JP2008107050A - High-temperature heating furnace - Google Patents

High-temperature heating furnace Download PDF

Info

Publication number
JP2008107050A
JP2008107050A JP2006292201A JP2006292201A JP2008107050A JP 2008107050 A JP2008107050 A JP 2008107050A JP 2006292201 A JP2006292201 A JP 2006292201A JP 2006292201 A JP2006292201 A JP 2006292201A JP 2008107050 A JP2008107050 A JP 2008107050A
Authority
JP
Japan
Prior art keywords
sample
reflector
heating furnace
sample stage
temperature heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006292201A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawai
博 川井
Hiroyuki Matsumoto
裕之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2006292201A priority Critical patent/JP2008107050A/en
Publication of JP2008107050A publication Critical patent/JP2008107050A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-temperature heating furnace capable of uniformly heating a sample of a comparatively large area. <P>SOLUTION: In this high-temperature heating furnace 1 having a main heating chamber 2 for heating the flat plate-shaped sample placed on a sample support 14 to an optimum treatment temperature, a W mesh heater 10 for heating the sample by radiating far infrared ray, and a reflecting body 11 for reflecting the infrared ray radiating from the W mesh heater 10 toward the sample support 14 are disposed in the main heating chamber 2, a reflecting face 11S of the reflecting body 11 is formed into the ellipsoid having a focal point S2 on a position of the sample support 14, and the W mesh heater 10 is cylindrically shaped to be used as a surface light source. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、高真空高温に維持した雰囲気、又は、高純度の希ガスを若干含む高温雰囲気を形成し、当該雰囲気下において、結晶成長、化学反応或いは成膜といった化学変化及び物理変化を試料に生じさせるための高温加熱炉に係り、特に、約76mm(3インチ)〜約305mm(12インチ)程度の比較的大きな面積を有する平板状の1又は複数個の試料を高温処理する際の加熱むらを防止するための技術に関する。   The present invention forms an atmosphere maintained at a high vacuum and high temperature or a high temperature atmosphere containing a little high purity rare gas, and under such atmosphere, chemical and physical changes such as crystal growth, chemical reaction or film formation are used as samples. The present invention relates to a high-temperature heating furnace for generating heat, particularly heating unevenness when high-temperature processing of one or more flat plate-like samples having a relatively large area of about 76 mm (3 inches) to about 305 mm (12 inches). The present invention relates to a technique for preventing this.

従来、真空雰囲気或いはガス雰囲気を高温状態に維持する加熱室と、当該加熱室内で試料を加熱するための加熱手段とを備え、当該加熱室に配置された試料に対して熱処理を行う高温加熱炉が知られている。このような高温加熱炉としては、例えばCVD(Chemical Vapor Deposition)等のための結晶成長炉や化学反応炉といったものがある。また、このような高温加熱炉として、ロードロック室を上記加熱室に接続して、加熱室内を真空排気するのに要する時間を短縮するようにしたものが知られている(例えば、特許文献1参照)。
特開平11−260738号公報
2. Description of the Related Art Conventionally, a high-temperature heating furnace that includes a heating chamber that maintains a vacuum atmosphere or a gas atmosphere at a high temperature and a heating unit that heats the sample in the heating chamber and performs heat treatment on the sample disposed in the heating chamber It has been known. Examples of such a high-temperature heating furnace include a crystal growth furnace and a chemical reaction furnace for CVD (Chemical Vapor Deposition). Further, as such a high-temperature heating furnace, a furnace in which a load lock chamber is connected to the heating chamber and the time required for evacuating the heating chamber is shortened is known (for example, Patent Document 1). reference).
Japanese Patent Laid-Open No. 11-260738

しかしながら、熱処理対象の試料が約76mm(3インチ)以上の比較的大きな面積を有する場合、試料の面全体を均一に加熱することが困難であるという問題があった。
本発明は、上述した事情に鑑みてなされたものであり、比較的面積の大きな試料を均一に加熱できる高温加熱炉を提供することを目的とする。
However, when the sample to be heat-treated has a relatively large area of about 76 mm (3 inches) or more, there is a problem that it is difficult to uniformly heat the entire surface of the sample.
This invention is made | formed in view of the situation mentioned above, and aims at providing the high temperature heating furnace which can heat a sample with a comparatively big area uniformly.

上記目的を達成するために、本発明は、試料台に載置された平板状の試料を最適処理温度まで加熱する加熱室を有した高温加熱炉であって、赤外線を放射して前記試料を加熱する加熱ヒータと、前記加熱ヒータから放射される赤外線を前記試料台に向けて反射する反射体とを前記加熱室に設け、前記反射体の反射面を前記試料台の位置に焦点を有する曲面に形成すると共に、前記加熱ヒータを面光源としたことを特徴とする。   In order to achieve the above object, the present invention provides a high-temperature heating furnace having a heating chamber for heating a flat sample placed on a sample stage to an optimum processing temperature, and radiating infrared rays to the sample. A curved surface having a heating heater for heating and a reflector for reflecting infrared rays radiated from the heater toward the sample stage in the heating chamber, the reflecting surface of the reflector having a focal point at the position of the sample stage And the heater is a surface light source.

また本発明は、上記発明において、前記加熱ヒータを、前記試料台の周囲を囲む円筒状に形成し、前記加熱室の床面に対して垂直に設けたことを特徴とする。   Further, the present invention is characterized in that, in the above invention, the heater is formed in a cylindrical shape surrounding the periphery of the sample stage, and is provided perpendicular to the floor surface of the heating chamber.

また本発明は、上記発明において、前記反射体が前記加熱ヒータ及び前記試料台を収容することを特徴とする。   Moreover, the present invention is characterized in that, in the above invention, the reflector accommodates the heater and the sample stage.

また本発明は、上記発明において、前記試料台が上端部に取り付けられる棒状の支持部材と、当該支持部材を移動させて前記試料台を前記加熱室に導入又は導出する搬送手段を更に備え、前記反射体に前記試料台を導入する試料導入口を形成すると共に、前記試料導入口を閉塞する導入口閉塞部材を前記反射体と同一の素材から形成して前記支持部材に設け、前記試料台を前記反射体内に導入したときに前記導入口閉塞部材が前記試料導入口を閉塞することを特徴とする。   Further, the present invention, in the above invention, further comprises a rod-like support member to which the sample stage is attached to the upper end, and a transport means for moving the support member to introduce or lead the sample stage into the heating chamber, A sample introduction port for introducing the sample stage into the reflector is formed, and an introduction port closing member for closing the sample introduction port is formed of the same material as the reflector and provided on the support member, and the sample stage is provided The introduction port closing member closes the sample introduction port when introduced into the reflector.

また本発明は、上記発明において、前記試料を加熱する間、0.001〜1rpmの回転速度で前記試料台を回転する回転手段を設けたことを特徴とする。   Further, the present invention is characterized in that in the above invention, there is provided a rotating means for rotating the sample stage at a rotation speed of 0.001 to 1 rpm while heating the sample.

また本発明は、上記発明において、前記反射体の反射面が複数のパーツを接合して構成され、当該接合箇所を、前記加熱ヒータが放射する赤外線を反射する材料を素材とする補強部材で補強したことを特徴とする。   Further, the present invention is the above invention, wherein the reflecting surface of the reflector is configured by joining a plurality of parts, and the joining portion is reinforced with a reinforcing member made of a material that reflects infrared rays radiated from the heater. It is characterized by that.

また本発明は、上記発明において、前記加熱室の内側壁を加熱して吸着ガスを除去する内側壁加熱手段と、前記加熱室内を排気する排気ポンプとを備えたことを特徴とする。   Further, the present invention is characterized in that, in the above-mentioned invention, an inner wall heating means for heating the inner wall of the heating chamber to remove the adsorbed gas and an exhaust pump for exhausting the heating chamber are provided.

反射体の反射面を試料台の位置に焦点を有する曲面に形成すると共に、加熱ヒータを面光源としたため、加熱ヒータから放射された赤外光の反射光が試料台を含む比較的大きな領域に分散され、当該領域全体が略均一に照射される。したがって、比較的大きな面積を有する試料であっても、その表面全体に対して均一に赤外光が照射されることとなり、当該試料を均一に加熱することができる。   The reflecting surface of the reflector is formed into a curved surface having a focal point at the position of the sample stage, and the heater is used as a surface light source, so that the reflected light of the infrared light emitted from the heater is in a relatively large area including the sample stage. Dispersed, and the entire region is irradiated substantially uniformly. Therefore, even a sample having a relatively large area is uniformly irradiated with infrared light over the entire surface, and the sample can be heated uniformly.

以下図面を参照して、本発明の実施の形態について説明する。以下の説明においては、例えば、GaAs(ガリウムヒ素)等の高融点半導体材料からなる約76mm〜約306mmの面積を有した平板状の材料を試料とし、当該試料に対する育成、結晶成長、表面処理といった加熱処理に用いて好適な高温加熱炉について説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, for example, a flat plate material having an area of about 76 mm to about 306 mm made of a high melting point semiconductor material such as GaAs (gallium arsenide) is used as a sample, and growth, crystal growth, surface treatment, etc. are performed on the sample. A high-temperature heating furnace suitable for use in the heat treatment will be described.

図1は本実施形態に係る高温加熱炉1の外観構成を示す正面図、図2は当該高温加熱炉1の側面図、図3は当該高温加熱炉1の断面図である。図1及び図2に示すように、高温加熱炉1は、大別して、予備加熱室3及び本加熱室2の2つの加熱室と、予備加熱室3及び本加熱室2との間で試料を搬送する搬送機構16(図3参照)と、高温加熱炉1の背面に設けられ、上記本加熱室2の排気を行う真空ポンプ4a、及び、上記予備加熱室3の排気を行う真空ポンプ4bを備えた排気機構4とを備えている。   FIG. 1 is a front view showing an external configuration of a high-temperature heating furnace 1 according to the present embodiment, FIG. 2 is a side view of the high-temperature heating furnace 1, and FIG. As shown in FIG. 1 and FIG. 2, the high-temperature heating furnace 1 is roughly divided into two heating chambers, a preheating chamber 3 and a main heating chamber 2, and a sample between the preheating chamber 3 and the main heating chamber 2. A transport mechanism 16 (see FIG. 3) for transporting, a vacuum pump 4a for exhausting the main heating chamber 2 and a vacuum pump 4b for exhausting the preheating chamber 3 provided on the back surface of the high-temperature heating furnace 1 are provided. And an exhaust mechanism 4 provided.

予備加熱室3は、試料を予備加熱温度(例えば、〜1500℃)まで加熱して予備加熱処理を施すためのものであり、本加熱室2は、予備加熱室3にて予備加熱された試料を、予備加熱温度よりも高温の最適処理温度(例えば1200℃〜2300℃)まで加熱して本加熱処理を施すものである。図3に示すように、本加熱室2の底部には連通口9が形成されており、この連通口9に予備加熱室3の天井面が接続されて本加熱室2と予備加熱室3とが試料を搬送可能に連通している。   The preheating chamber 3 is for heating the sample to a preheating temperature (for example, ˜1500 ° C.) and performing a preheating treatment. The main heating chamber 2 is a sample preheated in the preheating chamber 3. Is heated to an optimum processing temperature (for example, 1200 ° C. to 2300 ° C.) higher than the preheating temperature to perform the main heat treatment. As shown in FIG. 3, a communication port 9 is formed at the bottom of the main heating chamber 2, and the ceiling surface of the preheating chamber 3 is connected to the communication port 9 so that the main heating chamber 2, the preheating chamber 3, Communicate with each other so that the sample can be conveyed.

搬送機構16は、試料が載置される高融点金属材料(例えばW(タングステン))から形成された円盤状の試料台14を予備加熱室3及び本加熱室2との間で搬送するものであり、予備加熱室3の底面を貫通して垂直に延びる昇降ロッド18と、当該昇降ロッド18の下端を押し上げ又は引き下げて昇降駆動するサーボモータ40を有した昇降駆動部19とを備えている。
上記試料台14は支持棒15の上端に支持されると共に、この支持棒15の下端が挿入される挿入孔23が昇降ロッド18の上端に設けられており、試料台14を予備加熱室3から本加熱室2に搬送する際には、この挿入孔23に支持棒15が挿入され、昇降駆動部19が昇降ロッド18を上昇させることで、試料台14が連通口9を通って本加熱室2に導入される。
The transport mechanism 16 transports a disk-shaped sample stage 14 formed of a refractory metal material (for example, W (tungsten)) on which a sample is placed between the preheating chamber 3 and the main heating chamber 2. And a lifting rod 18 extending vertically through the bottom surface of the preheating chamber 3 and a lifting drive unit 19 having a servo motor 40 that lifts or lowers the lower end of the lifting rod 18 to drive it up and down.
The sample stage 14 is supported by the upper end of the support bar 15, and an insertion hole 23 into which the lower end of the support bar 15 is inserted is provided at the upper end of the elevating rod 18. When transporting to the main heating chamber 2, the support rod 15 is inserted into the insertion hole 23, and the elevating drive unit 19 raises the elevating rod 18, so that the sample stage 14 passes through the communication port 9 and the main heating chamber. 2 is introduced.

また、上記昇降ロッド18の軸上には、図3に示すように、上記連通口9を塞ぐ円盤状の閉塞板24が設けられ、昇降ロッド18が上昇して試料台14が本加熱室2に搬送されたときには、この閉塞板24によって連通口9が塞がれ、本加熱室2と予備加熱室3とが分離される。この閉塞板24の上面には、Oリングが設けられており、連通口9の縁部との密着性を高め、本加熱室2の気密性が維持されている。また、本加熱室2から閉塞板24への熱放射により、当該閉塞板24が損傷するのを防止するために、連通口9には2枚のシャッター部材47a、47b(図6参照)を有したシャッター機構47が配設されている。   Further, as shown in FIG. 3, a disc-shaped closing plate 24 for closing the communication port 9 is provided on the shaft of the lifting rod 18, and the lifting rod 18 is lifted so that the sample stage 14 is moved to the main heating chamber 2. , The communication port 9 is closed by the closing plate 24 and the main heating chamber 2 and the preheating chamber 3 are separated. An O-ring is provided on the upper surface of the closing plate 24 to improve the adhesion with the edge of the communication port 9 and maintain the airtightness of the main heating chamber 2. Further, in order to prevent the blocking plate 24 from being damaged by the heat radiation from the main heating chamber 2 to the closing plate 24, the communication port 9 has two shutter members 47a and 47b (see FIG. 6). A shutter mechanism 47 is provided.

図4は予備加熱室3の構成を概略的に示す図であり、図5は予備加熱室3の上面図である。図4に示すように、予備加熱室3には、予備加熱槽5と、当該予備加熱槽5に試料台14を搬送するためのスイング機構17とが設けられている。予備加熱槽5は、試料台14にセットされた試料に対して上記予備加熱処理を施すものであり、正面が開口した箱形形状の筐体8を有し、その筐体8の内部には、予備加熱手段としてのコの字状に形成されたロッドヒータ6と、このロッドヒータ6の左右両側及び上下を囲う保温用の反射板7と、当該予備加熱槽5内で発生したガスが吸着して除去されるコールドトラップ44とが設けられている。   FIG. 4 is a diagram schematically showing the configuration of the preheating chamber 3, and FIG. 5 is a top view of the preheating chamber 3. As shown in FIG. 4, the preheating chamber 3 is provided with a preheating tank 5 and a swing mechanism 17 for transporting the sample stage 14 to the preheating tank 5. The preheating tank 5 is for subjecting the sample set on the sample stage 14 to the above preheating treatment, and has a box-shaped casing 8 whose front is open. The rod heater 6 formed in a U-shape as preheating means, the heat-retaining reflector 7 surrounding the left and right sides and the top and bottom of the rod heater 6, and the gas generated in the preheating tank 5 are adsorbed. And a cold trap 44 to be removed.

上記筐体8及び反射板7の各々の下面には、上記支持棒15の通過溝7a及び8aが形成されている。支持棒15は、予備加熱室3において、上記スイング機構17により支持され、予備加熱槽5への搬入或いは搬出が行われる。具体的には、スイング機構17は、回転軸17aと、この回転軸17aに一端が支持されたアーム17bとを備えている。回転軸17aは、予備加熱室3の底面を貫通し、図3に示す、サーボモータ40の出力軸に図示せぬ減速機構を介して連結され、このサーボモータ40により回転駆動される。アーム17bには、その一端に上記回転軸17aが挿入される挿入孔(図示せず)が形成され、他端に、試料台14を支持する支持棒15が嵌る溝部(図示せず)が形成されている。一方、支持棒15の軸上には、導入口閉塞部材43が設けられており、支持棒15がアーム17bの溝部に嵌ったときには、この導入口閉塞部材43により落下が規制されてアーム17bに支持される。そして、回転軸17aの回転によりアーム17bが予備加熱室3の正面側から背面側にスイングするように移動することで、支持棒15と共に試料台14が予備加熱槽5に搬入される。   Passing grooves 7 a and 8 a for the support bar 15 are formed on the lower surfaces of the housing 8 and the reflection plate 7. The support bar 15 is supported by the swing mechanism 17 in the preheating chamber 3 and is carried into or out of the preheating tank 5. Specifically, the swing mechanism 17 includes a rotating shaft 17a and an arm 17b supported at one end by the rotating shaft 17a. The rotary shaft 17a penetrates the bottom surface of the preheating chamber 3, is connected to the output shaft of the servo motor 40 shown in FIG. 3 via a speed reduction mechanism (not shown), and is driven to rotate by the servo motor 40. The arm 17b has an insertion hole (not shown) into which the rotating shaft 17a is inserted at one end, and a groove (not shown) into which the support rod 15 for supporting the sample table 14 is fitted at the other end. Has been. On the other hand, an introduction port closing member 43 is provided on the shaft of the support rod 15. When the support rod 15 is fitted into the groove portion of the arm 17b, the introduction port closing member 43 restricts the fall to the arm 17b. Supported. Then, by rotating the rotating shaft 17 a, the arm 17 b moves so as to swing from the front side to the back side of the preheating chamber 3, so that the sample table 14 is carried into the preheating tank 5 together with the support rod 15.

予備加熱槽5に試料台14が搬入されると、試料台14がロッドヒータ6に囲まれた位置に配置され、真空雰囲気の下、ロッドヒータ6により試料台14にセットされた試料が予備加熱温度(例えば室温〜約1500℃程度の所定温度)に加熱され、予備加熱処理が施される。この予備加熱処理により、試料に吸着していた吸着ガスや当該試料に含まれていた内蔵ガスが気化し、上記コールドトラップ44により吸着除去されるか、或いは、上記真空ポンプ4bにより高温加熱炉1の外へ排気され、試料の脱ガス処理が行われることとなる。   When the sample stage 14 is carried into the preheating tank 5, the sample stage 14 is arranged at a position surrounded by the rod heater 6, and the sample set on the sample stage 14 by the rod heater 6 is preheated in a vacuum atmosphere. It is heated to a temperature (for example, a room temperature to a predetermined temperature of about 1500 ° C.) and subjected to a preheating treatment. By this preheating treatment, the adsorbed gas adsorbed on the sample and the built-in gas contained in the sample are vaporized and adsorbed and removed by the cold trap 44 or by the vacuum pump 4b. The sample is degassed and the sample is degassed.

図6は本加熱室2の内部構成を示す概略的に示す図であり、図7は本加熱室2内を上から見た概略図である。
本加熱室2は、10−2Pa〜10−3Paの圧力雰囲気の下、試料を1200℃〜2300℃の間の最適処理温度まで加熱して試料に対する本加熱処理を実施するものである。この図に示すように、本加熱室2には、赤外線を放射して加熱するW(タングステン)をメッシュ状に形成してなる加熱ヒータとしてのW(タングステン)メッシュヒータ10と、赤外線を反射する反射体11とが内設されており、さらに、本加熱室2の内側壁には、シーズヒータ51が複数箇所に配設されている。
6 is a diagram schematically showing the internal configuration of the main heating chamber 2, and FIG. 7 is a schematic view of the main heating chamber 2 as viewed from above.
The main heating chamber 2 performs the main heat treatment on the sample by heating the sample to an optimum processing temperature between 1200 ° C. and 2300 ° C. under a pressure atmosphere of 10 −2 Pa to 10 −3 Pa. As shown in this drawing, the main heating chamber 2 reflects W (tungsten) mesh heater 10 as a heater formed by forming W (tungsten) to be heated by emitting infrared rays in a mesh shape, and reflects infrared rays. A reflector 11 is provided inside, and a sheathed heater 51 is provided at a plurality of locations on the inner wall of the main heating chamber 2.

シーズヒータ51は、本加熱室2の内側壁に吸着したガスを除去するものである。詳述すると、本加熱室2の外側には本加熱室2の外壁を常時低温に維持するための図示せぬ水冷機構が設けられており、本加熱室2の内側壁においては、水冷機構の近傍と、遠方とで極端な温度差を生じ、温度が低い箇所には、ガスが吸着し易い。そこで、上記シーズヒータ51が、水冷機構の近傍に配設されており、加熱処理を開始する前に、本加熱室2の内側壁を200℃〜250℃に加熱することで吸着ガスを除去し、上記真空ポンプ4aで排気することで、本加熱室2内が清浄に維持され、高品位な試料が作成可能となる。   The sheathed heater 51 removes the gas adsorbed on the inner wall of the main heating chamber 2. More specifically, a water cooling mechanism (not shown) is provided outside the main heating chamber 2 to keep the outer wall of the main heating chamber 2 at a low temperature at all times. The inner wall of the main heating chamber 2 has a water cooling mechanism. An extreme temperature difference occurs between the vicinity and the distance, and gas is easily adsorbed at a location where the temperature is low. Therefore, the sheathed heater 51 is disposed in the vicinity of the water cooling mechanism, and the adsorbed gas is removed by heating the inner wall of the main heating chamber 2 to 200 ° C. to 250 ° C. before starting the heat treatment. By evacuating with the vacuum pump 4a, the inside of the main heating chamber 2 is kept clean, and a high quality sample can be prepared.

上記Wメッシュヒータ10は、図6及び図7に示すように、円筒状に形成され、その側面10Aが本加熱室2内の床面2Aに対して垂直になるように設けられている。このように、Wメッシュヒータ10を本加熱室2に立設することで、横向きに配置する場合に比べ、Wメッシュヒータ10の側面10Aの熱変形が防止される。   The W mesh heater 10 is formed in a cylindrical shape as shown in FIGS. 6 and 7, and the side surface 10 </ b> A is provided so as to be perpendicular to the floor surface 2 </ b> A in the main heating chamber 2. As described above, by standing the W mesh heater 10 in the main heating chamber 2, thermal deformation of the side surface 10 </ b> A of the W mesh heater 10 can be prevented as compared with the case where the W mesh heater 10 is disposed sideways.

また、Wメッシュヒータ10は、その中心軸Cを連通口9の中心軸と合うように本加熱室2に配置されており、試料台14が連通口9を通過して予備加熱室3から本加熱室2に導入されたときには、試料台14が中心軸Cに沿って移動し、Wメッシュヒータ10の中心Oの位置に配置され、Wメッシュヒータ10からは試料台14に載置された試料の上下のそれぞれの面に略均等に赤外線が放射される。   The W mesh heater 10 is disposed in the main heating chamber 2 so that the center axis C of the W mesh heater 10 is aligned with the center axis of the communication port 9, and the sample stage 14 passes through the communication port 9 and passes through the main heating chamber 3. When introduced into the heating chamber 2, the sample stage 14 moves along the central axis C and is disposed at the position of the center O of the W mesh heater 10, and the sample placed on the sample stage 14 from the W mesh heater 10. Infrared rays are radiated substantially evenly on the upper and lower surfaces.

図8は、反射体11の外観構成を示す一部透視図である。
反射体11は、Wメッシュヒータ10から放射された赤外線を試料台14に向けて反射するものであり、図6〜図8に示すように、反射体11がWメッシュヒータ10及び試料台14を収容して密封するようになっている。これにより、Wメッシュヒータ10の熱が反射体11の外側に漏れにくくなり、Wメッシュヒータ10の発生熱量が効率良く加熱処理に利用されることとなる。
FIG. 8 is a partial perspective view showing the external configuration of the reflector 11.
The reflector 11 reflects the infrared rays radiated from the W mesh heater 10 toward the sample stage 14. As shown in FIGS. 6 to 8, the reflector 11 causes the W mesh heater 10 and the sample stage 14 to be reflected. Housed and sealed. Thereby, the heat of the W mesh heater 10 is less likely to leak to the outside of the reflector 11, and the amount of heat generated by the W mesh heater 10 is efficiently used for the heat treatment.

図9は、Wメッシュヒータ10から試料台14までの赤外線の光線追跡の結果を示す図である。反射体11の反射面11Sは、2つの焦点S1、S2を有する楕円面を中心軸Cを回転軸として回転させた非球形回転体形状に形成されており、反射面11Sに近い方の焦点S1がWメッシュヒータ10に位置し、遠方の焦点S2が試料台14(円筒状のWメッシュヒータ10)の中心Oに位置するように配置されている。
Wメッシュヒータ10から放射された赤外光は、反射面11Sにて焦点S2である試料台14に向けて反射されるが、このとき、Wメッシュヒータ10が円筒状に形成されて側面10A全体が面光源となるため、図9に示すように、焦点S2では、赤外光の反射光が焦点S2の周囲に分散し、試料台14を含む比較的広い範囲に略均一に赤外光が照射されることとなる。したがって、比較的大きな面積を有する試料であっても、その表面全体に対して均一に赤外光が照射されることとなり、当該試料を均一に加熱されることとなる。
FIG. 9 is a diagram showing a result of infrared ray tracing from the W mesh heater 10 to the sample stage 14. The reflecting surface 11S of the reflecting body 11 is formed in a non-spherical rotating body shape in which an ellipsoid having two focal points S1 and S2 is rotated about the central axis C, and the focal point S1 closer to the reflecting surface 11S. Is located on the W mesh heater 10 and the distant focal point S2 is located at the center O of the sample stage 14 (cylindrical W mesh heater 10).
The infrared light emitted from the W mesh heater 10 is reflected by the reflecting surface 11S toward the sample stage 14 that is the focal point S2, and at this time, the W mesh heater 10 is formed in a cylindrical shape and the entire side surface 10A. 9, the reflected light of the infrared light is dispersed around the focus S2, and the infrared light is substantially uniformly distributed over a relatively wide range including the sample stage 14, as shown in FIG. It will be irradiated. Therefore, even a sample having a relatively large area is uniformly irradiated with infrared light over the entire surface, and the sample is uniformly heated.

ここで、中心軸Cから試料の中心がずれている場合等には、試料表面において赤外線の照射量にムラが生じる。特に、76〜305mmの大面積を有する試料では、照射量のムラにより、プラスマイナス数℃以上の表面温度のバラツキが生じる事がある。そこで、本実施形態では、昇降ロッド18を長軸回りに回転させる回転機構(図示せず)を昇降駆動部19に設け、0.001〜1rpmの極めてゆっくりした回転速度で回転させている。これにより、昇降ロッド18の回転に伴って、本加熱室2内で試料が回転することで照射ムラによる表面温度のバラツキが抑制されることとなる。   Here, when the center of the sample is deviated from the central axis C, the amount of infrared irradiation is uneven on the sample surface. In particular, in a sample having a large area of 76 to 305 mm, variation in surface temperature of plus or minus several degrees Celsius may occur due to uneven irradiation. Therefore, in this embodiment, a rotation mechanism (not shown) that rotates the lifting rod 18 around the major axis is provided in the lifting drive unit 19 and is rotated at an extremely slow rotational speed of 0.001 to 1 rpm. Thereby, as the elevating rod 18 rotates, the sample rotates in the main heating chamber 2, thereby suppressing variations in surface temperature due to irradiation unevenness.

また、Wメッシュヒータ10が反射体11の焦点S1からズレたり、或いは、反射体11の左右の形状に若干の異なりが生じたりした場合、試料台14における反射光の分布にムラが生じる場合がある。そこで、本実施形態では、Wメッシュヒータ10と反射体11の構造及び配置に起因する照射ムラの影響を抑制すべく、試料台14の回転軸を上記中心軸Cから若干偏芯させており、これにより、照射ムラによる表面温度のバラツキが抑制される。   In addition, when the W mesh heater 10 is deviated from the focal point S1 of the reflector 11 or the left and right shapes of the reflector 11 are slightly different, the distribution of reflected light on the sample stage 14 may be uneven. is there. Therefore, in the present embodiment, the rotation axis of the sample stage 14 is slightly decentered from the central axis C in order to suppress the influence of irradiation unevenness due to the structure and arrangement of the W mesh heater 10 and the reflector 11. Thereby, the variation in the surface temperature due to irradiation unevenness is suppressed.

次いで、上記反射体11の構成について、より詳細に説明する。
反射体11は、図10に示すように、高融点金属材料のMo(モリブテン)から形成された8枚の板材を積層した断熱材130と、Wメッシュヒータ10が放射する赤外光に対して高い反射率を有する、高融点金属材料であるW(タングステン)から形成された4枚の板材を積層した反射材131とを有し、各板材が締結具13により締結されて構成されており、上記断熱材130により反射体11内の熱が外部に伝導し難くなっている。
Next, the configuration of the reflector 11 will be described in more detail.
As shown in FIG. 10, the reflector 11 has a heat insulating material 130 in which eight plates made of Mo (molybdenum), which is a high melting point metal material, and infrared light emitted from the W mesh heater 10. A reflective member 131 in which four plate members formed of W (tungsten), which is a high melting point metal material having a high reflectance, are laminated, and each plate member is configured to be fastened by a fastener 13; The heat insulating material 130 makes it difficult for the heat in the reflector 11 to be conducted to the outside.

この反射体11の底部には、前掲図6に示すように、本加熱室2の連通口9と対向する箇所に、試料台14を反射体11内に導入するための試料導入口110が開口すると共に、当該試料導入口110を閉塞する閉塞反射体(導入口閉塞部)180が昇降ロッド18に設けられており、昇降ロッド18を上昇させて試料台14を反射体11内に導入したときに、閉塞反射体180が試料導入口110を閉塞し、これにより、反射体11が密封される。この閉塞反射体180は、反射体11と同様に、断熱材130及び反射材131から構成され、図9に示すように、反射体11の反射面11Sの一部を構成する。これにより、試料台14の下面においても反射光が制御され、広い範囲に均一に赤外線を照射される。   At the bottom of the reflector 11, as shown in FIG. 6, a sample introduction port 110 for introducing the sample stage 14 into the reflector 11 is opened at a location facing the communication port 9 of the main heating chamber 2. In addition, a closing reflector (inlet closing portion) 180 that closes the sample introduction port 110 is provided in the lifting rod 18, and when the lifting table 18 is raised and the sample stage 14 is introduced into the reflector 11. Further, the closing reflector 180 closes the sample introduction port 110, thereby sealing the reflector 11. The blocking reflector 180 is composed of a heat insulating material 130 and a reflecting material 131 in the same manner as the reflector 11, and constitutes a part of the reflecting surface 11S of the reflector 11 as shown in FIG. Thereby, the reflected light is also controlled on the lower surface of the sample stage 14, and infrared rays are uniformly irradiated over a wide range.

また、反射体11は、上記のように、Wメッシュヒータ10及び試料台14を密封する形状であり、また、Mo(モリブテン)の板材及びW(タングステン)の板材を積層して構成されているため、一体成形が極めて難しく、前掲図6及び図8に示すように、上側反射体11Aと、上記試料導入口110が形成された下側反射体11Bの2つのパーツを有し、これらの上側反射体11A及び下側反射体11Bを接合して構成されている。このように2つのパーツを接合して反射体11を構成した場合、Wメッシュヒータ10の熱により、接合箇所には熱変形が生じ易い。そこで、この接合箇所を、高融点金属材料であり赤外線に対して高反射率を有するW(タングステン)からなる帯材50で挟み込み、各帯材50をW(タングステン)からなるリベット(螺子でも良い)で締結して補強することで、接合箇所の熱変形を防止し、かつ、反射体11の反射面11Sの反射率の低下が防止される。   Further, as described above, the reflector 11 has a shape that seals the W mesh heater 10 and the sample table 14, and is configured by laminating a Mo (molybden) plate material and a W (tungsten) plate material. Therefore, the integral molding is extremely difficult, and as shown in FIGS. 6 and 8, the upper reflector 11A and the lower reflector 11B on which the sample inlet 110 is formed have two parts. The reflector 11A and the lower reflector 11B are joined to each other. When the reflector 11 is configured by joining two parts in this manner, thermal deformation is likely to occur at the joined portion due to the heat of the W mesh heater 10. Therefore, the joining portion is sandwiched between strips 50 made of W (tungsten), which is a refractory metal material and has a high reflectance with respect to infrared rays, and each strip 50 may be a rivet (screw) made of W (tungsten). ) To prevent the thermal deformation of the joint portion and prevent the reflectance of the reflecting surface 11S of the reflector 11 from decreasing.

なお、反射体11においては、温度勾配や大気開放時の表面酸化状態の差異によって、その一部に応力歪による変形や表面劣化による損傷が発生する事がある。このように反射体11に変形や損傷が生じた場合には、当該反射体11を交換する必要があるが、本実施形態では、複数パーツを接合して反射体11を構成すると共に、変形や損傷が生じ易い箇所を各パーツの接合箇所とし、この接合箇所が上記帯材50により補強されているため、応力歪が緩和されると共に、表面劣化が生じた場合には帯材50のみを交換すれば良いため、ランニングコストを抑えることが可能となる。   In addition, in the reflector 11, the deformation | transformation by stress distortion and the damage by surface degradation may generate | occur | produce in the one part by the difference in the temperature gradient and the surface oxidation state at the time of air release. In this way, when the reflector 11 is deformed or damaged, it is necessary to replace the reflector 11. In the present embodiment, the reflector 11 is configured by joining a plurality of parts. The part where damage is likely to occur is used as the joint part of each part, and since this joint part is reinforced by the band member 50, the stress strain is alleviated, and when the surface deterioration occurs, only the band member 50 is replaced. Therefore, the running cost can be reduced.

以上説明したように、本実施形態によれば、反射体11の反射面11Sを試料台14の位置に焦点S2を有する楕円面に形成すると共に、加熱ヒータたるWメッシュヒータ10を円筒状に構成し面光源としたため、Wメッシュヒータ10から放射された赤外光の反射光が試料台14を含む比較的大きな領域に分散され、当該領域全体が略均一に照射される。したがって、比較的大きな面積を有する試料であっても、その表面全体に対して均一に赤外光が照射されることとなり、当該試料を均一に加熱することができる。   As described above, according to the present embodiment, the reflecting surface 11S of the reflector 11 is formed on an elliptical surface having the focal point S2 at the position of the sample stage 14, and the W mesh heater 10 serving as a heater is configured in a cylindrical shape. Since the surface light source is used, the reflected light of the infrared light emitted from the W mesh heater 10 is dispersed in a relatively large area including the sample stage 14, and the entire area is irradiated substantially uniformly. Therefore, even a sample having a relatively large area is uniformly irradiated with infrared light over the entire surface, and the sample can be heated uniformly.

また、本実施形態によれば、Wメッシュヒータ10を、試料台14の周囲を囲む円筒状に形成し、本加熱室2の床面2Aに対して垂直に設けたため、横向きに配置した場合に比べ、Wメッシュヒータ10の側面10Aの熱変形が防止される。
また、本実施形態によれば、反射体11がWメッシュヒータ10及び試料台14を収容し密封する構成としたため、Wメッシュヒータ10の熱が反射体11の外側に漏れにくくなり、Wメッシュヒータ10の発生熱量を効率良く加熱処理に利用することができる。
さらに、本実施形態によれば、試料に対して加熱処理する間、0.001〜1rpmの回転速度で試料台14を回転させるため、照射ムラによる試料の表面温度のバラツキを抑制することができる。
In addition, according to the present embodiment, the W mesh heater 10 is formed in a cylindrical shape surrounding the periphery of the sample stage 14 and is provided perpendicular to the floor surface 2A of the main heating chamber 2, so that it is arranged in a horizontal direction. In comparison, thermal deformation of the side surface 10A of the W mesh heater 10 is prevented.
Moreover, according to this embodiment, since the reflector 11 accommodates and seals the W mesh heater 10 and the sample stage 14, the heat of the W mesh heater 10 hardly leaks to the outside of the reflector 11, and the W mesh heater The generated heat quantity of 10 can be efficiently used for the heat treatment.
Furthermore, according to this embodiment, since the sample stage 14 is rotated at a rotation speed of 0.001 to 1 rpm during the heat treatment on the sample, variations in the surface temperature of the sample due to irradiation unevenness can be suppressed. .

また、本実施形態によれば、反射体11の反射面11Sが複数のパーツを接合して構成され、当該接合箇所を、Wメッシュヒータ10が放射する赤外線を反射し、かつ、高融点材料であるW(タングステン)を素材とする帯材50で補強する構成としたため、接合箇所の熱変形を防止し、かつ、反射体11の反射面11Sの反射率の低下を防止することが可能となる。
また、本実施形態によれば、本加熱室2の内側壁を加熱して吸着ガスを除去する内側壁加熱手段としてのシーズヒータ51を設けたため、本加熱室2内を清浄に維持し、高品位な試料が作成可能となる。
In addition, according to the present embodiment, the reflecting surface 11S of the reflector 11 is configured by joining a plurality of parts, the infrared ray emitted from the W mesh heater 10 is reflected at the joining portion, and the high melting point material is used. Since it is configured to be reinforced with a band 50 made of a certain W (tungsten), it is possible to prevent thermal deformation of the joint portion and to prevent a decrease in the reflectance of the reflecting surface 11S of the reflector 11. .
In addition, according to the present embodiment, since the sheathed heater 51 is provided as the inner wall heating means for heating the inner wall of the main heating chamber 2 to remove the adsorbed gas, the inside of the main heating chamber 2 is kept clean and high. A quality sample can be created.

なお、上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形及び応用が可能である。
例えば、上述した実施形態では、反射体11の反射面11Sを楕円面としたが、これに限らず、試料台14の配置位置に焦点を有する曲面であれば、例えば放物面や球面等の任意の曲面を用いることができる。
In addition, embodiment mentioned above shows the one aspect | mode of this invention to the last, and a deformation | transformation and application are arbitrarily possible within the scope of the present invention.
For example, in the above-described embodiment, the reflecting surface 11S of the reflector 11 is an ellipsoidal surface. However, the present invention is not limited to this, and any curved surface having a focal point at the arrangement position of the sample stage 14 can be used. Any curved surface can be used.

また、上述した実施形態では、図6〜図10に示すように、複数枚の板材を積層して非球形回転体形状の反射体11を構成したが、これに限らない。
詳述すると、非球形回転体形状の反射体11においては、複数枚の板材の積層構造により反射効率が向上するものの、1枚1枚の板材の形状が異なるため、1枚の板材毎に個別の加工方法を用いる必要があり、また、組み立ての場合も層間距離の維持に配慮する必要が生じる。例えば、12層構成の反射体11をプレス成形する場合では、12種類の成型用の異なる形状の金型を1枚毎に用意する必要があり、また、スピニングの場合でも同様に、小差をつけた金型を用意して加工する必要がある。
In the above-described embodiment, as shown in FIGS. 6 to 10, the non-spherical rotating body-shaped reflector 11 is configured by laminating a plurality of plate materials, but is not limited thereto.
More specifically, in the reflector 11 having a non-spherical rotating body shape, although the reflection efficiency is improved by the laminated structure of a plurality of plate members, the shape of each plate member is different. In the case of assembly, it is necessary to consider the maintenance of the interlayer distance. For example, when the reflector 11 having a 12-layer structure is press-molded, it is necessary to prepare 12 different molds for molding for each sheet, and in the case of spinning, a small difference is similarly required. It is necessary to prepare and process the attached mold.

そこで、上記反射体11に代えて、図11に示すように、略平曲面の反射面111SAを側面に形成する円筒形状の反射体111Aと、中心軸Cを回転軸とした回転楕円面の反射面111SBを天面に形成する反射体111Bと、中心軸Cを回転軸とした回転楕円面の反射面111SCを底面に形成する反射体111Cとを組み合わせて反射体111を構成することで、上記の問題を解決することが可能である。   Therefore, instead of the reflector 11, as shown in FIG. 11, a cylindrical reflector 111A having a substantially flat curved reflecting surface 111SA on the side surface and reflection of a spheroid with the central axis C as the rotation axis are reflected. The reflector 111 is configured by combining the reflector 111B that forms the surface 111SB on the top surface and the reflector 111C that forms the spheroidal reflection surface 111SC on the bottom surface with the central axis C as the rotation axis. It is possible to solve the problem.

すなわち、反射体111の側面を構成する反射体111Aを、試料台14及びWメッシュヒータ10を囲む円筒状とすることで、加工及び組み立てが容易となると共に製造コストが削減され、また、試料の均熱性に大きく寄与する上下部の反射体111B及び111Cの反射面111SB及び111SCの形状を、反射体11と同様の反射面形状とすることで、試料への集光性が維持されると共に、試料の均一加熱が可能となる。
さらに、図11に示す反射体111の形状であれば、例えば、1種類の金型で、上下の反射体111B及び111Cを構成する全ての板材がプレス成形可能となり、かつ、個々の板材の層間距離の維持も容易になしえるため、製造コストがより削減されると共に、製造容易性がより高められる。
That is, by making the reflector 111A constituting the side surface of the reflector 111 into a cylindrical shape surrounding the sample stage 14 and the W mesh heater 10, processing and assembly are facilitated and manufacturing cost is reduced. By making the shape of the reflecting surfaces 111SB and 111SC of the upper and lower reflectors 111B and 111C that greatly contribute to the thermal uniformity into the same reflecting surface shape as the reflector 11, the light collecting property to the sample is maintained, and The sample can be heated uniformly.
Furthermore, if the shape of the reflector 111 shown in FIG. 11 is used, for example, all the plate materials constituting the upper and lower reflectors 111B and 111C can be press-molded with one type of mold, and the layers of the individual plate materials can be formed. Since the distance can be easily maintained, the manufacturing cost is further reduced and the manufacturability is further improved.

本発明の実施形態に係る高温加熱炉の正面図である。It is a front view of the high temperature heating furnace which concerns on embodiment of this invention. 高温加熱炉の側面図である。It is a side view of a high temperature heating furnace. 高温加熱炉の断面図である。It is sectional drawing of a high temperature heating furnace. 予備加熱室の構成を模式的に示す図である。It is a figure which shows the structure of a preheating chamber typically. スイング機構を説明するための図である。It is a figure for demonstrating a swing mechanism. 本加熱室の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of this heating chamber typically. 本加熱室の構成を模式的に示す上面図である。It is a top view which shows the structure of this heating chamber typically. 反射体の構成を示す一部透視図である。It is a partial perspective view which shows the structure of a reflector. Wメッシュヒータから試料台までの赤外線の光線追跡の結果を示す図である。It is a figure which shows the result of the ray tracing of the infrared rays from a W mesh heater to a sample stand. 反射体の構成を示す図である。It is a figure which shows the structure of a reflector. 本発明の変形例に係る反射体の構成を示す図である。It is a figure which shows the structure of the reflector which concerns on the modification of this invention.

符号の説明Explanation of symbols

1 高温加熱炉
2 本加熱室(加熱室)
3 予備加熱室
9 連通口
10 Wメッシュヒータ(加熱ヒータ)
11、111、111A〜111C 反射体
11A 上側反射体
11B 下側反射体
11S、111SA〜111SC 反射面
14 試料台
15 支持棒
16 搬送機構
18 昇降ロッド
43 導入口閉塞部材
50 帯材(補強部材)
51 シーズヒータ(内側壁加熱手段)
110 試料導入口
180 閉塞反射体
S1、S2 焦点
1 High-temperature heating furnace 2 heating chamber (heating chamber)
3 Preheating chamber 9 Communication port 10 W mesh heater (heater)
11, 111, 111A to 111C Reflector 11A Upper reflector 11B Lower reflector 11S, 111SA to 111SC Reflecting surface 14 Sample stage 15 Support rod 16 Transport mechanism 18 Lifting rod 43 Inlet closing member 50 Band member (reinforcing member)
51 Seeds heater (inner wall heating means)
110 Sample inlet 180 Occluded reflector S1, S2 Focus

Claims (7)

試料台に載置された平板状の試料を最適処理温度まで加熱する加熱室を有した高温加熱炉であって、
赤外線を放射して前記試料を加熱する加熱ヒータと、前記加熱ヒータから放射される赤外線を前記試料台に向けて反射する反射体とを前記加熱室に設け、
前記反射体の反射面を前記試料台の位置に焦点を有する曲面に形成すると共に、前記加熱ヒータを面光源としたことを特徴とする高温加熱炉。
A high-temperature heating furnace having a heating chamber for heating a flat sample placed on a sample stage to an optimum processing temperature,
A heating heater that radiates infrared rays to heat the sample, and a reflector that reflects infrared rays radiated from the heating heater toward the sample stage are provided in the heating chamber,
A high-temperature heating furnace characterized in that the reflecting surface of the reflector is formed into a curved surface having a focal point at the position of the sample stage, and the heater is used as a surface light source.
請求項1に記載の高温加熱炉において、
前記加熱ヒータを、前記試料台の周囲を囲む円筒状に形成し、前記加熱室の床面に対して垂直に設けたことを特徴とする高温加熱炉。
In the high-temperature heating furnace according to claim 1,
A high-temperature heating furnace, wherein the heater is formed in a cylindrical shape surrounding the sample stage and is provided perpendicular to the floor surface of the heating chamber.
請求項2に記載の高温加熱炉において、
前記反射体が前記加熱ヒータ及び前記試料台を収容することを特徴とする高温加熱炉。
In the high-temperature heating furnace according to claim 2,
The high-temperature heating furnace, wherein the reflector accommodates the heater and the sample stage.
請求項3に記載の高温加熱炉において、
前記試料台が上端部に取り付けられる棒状の支持部材と、当該支持部材を移動させて前記試料台を前記加熱室に導入又は導出する搬送手段を更に備え、
前記反射体に前記試料台を導入する試料導入口を形成すると共に、
前記試料導入口を閉塞する導入口閉塞部材を前記反射体と同一の素材から形成して前記支持部材に設け、前記試料台を前記反射体内に導入したときに前記導入口閉塞部材が前記試料導入口を閉塞することを特徴とする高温加熱炉。
In the high temperature heating furnace according to claim 3,
A rod-like support member to which the sample stage is attached to the upper end; and a transport means for moving the support member to introduce or lead the sample stage into the heating chamber;
Forming a sample inlet for introducing the sample stage into the reflector,
An inlet closing member that closes the sample inlet is formed of the same material as the reflector and is provided on the support member. When the sample stage is introduced into the reflector, the inlet closing member is introduced into the sample. A high-temperature heating furnace characterized by closing the mouth.
請求項1乃至4のいずれかに記載の高温加熱炉において、
前記試料を加熱する間、0.001〜1rpmの回転速度で前記試料台を回転する回転手段を設けたことを特徴とする高温加熱炉。
In the high temperature heating furnace according to any one of claims 1 to 4,
A high temperature heating furnace provided with a rotating means for rotating the sample stage at a rotation speed of 0.001 to 1 rpm while heating the sample.
請求項1乃至5のいずれかに記載の高温加熱炉において、
前記反射体の反射面が複数のパーツを接合して構成され、当該接合箇所を、前記加熱ヒータが放射する赤外線を反射する材料を素材とする補強部材で補強したことを特徴とする高温加熱炉。
In the high temperature heating furnace according to any one of claims 1 to 5,
A high-temperature heating furnace characterized in that a reflecting surface of the reflector is formed by joining a plurality of parts, and the joining portion is reinforced by a reinforcing member made of a material that reflects infrared rays radiated from the heater. .
請求項1乃至6のいずれかに記載の高温加熱炉において、
前記加熱室の内側壁を加熱して吸着ガスを除去する内側壁加熱手段と、
前記加熱室内を排気する排気ポンプとを備えたことを特徴とする高温加熱炉。
In the high temperature heating furnace according to any one of claims 1 to 6,
An inner wall heating means for removing the adsorbed gas by heating the inner wall of the heating chamber;
A high temperature heating furnace comprising an exhaust pump for exhausting the heating chamber.
JP2006292201A 2006-10-27 2006-10-27 High-temperature heating furnace Pending JP2008107050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292201A JP2008107050A (en) 2006-10-27 2006-10-27 High-temperature heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292201A JP2008107050A (en) 2006-10-27 2006-10-27 High-temperature heating furnace

Publications (1)

Publication Number Publication Date
JP2008107050A true JP2008107050A (en) 2008-05-08

Family

ID=39440535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292201A Pending JP2008107050A (en) 2006-10-27 2006-10-27 High-temperature heating furnace

Country Status (1)

Country Link
JP (1) JP2008107050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519863A (en) * 2010-02-15 2013-05-30 ライボルト オプティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for heat treatment of substrates
KR20140088897A (en) 2011-12-02 2014-07-11 도꾸리쯔교세이호진상교기쥬쯔소고겡뀨죠 Converging mirror furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124499U (en) * 1989-03-23 1990-10-12
JPH11260738A (en) * 1998-03-09 1999-09-24 Ulvac Corp Vacuum heat treatment apparatus
JP2001358084A (en) * 2000-06-14 2001-12-26 Tokyo Electron Ltd Thermal treatment device
JP2004011938A (en) * 2002-06-03 2004-01-15 Tostech:Kk Infrared high-temperature observation furnace
JP2004271072A (en) * 2003-03-10 2004-09-30 Iwasaki Electric Co Ltd High temperature heating furnace
JP2005273931A (en) * 2004-03-23 2005-10-06 Iwasaki Electric Co Ltd High temperature heating furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124499U (en) * 1989-03-23 1990-10-12
JPH11260738A (en) * 1998-03-09 1999-09-24 Ulvac Corp Vacuum heat treatment apparatus
JP2001358084A (en) * 2000-06-14 2001-12-26 Tokyo Electron Ltd Thermal treatment device
JP2004011938A (en) * 2002-06-03 2004-01-15 Tostech:Kk Infrared high-temperature observation furnace
JP2004271072A (en) * 2003-03-10 2004-09-30 Iwasaki Electric Co Ltd High temperature heating furnace
JP2005273931A (en) * 2004-03-23 2005-10-06 Iwasaki Electric Co Ltd High temperature heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519863A (en) * 2010-02-15 2013-05-30 ライボルト オプティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for heat treatment of substrates
KR20140088897A (en) 2011-12-02 2014-07-11 도꾸리쯔교세이호진상교기쥬쯔소고겡뀨죠 Converging mirror furnace
US9777375B2 (en) 2011-12-02 2017-10-03 National Institute Of Advanced Industrial Science And Technology Converging mirror furnace

Similar Documents

Publication Publication Date Title
JP5380525B2 (en) Vacuum heating and cooling device
KR20120054636A (en) Heat treatment apparatus
CN103572211B (en) Pvd equipment and physical gas-phase deposition
TW200901296A (en) Substrate processing apparatus, substrate processing method and recording medium
JP4684372B1 (en) Manufacturing method of semiconductor light emitting device substrate
JPH1197446A (en) Vertical heat treatment equipment
JP2002134430A (en) Lamp with high-reflectivity film for enhancing directivity and heat treating apparatus
WO2010055946A1 (en) Processing device
JP2008107050A (en) High-temperature heating furnace
JP5324863B2 (en) Vacuum furnace and heat treatment apparatus in magnetic field using this vacuum furnace
JP2014189878A (en) Vapor deposition apparatus
US20170254592A1 (en) Thermal treatment device
KR101224059B1 (en) Substrate processing apparatus and the method thereof
JP2016084990A (en) Heat treatment device
JP5465828B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP4071047B2 (en) Heating / cooling equipment, vacuum processing equipment
JP2012151389A (en) Substrate processing apparatus and manufacturing method of semiconductor device
US20070042118A1 (en) Encapsulated thermal processing
JPS61129834A (en) Heat treatment apparatus
JP2004271072A (en) High temperature heating furnace
JP4595363B2 (en) High temperature furnace
KR101968256B1 (en) Vacuum Film Deposition System
JP6096588B2 (en) Substrate processing apparatus and substrate processing method
TW202122625A (en) Semiconductor device fabrication method and fabrication apparatus
JP6732235B2 (en) Condensing mirror type heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730