/2 or more of the nozzle arrangement interval for each full width nozzle row, and all the jetting direction branch points are included in the central portion obtained by dividing the width of the steel plate into three equal parts. The steel sheet cooling equipment according to claim 1. 前記冷却水が棒状冷却水であることを特徴とする請求項1または2に記載の鋼板の冷却設備。   The steel sheet cooling equipment according to claim 1 or 2, wherein the cooling water is a rod-shaped cooling water. 鋼板の熱間圧延ラインで使用する冷却方法であって、
鋼板の表面に対して、鋼板の一方の幅方向端部外側に向かう成分をもたせて冷却水を噴射するノズルを鋼板幅方向に所定の間隔で配置した一端方向ノズル列と、鋼板の他方の幅方向端部外側に向かう成分をもたせて冷却水を噴射するノズルを鋼板幅方向に所定の間隔で配置した他端方向ノズル列を各1列ずつ組み合わせて、鋼板の幅方向全体に冷却水を噴射する全幅ノズル列を形成し、
その全幅ノズル列が鋼板搬送方向に複数列設置するとともに、任意の全幅ノズル列について、鋼板表面において、一端方向ノズル列から噴射された冷却水の衝突点と、他端方向ノズル列から噴射された冷却水の衝突点とが隣り合う個所における両衝突点の中間点を噴射方向分岐点とし、その噴射方向分岐点を全幅ノズル列毎に鋼板幅方向にずらすことを特徴とする鋼板の冷却方法。
A cooling method used in a hot rolling line for steel sheets,
One end direction nozzle row in which nozzles for injecting cooling water with a component toward the outer side of one end in the width direction of the steel sheet with respect to the surface of the steel sheet are arranged at predetermined intervals in the steel sheet width direction, and the other width of the steel sheet Combine nozzles for spraying cooling water with a component toward the outside in the direction direction at predetermined intervals in the steel sheet width direction, and inject cooling water to the entire width direction of the steel sheet. Forming a full width nozzle row,
The full width nozzle row is installed in a plurality of rows in the steel plate conveyance direction, and for any full width nozzle row, the collision point of the cooling water jetted from the one end direction nozzle row and the other end direction nozzle row is jetted on the steel plate surface. A method of cooling a steel sheet, characterized in that an intermediate point between the two collision points at a location where the cooling water collision point is adjacent is an injection direction branch point, and the injection direction branch point is shifted in the steel sheet width direction for each full width nozzle row.
全幅ノズル列毎に噴射方向分岐点をノズルの配置間隔の1/2以上ずらすとともに、全ての噴射方向分岐点が鋼板の幅を3等分した中央部分に含まれるようにすることを特徴とする請求項4に記載の鋼板の冷却方法。   The jetting direction branch points are shifted by 1/2 or more of the nozzle arrangement interval for each full width nozzle row, and all the jetting direction branch points are included in a central portion obtained by dividing the width of the steel plate into three equal parts. The method for cooling a steel sheet according to claim 4. 前記冷却水が棒状冷却水であることを特徴とする請求項4または5に記載の鋼板の冷却方法。   The method for cooling a steel sheet according to claim 4 or 5, wherein the cooling water is a rod-shaped cooling water.
JP2006315911A 2006-11-22 2006-11-22 Steel sheet cooling equipment and cooling method Active JP4858113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315911A JP4858113B2 (en) 2006-11-22 2006-11-22 Steel sheet cooling equipment and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315911A JP4858113B2 (en) 2006-11-22 2006-11-22 Steel sheet cooling equipment and cooling method

Publications (2)

Publication Number Publication Date
JP2008126293A true JP2008126293A (en) 2008-06-05
JP4858113B2 JP4858113B2 (en) 2012-01-18

Family

ID=39552657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315911A Active JP4858113B2 (en) 2006-11-22 2006-11-22 Steel sheet cooling equipment and cooling method

Country Status (1)

Country Link
JP (1) JP4858113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113798982A (en) * 2021-09-06 2021-12-17 浙江谋皮环保科技有限公司 Steel plate side surface descaling machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475413A (en) * 1977-11-26 1979-06-16 Ishikawajima Harima Heavy Ind Co Ltd Spraying apparatus for cooling steel plate
JPS60206516A (en) * 1984-03-30 1985-10-18 Nippon Steel Corp Cooling device of thick steel plate
JPS62166019A (en) * 1986-01-16 1987-07-22 Kobe Steel Ltd Cooling device for hot rolled steel plate
JPH10263669A (en) * 1997-03-25 1998-10-06 Sumitomo Metal Ind Ltd Method for cooling steel
JP2001232413A (en) * 2000-02-21 2001-08-28 Nkk Corp Device for cooling steel and cooling method for steel using the same
JP2002239623A (en) * 2001-02-15 2002-08-27 Nkk Corp Cooling apparatus for hot-rolled steel strip
JP2005059038A (en) * 2003-08-08 2005-03-10 Sumitomo Metal Ind Ltd Equipment for finish-rolling hot-rolled steel sheet and method for manufacturing hot-rolled steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475413A (en) * 1977-11-26 1979-06-16 Ishikawajima Harima Heavy Ind Co Ltd Spraying apparatus for cooling steel plate
JPS60206516A (en) * 1984-03-30 1985-10-18 Nippon Steel Corp Cooling device of thick steel plate
JPS62166019A (en) * 1986-01-16 1987-07-22 Kobe Steel Ltd Cooling device for hot rolled steel plate
JPH10263669A (en) * 1997-03-25 1998-10-06 Sumitomo Metal Ind Ltd Method for cooling steel
JP2001232413A (en) * 2000-02-21 2001-08-28 Nkk Corp Device for cooling steel and cooling method for steel using the same
JP2002239623A (en) * 2001-02-15 2002-08-27 Nkk Corp Cooling apparatus for hot-rolled steel strip
JP2005059038A (en) * 2003-08-08 2005-03-10 Sumitomo Metal Ind Ltd Equipment for finish-rolling hot-rolled steel sheet and method for manufacturing hot-rolled steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113798982A (en) * 2021-09-06 2021-12-17 浙江谋皮环保科技有限公司 Steel plate side surface descaling machine
CN113798982B (en) * 2021-09-06 2023-06-16 浙江谋皮环保科技有限公司 Steel plate side surface descaling machine

Also Published As

Publication number Publication date
JP4858113B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
KR100973691B1 (en) Cooling facility and cooling method of steel plate, and hot rolling facility and hot rolling method using the same
KR101052453B1 (en) Cooling device and cooling method of hot rolled steel strip
JP4905051B2 (en) Steel sheet cooling equipment and cooling method
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
KR20090061073A (en) Method of cooling hot-rolled steel strip
JP4779749B2 (en) Steel plate cooling method and cooling equipment
JP4876782B2 (en) Steel sheet hot rolling equipment and hot rolling method
TW201432056A (en) Cooling method and cooling device for hot-rolled steel strip
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP2004066308A (en) System for cooling hot-rolled steel strip, method and line for manufacturing hot-rolled steel strip
JP4858113B2 (en) Steel sheet cooling equipment and cooling method
JP4398898B2 (en) Thick steel plate cooling device and method
JP6699808B1 (en) Cooling apparatus for hot rolled steel sheet and method for cooling hot rolled steel sheet
JP2002121616A (en) Method and device for dewatering high temperature plate to be cooled
JP2898873B2 (en) Lower surface cooling device for high temperature metal plate
JP4518107B2 (en) Apparatus and method for cooling hot-rolled steel strip
JP4518117B2 (en) Apparatus and method for cooling hot-rolled steel strip
JP2015073995A (en) Hot rolled steel sheet cooler
JP2001232413A (en) Device for cooling steel and cooling method for steel using the same
JP4091934B2 (en) Thick steel plate cooling method
JP2010284680A (en) Cooling facility for thick steel plate and cooling method thereof
JP2007203370A (en) Cooling facility and cooling method of steel plate
JP2007260748A (en) Facility and method for cooling wide flange shape steel
JP2005296976A (en) Device and method for cooling metal plate
JP2004001082A (en) Method and device for cooling thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4858113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250