JP2008106347A - Method for leaching gold - Google Patents

Method for leaching gold Download PDF

Info

Publication number
JP2008106347A
JP2008106347A JP2007086983A JP2007086983A JP2008106347A JP 2008106347 A JP2008106347 A JP 2008106347A JP 2007086983 A JP2007086983 A JP 2007086983A JP 2007086983 A JP2007086983 A JP 2007086983A JP 2008106347 A JP2008106347 A JP 2008106347A
Authority
JP
Japan
Prior art keywords
gold
copper
ions
leaching
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007086983A
Other languages
Japanese (ja)
Other versions
JP4642796B2 (en
Inventor
Yoshifumi Abe
吉史 安部
Koji Hosaka
広司 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2007086983A priority Critical patent/JP4642796B2/en
Publication of JP2008106347A publication Critical patent/JP2008106347A/en
Application granted granted Critical
Publication of JP4642796B2 publication Critical patent/JP4642796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently leaching at least copper and gold from copper sulfide ores. <P>SOLUTION: The method for leaching gold comprises steps of: subjecting a gold-containing copper sulfide ore and/or a copper sulfide ore containing gold-bearing silicate ore to leaching of copper until copper grade in the copper sulfide ore reaches ≤7.9%; mixing the resultant gold-containing sulfide ore and/or copper sulfide ore containing gold-bearing silicate ore, in which copper grade is made to ≤7.9%, with a solution in which chlorine ions and ferric ions are dissolved or carrying out mixing in a state where air is blown into a solution containing chlorine ions and iron ions and the iron ions can be made trivalent by oxidation with oxygen in the air; applying stirring while adjusting pH to ≤1.9; and dissolving at least gold into the solution by the oxidizing power of the ferric ions. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金を含有する硫化鉱物あるいはケイ酸鉱から金を回収するため
の浸出方法を提供するものであり、金の浸出を大気圧下において沸騰温度以下の水溶液中で行なうものである。
The present invention provides a leaching method for recovering gold from gold-containing sulfide minerals or silicate ores, and leaching gold in an aqueous solution at a boiling temperature or lower under atmospheric pressure.

硫化銅鉱や硫化銅鉱に付随するケイ酸鉱はしばしば金を含有している場合
がある。このような場合に金を回収するには大きく分けて二通りの方法がある。一つは1000℃以上の高い温度で処理する方法で、金を含有する硫化銅鉱や金を含むケイ酸鉱を、硫化鉄や不足量を補うためのケイ酸鉱とともに1000℃以上の高温で溶融処理し、マットと呼ばれるCu2Sと酸化鉄やケイ酸を主体とし不純物を含むスラグをつくる。
マットを高温で還元して粗銅と呼ばれる低純度の金属銅とし、これを電気分解して99.99%以上の純度をもつ金属銅に精製する。原料中に含まれる金は、この金属銅の製造過程で銅と挙動を供にし、電気分解の過程でその他の貴金属とともに銅電解殿物と呼ばれる沈殿として回収される。
この銅電解殿物を処理するには、鉛とともに高温で溶融し鉛中に貴金属を濃縮し酸化によって鉛を除去した後、原銀板と呼ばれる金等の貴金属を含む銀板をつくる。この原銀板を電気分解して銀を精製する過程で、銀電解殿物として貴金属を含む沈殿が生じる。
この沈殿から硝酸等によって金以外の貴金属を溶出させたのち高温で溶融して原金板とよばれる純度の低い金を製造し、これを電気分解して純度の高い金を回収する。
この方法では、1000℃を越える高温を必要とすることと、本来、金属銅の製造が目的であり、金は副産物として生産されるため金を回収するまでの処理工程が非常に長いという欠点がある。
Copper sulfide ores and silicate ores associated with copper sulfide ores often contain gold. In such a case, there are two main methods for recovering gold. One is a method of processing at a high temperature of 1000 ° C or higher, melting gold sulfide containing copper sulfide ore and silicate ore containing gold at a high temperature of 1000 ° C or higher together with iron sulfide and silicate ore to make up for the shortage. Processed to make slag containing impurities mainly composed of Cu 2 S, iron oxide and silicic acid called mat.
The mat is reduced at a high temperature to obtain low-purity metallic copper called crude copper, which is electrolyzed and refined into metallic copper having a purity of 99.99% or more. The gold contained in the raw material acts as copper in the production process of the metal copper, and is recovered as a precipitate called a copper electrolytic deposit together with other noble metals in the electrolysis process.
In order to treat this copper electrolytic deposit, a silver plate containing a noble metal such as gold called a raw silver plate is made after melting the lead together with lead at a high temperature, concentrating the noble metal in the lead and removing the lead by oxidation. In the process of refining silver by electrolyzing the original silver plate, a precipitate containing a noble metal is formed as a silver electrolytic product.
From this precipitate, noble metals other than gold are eluted with nitric acid and the like, and then melted at a high temperature to produce low-purity gold called an original metal plate, which is electrolyzed to recover high-purity gold.
This method requires a high temperature exceeding 1000 ° C. and is originally intended for the production of metallic copper, and since gold is produced as a by-product, the processing steps until the gold is recovered are very long. is there.

もう一つの方法は、シアン、チオ尿素、チオ硫酸のような金化合物を生成しやすいような錯体形成化合物を溶解した溶液と接触させ、これらの化合物と金を反応させることで溶液中に溶出させ、活性炭表面に吸着させることで金を回収する。
この方法では、高温は必要ではなく、回収の工程も短くできる。しかしながら、銅や鉄といった金属元素が共存する場合には、これらの元素が金化合物を生成するための化合物を消耗する。このため、これらの元素を適切な量まで除去しておく必要があり、この場合には、金以外の元素の除去と金回収とを別の工程で処理することとなる(非特許文献1)。
Another method is to make a gold compound such as cyan, thiourea and thiosulfate contact with a solution in which a complex-forming compound is easily dissolved, and to react these compounds with gold to elute it into the solution. The gold is recovered by adsorbing on the activated carbon surface.
In this method, high temperature is not required, and the recovery process can be shortened. However, when metal elements such as copper and iron coexist, these elements consume a compound for generating a gold compound. For this reason, it is necessary to remove these elements to an appropriate amount. In this case, removal of elements other than gold and gold recovery are performed in separate steps (Non-Patent Document 1). .

また、金がハロゲン族元素と錯体を形成して水溶液中に溶解しやすいことを利用してハロゲン族元素を添加した水溶液で金浸出を行う例もある。この場合には、金を金イオンとする必要があり、そのためには酸化剤を必要とする。この酸化剤としては、通常、硝酸、過酸化水素、塩素といった標準酸化還元電位で+900mVを超えるような酸化剤が使用される。このような酸化剤を使用した条件では、含有されるほとんどの金属元素は酸化反応を起こすため、金回収に必要な量より過大な酸化剤量を消費することになる(非特許文献2)。
“REVIEW OF GOLDEXTRACTION FROM ORES”, S. R. La BROOY, H. G. LINGE and G. S. Walker, MineralsEngineering, Vol.7, No. 10, pp1213-1241 “銅殿物湿式処理技術の確立”, 虎岩明憲,安部吉史, 資源と素材, Vol.116, (2000), No. 6, pp484-492
There is also an example in which gold is leached with an aqueous solution to which a halogen group element is added, taking advantage of the fact that gold forms a complex with a halogen group element and is easily dissolved in the aqueous solution. In this case, gold needs to be gold ions, and an oxidant is required for this purpose. As this oxidizing agent, an oxidizing agent such as nitric acid, hydrogen peroxide, chlorine and the like that exceeds +900 mV at a standard redox potential is usually used. Under the conditions using such an oxidant, most of the contained metal elements cause an oxidation reaction, so that an amount of oxidant larger than the amount necessary for gold recovery is consumed (Non-Patent Document 2).
“REVIEW OF GOLDEXTRACTION FROM ORES”, SR La BROOY, HG LINGE and GS Walker, Minerals Engineering, Vol.7, No. 10, pp1213-1241 “Establishment of copper processing technology”, Akinori Toraiwa, Yoshifumi Abe, Resources and Materials, Vol.116, (2000), No. 6, pp484-492

金を含有する硫化銅鉱や金を含むケイ酸鉱を含有する硫化銅鉱から金を溶液中に浸出する場合、銅や鉄が金を溶出するための薬品を消費する。通常、金を溶液中に溶出させるためのシアン、チオ尿素、チオ硫酸といった薬品は高価であり、その薬品を消費する共存する銅や鉄は金と比較して多量に存在するため、金回収にかかる費用を多大にする。
また、硫化物として存在する銅や鉄が溶出する結果残留する硫黄が原料表面を覆うことで不働態化して反応を阻害する場合もある。
このため、金を溶出する薬品の消費量を減少させるため、含有する銅や鉄を前もって溶液中に溶出させ含有量を低下させた後、金の溶出操作にかかる。あるいは、焙焼等の操作により硫黄を原料から排除するような操作を前もって行なうことでこれらの問題を回避しようとしてきた。
このような操作を行なう場合、その操作自身が処理を複雑にして金の回収費用が増加する原因となるだけでなく、このような操作の多くは酸濃度の高い溶液中で実施したり、操作の結果生成するものを水溶液中に混合すると高い酸性度を示すことが多い。一方、金溶出操作はpH域からアルカリ性で行われるため、金溶出操作にうつる前に中和する必要が生じ中和で使用する薬品が回収費用を増加する原因となる。
When gold is leached into a solution from a copper sulfide ore containing gold or a copper sulfide ore containing silicate ore containing gold, copper and iron consume chemicals for leaching the gold. Usually, chemicals such as cyanide, thiourea, and thiosulfuric acid for eluting gold into the solution are expensive, and there is a large amount of coexisting copper and iron that consume the chemical compared to gold. This costs a lot.
Further, the sulfur remaining as a result of elution of copper and iron existing as sulfides may pass through the raw material surface to passivate and inhibit the reaction.
For this reason, in order to reduce the consumption of the chemical | medical agent which elutes gold | metal | money, after eluting the contained copper and iron in a solution beforehand and reducing content, it starts to the elution operation of gold | metal | money. Alternatively, it has been attempted to avoid these problems by performing in advance an operation such as roasting to exclude sulfur from the raw material.
When such operations are performed, not only does the operation itself complicate the processing and increase the cost of recovering gold, but many of these operations are performed in a solution with a high acid concentration. When the product formed as a result of the above is mixed in an aqueous solution, it often shows high acidity. On the other hand, since the gold elution operation is alkaline from the pH range, it is necessary to neutralize the gold elution operation before the gold elution operation is performed, and the chemicals used in the neutralization increase the recovery cost.

さらに、使用するシアン、チオ尿素、チオ硫酸といった薬品は高価であるが分解しやすいとか毒性を持つといった性質があり取り扱い時や取り扱い後の処理を厳密に行う必要がある。
このような点も処理費用増加の原因となる。また、反応時間が長く製品化に時間がかかり、金の滞留量が多くなるといった問題もある。
Furthermore, chemicals such as cyan, thiourea, and thiosulfuric acid to be used are expensive but are easily decomposed or have toxic properties, and it is necessary to strictly carry out treatment during and after handling.
Such a point also causes an increase in processing costs. In addition, there is a problem in that the reaction time is long and it takes time to commercialize the product, and the amount of gold stayed increases.

シアンを使用した場合より反応速度が速いということから、塩素、臭素といったハロゲン化物とそのガスを使用する金浸出方法も考えられている。この場合には、ハロゲンガスを酸化剤として使用することで溶液中に高い酸化状態(塩化物溶液中で、塩素ガスの場合水素標準電位で1242mV、臭素ガスの場合1070mV)を実現して金の溶出を促進できる。
これらの方法にも欠点があり、ハロゲン類も高価であるとともに、これらのガス類は腐食性が強く取り扱いが困難である。さらに、反応してイオンとなる場合の電位が高いため、過剰に添加した場合には原料表面が不働態化を起こし反応が進行しなくなることがある。
ヨウ素を使用する場合もあるが、原料中の脈石成分として含まれる鉄と反応して必要以上に消耗される。
また、これらの薬品は酸化電位が非常に高いため酸素は有効な酸化剤とはならず、浸出反応の結果これらの薬品が還元されても空気中の酸素程度では酸化できず、簡易的な方法で再使用するということはできない。
本発明は、従来技術の欠点である上記の問題を解決するものであって、硫化銅鉱から少なくとも銅、金を効率良く浸出する方法を提供することを課題とする。
Since the reaction rate is faster than when cyan is used, a gold leaching method using a halide such as chlorine or bromine and its gas is also considered. In this case, the use of halogen gas as an oxidant realizes a high oxidation state in the solution (in chloride solution, 1242 mV at the hydrogen standard potential for chlorine gas, 1070 mV for bromine gas) and gold. Elution can be promoted.
These methods also have drawbacks, halogens are expensive, and these gases are corrosive and difficult to handle. Furthermore, since the electric potential when it reacts to become ions is high, when it is added excessively, the surface of the raw material may be passivated and the reaction may not proceed.
Although iodine may be used, it reacts with iron contained as a gangue component in the raw material and is consumed more than necessary.
In addition, since these chemicals have a very high oxidation potential, oxygen is not an effective oxidizing agent. Even if these chemicals are reduced as a result of the leaching reaction, they cannot be oxidized to the extent of oxygen in the air. Cannot be reused.
This invention solves said problem which is a fault of a prior art, and makes it a subject to provide the method of leaching at least copper and gold | metal | money from copper sulfide ore efficiently.

本発明は、上記の問題を解決するものであって、以下の発明を提供する。
(1)金を含有する硫化銅鉱や金を含むケイ酸鉱を含有する硫化銅鉱を硫化銅鉱中の銅品位が7.9%以下になるまで銅を浸出し、
銅品位が7.9%以下になった金を含有する硫化銅鉱や金を含むケイ酸
鉱を含有する硫化銅鉱を塩素イオンと第二鉄イオンを溶解した溶液に混
合する、
あるいは塩素イオンと鉄イオンを含む溶液に空気を吹き込み空気中の
酸素で鉄イオンを酸化して三価にできる状態で混合し、
そのpHを1.9以下に調整しながら撹拌し、第二鉄イオンの酸化力によ
って少なくとも金を溶液中に溶解することを特徴とする金の浸出方法。
(2)金を含有する硫化銅鉱や金を含むケイ酸鉱を含有する硫化銅鉱を硫化銅鉱中の銅品位が7.9%以下になるまで銅を浸出し、
浸出した溶液が塩素イオンと三価の鉄イオンを含む場合、
その溶液に空気を吹き込み空気中の酸素で鉄イオンを酸化して三価にし、そのpHを1.9以下に調整しながら引き続き撹拌することで、
第二鉄イオンの酸化力によって少なくとも金を溶液中に溶解することを特徴とする金の浸出方法。
(3)金を浸出する溶液に銅イオンを共存させて金の浸出速度を速くする(1)あるいは(2)に記載の金の浸出方法。
(4)金を浸出する溶液に臭素イオンを共存させて金の浸出速度を早くする(1)から(3)に記載の金の浸出方法。
(5)金を浸出する溶液に含まれる三価の鉄イオン濃度が0.01g/l以上である(1)から(4)に記載の金の浸出方法
(6)撹拌中に空気を吹き込み、空気中の酸素で二価の鉄イオンを三価に酸化して反応を継続させる(1)から(5)に記載の金の浸出方法。
The present invention solves the above problems, and provides the following inventions.
(1) Copper sulfide ore containing gold or silicate ore containing gold is leached until the copper grade in the copper sulfide ore is 7.9% or less,
Mixing copper sulfide ore containing gold with a copper grade of 7.9% or less or copper sulfide ore containing silicate ore containing gold into a solution in which chlorine ions and ferric ions are dissolved,
Alternatively, air is blown into a solution containing chlorine ions and iron ions, and iron ions are oxidized with oxygen in the air and mixed in a trivalent state.
A gold leaching method comprising stirring while adjusting the pH to 1.9 or less and dissolving at least gold in the solution by the oxidizing power of ferric ions.
(2) Copper sulfide ore containing gold or silicate ore containing gold is leached until the copper grade in the copper sulfide ore is 7.9% or less,
If the leached solution contains chlorine ions and trivalent iron ions,
By blowing air into the solution and oxidizing iron ions with oxygen in the air to make it trivalent, by continuously stirring while adjusting the pH to 1.9 or less,
A gold leaching method, wherein at least gold is dissolved in a solution by oxidizing power of ferric ions.
(3) The gold leaching method according to (1) or (2), wherein the gold leaching speed is increased by causing copper ions to coexist in the gold leaching solution.
(4) The gold leaching method according to any one of (1) to (3), wherein bromine ions coexist in the gold leaching solution to increase the gold leaching speed.
(5) The gold leaching method according to (1) to (4), wherein the concentration of trivalent iron ions contained in the solution for leaching gold is 0.01 g / l or more. (6) Air is blown into the air during stirring. The gold leaching method according to any one of (1) to (5), wherein the reaction is continued by oxidizing divalent iron ions to trivalent with oxygen therein.

本発明は、以下の効果を有する。
(1)金を含有する硫化銅鉱を、塩素イオンと鉄イオンを含む水溶液で処理し、通常使用されるような過酸化水素や硝酸といった酸化剤やシアン、チオ尿素、チオ硫酸といった錯化試薬を使用することなく、金或いは銅を効率良く浸出することが出来る。
The present invention has the following effects.
(1) Copper sulfide ore containing gold is treated with an aqueous solution containing chlorine ions and iron ions, and an oxidizing agent such as hydrogen peroxide or nitric acid or a complexing reagent such as cyan, thiourea or thiosulfuric acid is used. Gold or copper can be efficiently leached without using it.

(2)金浸出に有効な塩素イオンと鉄イオンを使用して銅や鉄を含む硫化銅鉱中の銅、鉄も浸出することができるため、同一の溶液を使用して単一の工程で銅、鉄と金の浸出が可能となり工程を単一化できるため工程の短縮が図れる。このことにより設備費が節約できる。 (2) Since copper and iron in copper sulfide ores containing copper and iron can be leached using chlorine ions and iron ions effective for gold leaching, copper can be obtained in a single process using the same solution. Iron and gold can be leached and the process can be unified, so that the process can be shortened. This saves equipment costs.

(3)銅イオンや臭素イオン、あるいは両方のイオンを共存させることで金浸出反応を促進できるため、反応時間の短縮により反応槽が小さくなり設備費を節約できる。 (3) Since the gold leaching reaction can be promoted by the coexistence of copper ions, bromine ions, or both ions, the reaction tank can be reduced by reducing the reaction time, and the equipment cost can be saved.

(4)原料中に含まれ溶液中に浸出された鉄や銅も金浸出に利用できるため薬品代の節約となる。 (4) Since iron and copper contained in the raw material and leached into the solution can also be used for gold leaching, chemical costs can be saved.

(5)使用する塩素や臭素といった薬品のなかで高価なものは臭素イオンを提供する臭化物であるが、金濃度と比較して溶液中に多量に存在する銅や鉄のような金属元素に配位しても、各金属イオンを溶液中から回収する段階では臭素イオンとして溶液中に残すことが可能でほとんど消耗しない。
例えば、鉄は水酸化物として沈殿分離でき、銅は電解採取あるいは卑な金属と置換することで金属として回収できる。このような回収過程で臭素イオンは遊離され溶液中に残留する。
(5) Among the chemicals used, such as chlorine and bromine, which are expensive are bromides that provide bromine ions, but are distributed to metal elements such as copper and iron that are present in large amounts in the solution compared to the gold concentration. Even when the metal ions are removed, they can be left in the solution as bromine ions at the stage of recovering each metal ion from the solution and are hardly consumed.
For example, iron can be precipitated and separated as a hydroxide, and copper can be recovered as a metal by electrolytic collection or replacement with a base metal. During such a recovery process, bromine ions are released and remain in the solution.

(6)この金浸出反応は三価の鉄による酸化で行なわれ、金は塩化金あるいは臭化金として溶出される。銅は鉄の酸化を促進する。これらの鉄イオンや銅イオンは、反応によりそれぞれ二価の鉄イオンや一価の銅イオンに還元されるが、還元された二価の鉄イオンや一価の銅イオンは溶液中のプロトンと空気中の酸素により酸化でき再度酸化剤として利用できる。溶液のpHを1.9以下に維持することで、二価の鉄イオンや一価の銅イオンを酸化するためのプロトンを供給できる。 (6) This gold leaching reaction is carried out by oxidation with trivalent iron, and gold is eluted as gold chloride or gold bromide. Copper promotes the oxidation of iron. These iron ions and copper ions are reduced to divalent iron ions and monovalent copper ions by the reaction, respectively, but the reduced divalent iron ions and monovalent copper ions are the proton and air in the solution. It can be oxidized by oxygen in it and can be used again as an oxidizing agent. By maintaining the pH of the solution at 1.9 or lower, protons for oxidizing divalent iron ions and monovalent copper ions can be supplied.

(7)この金浸出反応は、塩化銅や塩化鉄の酸化領域で反応を行なうため、溶液の酸化電位は+480mV(銀/塩化銀標準電極基準)以上でよく、塩素ガスや臭素ガスのような+778mV(銀/塩化銀標準電極基準、水素電極基準で+1000mV)を超えるような高い酸化電位を示す薬品を必要としない。 (7) Since this gold leaching reaction takes place in the oxidation region of copper chloride and iron chloride, the oxidation potential of the solution may be +480 mV (silver / silver chloride standard electrode standard) or more, such as chlorine gas or bromine gas. It does not require chemicals exhibiting high oxidation potential exceeding +778 mV (standard for silver / silver chloride standard electrode, +1000 mV for hydrogen electrode standard).

(8)このような方法によって、薬品代の消耗がほとんどなく、酸化剤として腐食性や毒性をもつガスを使用することなく、金とともに銅や鉄あるいは硫黄を含有した原料を特段の前処理を施すことなく単一の工程で金を溶出することができる。 (8) With such a method, there is almost no consumption of chemicals, and there is no special pretreatment of raw materials containing copper, iron or sulfur together with gold without using corrosive or toxic gas as an oxidant. Gold can be eluted in a single step without application.

(9)また、塩素イオンや臭素イオンが溶解している溶液中で酸化により金属元素の溶出を行なうと反応の結果元素状硫黄が残留するが、硫酸溶液と異なり原料の表面を覆うことがなく、反応が進んでも原料は多孔質のままであるため溶出液が原料内部に浸透でき、反応が表面の不働態化によって停止することはない。("The Effect of Chloride Ions On The Dissolution Of Chalcopyrite
In Acid Solution”, Z. Y. Lu, etc., Hydrometallurgy, 56, 2000, pp189)。
(9) In addition, elemental sulfur remains as a result of reaction when metal elements are eluted by oxidation in a solution in which chlorine ions or bromine ions are dissolved, but unlike the sulfuric acid solution, the surface of the raw material is not covered. Even if the reaction proceeds, the raw material remains porous, so that the eluate can penetrate into the raw material, and the reaction is not stopped by the passivation of the surface. ("The Effect of Chloride Ions On The Dissolution Of Chalcopyrite
In Acid Solution ”, ZY Lu, etc., Hydrometallurgy, 56, 2000, pp189).

本発明は、金を含有する硫化銅鉱や金を含むケイ酸鉱を含有する硫化銅鉱を浸出し銅品位を7.9%以下にし、この浸出物を塩素イオンと三価の鉄イオンを共存させた溶液、あるいは、必要に応じてこの溶液に銅イオンや臭素イオンまたは両イオンを共存させた溶液に混合することで金を溶液中に溶出することができるものである。
このような硫化銅鉱中の銅を浸出するには、硫酸溶液中に酸素を吹き込んで酸化浸出を行うとか、塩化物溶液で塩化銅あるいは塩化鉄を添加し塩素ガスあるいは酸素を使用して酸化浸出を行う等種々の方法が提案されている。
硫化銅鉱中の銅を浸出するにはこれらのどの方法でも採用できるが、引き続き実施する金浸出を考慮すると、銅浸出後の固液分離の必要がない塩化浴で行うことが望ましい。塩化浴であれば、浸出により溶液中に溶出する鉄イオンあるいは銅イオンは、そのまま金浸出に利用できる。
The present invention is a solution in which copper sulfide ore containing gold or copper sulfide ore containing silicate ore containing gold is leached to a copper grade of 7.9% or less, and this leachate is a solution in which chlorine ions and trivalent iron ions coexist. Alternatively, gold can be eluted into the solution by mixing with a solution in which copper ions, bromine ions, or both ions coexist in this solution as necessary.
In order to leach copper in such copper sulfide ore, oxygen leaching is performed by blowing oxygen into a sulfuric acid solution, or copper chloride or iron chloride is added to a chloride solution and chlorine gas or oxygen is used to leaching. Various methods have been proposed, such as performing the above.
Any of these methods can be employed for leaching the copper in the copper sulfide ore, but considering the subsequent gold leaching, it is desirable to perform in a chloride bath that does not require solid-liquid separation after copper leaching. In the case of a chlorination bath, iron ions or copper ions eluted into the solution by leaching can be used as they are for gold leaching.

銅精鉱中に存在する量の金を浸出するには適切な酸化剤と、浸出した金が再
び還元されて金属金として沈殿しないための安定化剤が必要である。本発明では塩素イオンを利用して塩化金を生成することで安定的に金を溶出するが、臭素イオンを使用する場合、臭化金を生成することで金浸出をさらに容易することができる。
In order to leach out the amount of gold present in the copper concentrate, a suitable oxidizing agent and a stabilizer to prevent the leached gold from being reduced again and precipitated as metallic gold are required. In the present invention, gold is stably eluted by producing gold chloride using chlorine ions, but when bromine ions are used, gold leaching can be further facilitated by producing gold bromide.

塩化物を溶液中に溶解した塩化浴とよばれる溶液中では、反応の酸化電位は
水系の場合と比べて変化する。
例えば、Au3+/Au(Au3++3e→Auの酸化還元系を示す。以下同じ)の標準酸化電位は水系では1500mVであるが、塩化浴ではAuCl4 /Auは1000mVに低下する("Dissolution
Chemistry of Gold and Silver in Different Lixiviants”, J. Brent Hiskey and V.
P. Atluri, Nineral Processing and Extractive Metallurgy Review, pp95, Vol. 4,
1988)。このことは、水系より低い酸化力の酸化剤で金を溶出できることを示している。さらに、臭化金の場合、AuBr4 /Auで表される標準酸化電位は870mVとさらに低下する("Refractory
Concentrate Gold Leaching;Cyanide vs. Bromine”, A. Dadgar, JOM, December, pp37,
1989)。
このため、金の塩化錯体あるいは臭化錯体を形成することで低酸化力の酸化剤で金を浸出できる可能性が示唆されていた。
In a solution called a chloride bath in which chloride is dissolved in the solution, the oxidation potential of the reaction changes compared to the case of an aqueous system.
For example, the standard oxidation potential of Au 3+ / Au (Au 3+ + 3e → Au represents the redox system; the same applies hereinafter) is 1500 mV in the aqueous system, but AuCl 4 / Au decreases to 1000 mV in the chloride bath. ("Dissolution
Chemistry of Gold and Silver in Different Lixiviants ”, J. Brent Hiskey and V.
P. Atluri, Nineral Processing and Extractive Metallurgy Review, pp95, Vol. 4,
1988). This indicates that gold can be eluted with an oxidizing agent having a lower oxidizing power than that of an aqueous system. Furthermore, in the case of gold bromide, the standard oxidation potential expressed by AuBr 4 / Au is further reduced to 870 mV (“Refractory”
Concentrate Gold Leaching; Cyanide vs. Bromine ”, A. Dadgar, JOM, December, pp37,
1989).
For this reason, it has been suggested that gold can be leached with an oxidizing agent having a low oxidizing power by forming a gold chloride complex or bromide complex.

しかしながら、塩化錯体を形成する標準酸化電位でも1000mVを示すため、金の塩化物錯体あるいは臭化物錯体を利用した浸出でも、通常は、過酸化水素、塩素ガスあるいは臭素ガスのような、標準酸化電位で1000mVを超えるような酸化力をもつ酸化剤やこれに近い酸化電位(960mV)を示す硝酸を使用していた。 However, since the standard oxidation potential for forming a chloride complex is 1000 mV, leaching using a gold chloride complex or bromide complex is usually performed at a standard oxidation potential such as hydrogen peroxide, chlorine gas or bromine gas. An oxidizing agent having an oxidizing power exceeding 1000 mV or nitric acid showing an oxidation potential close to this (960 mV) was used.

発明者らは、塩素イオンを含む水溶液を使用すれば酸化剤としては三価の鉄イオンで十分であり、従来と比較して非常に低い酸化電位で金浸出が可能なことを発見した。さらに、臭素イオンを添加すればさらに低い酸化電位での金浸出が可能となり、結果的には金浸出の反応速度が速くなることを発見した。 The inventors have found that if an aqueous solution containing chlorine ions is used, trivalent iron ions are sufficient as the oxidizing agent, and gold leaching can be performed at a very low oxidation potential as compared with the prior art. Furthermore, it has been discovered that the addition of bromine ions enables gold leaching at a lower oxidation potential, resulting in a faster gold leaching reaction rate.

この反応に使用するための臭素イオン濃度は、臭化金を生成するとともに溶出した金が錯体を形成するために必要であり溶出する金濃度にも依存するが、共存する塩化ナトリウム濃度の影響も受けるため溶解度の上限が存在する。溶解度を考慮すると1から80g/lとなるが、薬品の経済的な使用量を考えると10から26g/l程度が望ましい。 The bromine ion concentration to be used in this reaction is necessary for producing gold bromide and eluting gold to form a complex, and it depends on the eluting gold concentration. There is an upper limit of solubility to receive. Considering the solubility, it is 1 to 80 g / l, but considering the economical usage of chemicals, it is preferably about 10 to 26 g / l.

塩素イオンは、塩化金を生成するとともに金の塩化錯体を形成し金を溶出させるために添加する。また、銅を添加して鉄の酸化反応を促進するためには、反応により生成する第一銅を安定に存在させる必要があり、この目的でも添加する。その濃度としては、1〜6.5mol/lであるが、第一銅の安定性を考えると3.3mol/l(118g/l)〜5.2mol/l(186g/l)が好ましい。5.2mol/lを超える場合、反応によって金属イオン濃度が高くなると塩化ナトリウムの結晶として析出するため、溶液中の濃度は上がらなくなる。 Chlorine ions are added to form gold chloride and form a gold chloride complex to elute gold. Moreover, in order to promote the oxidation reaction of iron by adding copper, it is necessary to make the cuprous produced | generated by reaction exist stably, and also adds for this purpose. The concentration is from 1 to 6.5 mol / l, but considering the stability of cuprous, it is preferably from 3.3 mol / l (118 g / l) to 5.2 mol / l (186 g / l). When it exceeds 5.2 mol / l, if the metal ion concentration is increased by the reaction, it precipitates as sodium chloride crystals, and the concentration in the solution cannot be increased.

鉄イオン濃度は0.01g/l以上であれば金浸出は可能であるが、反応性をよくするためには高いほうがよい。しかしながら、0.26g/l以上になっても特段に反応性がかわることはないが、この濃度で金の浸出速度に対する鉄濃度の効果は最大となるため、0.26g/l付近の濃度が好ましい。
また、原料が鉄を含有する場合には、原料から浸出された鉄は酸化剤として作用するため、必ずしも前もって添加しておく必要はない。
Gold leaching is possible if the iron ion concentration is 0.01 g / l or more, but it is better to improve the reactivity. However, although the reactivity does not change particularly even when it is 0.26 g / l or more, the effect of the iron concentration on the gold leaching rate is maximized at this concentration, and therefore a concentration around 0.26 g / l is preferable.
Further, when the raw material contains iron, iron leached from the raw material acts as an oxidizing agent, and therefore it is not always necessary to add it in advance.

銅イオンは金浸出に直接関与しないが、銅イオンが存在することで鉄イオンの酸化速度が速くなるため、添加することが望ましい。その濃度は特に規定するものではないが、5〜20g/l程度存在すれば十分である。 Although copper ions are not directly involved in gold leaching, the presence of copper ions increases the oxidation rate of iron ions, so it is desirable to add them. The concentration is not particularly specified, but it is sufficient if it is present at about 5 to 20 g / l.

硫化銅鉱中の銅品位を7.9%以下まで低下させた浸出残渣を、三価の鉄イオンと塩素イオンを含む溶液に混合すれば浸出残渣中の金浸出が可能となる。
この反応の要点は、三価の鉄と二価の鉄の活量比([a(Fe3+)]/[a(Fe2+)])で決まる溶液の酸化還元電位を金の塩化錯体あるいは臭化錯体の生成電位より高く保つことである。
反応の進行によって三価の鉄と二価の鉄の活量比([a(Fe3+)]/[a(Fe2+)])が低下する場合には、酸素を溶液中に吹き込み、溶液中に存在するプロトンとの反応で反応式3によって三価の鉄濃度を高くし溶液の酸化還元電位を維持できる。酸素は空気中に含まれる酸素で十分である。
Fe2++H++(1/4)O2→Fe3++(1/2)H2O 反応式1
If a leaching residue whose copper grade in copper sulfide ore is reduced to 7.9% or less is mixed with a solution containing trivalent iron ions and chlorine ions, gold leaching in the leaching residue becomes possible.
The main point of this reaction is that the redox potential of the solution determined by the activity ratio of trivalent iron to divalent iron ([a (Fe 3+ )] / [a (Fe 2+ )]) is the gold chloride complex. Alternatively, it should be kept higher than the formation potential of the bromide complex.
If the activity ratio of trivalent iron to divalent iron ([a (Fe 3+ )] / [a (Fe 2+ )]) decreases as the reaction proceeds, oxygen is blown into the solution, By the reaction with protons present in the solution, the trivalent iron concentration can be increased by the reaction formula 3 to maintain the redox potential of the solution. As oxygen, oxygen contained in air is sufficient.
Fe 2+ + H + + (1/4) O 2 → Fe 3+ + (1/2) H 2 O Reaction formula 1

塩酸等の酸を添加することでプロトンは供給できる。酸化反応が進めばプロトンは消費され溶液のpHが上昇するため、塩酸等の酸を添加して溶液のpHを一定にすることで反応式1の反応は可能となる。
そのpHは1.9以下であればよいが、鉄の酸化速度は高いpHの方が促進されるため、pH
0.5〜1.9の範囲が望ましい。
Protons can be supplied by adding an acid such as hydrochloric acid. As the oxidation reaction proceeds, protons are consumed and the pH of the solution rises. Therefore, by adding an acid such as hydrochloric acid to make the pH of the solution constant, the reaction of Reaction Formula 1 becomes possible.
The pH should be 1.9 or less, but since the oxidation rate of iron is accelerated at higher pH,
A range of 0.5 to 1.9 is desirable.

さらに、鉄や銅といった元素が原料中に存在する場合には、塩化第二鉄あるいは塩化第二銅でこれらの元素を水溶液中に溶出することができ、これらの元素の溶出がほぼ終了した時点から金の浸出を始めることができる。 Furthermore, when elements such as iron and copper are present in the raw material, these elements can be eluted into the aqueous solution with ferric chloride or cupric chloride, and the elution of these elements is almost complete. You can start leaching gold.

塩素イオンや臭素イオンは金と錯体を形成することで金の酸化電位を低下させるために存在しており、ガス化や沈殿生成のような反応はないため溶液中に残留し、なくなることはない。また、塩素ガスや臭素ガスを使用しないため、これらの成分の大気中への逸散もない。
銅や鉄といった金属元素に配位した場合でも、銅の場合は還元で、鉄の場合は加水分解で臭素イオンを遊離できるため損失にはならない。
Chlorine and bromine ions exist to reduce the oxidation potential of gold by forming a complex with gold, and there is no reaction such as gasification or precipitation, so it remains in the solution and will not disappear. . Moreover, since chlorine gas and bromine gas are not used, there is no escape of these components into the atmosphere.
Even when coordinated to a metal element such as copper or iron, bromine ions can be liberated by reduction in the case of copper and by hydrolysis in the case of iron, so there is no loss.

臭素イオンは臭化ナトリウムのような形態で添加し、その濃度は高いほど望ましいが、同時に添加する塩素イオン濃度の影響と温度の影響をうけ溶解度が変化するため、実用的には臭素イオン濃度で1〜50g/l、好ましくは10〜25g/lでよい。 Bromine ions are added in the form of sodium bromide, and the higher the concentration, the better. However, since the solubility changes due to the influence of the added chlorine ion concentration and the temperature, the bromine ion concentration is practically used. It may be 1 to 50 g / l, preferably 10 to 25 g / l.

酸化剤として使用する鉄や銅といった金属元素、特に銅は酸化反応後塩化第一銅となりこれを安定化するために塩化ナトリウムのような形態で塩素イオンをあらかじめ添加しておく。
その濃度は、塩化鉄や塩化銅に含まれる塩素イオン濃度を含めた全塩素イオン濃度で1〜6.5mol/l、好ましくは3〜6mol/lになるよう調整する。塩化ナトリウムの溶解度は塩化銅濃度と鉄濃度の影響をうけるため、高濃度にしておくと反応の結果銅や鉄が溶出すると塩化ナトリウムの結晶が生成することになる。
Metal elements such as iron and copper used as the oxidizing agent, particularly copper, become cuprous chloride after the oxidation reaction, and chlorine ions are added in advance in the form of sodium chloride in order to stabilize it.
The concentration is adjusted to be 1 to 6.5 mol / l, preferably 3 to 6 mol / l in terms of total chlorine ion concentration including chlorine ion concentration contained in iron chloride or copper chloride. Since the solubility of sodium chloride is affected by the copper chloride concentration and the iron concentration, if the concentration is kept high, if copper or iron is eluted as a result of the reaction, crystals of sodium chloride are produced.

金を溶出するための酸化剤として溶液中に鉄イオンを添加するが、その濃度は鉄濃度として0.01〜0.26g/l程度で十分である。これ以上の濃度であっても反応に対する効果は変わらないが、これ以上の濃度で存在しても反応を阻害するものではない。また、原料が鉄を含みこの鉄が溶出するような場合にはまえもって添加しておく必要はない。
銅イオンは、それ自体が酸化剤として働くと同時に、二価の鉄イオンを酸化するために触媒的にも働く。本来、二価の鉄の酸化速度は非常に遅いが、銅イオンが共存することで酸化速度は促進される。また、銅イオンが塩化銅として存在することで、原料中に存在する鉄や銅の硫化物を浸出し効率的な金浸出が可能となる。塩化第二銅によって硫化銅が浸出されると、反応式2〜4に示すように、塩化第二銅は塩化第一銅となる。
CuS+CuCl2→2CuCl+2S 反応式2
Cu2S+2CuCl2→4CuCl+S 反応式3
CuFeS2+3CuCl2→4CuCl+FeCl2+S 反応式4
この第一銅を溶液中で安定に存在させることでこの浸出反応は進行する。この塩化第一銅を安定化させるためにも前記のような塩素イオン濃度が必要である。
Iron ions are added to the solution as an oxidizing agent for eluting gold, and the concentration of iron is about 0.01 to 0.26 g / l. Even if the concentration is higher than this, the effect on the reaction does not change, but even if the concentration is higher than this, the reaction is not inhibited. Further, when the raw material contains iron and this iron is eluted, it is not necessary to add it in advance.
Copper ions act as oxidants themselves and at the same time act catalytically to oxidize divalent iron ions. Originally, the oxidation rate of divalent iron is very slow, but the oxidation rate is accelerated by the coexistence of copper ions. Further, since copper ions are present as copper chloride, iron or copper sulfide existing in the raw material can be leached to enable efficient gold leaching. When copper sulfide is leached by cupric chloride, cupric chloride becomes cuprous chloride as shown in Reaction Formulas 2-4.
CuS + CuCl 2 → 2CuCl + 2S Reaction formula 2
Cu 2 S + 2CuCl 2 → 4CuCl + S Reaction formula 3
CuFeS 2 + 3CuCl 2 → 4CuCl + FeCl 2 + S Reaction formula 4
The leaching reaction proceeds when the cuprous is present stably in the solution. In order to stabilize the cuprous chloride, the chlorine ion concentration as described above is necessary.

このように調整した液に原料を加え温度が80℃以上になるよう加熱した後、空気を吹き込みながら撹拌する。
さらに、反応中は塩酸を添加して、pHが1.9以下、できれば0.5〜1.9の間に入るように調整する。このようなpHにすることで鉄の酸化速度を速くできる。溶液中の鉄はpHに応じて水酸化物として沈殿するが沈殿によってプロトン(式中はHClで表現)を遊離し(反応式5、6)このプロトンは第一銅あるいは第一鉄の酸化に有効に利用できる。
FeCl3+3H2O→Fe(OH)3+3HCl 反応式5
FeCl3+2H2O→FeOOH+3HCl 反応式6
金を浸出するための酸化剤として三価の鉄イオンを使用し、鉄イオンの酸化を促進するために銅イオンを利用するが、これらのイオンはそれぞれが酸化反応を起こすことによって鉄は二価の鉄イオンに銅は一価の銅イオンに還元される。しかしながら、反応式1や反応式7によって鉄は三価に銅は二価に酸化でき浸出反応を継続することができる。
Cu++H++(1/4)O2→Cu2++(1/2)H2O 反応式7
さらに、ここで消費される酸素は空気中の酸素で十分であることは周知である。
The raw material is added to the liquid thus adjusted and heated to a temperature of 80 ° C. or higher, and then stirred while blowing air.
Further, during the reaction, hydrochloric acid is added to adjust the pH to be 1.9 or less, preferably 0.5 to 1.9. By making such a pH, the oxidation rate of iron can be increased. Iron in the solution precipitates as a hydroxide depending on the pH, but a proton (expressed in HCl in the formula) is released by precipitation (Reaction Formulas 5 and 6). This proton is used for oxidation of cuprous or ferrous iron. It can be used effectively.
FeCl 3 + 3H 2 O → Fe (OH) 3 + 3HCl Reaction formula 5
FeCl 3 + 2H 2 O → FeOOH + 3HCl Reaction formula 6
Trivalent iron ions are used as an oxidant for leaching gold, and copper ions are used to promote the oxidation of iron ions. These ions cause an oxidation reaction so that iron is divalent. Copper is reduced to monovalent copper ions. However, according to Reaction Formula 1 and Reaction Formula 7, iron can be oxidized to trivalent and copper can be oxidized to bivalent, and the leaching reaction can be continued.
Cu + + H + + (1/4) O 2 → Cu 2+ + (1/2) H 2 O Reaction formula 7
Furthermore, it is well known that oxygen in the air is sufficient in the air.

(実施例1)
塩化第二銅を銅濃度として25g/l、塩化第二鉄を鉄濃度として2g/l、塩素イオン濃度を塩化銅、塩化鉄の塩素イオンを含めた全塩素イオン濃度として180g/l、臭化ナトリウムを臭素イオンとして22g/lの濃度の液を作成し浸出液として使用した。原料として、Cu
31.7%、Fe 17.5%、S 22.1%、Au 66g/tという組成をもつ銅精鉱1,260gを使用し、前記の浸出液9Lに添加した。
この銅精鉱は銅源として、カルコパイライト(CuFeS2)を15%、カルコサイト(Cu2S)35%含み、そのほかにケイ酸鉱18%、パイライト(FeS2)32%からなるものである。金はパイライトに全体の15%が存在し、残り85%はその他の鉱物全体に存在している。
(Example 1)
Cupric chloride at 25 g / l as copper concentration, ferric chloride at 2 g / l as iron concentration, chloride ion concentration as copper chloride, total chloride ion concentration including chloride ions in iron chloride as 180 g / l, bromide A solution having a concentration of 22 g / l with sodium as bromine ion was prepared and used as a leachate. As raw material, Cu
1,260 g of copper concentrate having a composition of 31.7%, Fe 17.5%, S 22.1%, and Au 66 g / t was used and added to 9 L of the above leachate.
This copper concentrate contains 15% chalcopyrite (CuFeS 2 ) and 35% chalcosite (Cu 2 S) as a copper source, and is composed of 18% silicate ore and 32% pyrite (FeS 2 ). . Gold is present in pyrite in 15% of the total, and the remaining 85% in all other minerals.

浸出液を85℃に昇温後撹拌しながら原料の精鉱を投入した後、空気を吹き込みながら、さらに撹拌を継続しながらサンプルを採取し、溶液中の金濃度と浸出されないで残留している浸出残渣中の銅品位を分析した。その結果を表1に示す。

Figure 2008106347
実施例1からあきらかなように、残渣中の銅品位が低下するにつれ金浸出が始まり溶液中の金濃度が高くなる。また、残渣中の銅品位が7.9%になったときには金浸出は始まっており、1.2%以降では顕著であることはこの例を図示した図1であきらかである。このとき、2.8%以下の銅品位での測定値の近似線は、[Au濃度
mg/l]=0.1900-0.3993×log[残渣中Cu品位 %]となり、金濃度0mg/lの横軸との交点は3.0%となる。このことから、残渣中銅品位3.0%以下での金浸出は顕著になるが、実質的には表1に示すように残渣中の銅品位は7.9%以下で金浸出は可能である。
さらに、この反応はせいぜい533mV程度で行われており、従来のように1000mVを超えるような高い酸化電位を示す酸化剤は使用する必要はない。 The temperature of the leachate is raised to 85 ° C, and then the raw material concentrate is added while stirring. Then, while blowing air, the sample is taken while continuing stirring, and the gold concentration in the solution and the leaching remaining without being leached The copper grade in the residue was analyzed. The results are shown in Table 1.
Figure 2008106347
As is clear from Example 1, as the copper quality in the residue decreases, gold leaching begins and the gold concentration in the solution increases. Further, as shown in FIG. 1 illustrating this example, gold leaching has begun when the copper quality in the residue has reached 7.9% and is remarkable after 1.2%. At this time, the approximate line of the measured value at a copper grade of 2.8% or less is [Au concentration
mg / l] = 0.1900-0.3993 × log [Cu quality in residue%], and the intersection with the horizontal axis of gold concentration 0 mg / l is 3.0%. From this, the gold leaching becomes remarkable at a copper grade of 3.0% or less in the residue, but as shown in Table 1, the copper leaching is practically possible at a copper grade of 7.9% or less.
Furthermore, this reaction is carried out at a maximum of about 533 mV, and it is not necessary to use an oxidizing agent having a high oxidation potential exceeding 1000 mV as in the prior art.

(実施例2)
塩化第二銅を銅濃度として31g/l、塩素イオン濃度を塩化銅、塩化鉄の塩素イオンを含めた全塩素イオン濃度として186g/l、臭化ナトリウムを臭素イオンとして26g/lの濃度の液を作成し浸出液として使用した。原料として、Cu
15%、Fe 19%、S 17%、Au 82g/tという組成をもつ銅精鉱712gを使用し、前記の浸出液10Lに添加した。
浸出液を85℃に昇温後撹拌しながら原料の精鉱を投入し、空気を吹き込みながら浸出を実施した。pHは0.5〜2の範囲に入るよう塩酸を添加して調整した。この実施例の結果を表2に示す。

Figure 2008106347
この例で示すように、浸出開始時の銅品位が7.9%を越える場合でも、鉄が溶液中に存在する場合(途中0.7時間の液中鉄濃度の分析値が示す値)には、空気を吹き込むことで残渣中の銅品位が7.9%以下になった時点で金浸出が行われる。 (Example 2)
Liquid with a cupric chloride concentration of 31 g / l, a chloride ion concentration of copper chloride, a total chloride ion concentration including chloride ions of iron chloride, 186 g / l, and sodium bromide as a bromide concentration of 26 g / l Was used as a leachate. As raw material, Cu
Using 712 g of copper concentrate having a composition of 15%, Fe 19%, S 17%, and Au 82 g / t, it was added to the 10 L of the leachate.
After the temperature of the leachate was raised to 85 ° C, the raw material concentrate was added while stirring, and leaching was performed while blowing air. The pH was adjusted by adding hydrochloric acid to be in the range of 0.5-2. The results of this example are shown in Table 2.
Figure 2008106347
As shown in this example, even when the copper quality at the start of leaching exceeds 7.9%, when iron is present in the solution (the value indicated by the analysis value of the iron concentration in the solution for 0.7 hour on the way) Gold leaching takes place when the copper grade in the residue falls below 7.9% by blowing air.

(実施例3)
硫化銅鉱(Cu 22.1%, Fe 23.4%, S 29.1%, Au
73g/t)524gを、臭素イオンを添加していない浸出液4Lに混合し、85℃まで加温して空気を吹き込みながら浸出を行った。浸出液の組成は、塩化第二銅を銅濃度として5.1g/l、塩化第二鉄を鉄濃度として5.1g/l、食塩を添加して塩素濃度126g/lとした。20時間の反応毎に濾過を実施し、濾別した浸出残渣を同組成の新たな浸出液に混合して浸出を継続した。この測定結果を表3に示す。

Figure 2008106347
この例でみられるように、臭素イオンがなくても銅品位が低下することで金を浸出することはできる。ただし、溶出した金は若干不安定らしく残渣中の金品位は変動する。 (Example 3)
Copper sulfide ore (Cu 22.1%, Fe 23.4%, S 29.1%, Au
73 g / t) 524 g was mixed with 4 L of leachate to which bromine ions were not added, and the mixture was heated to 85 ° C. and leached while blowing air. The composition of the leachate was cupric chloride as the copper concentration of 5.1 g / l, ferric chloride as the iron concentration of 5.1 g / l, and salt added to a chlorine concentration of 126 g / l. Filtration was performed every reaction for 20 hours, and the leaching residue separated by filtration was mixed with a new leaching solution having the same composition, and leaching was continued. The measurement results are shown in Table 3.
Figure 2008106347
As can be seen in this example, gold can be leached even if there is no bromine ion due to a decrease in copper quality. However, the eluted gold seems to be slightly unstable, and the gold quality in the residue varies.

(実施例4)
銅品位を前もって低下させた硫化銅鉱(Cu 0.23%、Fe 34%、S 42%、Au
20g/t)438gを、塩化第二鉄と食塩、臭化ナトリウムで鉄濃度5.7g/l、塩素濃度183g/l、臭素濃度24g/lに調整した液と混合して金浸出を実施した。浸出液の交換はなく継続して浸出反応を実施したが、途中、3時間を経過した時点で塩化第二銅を銅濃度で5g/l相当添加した。反応中は溶液中に空気を吹き込んでいる。

Figure 2008106347
この例では、金属イオンとして鉄イオンだけを添加した場合3時間の反応時間では残渣品位にして3g/t分の金を浸出するにすぎないが、銅イオンを添加すると1時間でほぼ同程度の金を浸出できることを示している。液中金濃度についても、鉄イオンだけで3時間の反応をおこなって0.76mg/lまで上昇したが、銅イオンを添加すれば1時間で同程度の濃度上昇となり、残渣品位の変化からみた状況を裏付けている。
したがって、銅イオンの添加は金浸出速度を速くするものといえる。 Example 4
Copper sulfide ore with previously reduced copper grade (Cu 0.23%, Fe 34%, S 42%, Au
20 g / t) 438 g was mixed with a solution of ferric chloride and sodium chloride, adjusted to an iron concentration of 5.7 g / l, a chlorine concentration of 183 g / l, and a bromine concentration of 24 g / l with sodium bromide, and gold leaching was performed. The leaching reaction was carried out continuously without exchanging the leaching solution, but cupric chloride was added at a copper concentration equivalent to 5 g / l after 3 hours. During the reaction, air is blown into the solution.
Figure 2008106347
In this example, when only iron ions are added as metal ions, the reaction time of 3 hours only leaches 3 g / t of gold in the form of residue, but when copper ions are added, it is about the same in 1 hour. It shows that gold can be leached. The concentration of gold in the liquid also rose to 0.76 mg / l after reacting for 3 hours with iron ions alone. However, the addition of copper ions resulted in a similar increase in concentration in 1 hour, as seen from changes in residue quality. Is backed up.
Therefore, the addition of copper ions can be said to increase the gold leaching rate.

(実施例5)
実施例3で使用したものと同じ硫化銅鉱524gと、同様の組成の液に臭素を添加したもの4Lを浸出液として金の浸出試験を実施した。浸出液の組成は、塩化第二銅を銅濃度として4.8g/l、塩化第二鉄を鉄濃度として4.9g/l、食塩を添加して塩素濃度118g/lとし、浸出開始後銅品位が低下する20時間までは臭素を添加せずに浸出を行ない銅品位の影響がなくなったところで臭素イオンを添加した。臭素濃度は臭化ナトリウムを添加して22〜25g/lとした。また、実施例3と同様に、20時間毎に濾過を実施し浸出残渣は継続して使用し、浸出液は新液を使用した。この結果を表5に示す。





Figure 2008106347
臭素を添加していない実施例3の場合、金品位は80時間の浸出で36g/tまで低下した。一方、塩素イオンが存在する溶液に臭素イオンを添加した実施例5の場合には、80時間後に21g/tまで低下し、臭素イオン添加後だけでも60時間の間に45g/t分低下している。この比較を図2に示す。
これは金の浸出速度としては0.75g/t/hrとなり、臭素イオンがない場合の0.46g/t/hrに比較して1.6倍近い浸出速度となっている。さらに、残渣中の金品位は順次低下しており、臭素イオンが存在するほうが金錯体の安定度が高いと考えられる。 (Example 5)
The gold leaching test was conducted using 524 g of the same copper sulfide ore as used in Example 3 and 4 L of bromine added to a liquid having the same composition as the leaching liquid. The composition of the leachate was 4.8 g / l with cupric chloride as the copper concentration, 4.9 g / l with ferric chloride as the iron concentration, and the salt concentration was 118 g / l with the addition of sodium chloride. For 20 hours, leaching was carried out without adding bromine, and bromine ions were added when the influence of copper quality disappeared. The bromine concentration was adjusted to 22-25 g / l by adding sodium bromide. Further, as in Example 3, filtration was carried out every 20 hours, the leaching residue was continuously used, and a new liquid was used as the leaching solution. The results are shown in Table 5.





Figure 2008106347
In Example 3 where no bromine was added, the gold quality decreased to 36 g / t after 80 hours of leaching. On the other hand, in the case of Example 5 in which bromine ions were added to a solution containing chlorine ions, it decreased to 21 g / t after 80 hours, and decreased by 45 g / t for 60 hours just after addition of bromine ions. Yes. This comparison is shown in FIG.
This is 0.75 g / t / hr as the gold leaching rate, which is nearly 1.6 times that of 0.46 g / t / hr in the absence of bromide ions. Furthermore, the gold quality in the residue is gradually decreasing, and it is considered that the stability of the gold complex is higher when bromine ions are present.

(実施例6)
硫化銅鉱を浸出し、金浸出に影響しない程度に銅品位を低下させた浸出残渣(Cu 12%,
Fe 26%, S 31%, Au 50g/t)を使用し、塩化第二銅、食塩、臭化ナトリウムを溶解した液(Cu 28.8g/l、Cl 166g/l、Br
20.6g/l)を使用し、鉄濃度だけを変化させて鉄濃度の影響を検討した。鉄濃度の調整は、水酸化ナトリウム水溶液あるいは塩酸を添加してpHを変化させることで行った。浸出時は空気を吹き込みながら、温度85℃に維持して15時間の撹拌を行った。その結果を表6に示す。








Figure 2008106347
この結果から、浸出液中の鉄濃度を横軸にとり残渣中の金品位を縦軸としてプロットしたものが図3である。ただし、横軸は対数で表示してある。
この図からは、鉄濃度が0.01g/l以上であれば金は浸出でき、鉄濃度がある値になるまでは鉄濃度の上昇に従い同一時間での残渣中の金品位が低下する。このことは、鉄濃度の上昇に伴い浸出速度は増加するが、ある鉄濃度以上になると反応速度には影響しないことを示している。この鉄濃度は図中に記入した二本の直線の交点で表され、0.26g/lとなる。
したがって、この金浸出方法では鉄濃度は0.01g/l以上であれば浸出は行われ鉄濃度は高いほど浸出時間を短縮でき効果的であるが、0.26g/l以上になると効果は変わらない。ただし、鉄濃度が0.26g/l以上でも浸出を阻害するものではない。
反応中は空気を吹き込むことにより、溶液中の鉄は三価のイオンで存在しておりその溶解度はpHに依存する。実施例6の結果から鉄濃度に対するpHの影響をプロットしたものが図4である。この図から明らかなようにpHが高くなるにつれ鉄濃度は低下する。したがって、金浸出に必要な鉄濃度を確保するには表6の結果よりpHは1.9以下でなくてはならない。 (Example 6)
Leaching residue (Cu 12%, Cu 12%, copper sulfide ore was leached and copper grade was lowered to such an extent that gold leaching was not affected.
Fe 26%, S 31%, Au 50g / t), a solution of cupric chloride, sodium chloride and sodium bromide (Cu 28.8g / l, Cl 166g / l, Br
20.6 g / l) was used, and the effect of iron concentration was examined by changing only the iron concentration. The iron concentration was adjusted by changing the pH by adding aqueous sodium hydroxide or hydrochloric acid. At the time of leaching, stirring was performed for 15 hours while maintaining the temperature at 85 ° C. while blowing air. The results are shown in Table 6.








Figure 2008106347
From this result, FIG. 3 is a plot of the iron concentration in the leachate on the horizontal axis and the gold quality in the residue on the vertical axis. However, the horizontal axis is displayed in logarithm.
From this figure, gold can be leached if the iron concentration is 0.01 g / l or more, and the gold quality in the residue at the same time decreases with increasing iron concentration until the iron concentration reaches a certain value. This indicates that the leaching rate increases as the iron concentration increases, but the reaction rate is not affected when the iron concentration exceeds a certain level. This iron concentration is represented by the intersection of the two straight lines entered in the figure and is 0.26 g / l.
Therefore, in this gold leaching method, leaching is performed if the iron concentration is 0.01 g / l or more, and the leaching time can be shortened as the iron concentration is higher. However, the effect does not change when the iron concentration is 0.26 g / l or more. However, leaching is not inhibited even if the iron concentration is 0.26 g / l or more.
By blowing air during the reaction, iron in the solution exists as trivalent ions, and its solubility depends on pH. FIG. 4 is a plot of the effect of pH on iron concentration from the results of Example 6. As is apparent from this figure, the iron concentration decreases as the pH increases. Therefore, in order to secure the iron concentration necessary for gold leaching, the pH must be 1.9 or less from the results in Table 6.

は、金浸出に対する銅品位の影響を示す。Shows the effect of copper grade on gold leaching. は、金浸出に対する臭素イオンの影響を示す。Shows the effect of bromine ions on gold leaching. は、金浸出に対する鉄濃度の影響を示すShows the effect of iron concentration on gold leaching は、鉄濃度に対するpHの影響を示すShows the effect of pH on iron concentration

Claims (6)

金を含有する硫化銅鉱や金を含むケイ酸鉱を含有する硫化銅鉱を硫化銅鉱中の銅品位が7.9%以下になるまで銅を浸出し、
銅品位が7.9%以下になった金を含有する硫化銅鉱や金を含むケイ酸鉱を含有する硫化銅鉱を塩素イオンと第二鉄イオンを溶解した溶液に混合する、
あるいは塩素イオンと鉄イオンを含む溶液に空気を吹き込み空気中の酸素で鉄イオンを酸化して三価にできる状態で混合し、
そのpHを1.9以下に調整しながら撹拌し、第二鉄イオンの酸化力によって少なくとも金を溶液中に溶解することを特徴とする金の浸出方法。
Copper leaching copper sulfide ores containing gold or silicate ores containing gold until the copper grade in the copper sulfide ores is 7.9% or less,
Mixing copper sulfide ore containing gold with a copper grade of 7.9% or less or copper sulfide ore containing silicate ore containing gold into a solution in which chlorine ions and ferric ions are dissolved,
Alternatively, air is blown into a solution containing chlorine ions and iron ions, and iron ions are oxidized with oxygen in the air and mixed in a trivalent state.
A gold leaching method comprising stirring while adjusting the pH to 1.9 or less and dissolving at least gold in the solution by the oxidizing power of ferric ions.
金を含有する硫化銅鉱や金を含むケイ酸鉱を含有する硫化銅鉱
を硫化銅鉱中の銅品位が7.9%以下になるまで銅を浸出し、
浸出した溶液が塩素イオンと鉄イオンを含む場合、
その溶液に空気を吹き込み空気中の酸素で鉄イオンを酸化して三価にし、そのpHを1.9以下に調整しながら引き続き撹拌することで、三価の鉄イオンの酸化力によって少なくとも金を溶液中に溶解することを特徴とする金の浸出方法。
Copper leaching copper sulfide ores containing gold or silicate ores containing gold until the copper grade in the copper sulfide ores is 7.9% or less,
If the leached solution contains chloride and iron ions,
Air is blown into the solution to oxidize iron ions with oxygen in the air to make it trivalent, and by stirring continuously while adjusting the pH to 1.9 or less, at least gold is brought into solution by the oxidizing power of the trivalent iron ions. A method for leaching gold, which is dissolved in
金を浸出する溶液に銅イオンを共存させて金の浸出速度を速くする請求項1あるいは請求項2に記載の金の浸出方法。 The gold leaching method according to claim 1 or 2, wherein the gold leaching speed is increased by causing copper ions to coexist in the gold leaching solution. 金を浸出する溶液に臭素イオンを共存させて金の浸出速度を早くする請求項1から3に記載の金の浸出方法。 4. The gold leaching method according to claim 1, wherein bromine ions coexist in the gold leaching solution to increase the gold leaching speed. 金を浸出する溶液に含まれる鉄イオン濃度が0.01g/l以上である請求項1から4に記載の金の浸出方法 The gold leaching method according to claim 1, wherein the concentration of iron ions contained in the gold leaching solution is 0.01 g / l or more. 撹拌中に空気を吹き込み、空気中の酸素で二価の鉄イオンを三価に酸化して反応を継続させる請求項1から5に記載の金の浸出方法。











6. The gold leaching method according to claim 1, wherein air is blown during stirring, and the reaction is continued by oxidizing trivalent iron ions to trivalent with oxygen in the air.











JP2007086983A 2006-09-28 2007-03-29 Gold leaching method Active JP4642796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086983A JP4642796B2 (en) 2006-09-28 2007-03-29 Gold leaching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006264423 2006-09-28
JP2007086983A JP4642796B2 (en) 2006-09-28 2007-03-29 Gold leaching method

Publications (2)

Publication Number Publication Date
JP2008106347A true JP2008106347A (en) 2008-05-08
JP4642796B2 JP4642796B2 (en) 2011-03-02

Family

ID=39439954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086983A Active JP4642796B2 (en) 2006-09-28 2007-03-29 Gold leaching method

Country Status (1)

Country Link
JP (1) JP4642796B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042858A (en) * 2009-08-24 2011-03-03 Jx Nippon Mining & Metals Corp Method for leaching laminated body of copper from copper sulfide ore
US20120103138A1 (en) * 2009-05-26 2012-05-03 Metaleach Limited Method of oxidative leaching of sulfide ores and/or concentrates
JP2012184462A (en) * 2011-03-04 2012-09-27 Jx Nippon Mining & Metals Corp Method of leaching copper and gold from sulfide ore
JP2012211389A (en) * 2011-03-18 2012-11-01 Jx Nippon Mining & Metals Corp Method for recovering gold from dilute gold solution
US8388730B2 (en) 2008-03-27 2013-03-05 Jx Nippon Mining & Metals Corporation Process of leaching gold
JP2013112879A (en) * 2011-11-30 2013-06-10 Jx Nippon Mining & Metals Corp Method for leaching gold out of mineral sulfide
JP2013163868A (en) * 2013-05-31 2013-08-22 Jx Nippon Mining & Metals Corp Leaching method of copper and gold from sulfide ore
WO2013129017A1 (en) * 2012-03-01 2013-09-06 Jx日鉱日石金属株式会社 Method for recovering gold adsorbed on activated carbon and gold manufacturing process using same
WO2014132458A1 (en) 2013-02-27 2014-09-04 Jx日鉱日石金属株式会社 Method for leaching gold from gold ore containing pyrite
WO2014155752A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Method for pretreatment of gold ore
WO2014155753A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Method for pretreatment of gold ore
JP2015148018A (en) * 2015-03-23 2015-08-20 Jx日鉱日石金属株式会社 Method for leaching gold from sulfide ore
WO2015147330A1 (en) 2014-03-26 2015-10-01 Jx Nippon Mining & Metals Corporation Method for pre-treating gold ore
JP2015196847A (en) * 2014-03-31 2015-11-09 Jx日鉱日石金属株式会社 Method for removing iron, method for leaching iron, and method for recovering gold
JPWO2014038236A1 (en) * 2012-09-04 2016-08-08 Jx金属株式会社 Method for leaching gold from gold ore containing pyrite
CN110484724A (en) * 2019-08-27 2019-11-22 浙江工业大学 A kind of golden method of the agent of leaching gold and leaching based on ionic liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551213A (en) * 1984-05-07 1985-11-05 Duval Corporation Recovery of gold
US4668289A (en) * 1985-11-22 1987-05-26 Wisconsin Alumni Research Foundation Method for reclaiming gold
JP2005523992A (en) * 2002-04-23 2005-08-11 オウトクンプ オサケイティオ ユルキネン Gold collection method
JP2005298850A (en) * 2004-04-07 2005-10-27 Sumitomo Metal Mining Co Ltd Method for recovering gold from copper concentrate leaching residue
JP2006512484A (en) * 2002-12-31 2006-04-13 インテック・リミテッド Recovery of metals from sulfide-based materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551213A (en) * 1984-05-07 1985-11-05 Duval Corporation Recovery of gold
US4668289A (en) * 1985-11-22 1987-05-26 Wisconsin Alumni Research Foundation Method for reclaiming gold
JP2005523992A (en) * 2002-04-23 2005-08-11 オウトクンプ オサケイティオ ユルキネン Gold collection method
JP2006512484A (en) * 2002-12-31 2006-04-13 インテック・リミテッド Recovery of metals from sulfide-based materials
JP2005298850A (en) * 2004-04-07 2005-10-27 Sumitomo Metal Mining Co Ltd Method for recovering gold from copper concentrate leaching residue

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8388730B2 (en) 2008-03-27 2013-03-05 Jx Nippon Mining & Metals Corporation Process of leaching gold
US20120103138A1 (en) * 2009-05-26 2012-05-03 Metaleach Limited Method of oxidative leaching of sulfide ores and/or concentrates
JP2012528243A (en) * 2009-05-26 2012-11-12 メタリーチ リミテッド Method for oxidative leaching of sulfide ore and / or sulfide concentrate
US9771631B2 (en) * 2009-05-26 2017-09-26 Metaleach Limited Method of oxidative leaching of sulfide ores and/or concentrates
JP2011042858A (en) * 2009-08-24 2011-03-03 Jx Nippon Mining & Metals Corp Method for leaching laminated body of copper from copper sulfide ore
JP2012184462A (en) * 2011-03-04 2012-09-27 Jx Nippon Mining & Metals Corp Method of leaching copper and gold from sulfide ore
JP2012211389A (en) * 2011-03-18 2012-11-01 Jx Nippon Mining & Metals Corp Method for recovering gold from dilute gold solution
JP2013112879A (en) * 2011-11-30 2013-06-10 Jx Nippon Mining & Metals Corp Method for leaching gold out of mineral sulfide
JPWO2013129017A1 (en) * 2012-03-01 2015-07-30 Jx日鉱日石金属株式会社 Method for recovering gold adsorbed on activated carbon and method for producing gold using the same
WO2013129017A1 (en) * 2012-03-01 2013-09-06 Jx日鉱日石金属株式会社 Method for recovering gold adsorbed on activated carbon and gold manufacturing process using same
JPWO2014038236A1 (en) * 2012-09-04 2016-08-08 Jx金属株式会社 Method for leaching gold from gold ore containing pyrite
WO2014132458A1 (en) 2013-02-27 2014-09-04 Jx日鉱日石金属株式会社 Method for leaching gold from gold ore containing pyrite
WO2014155752A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Method for pretreatment of gold ore
AU2013204872B2 (en) * 2013-03-29 2015-08-20 Jx Nippon Mining & Metals Corporation Method for pretreating gold ore
WO2014155753A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Method for pretreatment of gold ore
JPWO2014155753A1 (en) * 2013-03-29 2017-02-16 Jx金属株式会社 Gold ore pretreatment method
JP2017040005A (en) * 2013-03-29 2017-02-23 Jx金属株式会社 Pretreatment method for gold ore
JP2013163868A (en) * 2013-05-31 2013-08-22 Jx Nippon Mining & Metals Corp Leaching method of copper and gold from sulfide ore
WO2015147330A1 (en) 2014-03-26 2015-10-01 Jx Nippon Mining & Metals Corporation Method for pre-treating gold ore
JP2015196847A (en) * 2014-03-31 2015-11-09 Jx日鉱日石金属株式会社 Method for removing iron, method for leaching iron, and method for recovering gold
JP2015148018A (en) * 2015-03-23 2015-08-20 Jx日鉱日石金属株式会社 Method for leaching gold from sulfide ore
CN110484724A (en) * 2019-08-27 2019-11-22 浙江工业大学 A kind of golden method of the agent of leaching gold and leaching based on ionic liquid
CN110484724B (en) * 2019-08-27 2021-02-02 浙江工业大学 Gold leaching agent based on ionic liquid and gold leaching method

Also Published As

Publication number Publication date
JP4642796B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4642796B2 (en) Gold leaching method
JP4999108B2 (en) Gold leaching method
US7682420B2 (en) Method for leaching gold
CA2639165C (en) Method for recovering metal from ore
JPS622616B2 (en)
WO2015102865A1 (en) Process for dissolving or extracting at least one precious metal from a source material containing the same
Altansukh et al. Gold recovery from waste printed circuit boards by advanced hydrometallurgical processing
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
JPH02197533A (en) Separation of valuable metal
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP2008240009A (en) Method for chlorine-leaching nickel sulfide
EP1577408B2 (en) Method for separating platinum group elements from selenum/tellurium bearing materials
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
EP0061468B1 (en) Recovery of silver from ores and concentrates
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP2003105456A (en) Method for manufacturing silver
JP7423467B2 (en) Ruthenium recovery method
JP2007154249A (en) Method for recovering silver in wet type copper refining process
JP2019147718A (en) Method for recovering tellurium
JP7423479B2 (en) Ruthenium recovery method
JP6882110B2 (en) Method for recovering precipitates containing platinum group elements
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JPH10158752A (en) Method for extracting and recovering silver
JP2018044200A (en) Method of treating metal-containing hydrochloric acidic liquid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250