JP4672203B2 - Method for producing ingot for gold bonding wire - Google Patents

Method for producing ingot for gold bonding wire Download PDF

Info

Publication number
JP4672203B2
JP4672203B2 JP2001234960A JP2001234960A JP4672203B2 JP 4672203 B2 JP4672203 B2 JP 4672203B2 JP 2001234960 A JP2001234960 A JP 2001234960A JP 2001234960 A JP2001234960 A JP 2001234960A JP 4672203 B2 JP4672203 B2 JP 4672203B2
Authority
JP
Japan
Prior art keywords
mold
ingot
metal
heating
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001234960A
Other languages
Japanese (ja)
Other versions
JP2003048052A (en
Inventor
伸光 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Micrometal Corp
Original Assignee
Nippon Micrometal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Micrometal Corp filed Critical Nippon Micrometal Corp
Priority to JP2001234960A priority Critical patent/JP4672203B2/en
Publication of JP2003048052A publication Critical patent/JP2003048052A/en
Application granted granted Critical
Publication of JP4672203B2 publication Critical patent/JP4672203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%

Description

【0001】
【発明の属する技術分野】
本発明は、伸線して金属細線を製造するための伸線用インゴットの製造方法及び製造装置に関するものであり、特に金ボンディングワイヤを製造するためのインゴットに関するものである。
【0002】
【従来の技術】
金ボンディングワイヤをはじめとする金属細線は、金属インゴットを適当な線径まで線材圧延し、その後伸線を行なって極細細線とする。線材圧延前の金属材料は、線材圧延に適するように棒状の形状とする必要がある。スチールワイヤーコードのように大量生産する金属細線の場合は、溶融精錬を行なった大量の溶融金属を、鋳型内に鋳造してインゴットとしたり、連続鋳造によってブルームやビレットとする。インゴットやブルームは分塊圧延によってビレットとする。分塊圧延によって製造されたビレット、あるいは直接連続鋳造によって製造されたビレットが、前記線材圧延に適した棒状の金属材料である。
【0003】
金ボンディングワイヤのように極めて少量生産を行なう金属細線の場合は、特開平9−64082号公報の図2に記載されたような連続鋳造方法を用いることも可能であるが、少量生産に適した方法として、溶融した金属材料を直接線材圧延に適した棒状のインゴットに鋳造することがより好ましい。ルツボ内に装入した原料金属を加熱して溶解し、ルツボから鋳型内に溶融金属を注入し、鋳型内において金属を凝固させてインゴットとする場合には、インゴットを線材圧延に適した棒状の形状とするためには、鋳型において溶融金属を注入するための窪みは、細長い棒状の形状である必要がある。
【0004】
また、ルツボ内で溶解した金属をそのままルツボ内で凝固させることもでき、例えば、特開平9−64082号公報の図1にあるように、縦長円筒形の黒鉛ルツボを高周波加熱コイルで取り囲み、ルツボ内で高周波加熱によって金属を溶融し、次いで高周波加熱コイルをルツボの下端から上方に移動してルツボ内で溶湯を凝固させる方法が知られている。
【0005】
【発明が解決しようとする課題】
通常の金属材料は、液相に比較して固相の方が比重が大きいため、凝固の進行と共に収縮し、残存する溶融金属の表面が逐次低下する。このため、凝固末期においてインゴット上部表面の中央部に深い穴が形成され、いわゆる引け巣となる。
【0006】
図6に示すように縦長ルツボ15内で溶融した金属を凝固させる場合、細長いインゴットの外周から凝固が進行し、インゴット7の上端の中央部には図6(b)に示すような極めて深い引け巣13が形成されることになり、この引け巣部分はその後の圧延や伸線において欠陥となるため使用することができず、インゴットの引け巣形成部分を不良品として排除することになる。
【0007】
図7に示すように横長ルツボ14内で溶融した金属を凝固させる場合においては、凝固は溶融金属が鋳型壁に接している部分から進行し、鋳型上部に露出した金属表面が最終凝固位置となり、図7(b)に示すように細長いインゴット7の全長にわたってその上部表面に引け巣13が形成されることとなる。上記縦長ルツボ15を用いてインゴットを形成した場合に比較し、形成される引け巣の深さは浅いものの、この引け巣に起因して線材圧延あるいは伸線中に細線の表面欠陥が発生する場合があり、好ましくない。
【0008】
また、インゴット中に酸化物等の非金属介在物を含有していると、金属を極細線まで伸線加工を行なう過程で断線の原因となり易い。そのため、インゴット中に含有する非金属介在物を極力少なくする必要がある。さらに、金属中に含まれる含有元素が凝固の過程で偏在あるいは偏析すると、インゴットの場所によって金属中の含有成分濃度が不均一となり、材質の不均一が生じるため、含有元素の偏在・偏析を極力少なくする必要がある。
【0009】
本発明は、線材圧延あるいは伸線加工に好適な棒状のインゴットであって、凝固時における引け巣の発生がなく、さらにインゴット中に含まれる非金属介在物を減少するとともに含有元素の偏在・偏析を減少することのできる伸線用インゴットの製造方法及び製造装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたものであり、その要旨とするところは以下のとおりである。
(1)鋳型1に設けられた横長の溝8内に金属材料5を準備し、軸方向を横向きに配置した加熱装置内に前記鋳型1を配置することにより高周波誘導加熱を行なって前記金属材料を溶融し、前記加熱装置の一方の端から鋳型1を徐々に引き出すように加熱装置又は鋳型の一方若しくは両方を移動することによって鋳型1の溝8の一方の端から他方の端に向けて金属を凝固させてインゴットとすることを特徴とする金ボンディングワイヤ用インゴットの製造方法。
(2)前記加熱装置は加熱コイル3を用いた高周波誘導加熱装置であり、前記鋳型1を導電性材料によって形成し、高周波誘導加熱を行なうことを特徴とする上記(1)に記載の金ボンディングワイヤ用インゴットの製造方法。
(3)前記鋳型1の材料として黒鉛を用いることを特徴とする上記(1)又は(2)に記載の金ボンディングワイヤ用インゴットの製造方法。
(4)前記鋳型1を石英管4内に配置し、更にその石英管4の外側に前記加熱装置を配置し、該石英管4内を不活性ガスによって置換することを特徴とする上記(1)乃至(3)のいずれかに記載の金ボンディングワイヤ用インゴットの製造方法。
【0011】
鋳型内に設けられた横長の溝内に溶融金属を満たした上で、この溶融金属を溝内で凝固させると、線材圧延あるいは伸線加工に好適な棒状のインゴットとなる。溶融金属の凝固に際し、鋳型の溝の長手方向一方の端から温度を降下して金属の凝固温度以下とし、鋳型の溝のそれ以外の部分については金属の溶融温度以上の高温状態を保ち、金属の凝固温度以下となる部分を徐々に鋳型の溝の一方の端から他方の端に向けて拡大させると、溝内の溶融金属は溝の前記一方の端から凝固を開始し、固液界面が溝の一方の端から他方の端まで徐々に移動しつつ凝固を完了することができる。固液界面は、ほぼ溝の長手方向に垂直な平面を保つことができるので、凝固後のインゴットには引け巣が発生しない。
【0012】
本発明の上記(1)において、加熱装置としては、円筒状の加熱装置でその内部に金属溶融のための鋳型を載置できれば、どのような加熱装置を用いても良い。抵抗加熱方式、高周波誘導加熱装置等から選択することができる。本発明の上記(2)のように高周波誘導加熱装置を用いると好ましい。
【0013】
本発明において、図1(a)に示すように、横長の溝8を有する鋳型1の材料に好ましくは導電性材料を用い、軸方向を横向きに配置した加熱コイル3内に鋳型1を配置する。鋳型1の溝8内に金属材料5を準備し、加熱を行う。加熱装置として高周波誘導加熱装置を用いた場合には、鋳型1が導電性材料である場合には鋳型1及び金属材料5を加熱し、鋳型1が非導電性材料である場合には金属材料5のみを加熱する。加熱装置として抵抗加熱装置を用いた場合には、まず鋳型の外側部分が加熱され、次いで鋳型内部の金属への熱伝導によって金属が加熱される。この加熱によって溝内の金属の温度を金属の溶融温度以上に保ち、図1(b)に示すように溝内に溶融金属6を保持することができる。
【0014】
加熱終了後の加熱装置類の冷却速度は、抵抗加熱装置より高周波加熱装置の方が速い。抵抗加熱装置は加熱装置自体が高温状態にあって熱を有しているのに対し、高周波加熱装置はそれ自体は高温状態にはないからである。そのため、高周波加熱装置の方が生産性を確保する上で好ましい。
【0015】
溶融金属内に含まれる酸化物を中心とした非金属介在物は、金属より比重が小さいので、この比重差によって非金属介在物を溶融金属表面まで浮上させることができればインゴットから除去することができる。本発明においては、横長の溝内にて金属を溶融させるため、溶融金属浴の深さを浅くすることができ、溶融金属浴内の各部に存在する非金属介在物を容易に浮上分離することができ、非金属介在物の少ないインゴットを製造することができる。
【0016】
インゴットが純金属ではなく合金である場合、通常は溶融するための原料として、純金属とドーパントとを混合して鋳型内で溶融する。一般的にドーパント元素は純金属より軽い場合が多いので、溶融の過程で金属が十分に攪拌混合されないと、軽量のドーパント元素が溶融金属の上部に偏在することとなり、成分の均一なインゴットを製造することができない。従来の縦長ルツボを用いて製造する方法においては、ルツボ内の熱対流による攪拌のみでは攪拌が十分ではなく、ドーパント元素がインゴット内に偏在することがあった。本発明においては、横長の鋳型を用いているため、鋳型内の熱対流のみでも十分にドーパント元素を混合することができる。
【0017】
次に図1(c)に示すように加熱コイル3の一方の端から鋳型1を徐々に引き出すと、加熱コイル3から外れた部分においては鋳型及び溶融金属が加熱されないために鋳型及び溶融金属の温度が低下し、鋳型の溝内の該部分における金属の温度が凝固温度以下となるため、溶融金属が凝固して固相部分7が生成する。凝固の固液界面はほぼ溝の長手方向に垂直な平面を保ち、溝内の溶融金属は溝の一方の端から凝固を開始する。特に加熱手段として高周波誘導加熱を用い、鋳型を導電性材料によって形成すると、溶融金属のみならず鋳型も加熱されて高温に保持されるので、鋳型に接触する溶融金属部分から優先的に凝固が開始することがなく、固液界面を平面に保った良好な一方向凝固を実現することができる。
【0018】
加熱コイル3の一方の端から鋳型1を徐々に引き出す手段としては、鋳型1を固定して加熱コイル3を徐々に移動する方法、加熱コイル3を固定して鋳型1を徐々に移動する方法のいずれを用いても良い。
【0019】
鋳型が徐々に移動して加熱コイルから外れた部分が増大するにつれ、固液界面が溝の一方の端から他方の端まで徐々に移動しつつ凝固を完了することができる(図1(d))。金属の凝固収縮のため、溶融金属が残った側の液面は、固液界面の移動と共に徐々に低下する。しかし、凝固したインゴットの鉛直方向の厚さが、インゴット長手方向の凝固開始側に比較して凝固終了側が薄くなる現象が見られるものの、引け巣は発生しない。
【0020】
本発明において、高周波誘導加熱等の加熱手段によって鋳型及び金属材料を高温に加熱することができるので、金属を別の溶融炉で溶融してから鋳型に注入するのではなく、鋳型の溝内に固体の金属材料を装入し、金属材料を溶融し、しかる後に上記のように凝固を行なってインゴットとすることができる。即ち、凝固装置の他に金属の溶解装置を準備する必要がないので、設備全体をコンパクトかつ安価に製造することができる。
【0021】
高周波誘導加熱を用いた場合、鋳型の移動によって加熱コイルから外れた鋳型及金属の部分には誘導電流が流れないので、加熱コイル端部の温度変化部において鋳型及び金属には急峻な温度勾配を設けることができる。即ち、本発明は高周波誘導加熱を用いた結果として、加熱コイル端部における鋳型溝内の固液界面をほぼ溝の長手方向に垂直な平面とすることができ、インゴット長手方向の全長にわたって引け巣のない良好な凝固を行なう上でより好ましい結果を得ることができる。
【0022】
【発明の実施の形態】
本発明の伸線用インゴットは、あらゆる種類の伸線材を対象とすることができるが、特に金ボンディングワイヤ用インゴットに適している。金ボンディングワイヤは、通常5N(99.999%以上)の高純度金をベースとし、これに種々の元素を添加した合金として用いられる。インゴット製造のための金属溶融に際しては、ドーパント元素と高純度金とを所定の割合で混合し原料として装入・溶解することにより、所定の合金成分を含有するインゴットを形成する。
【0023】
加熱装置としては、円筒状の加熱装置でその内部に金属溶融のための鋳型を載置できれば、どのような加熱装置を用いても良い。抵抗加熱方式、高周波誘導加熱装置等から選択することができる。高周波誘導加熱装置を用いるとより好ましい。
【0024】
本発明の横長の溝8を有する鋳型1は、導電性材料、非導電性材料のいずれをも用いることができるが、導電性材料を用いるとより好ましい。導電性材料であれば、高周波誘導加熱によって金属材料とともに鋳型をも加熱することができ、均一な温度分布の溶融金属を形成し、固液界面が平面に近い良好な一方向凝固を実現することができるからである。非導電性材料としては、アルミナ等のセラミックスを用いることができる。導電性材料としては、黒鉛、モリブデン、タングステン等を用いることができ、特に黒鉛を用いることが好ましい。黒鉛であれば、極めて高い耐熱性を有し、かつ鋳型と溶融金属との界面において黒鉛が溶融金属内に溶け出すことがないので、溶融金属の純度を高純度に保つことができるからである。
【0025】
図1、2に示すように鋳型1が横長の溝8を有する横長の形状をしているため、高周波誘導加熱のための加熱コイル3も軸方向を横向きに配置する。
【0026】
図2に示すように、鋳型1を導電性材料によって形成し、鋳型1の溝8を覆うように導電性材料を用いた蓋2をかぶせて高周波誘導加熱を行なうと好ましい。鋳型1と同様、蓋2についても材質に黒鉛を用いると好適である。導電性材料を用いた蓋2をかぶせ、金属や鋳型1と同時に蓋2をも高周波誘導加熱で加熱することにより、溝内の溶融金属は四周から均一に加熱・冷却を受けることとなり、均一な溶融・凝固を行うことができる。また、溝の上に蓋をかぶせることにより、溶融金属への微粒子やほこりの侵入を防止することが可能になり、インゴットを高純度に保つことができる。
【0027】
鋳型1を石英管4内に配置し、更にその石英管4の外側に加熱コイル3を配置し、該石英管4内を不活性ガスによって置換すると好ましい。加熱中にドーパント元素が大気と接触しているとドーパント元素が酸化する。鋳型1を石英管4内に配置して石英管内を不活性ガスで置換すれば、加熱中におけるドーパント元素の酸化を防止することができる。不活性ガスの種類としては、アルゴンガスを用いると好ましい。また、石英管内を塵の少ない清浄な雰囲気とすることにより、塵によるインゴットの汚染を防止することができる。更に、加熱コイル3と鋳型1との間に石英管4を配置することにより、加熱コイル3と鋳型1との間の放電を防止することができる。石英は耐熱性に優れているので、鋳型を覆う管としては石英管が好適である。
【0028】
本発明に用いる伸線用インゴットの製造装置において、鋳型と加熱コイルとを相対的に移動可能にする手段としては、加熱コイルを移動させる方法と鋳型を移動させる方法のいずれを採用しても良い。加熱コイルと鋳型との相対速度は、15mm/min前後において好適な速度を見いだすことができる。
【0029】
本発明の上記(6)においては、鋳型1は、加熱コイル内をコイルの軸方向に移動可能に配置する。図4に示すように、鋳型を載置するためのトレー10を設け、該トレー10をコイル3の軸方向に移動させる駆動装置11を設けると好ましい。トレー10と移動装置11とで鋳型載置移動装置9を構成する。鋳型1の溝内に金属材料5を装入した上で該トレー上に鋳型1を載置し、鋳型1を加熱コイル内に挿入すべくトレー10を移動し、高周波誘導加熱を行って鋳型内の金属を溶融する。次いでトレー10を徐々に移動することによって鋳型1をコイル3の一方の端から徐々に引き出し、鋳型内の溶融金属を一方向凝固させてインゴット7を形成することができる。
【0030】
本発明の上記(7)においては、鋳型1の位置を固定とし、加熱コイル3をコイルの軸方向に移動可能とする。図5に示すように、鋳型1の溝内に金属材料5を装入した上で鋳型載置装置12の上に載置し、加熱コイル3を移動して鋳型1を加熱コイル3内に挿入し、高周波誘導加熱を行って鋳型内の金属を溶融する。次いで加熱コイル3を徐々に移動することによって鋳型1をコイル3の一方の端から徐々に露出し、鋳型内の溶融金属を一方向凝固させてインゴット7を形成することができる。
【0031】
高周波誘導加熱における高周波の周波数は、鋳型の加熱効率を考慮すると、1kHz〜500kHzの範囲とすると好ましい。さらに加熱装置からの騒音発生を十分に防止し、かつ高周波誘導加熱エネルギーの鋳型への浸透深さを十分に確保するためには、周波数範囲は20kHz〜300kHzの範囲であればより好ましい。
【0032】
【発明の効果】
伸線用インゴットの製造方法及び製造装置において、横長の溝内にて金属を溶融させるため、溶融金属浴の深さを浅くすることができ、溶融金属浴内の各部に存在する非金属介在物を容易に浮上分離することができ、非金属介在物の少ないインゴットを製造することができる。高周波誘導加熱によって溝内の金属を溶融させる場合、溶融金属に誘導電流起因の対流が発生し、添加した合金元素を均一に混合することができる。加熱コイルから鋳型を徐々に引き出すことにより、溶融金属を横長の溝内で一方向凝固させるので、インゴットにおいて引け巣の発生がない。
【図面の簡単な説明】
【図1】本発明のインゴットの製造方法を示す断面図であり、(a)は鋳型内に原料金属を装入した図、(b)は金属を溶融した状況を示す図、(c)は鋳型を移動して凝固を進行させる状況を示す図、(d)は凝固が完了した状況を示す図である。
【図2】蓋を有する本発明のインゴットの製造方法を示す断面図であり、(a)は横から見た図、(b)は前から見た図である。
【図3】石英管を有する本発明のインゴットの製造方法を示す図である。
【図4】本発明のインゴットの製造装置を示す概略図である。
【図5】本発明のインゴットの製造装置を示す概略図である。
【図6】縦長ルツボを有する従来のインゴットの製造方法を示す断面図であり、(a)は溶解した状況を示す図、(b)は凝固が完了した状況を示す図である。
【図7】横長ルツボを有する従来のインゴットの製造方法を示す断面図であり、(a)は長片断面、(b)は短辺断面を示す図である。
【符号の説明】
1 鋳型
2 蓋
3 加熱コイル
4 石英管
5 金属材料
6 溶融金属
7 インゴット(固相部分)
8 溝
9 鋳型載置移動装置
10 トレー
11 駆動装置
12 鋳型載置装置
13 引け巣
14 横長ルツボ
15 縦長ルツボ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for producing a wire drawing ingot for producing a fine metal wire by drawing, and more particularly to an ingot for producing a gold bonding wire.
[0002]
[Prior art]
For fine metal wires such as gold bonding wires, a metal ingot is rolled to an appropriate wire diameter, and then drawn to form ultrafine wires. The metal material before wire rod rolling needs to have a rod shape so as to be suitable for wire rod rolling. In the case of a thin metal wire that is mass-produced like a steel wire cord, a large amount of molten metal that has been subjected to melting and refining is cast into an ingot or formed into a bloom or billet by continuous casting. Ingots and blooms are billeted by split rolling. A billet manufactured by split rolling or a billet manufactured by direct continuous casting is a rod-shaped metal material suitable for the wire rod rolling.
[0003]
In the case of a thin metal wire that produces a very small amount such as a gold bonding wire, it is possible to use a continuous casting method as described in FIG. 2 of JP-A-9-64082, but it is suitable for a small amount production. More preferably, the molten metal material is cast into a rod-like ingot suitable for direct wire rolling. When the raw material metal charged in the crucible is heated and melted, molten metal is injected from the crucible into the mold, and the metal is solidified in the mold to form an ingot, the ingot is a rod-shaped suitable for wire rod rolling. In order to obtain the shape, the depression for injecting molten metal in the mold needs to be in the shape of an elongated bar.
[0004]
Further, the metal melted in the crucible can be solidified in the crucible as it is. For example, as shown in FIG. 1 of JP-A-9-64082, a vertically long graphite crucible is surrounded by a high-frequency heating coil. A method is known in which a metal is melted by high-frequency heating in the inside, and then the high-frequency heating coil is moved upward from the lower end of the crucible to solidify the molten metal in the crucible.
[0005]
[Problems to be solved by the invention]
Since a normal metal material has a specific gravity larger than that of a liquid phase, it shrinks with the progress of solidification, and the surface of the remaining molten metal gradually decreases. For this reason, a deep hole is formed in the central part of the upper surface of the ingot at the end of solidification, and a so-called shrinkage nest is formed.
[0006]
When solidifying the molten metal in the vertically long crucible 15 as shown in FIG. 6, the solidification proceeds from the outer periphery of the elongated ingot, and an extremely deep shrinkage as shown in FIG. The nest 13 is formed, and the shrinkage nest portion becomes a defect in the subsequent rolling or wire drawing and cannot be used, and the shrinkage nest formation portion of the ingot is excluded as a defective product.
[0007]
In the case of solidifying the molten metal in the horizontally long crucible 14 as shown in FIG. 7, the solidification proceeds from the portion where the molten metal is in contact with the mold wall, and the metal surface exposed at the upper part of the mold becomes the final solidification position, As shown in FIG. 7B, the shrinkage nest 13 is formed on the upper surface of the elongated ingot 7 over its entire length. Compared to the case where an ingot is formed using the longitudinal crucible 15, the depth of the formed shrinkage nest is shallow, but due to the shrinkage nest, surface defects of fine wires occur during wire rod rolling or wire drawing. Is not preferable.
[0008]
In addition, if the ingot contains non-metallic inclusions such as oxides, it tends to cause disconnection in the process of drawing a metal to a fine wire. Therefore, it is necessary to reduce the nonmetallic inclusions contained in the ingot as much as possible. Furthermore, if the contained elements in the metal are unevenly distributed or segregated during the solidification process, the concentration of the contained elements in the metal becomes uneven depending on the location of the ingot, resulting in uneven materiality. There is a need to reduce it.
[0009]
The present invention is a rod-like ingot suitable for wire rod rolling or wire drawing, free from the formation of shrinkage cavities during solidification, further reducing non-metallic inclusions contained in the ingot and uneven distribution / segregation of contained elements It is an object of the present invention to provide a method and an apparatus for manufacturing a wire drawing ingot capable of reducing the number of wires.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and the gist thereof is as follows.
(1) A metal material 5 is prepared in a horizontally long groove 8 provided in the mold 1 and the metal material 5 is subjected to high-frequency induction heating by placing the mold 1 in a heating device having the axial direction disposed sideways. The metal is moved from one end of the groove 8 of the mold 1 toward the other end by moving one or both of the heating apparatus and the mold so that the mold 1 is gradually pulled out from one end of the heating apparatus. A method for producing an ingot for a gold bonding wire , characterized in that an ingot is solidified.
(2) The gold bonding according to (1), wherein the heating device is a high-frequency induction heating device using a heating coil 3, and the mold 1 is formed of a conductive material and high-frequency induction heating is performed. A method for manufacturing a wire ingot.
(3) The method for producing an ingot for gold bonding wires according to the above (1) or (2), wherein graphite is used as the material of the mold 1.
(4) The mold 1 is disposed in a quartz tube 4, the heating device is disposed outside the quartz tube 4, and the inside of the quartz tube 4 is replaced with an inert gas. ] The manufacturing method of the ingot for gold bonding wires in any one of (3).
[0011]
When a horizontally long groove provided in a mold is filled with a molten metal and then solidified in the groove, a rod-like ingot suitable for wire rod rolling or wire drawing is obtained. During solidification of the molten metal, the temperature is lowered from one end in the longitudinal direction of the groove of the mold so that it is below the solidification temperature of the metal. When the portion below the solidification temperature of the mold is gradually expanded from one end of the groove of the mold toward the other end, the molten metal in the groove starts to solidify from the one end of the groove, and the solid-liquid interface is Solidification can be completed while gradually moving from one end of the groove to the other end. Since the solid-liquid interface can maintain a plane substantially perpendicular to the longitudinal direction of the groove, no shrinkage nest is generated in the ingot after solidification.
[0012]
In the above (1) of the present invention, any heating device may be used as the heating device as long as a mold for melting metal can be placed inside the cylindrical heating device. A resistance heating method, a high-frequency induction heating device, or the like can be selected. It is preferable to use a high-frequency induction heating device as in (2) of the present invention.
[0013]
In the present invention, as shown in FIG. 1 (a), a conductive material is preferably used as the material of the mold 1 having the horizontally long grooves 8, and the mold 1 is disposed in the heating coil 3 that has the axial direction disposed sideways. . A metal material 5 is prepared in the groove 8 of the mold 1 and heated. When a high frequency induction heating device is used as the heating device, the mold 1 and the metal material 5 are heated when the mold 1 is a conductive material, and the metal material 5 when the mold 1 is a non-conductive material. Only heat. When a resistance heating device is used as the heating device, the outer part of the mold is first heated, and then the metal is heated by heat conduction to the metal inside the mold. By this heating, the temperature of the metal in the groove can be maintained at a temperature equal to or higher than the melting temperature of the metal, and the molten metal 6 can be held in the groove as shown in FIG.
[0014]
The cooling rate of the heating devices after heating is higher in the high frequency heating device than in the resistance heating device. This is because the resistance heating device is in a high temperature state and has heat, whereas the high frequency heating device itself is not in a high temperature state. Therefore, the high frequency heating device is preferable for ensuring productivity.
[0015]
Non-metallic inclusions, mainly oxides contained in the molten metal, have a specific gravity smaller than that of the metal, so if the non-metallic inclusions can float to the molten metal surface due to this specific gravity difference, they can be removed from the ingot. . In the present invention, since the metal is melted in the horizontally long groove, the depth of the molten metal bath can be reduced, and non-metallic inclusions present in each part of the molten metal bath can be easily levitated and separated. And an ingot with few non-metallic inclusions can be produced.
[0016]
When the ingot is not a pure metal but an alloy, usually, a pure metal and a dopant are mixed and melted in a mold as a raw material for melting. In general, dopant elements are often lighter than pure metals, so if the metals are not sufficiently stirred and mixed during the melting process, the lighter dopant elements will be unevenly distributed on top of the molten metal, producing a uniform ingot of components. Can not do it. In the conventional method of manufacturing using a longitudinal crucible, stirring by heat convection alone in the crucible is not sufficient, and the dopant element may be unevenly distributed in the ingot. In the present invention, since a horizontally long mold is used, the dopant element can be sufficiently mixed only by thermal convection in the mold.
[0017]
Next, when the mold 1 is gradually pulled out from one end of the heating coil 3 as shown in FIG. 1 (c), the mold and the molten metal are not heated in the part removed from the heating coil 3, so that the mold and the molten metal are not heated. The temperature decreases and the temperature of the metal in the portion of the mold groove becomes equal to or lower than the solidification temperature, so that the molten metal is solidified and the solid phase portion 7 is generated. The solid-liquid interface of solidification maintains a plane substantially perpendicular to the longitudinal direction of the groove, and the molten metal in the groove starts to solidify from one end of the groove. In particular, when high-frequency induction heating is used as a heating means and the mold is formed of a conductive material, not only the molten metal but also the mold is heated and held at a high temperature, so solidification starts preferentially from the molten metal portion that contacts the mold. Therefore, it is possible to realize good unidirectional solidification while keeping the solid-liquid interface flat.
[0018]
As means for gradually pulling out the mold 1 from one end of the heating coil 3, there are a method in which the mold 1 is fixed and the heating coil 3 is moved gradually, and a method in which the heating coil 3 is fixed and the mold 1 is moved gradually. Either may be used.
[0019]
As the mold gradually moves and the portion removed from the heating coil increases, the solid-liquid interface gradually moves from one end of the groove to the other end, thereby completing the solidification (FIG. 1 (d)). ). Due to the solidification shrinkage of the metal, the liquid level on the side where the molten metal remains is gradually lowered with the movement of the solid-liquid interface. However, although the phenomenon that the thickness of the solidified ingot in the vertical direction is thinner on the solidification end side than the solidification start side in the longitudinal direction of the ingot is observed, no shrinkage nest is generated.
[0020]
In the present invention, the mold and the metal material can be heated to a high temperature by heating means such as high-frequency induction heating, so that the metal is not poured into the mold after being melted in another melting furnace, but into the mold groove. A solid metal material is charged, the metal material is melted, and then solidified as described above to form an ingot. That is, since it is not necessary to prepare a metal melting apparatus in addition to the solidification apparatus, the entire facility can be manufactured in a compact and inexpensive manner.
[0021]
When high frequency induction heating is used, induction current does not flow through the mold and the metal part that has been removed from the heating coil due to the movement of the mold, so a steep temperature gradient is applied to the mold and metal at the temperature change part at the end of the heating coil. Can be provided. That is, according to the present invention, as a result of using high-frequency induction heating, the solid-liquid interface in the mold groove at the end of the heating coil can be made to be a plane substantially perpendicular to the longitudinal direction of the groove, More favorable results can be obtained in performing good coagulation without any problems.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The ingot for wire drawing of the present invention can be used for all kinds of wire drawing materials, but is particularly suitable for an ingot for gold bonding wires. A gold bonding wire is usually based on 5N (99.999% or more) high-purity gold, and is used as an alloy to which various elements are added. At the time of metal melting for producing an ingot, a dopant element and high-purity gold are mixed at a predetermined ratio, and charged and dissolved as a raw material to form an ingot containing a predetermined alloy component.
[0023]
As the heating device, any heating device may be used as long as a mold for melting metal can be placed inside the cylindrical heating device. A resistance heating method, a high-frequency induction heating device, or the like can be selected. It is more preferable to use a high frequency induction heating device.
[0024]
The casting mold 1 having the horizontally long groove 8 of the present invention can use either a conductive material or a non-conductive material, but it is more preferable to use a conductive material. If it is a conductive material, the mold can be heated together with the metal material by high-frequency induction heating, forming a molten metal with a uniform temperature distribution and realizing good unidirectional solidification with a solid-liquid interface close to a flat surface Because you can. As the non-conductive material, ceramics such as alumina can be used. As the conductive material, graphite, molybdenum, tungsten, or the like can be used, and graphite is particularly preferable. This is because graphite has extremely high heat resistance, and graphite does not melt into the molten metal at the interface between the mold and the molten metal, so that the purity of the molten metal can be kept high. .
[0025]
As shown in FIGS. 1 and 2, since the mold 1 has a horizontally long shape having horizontally long grooves 8, the heating coil 3 for high-frequency induction heating is also arranged in the horizontal direction.
[0026]
As shown in FIG. 2, it is preferable to perform high frequency induction heating by forming the mold 1 with a conductive material and covering the groove 8 of the mold 1 with a lid 2 made of a conductive material. As with the mold 1, it is preferable to use graphite as the material for the lid 2. By covering the lid 2 using a conductive material and heating the metal 2 and the mold 1 simultaneously with the lid 2 by high-frequency induction heating, the molten metal in the groove is uniformly heated and cooled from all four sides. Melting and solidification can be performed. In addition, by covering the groove with a lid, it becomes possible to prevent the entry of fine particles and dust into the molten metal, and the ingot can be kept at a high purity.
[0027]
It is preferable that the mold 1 is disposed in the quartz tube 4, the heating coil 3 is disposed outside the quartz tube 4, and the inside of the quartz tube 4 is replaced with an inert gas. If the dopant element is in contact with the atmosphere during heating, the dopant element is oxidized. If the mold 1 is placed in the quartz tube 4 and the inside of the quartz tube is replaced with an inert gas, the oxidation of the dopant element during heating can be prevented. Argon gas is preferably used as the kind of inert gas. Moreover, contamination of the ingot by dust can be prevented by setting the inside of the quartz tube to a clean atmosphere with little dust. Furthermore, by disposing the quartz tube 4 between the heating coil 3 and the mold 1, it is possible to prevent discharge between the heating coil 3 and the mold 1. Since quartz is excellent in heat resistance, a quartz tube is suitable as a tube covering the mold.
[0028]
In the wire drawing ingot manufacturing apparatus used in the present invention, as a means for relatively moving the mold and the heating coil, either a method of moving the heating coil or a method of moving the mold may be adopted. . As the relative speed between the heating coil and the mold, a suitable speed can be found at around 15 mm / min.
[0029]
In said (6) of this invention, the casting_mold | template 1 is arrange | positioned so that the inside of a heating coil can move to the axial direction of a coil. As shown in FIG. 4, it is preferable to provide a tray 10 on which a mold is placed and to provide a driving device 11 that moves the tray 10 in the axial direction of the coil 3. The tray 10 and the moving device 11 constitute a mold placement moving device 9. After the metal material 5 is inserted into the groove of the mold 1, the mold 1 is placed on the tray, the tray 10 is moved to insert the mold 1 into the heating coil, and high-frequency induction heating is performed in the mold. Melt the metal. Next, the ingot 7 can be formed by gradually moving the tray 10 to gradually pull out the mold 1 from one end of the coil 3 and solidify the molten metal in the mold in one direction.
[0030]
In (7) of the present invention, the position of the mold 1 is fixed, and the heating coil 3 is movable in the axial direction of the coil. As shown in FIG. 5, the metal material 5 is placed in the groove of the mold 1 and then placed on the mold placing device 12, and the heating coil 3 is moved to insert the mold 1 into the heating coil 3. Then, high frequency induction heating is performed to melt the metal in the mold. Next, by gradually moving the heating coil 3, the mold 1 is gradually exposed from one end of the coil 3, and the molten metal in the mold is solidified in one direction to form the ingot 7.
[0031]
In consideration of the heating efficiency of the mold, the frequency of the high frequency in the high frequency induction heating is preferably in the range of 1 kHz to 500 kHz. Further, in order to sufficiently prevent the generation of noise from the heating device and to ensure a sufficient penetration depth of the high frequency induction heating energy into the mold, it is more preferable that the frequency range is 20 kHz to 300 kHz.
[0032]
【The invention's effect】
In the method and apparatus for producing an ingot for wire drawing, since the metal is melted in a horizontally long groove, the depth of the molten metal bath can be reduced, and non-metallic inclusions present in each part of the molten metal bath Can be easily levitated and separated, and an ingot with less non-metallic inclusions can be produced. When the metal in the groove is melted by high-frequency induction heating, convection due to induction current is generated in the molten metal, and the added alloy element can be mixed uniformly. By gradually pulling out the mold from the heating coil, the molten metal is unidirectionally solidified in the horizontally long groove, so that there is no shrinkage in the ingot.
[Brief description of the drawings]
1A and 1B are cross-sectional views showing a method for producing an ingot according to the present invention, wherein FIG. 1A is a diagram in which a raw metal is charged in a mold, FIG. The figure which shows the condition which solidifies by moving a casting_mold | template, (d) is a figure which shows the condition where coagulation was completed.
FIGS. 2A and 2B are cross-sectional views showing a method for manufacturing an ingot of the present invention having a lid, where FIG. 2A is a side view, and FIG. 2B is a front view.
FIG. 3 is a view showing a method for manufacturing the ingot of the present invention having a quartz tube.
FIG. 4 is a schematic view showing an apparatus for producing an ingot according to the present invention.
FIG. 5 is a schematic view showing an apparatus for producing an ingot according to the present invention.
6A and 6B are cross-sectional views showing a conventional method for producing an ingot having a vertically long crucible, wherein FIG. 6A is a view showing a state of melting, and FIG. 6B is a view showing a state where solidification is completed.
7A and 7B are cross-sectional views showing a method for manufacturing a conventional ingot having a horizontally long crucible, wherein FIG. 7A is a cross section of a long piece, and FIG. 7B is a cross section of a short side.
[Explanation of symbols]
1 Mold 2 Lid 3 Heating coil 4 Quartz tube 5 Metal material 6 Molten metal 7 Ingot (solid phase part)
8 Groove 9 Mold Placement Moving Device 10 Tray 11 Drive Device 12 Mold Placement Device 13 Shrink Nest 14 Horizontal Crucible 15 Vertically Crucible

Claims (4)

鋳型に設けられた横長の溝内に金属材料を準備し、軸方向を横向きに配置した加熱装置内に前記鋳型を配置することにより加熱を行なって前記金属材料を溶融し、前記加熱装置の一方の端から鋳型を徐々に引き出すように加熱装置又は鋳型の一方若しくは両方を移動することによって鋳型の溝の一方の端から他方の端に向けて金属を凝固させてインゴットとすることを特徴とする金ボンディングワイヤ用インゴットの製造方法。A metal material is prepared in a laterally long groove provided in the mold, and the mold is placed in a heating device in which the axial direction is disposed sideways to heat the metal material to melt the one of the heating devices. The metal is solidified from one end to the other end of the mold groove by moving one or both of the heating device and the mold so that the mold is gradually pulled out from the end of the mold. A method for producing an ingot for a gold bonding wire . 前記加熱装置は加熱コイルを用いた高周波誘導加熱装置であり、前記鋳型を導電性材料によって形成し、高周波誘導加熱を行なうことを特徴とする請求項1に記載の金ボンディングワイヤ用インゴットの製造方法。2. The method of manufacturing an ingot for gold bonding wire according to claim 1, wherein the heating device is a high frequency induction heating device using a heating coil, and the mold is formed of a conductive material and high frequency induction heating is performed. . 前記鋳型の材料として黒鉛を用いることを特徴とする請求項1又は2に記載の金ボンディングワイヤ用インゴットの製造方法。3. The method for producing an ingot for gold bonding wires according to claim 1, wherein graphite is used as a material of the mold. 前記鋳型を石英管内に配置し、更にその石英管の外側に前記加熱装置を配置し、該石英管内を不活性ガスによって置換することを特徴とする請求項1乃至3のいずれかに記載の金ボンディングワイヤ用インゴットの製造方法。4. The gold according to claim 1, wherein the mold is disposed in a quartz tube, the heating device is disposed outside the quartz tube, and the inside of the quartz tube is replaced with an inert gas. A method for producing an ingot for a bonding wire .
JP2001234960A 2001-08-02 2001-08-02 Method for producing ingot for gold bonding wire Expired - Lifetime JP4672203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234960A JP4672203B2 (en) 2001-08-02 2001-08-02 Method for producing ingot for gold bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234960A JP4672203B2 (en) 2001-08-02 2001-08-02 Method for producing ingot for gold bonding wire

Publications (2)

Publication Number Publication Date
JP2003048052A JP2003048052A (en) 2003-02-18
JP4672203B2 true JP4672203B2 (en) 2011-04-20

Family

ID=19066482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234960A Expired - Lifetime JP4672203B2 (en) 2001-08-02 2001-08-02 Method for producing ingot for gold bonding wire

Country Status (1)

Country Link
JP (1) JP4672203B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169441A1 (en) * 2014-05-06 2015-11-12 Ikoi S.R.L. Apparatus, plant and method for producing ingots and metal bars and for monitoring the quality thereof
KR102362664B1 (en) * 2017-08-31 2022-02-11 주식회사 포스코 Apparatus for controlling mold position
CN116251935B (en) * 2023-02-21 2023-08-22 北京智创芯源科技有限公司 Small ingot manufacturing device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669297A (en) * 1979-11-06 1981-06-10 Mitsubishi Monsanto Chem Co Method of growing to large-size single crystal
JPS60244054A (en) * 1984-05-18 1985-12-03 Hitachi Cable Ltd Manufacture of copper material for bonding wire
JPS6372077A (en) * 1986-09-12 1988-04-01 古河電気工業株式会社 Pin connector material
JPH0711356A (en) * 1993-06-28 1995-01-13 Tanaka Denshi Kogyo Kk Production of ingot of au wire for bonding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669297A (en) * 1979-11-06 1981-06-10 Mitsubishi Monsanto Chem Co Method of growing to large-size single crystal
JPS60244054A (en) * 1984-05-18 1985-12-03 Hitachi Cable Ltd Manufacture of copper material for bonding wire
JPS6372077A (en) * 1986-09-12 1988-04-01 古河電気工業株式会社 Pin connector material
JPH0711356A (en) * 1993-06-28 1995-01-13 Tanaka Denshi Kogyo Kk Production of ingot of au wire for bonding

Also Published As

Publication number Publication date
JP2003048052A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
TWI724269B (en) Casting method
US6640876B2 (en) Method and apparatus for manufacturing copper and/or copper alloy ingot having no shrinkage cavity and having smooth surface without wrinkles
JP4099062B2 (en) Treatment of molten metal by moving electrical discharge
KR860000126B1 (en) Method of electromagnetic thin strip casting
JPS61169149A (en) Continuous casting method
JP4672203B2 (en) Method for producing ingot for gold bonding wire
US10421161B2 (en) High quality, void and inclusion free alloy wire
US9156081B2 (en) Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
JP5730738B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP5774438B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP2005059015A (en) Device for melting and casting metal
JP5627015B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JPS6150065B2 (en)
JP2926961B2 (en) Equipment for continuous melting and casting of metals
JP2002192332A (en) Float molten casting device
JPH0531568A (en) Plasma melting/casting method
JPH0711352A (en) Method for continuously melting and casting high melting point active metal
KR0185285B1 (en) Method of manufacturing ingot having unidirectional freezing or single crystal organism
JP2593846B2 (en) Continuous casting equipment
JP3757513B2 (en) Method and apparatus for continuously melting and casting metal
JPH0218180B2 (en)
JPH04316980A (en) Cold-wall crucible furnace, in which extraction of coagulated skull is easy, and manufacture thereof
JP2000317584A (en) Melting treatment apparatus for metal and treatment thereof
KR950011093B1 (en) Process and apparatus for producing refractory electric pole by inductive-heating
JP2004314121A (en) Device for melting and casting metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4672203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term