JP2008121043A - Fine particle, fine particle dispersion, method for producing fine particle and method for producing fine particle dispersion - Google Patents

Fine particle, fine particle dispersion, method for producing fine particle and method for producing fine particle dispersion Download PDF

Info

Publication number
JP2008121043A
JP2008121043A JP2006304361A JP2006304361A JP2008121043A JP 2008121043 A JP2008121043 A JP 2008121043A JP 2006304361 A JP2006304361 A JP 2006304361A JP 2006304361 A JP2006304361 A JP 2006304361A JP 2008121043 A JP2008121043 A JP 2008121043A
Authority
JP
Japan
Prior art keywords
fine particles
fine particle
metal
producing
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006304361A
Other languages
Japanese (ja)
Other versions
JP5764279B2 (en
JP2008121043A5 (en
Inventor
Takuya Harada
琢也 原田
Hidemichi Fujiwara
英道 藤原
Hideo Nishikubo
英郎 西久保
Kazuhiro Takashiba
和宏 高柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006304361A priority Critical patent/JP5764279B2/en
Priority to PCT/JP2007/064577 priority patent/WO2008013199A1/en
Priority to KR1020097001770A priority patent/KR101375488B1/en
Priority to US12/309,738 priority patent/US8337726B2/en
Priority to TW096127435A priority patent/TWI389750B/en
Publication of JP2008121043A publication Critical patent/JP2008121043A/en
Publication of JP2008121043A5 publication Critical patent/JP2008121043A5/ja
Application granted granted Critical
Publication of JP5764279B2 publication Critical patent/JP5764279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide fine particles which can be subjected to low temperature firing; to provide a fine particle dispersion wherein the fine particles are dispersed; to provide a method for producing the fine particles; and to provide a method for producing the fine particle dispersion. <P>SOLUTION: Metal fine particles applied to low molecule vinylpyrolidone are heat-treated at a temperature of ≥190°C in an inert gas atmosphere without using a reducing agent, thus an electrically conductive metal can be produced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、微粒子、微粒子分散溶液、微粒子の製造方法、及び微粒子分散溶液の製造方法に関する。   The present invention relates to fine particles, a fine particle dispersion solution, a fine particle production method, and a fine particle dispersion solution production method.

ナノサイズ(粒径が1μm以下)の金属微粒子は、バルク材料にはない様々な特異な特性を持つことが知られている。そしてこの特性を生かした様々な工学的応用が、現在、エレクトロニクス、バイオ、エネルギー等の各分野で、大いに期待されている。   It is known that nano-sized metal particles (particle size of 1 μm or less) have various unique characteristics not found in bulk materials. Various engineering applications that take advantage of this property are now highly expected in fields such as electronics, biotechnology, and energy.

中でも、銅、ニッケル、コバルト、鉄、亜鉛、スズ、銀等の工業的な汎用金属及びそれらの合金からなるナノサイズの金属微粒子は、導電回路、バンプ、ビア、パッド等の実装部品の形成材料、高密度磁気記憶媒体やアンテナ用の磁性素子、ガス改質フィルタや燃料電池電極用の触媒材料として、大いに期待されている。   Among them, nano-sized metal fine particles made of industrial general-purpose metals such as copper, nickel, cobalt, iron, zinc, tin, silver, and their alloys are used to form mounting parts such as conductive circuits, bumps, vias, and pads. It is highly expected as a catalyst material for high-density magnetic storage media, magnetic elements for antennas, gas reforming filters and fuel cell electrodes.

また、最近では、金属微粒子を含有するインクを使用して、配線パターンをインクジェットプリンタにより印刷し、焼成して配線を形成する技術(インクジェット回路形成技術)が注目されている。しかし、インクジェットプリンタのインクとして、金属微粒子を含有するインクを使用する場合、インク中において分散性を長期間保つことが重要である。そのため、インク中において粒子分散性を向上させる効果を持つ保護被膜を有する金属微粒子の製造方法及びその金属微粒子分散溶液が提案されている。   Recently, a technique (inkjet circuit forming technique) in which a wiring pattern is printed by an ink jet printer using ink containing metal fine particles and baked to form a wiring (ink jet circuit forming technique) has attracted attention. However, when ink containing metal fine particles is used as ink for an ink jet printer, it is important to maintain dispersibility in the ink for a long period of time. Therefore, a method for producing metal fine particles having a protective film having an effect of improving particle dispersibility in ink and a metal fine particle dispersion solution have been proposed.

特許文献1では、銅の酸化物、水酸化物または塩をポリエチレングリコールまたはエチレングリコール(1,2−エタンジオール)溶液中で、核生成のためのパラジウムイオンと、分散性を向上させる保護被膜剤としてのポリエチレンイミンを添加して、加熱還元することにより、ポリエチレンイミンで被覆された銅微粒子を合成する方法、及びその銅微粒子分散溶液が提案されている。   In Patent Document 1, a copper oxide, hydroxide, or salt in a polyethylene glycol or ethylene glycol (1,2-ethanediol) solution, palladium ions for nucleation, and a protective coating agent that improves dispersibility A method of synthesizing copper fine particles coated with polyethylene imine by adding polyethylenimine as described above and reducing by heating, and a copper fine particle dispersion solution have been proposed.

また、特許文献2では、アルキルアミンを分散剤に使用して、アミン化合物で被覆された金属微粒子を製造する方法及びその金属微粒子分散溶液が提案されている。また、特許文献3には、セルロース誘導体を含む水溶液中で金属イオンを還元することにより、セルロース誘導体で被覆された金属微粒子を製造する方法及びその微粒子分散溶液が提案されている。   Patent Document 2 proposes a method for producing metal fine particles coated with an amine compound using an alkylamine as a dispersant and a metal fine particle dispersion solution thereof. Patent Document 3 proposes a method for producing metal fine particles coated with a cellulose derivative by reducing metal ions in an aqueous solution containing the cellulose derivative, and a fine particle dispersion solution thereof.

一方で、上述のインクジェット回路形成技術のように金属微粒子の焼成により導電性の金属部材を形成する場合や、微粒子焼成体をガス改質フィルタに使用する場合などには、焼成後の粒子焼成体において、微粒子自体が表面に露出して粒子同士が直接接合している必要がある。そのため、これらの技術に使用される微粒子については、その表面に被覆させた保護被膜が、熱処理時に容易に分解除去される必要があった。
特開2005−330552号公報 特開2002−121606号公報 特開2001−093414号公報
On the other hand, when the conductive metal member is formed by firing fine metal particles as in the above-described ink jet circuit forming technology, or when the fine particle fired body is used for a gas reforming filter, the fired particle fired body In this case, it is necessary that the fine particles themselves are exposed on the surface and the particles are directly bonded to each other. Therefore, for the fine particles used in these techniques, the protective film coated on the surface has to be easily decomposed and removed during the heat treatment.
JP 2005-330552 A JP 2002-121606 A JP 2001-093414 A

上述のように、微粒子分散インクのパターニングと焼成とにより、導電性配線パターンやフィルタを形成する場合、分散性向上のために使用した保護被膜が熱処理時に容易に分解除去する必要がある。しかしながら、上述の金属微粒子では、250℃以上の高温で熱処理をしなければ、その保護被膜を分解除去して導電性の金属を得ることができないという問題点があった。   As described above, when a conductive wiring pattern or a filter is formed by patterning and baking fine particle dispersed ink, the protective film used for improving dispersibility needs to be easily decomposed and removed during heat treatment. However, the above-mentioned metal fine particles have a problem that unless a heat treatment is performed at a high temperature of 250 ° C. or more, the protective coating cannot be decomposed and removed to obtain a conductive metal.

また、そのような高温での熱処理を行った場合、粒子をパターニングした基板(例えば、汎用樹脂基盤)に設置されている他の製品が壊れたり、更に基板自体が溶融もしくは変形したりしてしまうという問題点もあった。さらに、これらの微粒子を用いた場合、熱処理のときに、危険で取り扱いの困難な水素ガス等の還元剤を使用しなければならないという問題点もあった。   In addition, when heat treatment at such a high temperature is performed, other products installed on a substrate (for example, a general-purpose resin substrate) on which particles are patterned are broken, or the substrate itself is melted or deformed. There was also a problem. Further, when these fine particles are used, there is a problem that a reducing agent such as hydrogen gas, which is dangerous and difficult to handle, must be used during heat treatment.

一方で、これら保護被膜で被覆されていない、分散性の悪い微粒子の分散溶液を使用した場合、熱処理時に粒子同士が不均一に凝集して焼結性が不均一になるという問題があった。また、さらに分散溶液中で互いに凝集した微粒子がインクジェットプリンタのノズルに詰まるという問題もあった。   On the other hand, when a dispersion solution of fine particles with poor dispersibility that is not coated with these protective coatings is used, there is a problem that the particles are agglomerated non-uniformly during heat treatment and the sinterability becomes non-uniform. Further, there is a problem that fine particles aggregated with each other in the dispersion solution are clogged with the nozzles of the ink jet printer.

本発明は、以上のような問題点を解決するためになされたもので、分散液中での分散性が高く、さらに低温焼成することが可能な微粒子、その微粒子を分散した微粒子分散溶液、微粒子の製造方法、及び微粒子分散溶液の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and has high dispersibility in a dispersion and can be fired at a low temperature, a fine particle dispersion in which the fine particles are dispersed, and fine particles It is an object of the present invention to provide a method for producing a fine particle dispersion solution.

発明者は上述した従来の問題点について鋭意研究を重ねた。その結果、低分子ビニルピロリドンに被覆された微粒子は、低温での焼結性を向上させることが判明した。   The inventor conducted extensive research on the above-described conventional problems. As a result, it was found that fine particles coated with low molecular weight vinyl pyrrolidone improve the sinterability at low temperature.

また、分子ビニルピロリドンに被覆された微粒子を、有機溶媒の中に分散させることにより、粒子分散性の高い微粒子分散溶液が得られることが判明した。この発明は、上述した研究成果によってなされたものである。   It was also found that a fine particle dispersion having high particle dispersibility can be obtained by dispersing fine particles coated with molecular vinylpyrrolidone in an organic solvent. The present invention has been made based on the research results described above.

本発明の第1の態様にかかる微粒子は、ナノサイズの微粒子であって、低分子量ビニルプロリドンに被覆されていることを特徴とする。   The fine particles according to the first aspect of the present invention are nano-sized fine particles, and are characterized by being coated with a low molecular weight vinylprolidone.

これにより、還元剤を用いることなく、不活性ガス雰囲気中190℃以上の温度で、熱処理することにより、微粒子自体が表面に露出して粒子同士が直接接合している焼成体を生成することができる。また、この微粒子を分散液中に分散することにより、粒子分散性の高い微粒子分散溶液を生成することができる。   Thereby, by using a heat treatment at a temperature of 190 ° C. or higher in an inert gas atmosphere without using a reducing agent, a fired body in which the fine particles themselves are exposed on the surface and the particles are directly bonded can be generated. it can. Further, by dispersing the fine particles in the dispersion, a fine particle dispersion having high particle dispersibility can be produced.

本発明の第2の態様にかかる微粒子は、本発明の第1の態様にかかる微粒子における前記低分子量ビニルプロリドンが、ポリビニルプロリドンにハロゲン化水素を反応させることによって得られたものであることを特徴とする。   The fine particles according to the second aspect of the present invention are obtained by reacting the hydrogen halide with polyvinyl prolidone in the low molecular weight vinylprolidone in the fine particles according to the first aspect of the present invention. It is characterized by.

これにより、還元剤を用いることなく、不活性ガス雰囲気中190℃以上の温度で、熱処理することにより、微粒子自体が表面に露出して粒子同士が直接接合している焼成体を生成することができる。また、この微粒子を分散液中に分散することにより、粒子分散性の高い微粒子分散溶液を生成することができる。   Thereby, by using a heat treatment at a temperature of 190 ° C. or higher in an inert gas atmosphere without using a reducing agent, a fired body in which the fine particles themselves are exposed on the surface and the particles are directly bonded can be generated. it can. Further, by dispersing the fine particles in the dispersion, a fine particle dispersion having high particle dispersibility can be produced.

本発明の第3の態様にかかる微粒子は、本発明の第1または2の態様にかかる微粒子における前記微粒子が、金属または前記金属の酸化物であることを特徴とする。   The fine particles according to the third aspect of the present invention are characterized in that the fine particles in the fine particles according to the first or second aspect of the present invention are a metal or an oxide of the metal.

これにより、還元剤を用いることなく、不活性ガス雰囲気中190℃以上の温度で、熱処理することにより、導電性の金属焼成体を生成することができる。ここで、更に、微粒子は、半導体等であっても良い。   Thereby, an electroconductive metal fired body can be produced | generated by heat-processing at the temperature of 190 degreeC or more in inert gas atmosphere, without using a reducing agent. Here, the fine particles may be a semiconductor or the like.

本発明の第4の態様にかかる微粒子は、本発明の第3の態様にかかる微粒子における前記金属が、銅、ニッケル、コバルト、鉄、亜鉛、スズ、及び銀の中から選択された1種類、または、2種類以上からなる合金であることを特徴とする。   The fine particles according to the fourth aspect of the present invention are one kind in which the metal in the fine particles according to the third aspect of the present invention is selected from copper, nickel, cobalt, iron, zinc, tin, and silver, Or it is an alloy which consists of two or more types, It is characterized by the above-mentioned.

本発明の第5の態様にかかる微粒子は、本発明の第1乃至4のいずれか1つの態様にかかる微粒子における前記微粒子が、粒径が1nm以上でかつ500nm以下であることを特徴とする。   The fine particles according to the fifth aspect of the present invention are characterized in that the fine particles according to any one of the first to fourth aspects of the present invention have a particle size of 1 nm or more and 500 nm or less.

本発明の第1の態様にかかる微粒子分散溶液は、本発明の第1乃至5のいずれか1つの態様にかかる微粒子を、分子中に1つ以上のヒドロキシル基を有する有機化合物を含む有機溶媒に分散させることを特徴とする。   The fine particle dispersion solution according to the first aspect of the present invention is obtained by adding the fine particle according to any one of the first to fifth aspects of the present invention to an organic solvent containing an organic compound having one or more hydroxyl groups in the molecule. It is characterized by being dispersed.

これより、更に、粒子分散性を向上させることが可能となる。   As a result, the particle dispersibility can be further improved.

本発明の第1の態様にかかる微粒子の製造方法は、ナノサイズの微粒子の製造方法であって、ポリビニルプロリドンで被覆された微粒子を分散させた水溶液の中に、ハロゲン化水素を添加混合する工程を備えていることを特徴とする。   The method for producing fine particles according to the first aspect of the present invention is a method for producing nano-sized fine particles, in which hydrogen halide is added and mixed in an aqueous solution in which fine particles coated with polyvinylprolidone are dispersed. It has the process, It is characterized by the above-mentioned.

これにより、還元剤を用いることなく、不活性ガス雰囲気中190℃以上の温度で、熱処理することにより、微粒子自体が表面に露出して粒子同士が直接接合している焼成体を生成することができる。また、この微粒子を分散液中に分散することにより、粒子分散性の高い微粒子分散溶液を生成することができる。   Thereby, by using a heat treatment at a temperature of 190 ° C. or higher in an inert gas atmosphere without using a reducing agent, a fired body in which the fine particles themselves are exposed on the surface and the particles are directly bonded can be generated. it can. Further, by dispersing the fine particles in the dispersion, a fine particle dispersion having high particle dispersibility can be produced.

本発明の第1の態様にかかる微粒子分散溶液の製造方法は、本発明の第1乃至5のいずれか1つの態様にかかる微粒子を、水または有機溶媒の中に分散させる工程を備えていることを特徴とする微粒子分散溶液の製造方法。   The method for producing a fine particle dispersion according to the first aspect of the present invention includes a step of dispersing the fine particles according to any one of the first to fifth aspects of the present invention in water or an organic solvent. A method for producing a fine particle dispersion.

これにより、還元剤を用いることなく、不活性ガス雰囲気中190℃以上の温度で、熱処理することにより、微粒子自体が表面に露出して粒子同士が直接接合している焼成体を生成することができる。また、粒子分散性の高い微粒子分散溶液を生成することができる。ここで、有機溶媒は、極性を有することが好ましい。   Thereby, by using a heat treatment at a temperature of 190 ° C. or higher in an inert gas atmosphere without using a reducing agent, a fired body in which the fine particles themselves are exposed on the surface and the particles are directly bonded can be generated. it can. In addition, a fine particle dispersion solution with high particle dispersibility can be produced. Here, the organic solvent preferably has polarity.

本発明の第2の態様にかかる微粒子分散溶液の製造方法は、本発明の第1の態様にかかる微粒子分散溶液の製造方法における前記有機溶媒が、分子中に1つ以上のヒドロキシル基を有する有機化合物を含むことを特徴とする。
これにより、更に、粒子分散性の高い微粒子分散溶液を生成することができる。
In the method for producing a fine particle dispersion solution according to the second aspect of the present invention, the organic solvent in the method for producing the fine particle dispersion solution according to the first aspect of the present invention is an organic compound having one or more hydroxyl groups in the molecule. It is characterized by including a compound.
Thereby, a fine particle dispersion solution with high particle dispersibility can be generated.

本発明によれば、低分子ビニルピロリドンで被覆された微粒子を、還元剤を用いることなく、不活性ガス雰囲気中190℃以上の温度で、熱処理することにより、微粒子自体が表面に露出して粒子同士が直接接合している焼成体を生成することが出来る。またこのとき微粒子として金属微粒子を用いた場合、導電性の金属焼成体を生成することができる。   According to the present invention, fine particles coated with a low molecular weight vinyl pyrrolidone are heat-treated at a temperature of 190 ° C. or higher in an inert gas atmosphere without using a reducing agent, whereby the fine particles themselves are exposed on the surface. A fired body in which the members are directly joined can be produced. At this time, when metal fine particles are used as the fine particles, a conductive metal fired body can be produced.

また、特に、分子ビニルピロリドンに被覆された金属微粒子を、極性を有する有機溶媒の中に分散させることにより、分散性の優れた金属微粒子分散溶液を得ることができる。   In particular, a metal fine particle dispersion having excellent dispersibility can be obtained by dispersing metal fine particles coated with molecular vinyl pyrrolidone in a polar organic solvent.

この発明の一実施態様を、図面を参照しながら説明する。なお、以下に説明する実施態様は説明のためのものであり、本発明の範囲を制限するものではない。従って、当業者であればこれらの各要素もしくは全要素をこれと均等なもので置換した実施態様を採用することが可能であるが、これらの実施態様も本発明の範囲に含まれる。   An embodiment of the present invention will be described with reference to the drawings. In addition, the embodiment described below is for explanation, and does not limit the scope of the present invention. Accordingly, those skilled in the art can employ embodiments in which each or all of these elements are replaced by equivalents thereof, and these embodiments are also included in the scope of the present invention.

まず、本発明を適用可能な金属微粒子及び金属微粒子分散溶液の製造方法を説明する。図1は、本発明を適用可能な金属微粒子及び金属微粒子分散溶液の製造方法の概念図である。ここでは、有機物保護被膜に被膜された微粒子を生成し、生成した微粒子を有機溶媒に分散して微粒子分散溶液を生成する。   First, a method for producing metal fine particles and a metal fine particle dispersion solution to which the present invention can be applied will be described. FIG. 1 is a conceptual diagram of a method for producing metal fine particles and a metal fine particle dispersion solution to which the present invention can be applied. Here, fine particles coated with an organic protective film are generated, and the generated fine particles are dispersed in an organic solvent to generate a fine particle dispersion solution.

図1に示すように、まず、不活性ガス(窒素ガス等)の雰囲気で、金属微粒子の原料である金属イオン原料10と、還元剤11と、還元制御剤12とを、溶媒である蒸留水13に混合した水溶液の中で液相還元させて、ポリビニルプロリドン(PVP:K12、分子量約3500)で被覆された金属微粒子が分散した金属微粒子分散溶液14を生成する(図中(1)参照)。   As shown in FIG. 1, first, in an atmosphere of an inert gas (nitrogen gas or the like), a metal ion raw material 10, which is a raw material of metal fine particles, a reducing agent 11, and a reduction control agent 12, are distilled water as a solvent. 13 is subjected to liquid phase reduction in an aqueous solution mixed with 13 to produce a metal fine particle dispersion solution 14 in which metal fine particles coated with polyvinylprolidone (PVP: K12, molecular weight of about 3500) are dispersed (see (1) in the figure). ).

次に、金属微粒子分散溶液14にハロゲン化水素15を添加して、粒子成分16を凝集沈殿した反応液17を生成する(図中(2)参照)。次に、反応液17を遠心分離器で、低分子ビニルプロリドンで被覆された金属微粒子18を分離回収する(図中(3)参照)。ここで、分離回収した金属微粒子18は、水洗浄とアルコール洗浄を行う。アルコール洗浄は、特に、より分子量の大きいアルコールを使用して洗浄する。   Next, hydrogen halide 15 is added to the metal fine particle dispersion solution 14 to produce a reaction liquid 17 in which the particle component 16 is agglomerated and precipitated (see (2) in the figure). Next, the reaction solution 17 is separated and recovered from the metal fine particles 18 coated with the low-molecular vinylprolidone using a centrifuge (see (3) in the figure). Here, the separated and recovered metal fine particles 18 are washed with water and alcohol. In the alcohol cleaning, particularly, alcohol having a higher molecular weight is used for cleaning.

得られた金属微粒子18を水または有機溶媒に再分散させることで、分散性の優れた金属微粒子分散溶液20(図中(4)参照)を得ることができる。ここで、再分散させる再分散溶媒19として、極性を有する有機溶媒、特に、ヒドロキシル基を1つ以上有した有機化合物からなる有機溶媒が好ましい。   By redispersing the obtained metal fine particles 18 in water or an organic solvent, a metal fine particle dispersion solution 20 (see (4) in the figure) having excellent dispersibility can be obtained. Here, as the redispersion solvent 19 to be redispersed, an organic solvent having polarity, particularly an organic solvent composed of an organic compound having one or more hydroxyl groups is preferable.

次に、本発明の好適ないくつかの実施例を説明する。   Next, several preferred embodiments of the present invention will be described.

本発明の金属微粒子および金属微粒子分散溶液の作成方法として、1−ビニル−2−プロリドンに被覆された銅ナノ粒子およびその分散溶液の作成方法の一例を示す。なお本発明は必ずしもこの方法に限定されるものではない。   As a method for producing the metal fine particles and the metal fine particle dispersion of the present invention, an example of a method for producing copper nanoparticles coated with 1-vinyl-2-prolidone and a dispersion thereof will be shown. The present invention is not necessarily limited to this method.

まず、銅ナノ粒子の原料として酢酸銅0.2gを蒸留水10mlに溶解させた酢酸銅水溶液10mlと、金属イオン還元剤として5.0mol/lとなるように水素化ホウ素ナトリウムと蒸留水とを混合した水素化ホウ素ナトリウム水溶液100mlと、を作成した。その後、上記水素化ホウ素ナトリウム水溶液に、1−ビニル−2−プロリドン0.5gを添加して、攪拌溶解させた後、窒素ガス雰囲気中で、上記酢酸銅水溶液10mlを滴下した。この混合液を約60分間よく攪拌しながら反応させた結果、1−ビニル−2−プロリドンで被覆された銅ナノ粒子分散水溶液が得られた。更に、得られた銅ナノ粒子分散水溶液を遠心分離器に入れ、粒子成分を沈殿回収した。   First, 10 ml of a copper acetate aqueous solution in which 0.2 g of copper acetate was dissolved in 10 ml of distilled water as a raw material for copper nanoparticles, and sodium borohydride and distilled water so as to be 5.0 mol / l as a metal ion reducing agent. 100 ml of a mixed aqueous sodium borohydride solution was prepared. Thereafter, 0.5 g of 1-vinyl-2-prolidone was added to the sodium borohydride aqueous solution and dissolved by stirring, and 10 ml of the copper acetate aqueous solution was added dropwise in a nitrogen gas atmosphere. As a result of reacting this mixed liquid with sufficient stirring for about 60 minutes, an aqueous copper nanoparticle dispersion solution coated with 1-vinyl-2-prolidone was obtained. Further, the obtained copper nanoparticle-dispersed aqueous solution was put into a centrifuge, and the particle components were collected by precipitation.

その後、試験管に得られた粒子と適量の蒸留水とを入れ、超音波ホモジナイザーを用いてよく攪拌した後、遠心分離器で粒子成分を回収する水洗浄を3回、続いて、同じく試験管中で、得られた粒子と適量のブタノールとを入れ、超音波ホモジナイザーを用いてよく攪拌した後、遠心分離器で粒子成分を回収するアルコール洗浄を3回行った。更に、得られた粒子成分を最終分散溶媒の一例として、1,2エタンジオール10mlに入れ、その後、超音波ホモジナイザーを用いてよく攪拌することで、本発明の1−ビニル−2−プロリドンに被覆された銅ナノ粒子分散溶液が得られた。   Then, after putting the obtained particles and an appropriate amount of distilled water into a test tube, stirring well with an ultrasonic homogenizer, washing with water to collect the particle components with a centrifuge three times, followed by the same test tube Inside, the obtained particles and an appropriate amount of butanol were added, and after thoroughly stirring using an ultrasonic homogenizer, alcohol washing for recovering the particle components with a centrifuge was performed three times. Furthermore, as an example of the final dispersion solvent, the obtained particle component is put in 10 ml of 1,2 ethanediol, and then thoroughly stirred using an ultrasonic homogenizer to coat the 1-vinyl-2-prolidone of the present invention. A copper nanoparticle dispersion solution was obtained.

得られた1−ビニル−2−プロリドンで被覆された銅ナノ粒子分散溶液をガラス基板上に塗布し、不活性(アルゴン)雰囲気中、150℃、180℃、190℃、200℃、250℃、及び300℃において、それぞれ1時間熱処理を行った。得られた焼成膜について、デジタルマルチメータを用いて、それぞれ直流4端子法にて、その電気抵抗値を測定した。図2は、1−ビニル−2−プロリドンで被覆された銅ナノ粒子分散溶液の熱処理後の電気抵抗値の測定結果を示した図である。この結果より、1−ビニル−2−プロリドンで被覆された銅ナノ粒子分散溶液は、不活性雰囲気中、190℃以上の熱処理で、良好な導電性を持つ金属膜となることが確認された。   The obtained 1-vinyl-2-prolidone-coated copper nanoparticle dispersion solution was applied onto a glass substrate, and was 150 ° C., 180 ° C., 190 ° C., 200 ° C., 250 ° C. in an inert (argon) atmosphere. And 300 ° C. for 1 hour, respectively. About the obtained fired film, the electric resistance value was measured by the direct current | flow 4-terminal method using the digital multimeter, respectively. FIG. 2 is a diagram showing the measurement results of the electrical resistance value after heat treatment of the copper nanoparticle dispersion solution coated with 1-vinyl-2-prolidone. From this result, it was confirmed that the copper nanoparticle dispersion solution coated with 1-vinyl-2-prolidone becomes a metal film having good conductivity by heat treatment at 190 ° C. or higher in an inert atmosphere.

本発明の金属微粒子および金属微粒子分散溶液の作成方法として、分子量が1000以下のポリビニルプロリドンに被覆された銅ナノ粒子およびその分散溶液の作成方法の一例を示す。なお本発明は必ずしもこの方法に限定されるものではない。   As a method for producing the metal fine particles and metal fine particle dispersion solution of the present invention, an example of copper nanoparticles coated with polyvinylprolidone having a molecular weight of 1000 or less and a method for producing the dispersion solution will be shown. The present invention is not necessarily limited to this method.

まず、銅ナノ粒子の原料として酢酸銅0.2gを蒸留水10mlに溶解させた酢酸銅水溶液10mlと、金属イオン還元剤として5.0mol/lとなるように水素化ホウ素ナトリウムと蒸留水とを混合した水素化ホウ素ナトリウム水溶液100mlと、を作成した。その後、上記水素化ホウ素ナトリウム水溶液に、ポリビニルプロリドン(PVP:K12、分子量約3500)0.5gを添加して、攪拌溶解させた後、窒素ガス雰囲気中で、上記酢酸銅水溶液10mlを滴下した。この混合液を約60分間よく攪拌しながら反応させた結果、ポリビニルプロリドンで被覆された銅ナノ粒子分散水溶液が得られた。次に、上記方法で得られたポリビニルプロリドンで被覆された銅ナノ粒子分散水溶液100mlに、ポリビニルピロリドンの分解剤としてクロロホルムを5ml添加してよく攪拌した。数分間攪拌した後、反応液を遠心分離器に入れ、粒子成分を沈殿回収した。得られた粒子に被覆している低分子ビニルプロリドンの分子量を、サイズ排除クロマトグラフィーを用いて測定したところ、約800であった。   First, 10 ml of a copper acetate aqueous solution in which 0.2 g of copper acetate was dissolved in 10 ml of distilled water as a raw material for copper nanoparticles, and sodium borohydride and distilled water so as to be 5.0 mol / l as a metal ion reducing agent. 100 ml of a mixed aqueous sodium borohydride solution was prepared. Thereafter, 0.5 g of polyvinylprolidone (PVP: K12, molecular weight of about 3500) was added to the sodium borohydride aqueous solution and dissolved by stirring, and then 10 ml of the copper acetate aqueous solution was added dropwise in a nitrogen gas atmosphere. . As a result of reacting this mixed solution with sufficient stirring for about 60 minutes, an aqueous copper nanoparticle dispersion solution coated with polyvinylprolidone was obtained. Next, 5 ml of chloroform as a polyvinylpyrrolidone decomposing agent was added to 100 ml of the copper nanoparticle-dispersed aqueous solution coated with polyvinylprolidone obtained by the above method and stirred well. After stirring for several minutes, the reaction solution was put into a centrifuge and the particulate component was collected by precipitation. When the molecular weight of the low molecular weight vinylprolidone coated on the obtained particles was measured using size exclusion chromatography, it was about 800.

その後、試験管に得られた粒子と適量の蒸留水とを入れ、超音波ホモジナイザーを用いてよく攪拌した後、遠心分離器で粒子成分を回収する水洗浄を3回、続いて、同じく試験管中で、得られた粒子と適量のブタノールとを入れ、超音波ホモジナイザーを用いてよく攪拌した後、遠心分離器で粒子成分を回収するアルコール洗浄を3回行った。更に、得られた粒子成分を最終分散溶媒の一例として、1,2エタンジオール10mlに入れ、その後、超音波ホモジナイザーを用いてよく攪拌することで、本発明の低分子ビニルプロリドンに被覆された銅ナノ粒子分散溶液が得られた。尚、得られた粒子に被覆している低分子ビニルプロリドンの分子量を、サイズ排除クロマトグラフィーを用いて測定したところ、約800であった。   Then, after putting the obtained particles and an appropriate amount of distilled water into a test tube, stirring well with an ultrasonic homogenizer, washing with water to collect the particle components with a centrifuge three times, followed by the same test tube Inside, the obtained particles and an appropriate amount of butanol were added, and after thoroughly stirring using an ultrasonic homogenizer, alcohol washing for recovering the particle components with a centrifuge was performed three times. Furthermore, the obtained particle component was placed in 10 ml of 1,2 ethanediol as an example of a final dispersion solvent, and then thoroughly stirred using an ultrasonic homogenizer, so that the low molecular weight vinyl prolidone of the present invention was coated. A copper nanoparticle dispersion solution was obtained. The molecular weight of the low molecular weight vinylprolidone coated on the obtained particles was measured using size exclusion chromatography and found to be about 800.

得られた低分子ビニルプロリドンで被覆された銅ナノ粒子分散溶液をガラス基板上に塗布し、不活性(アルゴン)雰囲気中、150℃、180℃、190℃、200℃、250℃、及び300℃において、それぞれ1時間熱処理を行った。得られた焼成膜について、デジタルマルチメータを用いて、それぞれ直流4端子法にて、その電気抵抗値を測定した。図3は、分子量が約800の低分子ビニルプロリドンで被覆された銅ナノ粒子分散溶液の熱処理後の電気抵抗値の測定結果を示した図である。この結果より、低分子ビニルプロリドンで被覆された銅ナノ粒子分散溶液は、不活性雰囲気中、190℃以上の熱処理で、良好な導電性を持つ金属膜となることが確認された。   The obtained copper nanoparticle dispersion solution coated with low molecular weight vinylprolidone was applied onto a glass substrate, and was 150 ° C, 180 ° C, 190 ° C, 200 ° C, 250 ° C, and 300 ° C in an inert (argon) atmosphere. Heat treatment was performed at 1 ° C. for 1 hour. About the obtained fired film, the electric resistance value was measured by the direct current | flow 4-terminal method using the digital multimeter, respectively. FIG. 3 is a diagram showing the measurement results of the electrical resistance value after heat treatment of a copper nanoparticle dispersion solution coated with a low molecular weight vinylprolidone having a molecular weight of about 800. From this result, it was confirmed that the copper nanoparticle dispersion solution coated with the low-molecular vinylprolidone becomes a metal film having good conductivity by heat treatment at 190 ° C. or higher in an inert atmosphere.

得られた銅ナノ粒子分散溶液の分散性についても調べるため、動的光散乱型粒度分布測定装置(ゼータサイザーナノシリーズ)を用いて、分散溶液中での銅ナノ粒子凝集体の粒度分布の測定を行った。その結果、実施例1に記載の1−ビニル−2−プロリドンで被覆された銅ナノ粒子分散溶液、実施例2に記載の低分子ビニルプロリドンに被覆された銅ナノ粒子分散溶液中での微粒子凝集体の平均サイズは、それぞれ240nm、160nmであった。比較のため、実施例1の銅ナノ粒子分散溶液の製法において、1−ビニル−2−プロリドンを添加せずに作成した、有機物被覆がない銅ナノ粒子分散溶液についても、同様の粒度分布測定を行ったところ、その平均凝集サイズは1200nmであった。これにより、本発明の微粒子分散溶液の良好な液中分散性が確認された。   In order to investigate the dispersibility of the obtained copper nanoparticle dispersion, the particle size distribution of copper nanoparticle aggregates in the dispersion is measured using a dynamic light scattering particle size distribution analyzer (Zetasizer Nano Series). Went. As a result, the copper nanoparticle dispersion solution coated with 1-vinyl-2-prolidone described in Example 1 and the fine particles in the copper nanoparticle dispersion solution coated with the low-molecular vinylprolidone described in Example 2 The average size of the aggregates was 240 nm and 160 nm, respectively. For comparison, in the method for producing a copper nanoparticle dispersion solution of Example 1, the same particle size distribution measurement was performed for a copper nanoparticle dispersion solution without an organic substance coating prepared without adding 1-vinyl-2-prolidone. As a result, the average aggregate size was 1200 nm. Thereby, good dispersibility in the liquid of the fine particle dispersion of the present invention was confirmed.

比較例Comparative example

本発明の比較例としてとして、分子量が3500のポリビニルプロリドンに被覆された銅ナノ粒子およびその分散溶液を次のように作成した。   As a comparative example of the present invention, copper nanoparticles coated with polyvinylprolidone having a molecular weight of 3500 and a dispersion thereof were prepared as follows.

まず、銅ナノ粒子の原料として酢酸銅0.2gを蒸留水10mlに溶解させた酢酸銅水溶液10mlと、金属イオン還元剤として5.0mol/lとなるように水素化ホウ素ナトリウムと蒸留水とを混合した水素化ホウ素ナトリウム水溶液100mlと、を作成した。その後、上記水素化ホウ素ナトリウム水溶液に、ポリビニルプロリドン(PVP:K12、分子量約3500)0.5gを添加して、攪拌溶解させた後、窒素ガス雰囲気中で、上記酢酸銅水溶液10mlを滴下した。この混合液を約60分間よく攪拌しながら反応させた結果、ポリビニルプロリドンで被覆された銅ナノ粒子分散水溶液が得られた。これを数日間放置した後、生成した凝集沈殿物を、遠心分離器を用いて沈殿回収した。   First, 10 ml of a copper acetate aqueous solution in which 0.2 g of copper acetate was dissolved in 10 ml of distilled water as a raw material for copper nanoparticles, and sodium borohydride and distilled water so as to be 5.0 mol / l as a metal ion reducing agent. 100 ml of a mixed aqueous sodium borohydride solution was prepared. Thereafter, 0.5 g of polyvinylprolidone (PVP: K12, molecular weight of about 3500) was added to the sodium borohydride aqueous solution and dissolved by stirring, and then 10 ml of the copper acetate aqueous solution was added dropwise in a nitrogen gas atmosphere. . As a result of reacting this mixed solution with sufficient stirring for about 60 minutes, an aqueous copper nanoparticle dispersion solution coated with polyvinylprolidone was obtained. After leaving this for several days, the produced aggregated precipitate was collected by precipitation using a centrifuge.

その後、試験管に得られた粒子と適量の蒸留水とを入れ、超音波ホモジナイザーを用いてよく攪拌した後、遠心分離器で粒子成分を回収する水洗浄を3回、続いて、同じく試験管中で、得られた粒子と適量のブタノールとを入れ、超音波ホモジナイザーを用いてよく攪拌した後、遠心分離器で粒子成分を回収するアルコール洗浄を3回行った。更に、得られた粒子成分を1,2エタンジオール10mlに入れ、更に、再び、ポリビニルプロリドン(PVP:K12、分子量約3500)0.1gを添加してから、その後、超音波ホモジナイザーを用いてよく攪拌することで、比較例である分子量3500のポリビニルプロリドンに被覆された銅ナノ粒子分散溶液が得られた。   Then, after putting the obtained particles and an appropriate amount of distilled water into a test tube, stirring well with an ultrasonic homogenizer, washing with water to collect the particle components with a centrifuge three times, followed by the same test tube Inside, the obtained particles and an appropriate amount of butanol were added, and after thoroughly stirring using an ultrasonic homogenizer, alcohol washing for recovering the particle components with a centrifuge was performed three times. Further, the obtained particle component was put into 10 ml of 1,2 ethanediol, and 0.1 g of polyvinylprolidone (PVP: K12, molecular weight of about 3500) was added again, and thereafter using an ultrasonic homogenizer. By thoroughly stirring, a copper nanoparticle dispersion solution coated with polyvinylprolidone having a molecular weight of 3500, which is a comparative example, was obtained.

得られた分子量3500のポリビニルプロリドンに被覆された銅ナノ粒子分散溶液をガラス基板上に塗布し、不活性(アルゴン)雰囲気中、150℃、180℃、190℃、200℃、250℃、及び300℃において、それぞれ1時間熱処理を行った。得られた焼成膜について、デジタルマルチメータを用いて、それぞれ直流4端子法にて、その電気抵抗値を測定した。図4は、分子量3500のポリビニルプロリドンで被覆された銅ナノ粒子分散溶液の熱処理後の電気抵抗値の測定結果を示した図である。この結果より、分子量3500のポリビニルプロリドンに被覆された銅ナノ粒子分散溶液は、不活性雰囲気中、300℃以下の熱処理で、良好な導電性を持つ金属膜にはならないことが確認された。   The obtained dispersion solution of copper nanoparticles coated with polyvinylprolidone having a molecular weight of 3500 was coated on a glass substrate, and was 150 ° C., 180 ° C., 190 ° C., 200 ° C., 250 ° C. in an inert (argon) atmosphere, and Heat treatment was performed at 300 ° C. for 1 hour. About the obtained fired film, the electric resistance value was measured by the direct current | flow 4-terminal method using the digital multimeter, respectively. FIG. 4 is a view showing a measurement result of an electrical resistance value after heat treatment of a copper nanoparticle dispersion solution coated with polyvinylprolidone having a molecular weight of 3500. From this result, it was confirmed that the copper nanoparticle dispersion solution coated with polyvinylprolidone having a molecular weight of 3500 does not become a metal film having good conductivity by heat treatment at 300 ° C. or lower in an inert atmosphere.

本発明を適用可能な金属微粒子及び金属微粒子分散溶液の製造方法の概念図である。It is a conceptual diagram of the manufacturing method of the metal fine particle which can apply this invention, and a metal fine particle dispersion solution. 1−ビニル−2−プロリドンで被覆された銅ナノ粒子分散溶液の熱処理後の電気抵抗値の測定結果を示した図である。It is the figure which showed the measurement result of the electrical resistance value after the heat processing of the copper nanoparticle dispersion solution coat | covered with 1-vinyl-2-prolidone. 分子量が約800の低分子ビニルプロリドンで被覆された銅ナノ粒子分散溶液の熱処理後の電気抵抗値の測定結果を示した図である。It is the figure which showed the measurement result of the electrical resistance value after the heat processing of the copper nanoparticle dispersion solution coat | covered with the low molecular vinylprolidone whose molecular weight is about 800. 分子量3500のポリビニルプロリドンで被覆された銅ナノ粒子分散溶液の熱処理後の電気抵抗値の測定結果を示した図である。It is the figure which showed the measurement result of the electrical resistance value after the heat processing of the copper nanoparticle dispersion solution coat | covered with the molecular weight 3500 polyvinyl prolidone.

符号の説明Explanation of symbols

10 金属イオン原料
11 還元剤
12 還元制御剤
13 蒸留水
14 金属微粒子分散溶液
15 ハロゲン化水素
16 粒子成分
17 反応液
18 金属微粒子
19 再分散溶媒
20 金属微粒子分散溶液

DESCRIPTION OF SYMBOLS 10 Metal ion raw material 11 Reducing agent 12 Reduction control agent 13 Distilled water 14 Metal particulate dispersion solution 15 Hydrogen halide 16 Particle component 17 Reaction liquid 18 Metal particulate 19 Redispersion solvent 20 Metal particulate dispersion solution

Claims (9)

ナノサイズの微粒子であって、
低分子量ビニルプロリドンに被覆されていることを特徴とする微粒子。
Nano-sized particles,
Fine particles characterized by being coated with low molecular weight vinylprolidone.
前記低分子量ビニルプロリドンは、ポリビニルプロリドンにハロゲン化水素を反応させることによって得られたものであることを特徴とする請求項1に記載の微粒子。   The fine particles according to claim 1, wherein the low molecular weight vinylprolidone is obtained by reacting polyvinylprolidone with a hydrogen halide. 前記微粒子は、金属または前記金属の酸化物であることを特徴とする請求項1または2に記載の微粒子。   The fine particle according to claim 1, wherein the fine particle is a metal or an oxide of the metal. 前記金属は、銅、ニッケル、コバルト、鉄、亜鉛、スズ、及び銀の中から選択された1種類、または、2種類以上からなる合金であることを特徴とする請求項3に記載の微粒子。   The fine particles according to claim 3, wherein the metal is one kind selected from copper, nickel, cobalt, iron, zinc, tin, and silver, or an alloy composed of two or more kinds. 前記微粒子は、粒径が1nm以上でかつ500nm以下であることを特徴とする請求項1乃至4のいずれか1項に記載の微粒子。   The fine particles according to any one of claims 1 to 4, wherein the fine particles have a particle size of 1 nm or more and 500 nm or less. 請求項1乃至5のいずれか一項に記載の微粒子を、分子中に1つ以上のヒドロキシル基を有する有機化合物を含む有機溶媒に分散させることを特徴とする微粒子分散溶液。   A fine particle dispersion solution, wherein the fine particles according to claim 1 are dispersed in an organic solvent containing an organic compound having one or more hydroxyl groups in the molecule. ナノサイズの微粒子の製造方法であって、
ポリビニルプロリドンで被覆された微粒子を分散させた水溶液の中に、ハロゲン化水素を添加混合する工程を備えていることを特徴とする微粒子の製造方法。
A method for producing nano-sized fine particles,
A method for producing fine particles, comprising a step of adding and mixing hydrogen halide into an aqueous solution in which fine particles coated with polyvinylprolidone are dispersed.
請求項1乃至5のいずれか1項に記載の微粒子を、水または有機溶媒の中に分散させる工程を備えていることを特徴とする微粒子分散溶液の製造方法。   A method for producing a fine particle dispersion solution, comprising a step of dispersing the fine particles according to any one of claims 1 to 5 in water or an organic solvent. 前記有機溶媒は、分子中に1つ以上のヒドロキシル基を有する有機化合物を含むことを特徴とする請求項8に記載の金属微粒子分散溶液の製造方法。

The method for producing a metal fine particle dispersion solution according to claim 8, wherein the organic solvent contains an organic compound having one or more hydroxyl groups in a molecule.

JP2006304361A 2006-07-28 2006-11-09 Fine particles for forming fired body, fine particle dispersion solution for forming fired body, method for producing fine particle for forming fired body, and method for producing fine particle dispersion solution for forming fired body Active JP5764279B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006304361A JP5764279B2 (en) 2006-11-09 2006-11-09 Fine particles for forming fired body, fine particle dispersion solution for forming fired body, method for producing fine particle for forming fired body, and method for producing fine particle dispersion solution for forming fired body
PCT/JP2007/064577 WO2008013199A1 (en) 2006-07-28 2007-07-25 Fine particle dispersion and method for producing fine particle dispersion
KR1020097001770A KR101375488B1 (en) 2006-07-28 2007-07-25 Fine particle dispersion and method for producing fine particle dispersion
US12/309,738 US8337726B2 (en) 2006-07-28 2007-07-25 Fine particle dispersion and method for producing fine particle dispersion
TW096127435A TWI389750B (en) 2006-07-28 2007-07-27 A fine particle dispersion liquid, and a method for producing a fine particle dispersion liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304361A JP5764279B2 (en) 2006-11-09 2006-11-09 Fine particles for forming fired body, fine particle dispersion solution for forming fired body, method for producing fine particle for forming fired body, and method for producing fine particle dispersion solution for forming fired body

Publications (3)

Publication Number Publication Date
JP2008121043A true JP2008121043A (en) 2008-05-29
JP2008121043A5 JP2008121043A5 (en) 2009-11-05
JP5764279B2 JP5764279B2 (en) 2015-08-19

Family

ID=39506125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304361A Active JP5764279B2 (en) 2006-07-28 2006-11-09 Fine particles for forming fired body, fine particle dispersion solution for forming fired body, method for producing fine particle for forming fired body, and method for producing fine particle dispersion solution for forming fired body

Country Status (1)

Country Link
JP (1) JP5764279B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084613A1 (en) 2009-01-26 2010-07-29 アイランド ジャイアント デベロップメント エルエルピー Method of producing cell culture scaffold
US8226863B2 (en) 2009-01-26 2012-07-24 Empire Technology Development Llc Method for producing three-dimensional product having nanoporous surface
JP2014156627A (en) * 2013-02-15 2014-08-28 Furukawa Electric Co Ltd:The Method of producing copper fine particle, and copper fine particle dispersion solution
JP2014156626A (en) * 2013-02-15 2014-08-28 Furukawa Electric Co Ltd:The Copper fine particle dispersion solution, manufacturing method of sintered conductor, and manufacturing method of conductor connection member
JP2016011448A (en) * 2014-06-30 2016-01-21 古河電気工業株式会社 Fine particle, method for producing fine particle, and fine particle dispersion solution
JP2017002364A (en) * 2015-06-11 2017-01-05 古河電気工業株式会社 Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063265A (en) * 1983-09-16 1985-04-11 Pilot Ink Co Ltd Aqueous ink composition for ball point pen
JP2005213626A (en) * 2004-01-30 2005-08-11 Sumitomo Osaka Cement Co Ltd Method for manufacturing metal element-containing nanoparticle powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063265A (en) * 1983-09-16 1985-04-11 Pilot Ink Co Ltd Aqueous ink composition for ball point pen
JP2005213626A (en) * 2004-01-30 2005-08-11 Sumitomo Osaka Cement Co Ltd Method for manufacturing metal element-containing nanoparticle powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084613A1 (en) 2009-01-26 2010-07-29 アイランド ジャイアント デベロップメント エルエルピー Method of producing cell culture scaffold
US8226863B2 (en) 2009-01-26 2012-07-24 Empire Technology Development Llc Method for producing three-dimensional product having nanoporous surface
JP2014156627A (en) * 2013-02-15 2014-08-28 Furukawa Electric Co Ltd:The Method of producing copper fine particle, and copper fine particle dispersion solution
JP2014156626A (en) * 2013-02-15 2014-08-28 Furukawa Electric Co Ltd:The Copper fine particle dispersion solution, manufacturing method of sintered conductor, and manufacturing method of conductor connection member
JP2016011448A (en) * 2014-06-30 2016-01-21 古河電気工業株式会社 Fine particle, method for producing fine particle, and fine particle dispersion solution
JP2017002364A (en) * 2015-06-11 2017-01-05 古河電気工業株式会社 Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution

Also Published As

Publication number Publication date
JP5764279B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP4496216B2 (en) Conductive metal paste
KR101533860B1 (en) Copper fine particle, method for producing the same, and copper fine particle dispersion
KR101375488B1 (en) Fine particle dispersion and method for producing fine particle dispersion
JP4781604B2 (en) Method for producing metal colloid solution, two-component coating material containing the metal colloid solution, and method and use thereof
JP4047304B2 (en) Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
JP5764279B2 (en) Fine particles for forming fired body, fine particle dispersion solution for forming fired body, method for producing fine particle for forming fired body, and method for producing fine particle dispersion solution for forming fired body
JP5377483B2 (en) Composition containing fine metal particles and method for producing the same
US20160121432A1 (en) Composition for metal bonding
Zhang et al. PVP-mediated galvanic replacement synthesis of smart elliptic Cu–Ag nanoflakes for electrically conductive pastes
JP2012214898A (en) Silver-coated copper powder and method for producing the same, and conductive paste, conductive adhesive agent, conductive film, and electric circuit containing the silver-coated copper powder
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP2008121043A5 (en)
CN110170650B (en) Method for preparing high-compactness and completely-coated silver-coated copper powder
JP4853152B2 (en) Nickel-coated copper fine particles and manufacturing method thereof, dispersion using the same, manufacturing method thereof, and paste using the same
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP4279329B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP2019036628A (en) Capacitor and manufacturing method thereof
JP2013235839A (en) Conductive member
WO2015129781A1 (en) Metal nanowire-forming composition, metal nanowire, and method for producing same
JP5922388B2 (en) Silver powder for sintered conductive paste
Imamura et al. A mild aqueous synthesis of ligand-free copper nanoparticles for low temperature sintering nanopastes with nickel salt assistance
JP2013177677A (en) Method for producing copper fine particle, copper fine particle dispersion, and method for preserving copper fine particle dispersion
CN101908388B (en) Forming method of nano-dotted materials
Ko et al. Highly conductive, transparent flexible films based on metal nanoparticle-carbon nanotube composites
JP2004311265A (en) Conductive ink and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130626

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R151 Written notification of patent or utility model registration

Ref document number: 5764279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350