JP2008092708A - Motor drive controller - Google Patents

Motor drive controller Download PDF

Info

Publication number
JP2008092708A
JP2008092708A JP2006272144A JP2006272144A JP2008092708A JP 2008092708 A JP2008092708 A JP 2008092708A JP 2006272144 A JP2006272144 A JP 2006272144A JP 2006272144 A JP2006272144 A JP 2006272144A JP 2008092708 A JP2008092708 A JP 2008092708A
Authority
JP
Japan
Prior art keywords
motor
torque
actual torque
current
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272144A
Other languages
Japanese (ja)
Inventor
Yoichiro Yamagishi
陽一郎 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006272144A priority Critical patent/JP2008092708A/en
Publication of JP2008092708A publication Critical patent/JP2008092708A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect an abnormality of a motor based on torque generated in the motor which drives a rear wheel of a four-wheel drive vehicle. <P>SOLUTION: A four-wheel drive control unit 23 estimates the actual torque of a motor 14 based on command torque for commanding torque requested for the motor 14 for driving the rear wheels 11 and 12 of the four-wheel drive vehicle 1, and the magnetic flux, a q-axis current, and an angular speed of the motor 14, and the estimated actual torque is compared with the commanded torque, and in the case that both the torque do not agree with each other, the presence of an abnormality in the motor 14 is determined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車両を駆動するモータのトルクに基づいてモータの駆動異常を検出するモータ駆動制御装置に関する。   The present invention relates to a motor drive control device that detects drive abnormality of a motor based on torque of a motor that drives a vehicle.

従来、車両駆動用の電動機(モータ)の異常(フェール)を検出する技術としては、例えば以下に示す文献に記載されたものが知られている(特許文献1参照)。この文献には、モータの磁極位置を検出する磁極位置検出手段と、磁極位置を検出するのにともなって算出される速度推定値に基づいてフェールを検出するフェール判定処理手段を備え、磁極位置を検出するのにともなって算出される速度推定値に基づいてフェールを検出し、モータを始動する際または低、中速領域でモータを駆動しているときに、磁極位置の極性が反転されて検出された場合に、直ちにフェールを検出する技術が記載されている。
特開2004−112942
Conventionally, as a technique for detecting an abnormality (failure) in an electric motor (motor) for driving a vehicle, for example, a technique described in the following document is known (see Patent Document 1). This document includes magnetic pole position detection means for detecting the magnetic pole position of the motor, and failure determination processing means for detecting a failure based on the estimated speed value calculated when the magnetic pole position is detected. Detects a failure based on the estimated speed value calculated as a result of detection, and reverses the polarity of the magnetic pole position when starting the motor or driving the motor in the low or medium speed range. In such a case, a technique for immediately detecting a failure when it is performed is described.
JP2004-112942A

このように、車両駆動用のモータにおいては、モータの回転数や動作温度等に基づいて異常を検出していた。しかし、モータで発生するトルク性能に基づいて異常を検出する手法は実施されていなかった。   As described above, in the motor for driving the vehicle, an abnormality is detected based on the rotational speed of the motor, the operating temperature, and the like. However, a technique for detecting an abnormality based on the torque performance generated in the motor has not been implemented.

車両駆動用のモータでは、モータの不具合により、車両の運転走行条件等により決定されてモータに要求される要求トルクと、実際にモータで発生している実トルクとの間でトルク差が生じる場合がある。このようにトルク差が生じている場合に、モータの回転数や動作温度等には変化が生じず、もしくは生じたとしても許容範囲内に収まっている場合がある。   In the case of a motor for driving a vehicle, a torque difference occurs between the required torque determined by the driving condition of the vehicle and required by the motor due to a motor failure and the actual torque actually generated by the motor. There is. When there is a torque difference in this way, there are cases where the rotational speed of the motor, the operating temperature or the like does not change or even falls within an allowable range.

このような場合に、上述したようにモータの回転数や動作温度に基づいて異常を検出する従来の手法にあっては、トルク差が生じた際のモータの異常を検出できないといった不具合を招いていた。   In such a case, as described above, the conventional method for detecting an abnormality based on the rotational speed and operating temperature of the motor causes a problem that the abnormality of the motor cannot be detected when a torque difference occurs. It was.

そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、モータで発生するトルクに基づいてモータの異常を検出するモータ駆動制御装置を提供することにある。   Therefore, the present invention has been made in view of the above, and an object of the present invention is to provide a motor drive control device that detects an abnormality of a motor based on torque generated by the motor.

上記目的を達成するために、請求項1記載の発明は、モータで駆動される車輪を有する車両における前記モータを、前記モータに要求されるトルクを前記モータに指令するトルク指令値に基づいて駆動制御するモータ駆動制御装置において、前記モータが駆動されている際に前記モータで発生している実トルクを推定する実トルク推定手段と、前記トルク指令値と前記実トルク推定手段で推定された実トルク推定値とに基づいて、前記モータの異常を検出する異常検出手段とを有することを特徴とする。   In order to achieve the above object, the invention according to claim 1 drives the motor in a vehicle having wheels driven by a motor based on a torque command value for commanding the motor to a torque required for the motor. In the motor drive control device to be controlled, an actual torque estimating means for estimating an actual torque generated by the motor when the motor is driven, an actual torque estimated by the torque command value and the actual torque estimating means And an abnormality detecting means for detecting an abnormality of the motor based on the estimated torque value.

上記特徴の請求項1記載の発明によれば、モータで発生している実トルク推定値に基づいてモータの異常を検出することができる。   According to the first aspect of the present invention, the abnormality of the motor can be detected based on the estimated actual torque value generated in the motor.

請求項2記載の発明は、請求項1記載の発明において、前記モータは交流三相モータで構成され、前記実トルク推定手段は、前記モータに供給される各相の駆動電流を検出する電流検出手段と、前記電流検出手段で検出された各相の駆動電流に基づいて、前記モータのトルク電流成分となるq軸電流を算出するq軸電流算出手段と、前記モータで発生する磁束を算出する磁束算出手段と、前記モータの角速度を検出する角速度検出手段とを備え、前記q軸電流算出手段で算出されたq軸電流と、前記磁束算出手段で算出された磁束と、前記角速度検出手段で検出された角速度とに基づいて、実トルクを推定することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the motor is composed of an AC three-phase motor, and the actual torque estimating means detects a driving current of each phase supplied to the motor. Means, a q-axis current calculating means for calculating a q-axis current as a torque current component of the motor based on the driving current of each phase detected by the current detecting means, and a magnetic flux generated by the motor. A magnetic flux calculating means; and an angular velocity detecting means for detecting an angular velocity of the motor. The q-axis current calculated by the q-axis current calculating means, the magnetic flux calculated by the magnetic flux calculating means, and the angular velocity detecting means The actual torque is estimated based on the detected angular velocity.

上記特徴の請求項2記載の発明によれば、モータで発生している実トルクを容易に推定することが可能となる。   According to the second aspect of the present invention, the actual torque generated by the motor can be easily estimated.

請求項3記載の発明は、請求項1または2記載の発明において、前記異常検出手段は、前記トルク指令値と前記実トルク推定値とが差が予め設定された判定しきい値以上である場合に、前記モータが異常であると判定することを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the abnormality detecting means is configured such that the difference between the torque command value and the actual torque estimated value is greater than or equal to a predetermined determination threshold value. And determining that the motor is abnormal.

上記特徴の請求項3記載の発明によれば、実トルクを推定する際の推定誤差による誤検出を回避することができる。   According to the third aspect of the present invention, it is possible to avoid erroneous detection due to an estimation error when estimating the actual torque.

以下、図面を用いて本発明を実施するための最良の実施例を説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The best embodiment for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の実施例1に係るモータ駆動制御装置を搭載した4輪駆動車の構成を示す図である。図1において、4輪駆動車1における車体2の前部側には第一の車軸となる前輪車軸3が回転可能に軸支されている。前輪車軸3の両端には主駆動輪となる前輪4,5が取り付けられている。前輪車軸3の中央部には、差動式の動力伝達機構である前輪側デファレンシャルギヤ6が設けられている。   FIG. 1 is a diagram showing a configuration of a four-wheel drive vehicle equipped with a motor drive control device according to Embodiment 1 of the present invention. In FIG. 1, a front wheel axle 3 serving as a first axle is rotatably supported on the front side of a vehicle body 2 in a four-wheel drive vehicle 1. Front wheels 4 and 5 serving as main drive wheels are attached to both ends of the front wheel axle 3. A front wheel side differential gear 6 that is a differential power transmission mechanism is provided at the center of the front wheel axle 3.

前輪4,5は、内燃機関であるエンジン7の回転動力が、トルクコンバータ8と変速機機構9とを備えてなる自動変速機により変速されて前輪側デファレンシャルギヤ6に伝達され、前輪側デファレンシャルギヤ6から前輪車軸3に伝達されることにより、車両の走行範囲全域において駆動される。   In the front wheels 4 and 5, the rotational power of the engine 7, which is an internal combustion engine, is shifted by an automatic transmission including a torque converter 8 and a transmission mechanism 9 and transmitted to the front wheel side differential gear 6. By being transmitted from 6 to the front wheel axle 3, the vehicle is driven over the entire travel range of the vehicle.

すなわち、エンジン7、トルクコンバータ8と変速機機構9とを備えてなる自動変速機(A/T)及び前輪側デファレンシャルギヤ6から構成された動力系は、いわゆる前輪駆動車と同じ構成であり、主駆動系を構成している。なお、自動変速機は多段或いは無段のどちらのものを用いてもよい。   That is, the power system composed of the automatic transmission (A / T) including the engine 7, the torque converter 8 and the transmission mechanism 9 and the front wheel side differential gear 6 has the same structure as a so-called front wheel drive vehicle. It constitutes the main drive system. The automatic transmission may be either multi-stage or continuously variable.

車体2の後部側には第二の車軸となる後輪車軸10が回転可能に軸支されている。後輪車軸10の両端には後輪11,12が取り付けられている。後輪車軸10の中央部には、差動式の動力伝達機構である後輪側デファレンシャルギヤ13が設けられている。   A rear wheel axle 10 serving as a second axle is rotatably supported on the rear side of the vehicle body 2. Rear wheels 11 and 12 are attached to both ends of the rear wheel axle 10. A rear wheel differential gear 13 that is a differential power transmission mechanism is provided at the center of the rear wheel axle 10.

後輪11,12は、電動機(モータ)14の回転動力が減速機15により減速されて、電磁クラッチ16を介して後輪側デファレンシャルギヤ13に伝達され、後輪側デファレンシャルギヤ13から後輪車軸10に伝達されることにより、車両走行の一部分、例えば車両の発進時から前輪4,5の駆動のみ(エンジン7の駆動のみ)による走行速度に達するまでの間において駆動される。   In the rear wheels 11 and 12, the rotational power of the electric motor (motor) 14 is decelerated by the speed reducer 15, and is transmitted to the rear wheel side differential gear 13 through the electromagnetic clutch 16, and the rear wheel side differential gear 13 transmits the rear wheel axle. By being transmitted to 10, the vehicle is driven for a part of vehicle travel, for example, from the start of the vehicle until the travel speed is reached only by driving the front wheels 4 and 5 (only driving the engine 7).

また、後輪11,12は、前輪4,5にスリップが発生した場合にも駆動されるようになっている。すなわち、モータ14,減速機15,電磁クラッチ16及び後輪側デファレンシャルギヤ13から構成された動力系は従駆動系を構成している。なお、減速機15及び電磁クラッチ16は、後輪側デファレンシャルギヤ13と一体に設けられていてもよい。   The rear wheels 11 and 12 are also driven when a slip occurs on the front wheels 4 and 5. That is, the power system composed of the motor 14, the speed reducer 15, the electromagnetic clutch 16, and the rear wheel side differential gear 13 constitutes a slave drive system. The reduction gear 15 and the electromagnetic clutch 16 may be provided integrally with the rear wheel side differential gear 13.

エンジン7には、モータ14や車載された各種電装品(図示せず)で消費される電力を生成する発電機17が機械的に連結されている。発電機17はエンジン7の回転動力を受けて作動し、車両の運転状態に応じた電力を発生する。   The engine 7 is mechanically connected to a generator 17 that generates electric power consumed by a motor 14 and various electric components (not shown) mounted on the vehicle. The generator 17 operates by receiving the rotational power of the engine 7 and generates electric power according to the driving state of the vehicle.

モータ14は、例えば界磁巻線型の交流三相モータで構成され、例えば車両の後部座席からトランクルームに至る床下の狭いスペースに設置され、かつ後輪側デファレンシャルギヤ13の近傍に配置されている。なお、本実施例では、モータ14として界磁巻線型の交流電動機を用いた場合を例に挙げて説明するが、固定子(界磁)に界磁巻線を備えた直流機を用いてもよい。また、モータ14には、モータ14の回転数を検出する回転数センサ18が設けられている。   The motor 14 is composed of, for example, a field winding type AC three-phase motor, and is installed in a narrow space under the floor from the rear seat of the vehicle to the trunk room, for example, and is disposed in the vicinity of the differential gear 13 on the rear wheel side. In the present embodiment, a case where a field winding type AC motor is used as the motor 14 will be described as an example. However, a DC machine having a field winding in the stator (field) may be used. Good. The motor 14 is provided with a rotation speed sensor 18 that detects the rotation speed of the motor 14.

4輪駆動車1の内部には、ドライブユニット(インバータ)19、モータコントロールユニット20、エンジンコントロールユニット21、A/Tコントロールユニット22ならびに4輪駆動コントロールユニット23を含む複数の車載制御装置が設けられている。これらの複数の車載制御装置は、図示省略された車内通信網によって電気的に接続されており、各制御装置が所有する情報を信号伝送によってお互いに共有することが可能に構成されている。   Inside the four-wheel drive vehicle 1, a plurality of in-vehicle control devices including a drive unit (inverter) 19, a motor control unit 20, an engine control unit 21, an A / T control unit 22, and a four-wheel drive control unit 23 are provided. Yes. The plurality of in-vehicle control devices are electrically connected by an in-vehicle communication network (not shown), and are configured to be able to share information owned by each control device with each other by signal transmission.

インバータ19は、発電機17で得られた直流電力を受け、この直流電力をモータ14を駆動する三相(U相、V相、W相)の交流電力に変換し、得られた三相交流電流をモータ14に供給してモータ14を回転駆動する。インバータ19には、三相の各電流ならびに界磁電流を検出する電流センサ24が設けられている。   The inverter 19 receives the DC power obtained by the generator 17, converts this DC power into three-phase (U-phase, V-phase, W-phase) AC power for driving the motor 14, and the obtained three-phase AC A current is supplied to the motor 14 to rotate the motor 14. The inverter 19 is provided with a current sensor 24 that detects each of the three-phase currents and the field current.

モータコントロールユニット20は、4輪駆動コントロールユニット23から与えられる制御信号に基づいて、インバータ19がモータ14に与える駆動電流を生成するための制御信号を生成してインバータ19に与える。   The motor control unit 20 generates a control signal for generating a drive current that the inverter 19 gives to the motor 14 based on the control signal given from the four-wheel drive control unit 23, and gives it to the inverter 19.

エンジンコントロールユニット21は、エンジン7に搭載された絞り弁や燃料噴射弁などのエンジン機器の作動を制御してエンジン7から出力される動力を制御するためのものである。   The engine control unit 21 is for controlling the power output from the engine 7 by controlling the operation of engine equipment such as a throttle valve and a fuel injection valve mounted on the engine 7.

A/Tコントロールユニット22は、自動変速機の変速機機構9の作動を制御して自動変速機から前輪側デファレンシャルギヤ6に伝達される動力を制御するためのものである。   The A / T control unit 22 is for controlling the operation of the transmission mechanism 9 of the automatic transmission and controlling the power transmitted from the automatic transmission to the front wheel side differential gear 6.

4輪駆動コントロールユニット23は、4輪駆動車1の運転走行を制御する制御中枢として機能し、プログラムに基づいて各種動作処理を制御するコンピュータに必要な、CPU、記憶装置、入出力装置等の資源を備えた例えばマイクロコンピュータ等により実現される。   The four-wheel drive control unit 23 functions as a control center that controls the driving and running of the four-wheel drive vehicle 1, and includes a CPU, a storage device, an input / output device, and the like necessary for a computer that controls various operation processes based on a program. This is realized by, for example, a microcomputer provided with resources.

4輪駆動コントロールユニット23は、上記回転数センサ18、電流センサ24ならびにこれらのセンサで得られない他の温度、電圧、電流等本4輪駆動車1の運転走行に必要な情報を収集するセンサ(図示せず)からの信号、さらにはモータコントロールユニット20、エンジンコントロールユニット21、A/Tコントロールユニット22を含む複数の車載制御装置から与えられる信号を読み込み、読み込んだ各種信号ならびに予め用意されて内部に保有する制御ロジック(プログラム)に基づいて、モータコントロールユニット20、エンジンコントロールユニット21、A/Tコントロールユニット22の車載制御装置を含む本4輪駆動車1の制御を要する構成要素に指令を送り、以下に説明するモータ14の異常判定処理を含む4輪駆動車1の運転走行に必要なすべての動作を統括管理して制御する。   The four-wheel drive control unit 23 collects information necessary for driving the four-wheel drive vehicle 1 such as the rotational speed sensor 18, the current sensor 24, and other temperatures, voltages, and currents that cannot be obtained by these sensors. A signal from (not shown) as well as signals given from a plurality of in-vehicle control devices including a motor control unit 20, an engine control unit 21, and an A / T control unit 22 are read, and various signals read and prepared in advance. Based on internal control logic (program), commands are given to components that require control of the four-wheel drive vehicle 1 including the on-vehicle control devices of the motor control unit 20, the engine control unit 21, and the A / T control unit 22. 4 including the abnormality determination process of the motor 14 to be described below Generally controls manage all operations necessary for driving the traveling drive vehicle 1.

次に、図2のフローチャートを参照して、モータ14の異常判定処理の手順について説明する。   Next, the procedure of the abnormality determination process for the motor 14 will be described with reference to the flowchart of FIG.

図2において、先ずインバータ19からモータ14に与えられる三相(U相,V相,W相)交流の各相電流値を検出する電流センサ24が正常であるか否かを判別し(ステップS201)、正常である場合には、続いてインバータ19が正常であるか否かを判別し(ステップS202)、正常である場合には、引き続いてモータ14が回転駆動されているか否かを判別する(ステップS203)。   In FIG. 2, first, it is determined whether or not the current sensor 24 for detecting each phase current value of three-phase (U-phase, V-phase, W-phase) AC given from the inverter 19 to the motor 14 is normal (step S201). If it is normal, it is then determined whether or not the inverter 19 is normal (step S202). If it is normal, it is determined whether or not the motor 14 is continuously driven to rotate. (Step S203).

判別の結果、モータ14が回転駆動されている場合には、電流センサ24でインバータ19からモータ14に与えられる三相の各相電流を検出する(ステップS204)。その後、検出された三相の各相電流(U相電流、V相電流、W相電流)と図2のステップS205に示す従来から知られている所定の関数とに基づいて、図2のステップS205に示すように公知の演算方法によりモータ14のd軸電流ならびにq軸電流を算出する(ステップS205)。   If the motor 14 is driven to rotate as a result of the determination, the current sensor 24 detects the three-phase currents applied from the inverter 19 to the motor 14 (step S204). Then, based on the detected three-phase currents (U-phase current, V-phase current, and W-phase current) and a predetermined function known in the art shown in step S205 of FIG. 2, the steps of FIG. As shown in S205, the d-axis current and the q-axis current of the motor 14 are calculated by a known calculation method (step S205).

次に、回転数センサ18でモータ14の回転数を検出する(ステップS206)。その後、モータ14の実トルクを推定する(ステップS207)。この推定は、先のステップS205で算出したq軸電流に基づいて、次式により実トルクを算出することで行われる。   Next, the rotational speed sensor 18 detects the rotational speed of the motor 14 (step S206). Thereafter, the actual torque of the motor 14 is estimated (step S207). This estimation is performed by calculating the actual torque according to the following equation based on the q-axis current calculated in the previous step S205.

(数1)
実トルク=φ×q軸電流×│ω│
ここで、φは磁束[Wb]であり、ωは角速度である。
(Equation 1)
Actual torque = φ × q-axis current × │ω│
Here, φ is the magnetic flux [Wb], and ω is the angular velocity.

磁束φは、次式により算出される。 The magnetic flux φ is calculated by the following equation.

(数2)
φ=N×I/{l/(μo×μs×S)}
ここで、Nは巻数[Turn]、Iは界磁電流[A]、lは磁路長[m]、μoは真空の透磁率、μsは比透磁率、Sは磁路の断面積[m]である。なお、この式において、界磁電流Iだけが変動要因で他のファクターは固定値なので、界磁電流Iと磁束φとの関係を実験やシミュレーション等の机上検討により予め取得しておき、この関係をテーブル化して4輪駆動コントロールユニット23に備えられた記憶装置に記憶させ、電流センサ24で検出されたモータ14の界磁電流Iに基づいてこのテーブルを参照することで磁束φを求めるようにしてもよい。
(Equation 2)
φ = N × I / {l / (μo × μs × S)}
Here, N is the number of turns [Turn], I is the field current [A], l is the magnetic path length [m], μo is the permeability of vacuum, μs is the relative permeability, and S is the cross-sectional area of the magnetic path [m. 2 ]. In this equation, only the field current I is a variation factor, and other factors are fixed values. Therefore, the relationship between the field current I and the magnetic flux φ is obtained in advance by desk studies such as experiments and simulations. Is stored in a storage device provided in the four-wheel drive control unit 23, and the magnetic flux φ is obtained by referring to this table based on the field current I of the motor 14 detected by the current sensor 24. May be.

角速度ωは、先のステップS206で検出したモータ14の回転数に基づいて、次式により算出される。   The angular velocity ω is calculated by the following equation based on the rotation speed of the motor 14 detected in the previous step S206.

(数3)
ω=2πf
ここで、fはモータ14の回転数である。
(Equation 3)
ω = 2πf
Here, f is the rotation speed of the motor 14.

次に、モータ14の回転方向(正回転/逆回転)を判別する(ステップS208)。ここで、正回転時ならびに逆回転時にモータ14に与えられる各相電流の出力波形パターンは図3(a)に示すようになる。この出力波形パターンから図3(b)に示すように、正回転時の1周期における各相電流の変化パターンは、その出現順序がパターンA(U相電流は増加、V相電流は減少、W相電流は減少)→パターンB(U相電流は増加、V相電流は増加、W相電流は減少)→パターンC(U相電流は減少、V相電流は増加、W相電流は減少)→パターンD(U相電流は減少、V相電流は増加、W相電流は増加)→パターンE(U相電流は減少、V相電流は減少、W相電流は増加)→パターンF(U相電流は増加、V相電流は減少、W相電流は増加)となる。一方、逆回転時の1周期における各相電流の変化パターンは、同図に示すように、パターンE→パターンD→パターンC→パターンB→パターンA→パターンFとなる。このように、モータ14の正回転時と逆回転時では上記パターンの出現順序が異なるので、電流センサ24で検出される各相電流から求められる各相電流の変化に基づいて、この出力パターンを検出することでモータ14の回転方向を判別することが可能となる。   Next, the rotational direction (forward / reverse rotation) of the motor 14 is determined (step S208). Here, the output waveform pattern of each phase current applied to the motor 14 during forward rotation and reverse rotation is as shown in FIG. From this output waveform pattern, as shown in FIG. 3B, the change order of each phase current in one cycle during forward rotation is the pattern A (U-phase current increases, V-phase current decreases, W Phase current decreases) → Pattern B (U phase current increases, V phase current increases, W phase current decreases) → Pattern C (U phase current decreases, V phase current increases, W phase current decreases) → Pattern D (U phase current decreases, V phase current increases, W phase current increases) → Pattern E (U phase current decreases, V phase current decreases, W phase current increases) → Pattern F (U phase current) Is increased, the V-phase current is decreased, and the W-phase current is increased). On the other hand, the change pattern of each phase current in one cycle during reverse rotation is pattern E → pattern D → pattern C → pattern B → pattern A → pattern F as shown in FIG. Thus, since the appearance order of the pattern is different between the forward rotation and the reverse rotation of the motor 14, the output pattern is changed based on the change of each phase current obtained from each phase current detected by the current sensor 24. By detecting it, it is possible to determine the rotation direction of the motor 14.

判別の結果、モータ14が正回転している場合には、先のステップS207で算出した実トルクを最終実トルクとする一方(ステップS209)、逆回転している場合には、正回転時と区別するために回転方向を示す(−1)を実トルクに付加して、実トルク×(−1)を最終実トルクとする(ステップS210)。   As a result of the determination, when the motor 14 is rotating forward, the actual torque calculated in the previous step S207 is set as the final actual torque (step S209). In order to distinguish, (-1) indicating the rotation direction is added to the actual torque, and actual torque x (-1) is set as the final actual torque (step S210).

次に、エンジンコントロールユニット21から4輪駆動コントロールユニット23に与えられるアクセル開度信号等に基づいて、4輪駆動コントロールユニット23で算出されるモータ14の指令トルク(トルク指令値)と、先のステップS209もしくはステップS210で算出された最終実トルク(実トルク推定値)とを比較し、両者が一致しているか否かを判別する(ステップS211)。   Next, based on an accelerator opening signal or the like given from the engine control unit 21 to the four-wheel drive control unit 23, the command torque (torque command value) of the motor 14 calculated by the four-wheel drive control unit 23, The final actual torque (actual torque estimated value) calculated in step S209 or step S210 is compared, and it is determined whether or not they match (step S211).

判別の結果、両者が一致している場合には、モータ14は要求されているトルクを発生しているものと推定し、モータ14には駆動異常は発生していないものと判定する。一方、両者が一致していない場合には、モータ14は要求されているトルクを発生していないものと推定し、モータ14では駆動異常が発生しているものと判定し(ステップS212)、モータ14を停止させるなどの措置をとる。   As a result of the determination, if both match, it is estimated that the motor 14 is generating the required torque, and it is determined that no drive abnormality has occurred in the motor 14. On the other hand, if they do not match, it is estimated that the motor 14 does not generate the required torque, and it is determined that the drive abnormality has occurred in the motor 14 (step S212). Take measures such as stopping 14

なお、先のステップS211では、指令トルクと最終トルクが一致しているか否かを判別し、その判別結果に基づいて先のステップS211ではモータ14の駆動異常を判定しているが、指令トルクと最終トルクとの差を求め、この差が予め設定された判定しきい値を上回っているか否かを判別し、上回っている場合にはモータ14で駆動異常が発生しているものと判定するようにしてもよい。このときに用いる判定しきい値は、実トルクを算出する際の誤差を考慮し、かつモータ14やインバータ19に不具合が生じない程度に許容されるトルク差の範囲内として、予め実験やシミュレーション等により求めて設定される。このような手法を採用することで、実トルクを推定算出する際に誤差が生じた場合であっても、モータ異常の誤検出を回避することが可能となる。   In the previous step S211, it is determined whether or not the command torque and the final torque match. Based on the determination result, the drive abnormality of the motor 14 is determined in the previous step S211. A difference from the final torque is obtained, and it is determined whether or not this difference exceeds a preset determination threshold value. If the difference is exceeded, it is determined that a drive abnormality has occurred in the motor 14. It may be. The determination threshold value used at this time considers an error in calculating the actual torque and is within a range of allowable torque difference that does not cause a problem in the motor 14 or the inverter 19. Is determined and set. By adopting such a method, it is possible to avoid erroneous detection of motor abnormality even when an error occurs when estimating and calculating the actual torque.

このように、上記実施例においては、指令トルクと推定された実トルクとの間でトルク差が発生している際に、モータの異常を迅速かつ確実に検出することができる。これにより、モータの動作不良を未然に防止することができる。また、トルクセンサ等のモータのトルクを専ら検出する新たな構成を設けることなく、モータ駆動される車両に通常備わっている構成要件だけで実施することが可能となり、構成の小型化ならびに簡素化を図ることができる。   Thus, in the above-described embodiment, when a torque difference is generated between the command torque and the estimated actual torque, it is possible to detect a motor abnormality quickly and reliably. Thereby, the malfunction of a motor can be prevented beforehand. In addition, it is possible to implement only with the structural requirements normally provided in a motor-driven vehicle without providing a new configuration that exclusively detects the torque of the motor, such as a torque sensor, thereby reducing the size and simplifying the configuration. Can be planned.

さらに、上記実施例から把握し得る請求項以外の技術的思想について、以下に効果と共に記載する。   Further, technical ideas other than the claims that can be grasped from the above-described embodiments will be described below together with effects.

(イ)請求項1,2及び3のいずれか1項に記載のモータ駆動制御装置において、
前記モータの回転方向を検出する回転方向検出手段を備え、
前記実トルク推定手段で推定された実トルク値に前記回転方向検出手段で検出された回転方向を加味する
ことを特徴とするモータ駆動制御装置。
(A) In the motor drive control device according to any one of claims 1, 2, and 3,
A rotation direction detecting means for detecting the rotation direction of the motor;
A motor drive control device characterized by adding the rotational direction detected by the rotational direction detection means to the actual torque value estimated by the actual torque estimation means.

上記(イ)項に記載の構成によれば、モータの回転方向を含めてモータの異常を検出することができる。   According to the configuration described in the above item (A), it is possible to detect abnormality of the motor including the rotation direction of the motor.

(ロ)前記(イ)項に記載のモータ駆動制御において、
前記回転検出手段は、前記モータに供給される各相の駆動電流の増減パターンの出現順序に基づいて回転方向を検出する
ことを特徴とするモータ駆動制御装置。
(B) In the motor drive control described in (a) above,
The rotation detection means detects the rotation direction based on the appearance order of the increase / decrease pattern of the drive current of each phase supplied to the motor.

上記(ロ)項に記載の構成によれば、モータの回転方向を専ら検出する機器を設けることなく、モータの回転方向を容易に検出することができる。   According to the configuration described in (b) above, it is possible to easily detect the rotation direction of the motor without providing a device that exclusively detects the rotation direction of the motor.

本発明の実施例1に係るモータ駆動制御装置を搭載した4輪駆動車の構成を示す図である。It is a figure which shows the structure of the four-wheel drive vehicle carrying the motor drive control apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係るモータ異常の判定処理を示すフローチャートである。It is a flowchart which shows the determination process of the motor abnormality which concerns on Example 1 of this invention. モータの回転数を判別する際のモータの三相電流の出力パターンの様子を示す図である。It is a figure which shows the mode of the output pattern of the three-phase current of a motor at the time of discriminating the rotation speed of a motor.

符号の説明Explanation of symbols

1…輪駆動車
2…車体
3…前輪車軸
4,5…前輪
6…前輪側デファレンシャルギヤ
7…エンジン
8…トルクコンバータ
9…変速機機構
10…後輪車軸
11,12…後輪
13…後輪側デファレンシャルギヤ
14…モータ
15…減速機
16…電磁クラッチ
17…発電機
18…回転数センサ
19…インバータ
20…モータコントロールユニット
21…エンジンコントロールユニット
22…コントロールユニット
23…輪駆動コントロールユニット
24…電流センサ
DESCRIPTION OF SYMBOLS 1 ... Wheel drive vehicle 2 ... Car body 3 ... Front wheel axle 4,5 ... Front wheel 6 ... Front wheel side differential gear 7 ... Engine 8 ... Torque converter 9 ... Transmission mechanism 10 ... Rear wheel axle 11, 12 ... Rear wheel 13 ... Rear wheel Side differential gear 14 ... Motor 15 ... Reducer 16 ... Electromagnetic clutch 17 ... Generator 18 ... Speed sensor 19 ... Inverter 20 ... Motor control unit 21 ... Engine control unit 22 ... Control unit 23 ... Wheel drive control unit 24 ... Current sensor

Claims (3)

モータで駆動される車輪を有する車両における前記モータを、前記モータに要求されるトルクを前記モータに指令するトルク指令値に基づいて駆動制御するモータ駆動制御装置において、
前記モータが駆動されている際に前記モータで発生している実トルクを推定する実トルク推定手段と、
前記トルク指令値と前記実トルク推定手段で推定された実トルク推定値とに基づいて、前記モータの異常を検出する異常検出手段と
を有することを特徴とするモータ駆動制御装置。
In a motor drive control device that drives and controls the motor in a vehicle having wheels driven by a motor based on a torque command value that commands the motor to a torque required for the motor.
An actual torque estimating means for estimating an actual torque generated in the motor when the motor is driven;
A motor drive control device comprising: an abnormality detection means for detecting an abnormality of the motor based on the torque command value and the actual torque estimation value estimated by the actual torque estimation means.
前記モータは、交流三相モータで構成され、
前記実トルク推定手段は、
前記モータに供給される各相の駆動電流を検出する電流検出手段と、
前記電流検出手段で検出された各相の駆動電流に基づいて、前記モータのトルク電流成分となるq軸電流を算出するq軸電流算出手段と、
前記モータで発生する磁束を算出する磁束算出手段と、
前記モータの角速度を検出する角速度検出手段とを備え、
前記q軸電流算出手段で算出されたq軸電流と、前記磁束算出手段で算出された磁束と、前記角速度検出手段で検出された角速度とに基づいて、実トルクを推定する
ことを特徴とする請求項1に記載のモータ駆動制御装置。
The motor is composed of an AC three-phase motor,
The actual torque estimating means includes
Current detection means for detecting a drive current of each phase supplied to the motor;
Q-axis current calculation means for calculating a q-axis current as a torque current component of the motor based on the drive current of each phase detected by the current detection means;
Magnetic flux calculating means for calculating the magnetic flux generated by the motor;
Angular velocity detection means for detecting the angular velocity of the motor,
The actual torque is estimated based on the q-axis current calculated by the q-axis current calculating unit, the magnetic flux calculated by the magnetic flux calculating unit, and the angular velocity detected by the angular velocity detecting unit. The motor drive control device according to claim 1.
前記異常検出手段は、前記トルク指令値と前記実トルク推定値とが差が予め設定された判定しきい値以上である場合に、前記モータが異常であると判定する
ことを特徴とする請求項1又は2に記載のモータ駆動制御装置。
The abnormality detecting means determines that the motor is abnormal when the difference between the torque command value and the actual torque estimated value is greater than or equal to a predetermined determination threshold value. The motor drive control apparatus according to 1 or 2.
JP2006272144A 2006-10-03 2006-10-03 Motor drive controller Pending JP2008092708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272144A JP2008092708A (en) 2006-10-03 2006-10-03 Motor drive controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272144A JP2008092708A (en) 2006-10-03 2006-10-03 Motor drive controller

Publications (1)

Publication Number Publication Date
JP2008092708A true JP2008092708A (en) 2008-04-17

Family

ID=39376260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272144A Pending JP2008092708A (en) 2006-10-03 2006-10-03 Motor drive controller

Country Status (1)

Country Link
JP (1) JP2008092708A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063225B1 (en) 2008-12-05 2011-09-07 현대자동차주식회사 Torque monitoring method of hybrid vehicle
WO2011135652A1 (en) 2010-04-26 2011-11-03 トヨタ自動車株式会社 Motor control apparatus
JP2011259657A (en) * 2010-06-11 2011-12-22 Denso Corp Control device of rotary machine
WO2012114899A1 (en) * 2011-02-25 2012-08-30 Ntn株式会社 Electric automobile
EP2583854A1 (en) * 2011-10-21 2013-04-24 Volvo Car Corporation Motor assembly
DE102014016318A1 (en) 2013-11-11 2015-05-13 Suzuki Motor Corporation Drive control device
KR20160083047A (en) * 2013-11-01 2016-07-11 마이크론 테크놀로지, 인크. Methods and apparatuses having strings of memory cells including a metal source
JP2017060312A (en) * 2015-09-16 2017-03-23 富士電機株式会社 Inverter control device
US9751409B2 (en) 2011-02-25 2017-09-05 Ntn Corporation Electric automobile
US10529776B2 (en) 2013-03-15 2020-01-07 Micron Technology, Inc. Cell pillar structures and integrated flows
JP2020061917A (en) * 2018-10-12 2020-04-16 株式会社デンソー Control arrangement of rotary electric machine
KR20200110530A (en) * 2019-03-14 2020-09-24 한국자동차연구원 Error diagnosis apparatus and method of electric vehicle
JPWO2019244194A1 (en) * 2018-06-18 2020-12-17 三菱電機株式会社 Motor drive and refrigeration cycle applicable equipment
US10879259B2 (en) 2013-11-01 2020-12-29 Micron Technology, Inc. Methods and apparatuses having memory cells including a monolithic semiconductor channel
WO2022175409A1 (en) * 2021-02-18 2022-08-25 Alpraaz Ab Powertrain for an electric vehicle

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063225B1 (en) 2008-12-05 2011-09-07 현대자동차주식회사 Torque monitoring method of hybrid vehicle
US9054626B2 (en) 2010-04-26 2015-06-09 Toyota Jidosha Kabushiki Kaisha Motor control apparatus
WO2011135652A1 (en) 2010-04-26 2011-11-03 トヨタ自動車株式会社 Motor control apparatus
JP2011259657A (en) * 2010-06-11 2011-12-22 Denso Corp Control device of rotary machine
JP2012178904A (en) * 2011-02-25 2012-09-13 Ntn Corp Electric vehicle
WO2012114899A1 (en) * 2011-02-25 2012-08-30 Ntn株式会社 Electric automobile
CN103384614A (en) * 2011-02-25 2013-11-06 Ntn株式会社 Electric automobile
US8909406B2 (en) 2011-02-25 2014-12-09 Ntn Corporation Electric automobile
US9751409B2 (en) 2011-02-25 2017-09-05 Ntn Corporation Electric automobile
EP2679433A4 (en) * 2011-02-25 2017-07-19 NTN Corporation Electric automobile
US8954214B2 (en) 2011-10-21 2015-02-10 Volvo Car Corporation Motor assembly
EP2583854A1 (en) * 2011-10-21 2013-04-24 Volvo Car Corporation Motor assembly
US10529776B2 (en) 2013-03-15 2020-01-07 Micron Technology, Inc. Cell pillar structures and integrated flows
US11043534B2 (en) 2013-03-15 2021-06-22 Micron Technology, Inc. Cell pillar structures and integrated flows
KR20160083047A (en) * 2013-11-01 2016-07-11 마이크론 테크놀로지, 인크. Methods and apparatuses having strings of memory cells including a metal source
US10879259B2 (en) 2013-11-01 2020-12-29 Micron Technology, Inc. Methods and apparatuses having memory cells including a monolithic semiconductor channel
KR101896379B1 (en) 2013-11-01 2018-09-10 마이크론 테크놀로지, 인크. Methods and apparatuses having strings of memory cells including a metal source
US11665893B2 (en) 2013-11-01 2023-05-30 Micron Technology, Inc. Methods and apparatuses having strings of memory cells including a metal source
DE102014016318A1 (en) 2013-11-11 2015-05-13 Suzuki Motor Corporation Drive control device
JP2017060312A (en) * 2015-09-16 2017-03-23 富士電機株式会社 Inverter control device
JPWO2019244194A1 (en) * 2018-06-18 2020-12-17 三菱電機株式会社 Motor drive and refrigeration cycle applicable equipment
JP7225662B2 (en) 2018-10-12 2023-02-21 株式会社デンソー Rotating electric machine control device
JP2020061917A (en) * 2018-10-12 2020-04-16 株式会社デンソー Control arrangement of rotary electric machine
KR20200110530A (en) * 2019-03-14 2020-09-24 한국자동차연구원 Error diagnosis apparatus and method of electric vehicle
KR102654422B1 (en) * 2019-03-14 2024-04-04 한국자동차연구원 Error diagnosis apparatus and method of electric vehicle
WO2022175409A1 (en) * 2021-02-18 2022-08-25 Alpraaz Ab Powertrain for an electric vehicle

Similar Documents

Publication Publication Date Title
JP2008092708A (en) Motor drive controller
JP5477339B2 (en) Electric vehicle
EP2566046B1 (en) Motor control apparatus
US8841873B2 (en) Motor control device for vehicle
JP2009131043A (en) Motor control device
JP6396180B2 (en) Drive control device for wheel independent drive type vehicle
JP2013055822A (en) Vehicle
JP2008094123A (en) Vehicle controller
JP6589492B2 (en) Inverter control device
JP2010011688A (en) Driving controller for rotary electric machine
KR102563435B1 (en) Vehicle system, system and method for control of motor in vehicle
JP6835043B2 (en) Motor drive system
JP4419996B2 (en) Slip determination device and slip determination method
JP2016073061A (en) Control device for electric vehicle
JP2017153188A (en) Vehicle control system
JP2000032616A (en) Misconnection detector for motor
JP5708447B2 (en) Drive device
JP3399396B2 (en) Motor control system
JP2008141838A (en) Motor control device
JP2011172324A (en) Inverter controller
JP5790689B2 (en) Electric pump control device
JPH1014300A (en) Control system-switching system
JP2008013024A (en) Vehicle drive control device
JP2009219191A (en) Regeneration power controller and regeneration power control method of vehicle
JP2007089319A (en) Motor control device