JP2008091809A - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
JP2008091809A
JP2008091809A JP2006273580A JP2006273580A JP2008091809A JP 2008091809 A JP2008091809 A JP 2008091809A JP 2006273580 A JP2006273580 A JP 2006273580A JP 2006273580 A JP2006273580 A JP 2006273580A JP 2008091809 A JP2008091809 A JP 2008091809A
Authority
JP
Japan
Prior art keywords
negative electrode
wiring conductor
electrode side
side wiring
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006273580A
Other languages
English (en)
Inventor
Osamu Usui
修 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006273580A priority Critical patent/JP2008091809A/ja
Publication of JP2008091809A publication Critical patent/JP2008091809A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】半導体モジュールを構成する各半導体スイッチ素子に流れる電流を同一にすることによって、信頼性の高い半導体モジュールを提供する。
【解決手段】ベース板6上に正極側電極パターン3a、3bを介してIGBT2a、2bが載置され、正極側外部端子8と正極側電極パターン3a、3bは正極側配線導体10,10a、10bを介して接続されるとともに、負極側外部端子9と負極側電極パターン4a、4bは負極側配線導体11、11a、11bを介して接続され、IGBT2aとIGBT2bは対称面7に関して対称になるように配置されたものにおいて、負極側配線導体11bの長さが負極側配線導体11aの長さよりも大きくなるように構成する。
【選択図】図1

Description

この発明は、IGBT(insulated gate bipolar transistor)等の複数の半導体スイッチ素子からなる半導体モジュールに関するものであり、特に半導体モジュールの配線構造に関するものである。
複数の半導体スイッチ素子が並列に接続された半導体モジュールにおいては、各半導体スイッチ素子の配線インダクタンス(自己インダクタンスと相互インダクタンスの総和)が異なると各半導体スイッチ素子に流れる電流が不均一となり、半導体モジュールの信頼性が低下するという問題があった。
このような問題点を解決するための従来技術として、各半導体スイッチ素子につながっている正極側主回路配線と負極側主回路配線の分岐部から各半導体スイッチ素子までの距離を同じにして、各半導体スイッチ素子に流れる電流のバランスをとる構造がある。(特許文献1)。
特開平10−125856号公報(図3,図4)
IGBTなどゲートとエミッタ間に電圧を印加することにより、電流を通電させ、あるいは遮断させるための半導体スイッチ素子においては、各IGBTの負極側の主回路配線のインダクタンスが同一でない場合、各IGBTにおけるゲートとエミッタ間にかかる電圧が相違するようになり、従って各IGBTを流れる電流が同一ではなくなる。
従来技術において、負極側主回路配線の分岐部から各半導体スイッチ素子までの距離を等しくして、それぞれの自己インダクタンスを等しくなるように構成しても、負極側主回路配線の分岐部から各半導体スイッチ素子までの配線と、他の主回路配線、例えば正極側主回路配線や負極側外部端子から負極側主回路配線の分岐部までの配線との間の相互インダクタンスが、各半導体スイッチ素子によって異なる場合があり、このような場合各半導体スイッチ素子に流れる電流を同一にすることはできなかった。
各半導体スイッチ素子に流れる電流が相違し、特定の半導体スイッチ素子に電流が集中すると、その半導体スイッチ素子の温度が上昇し、熱サイクルに対する半導体モジュールの寿命や短絡耐量を低下させてしまうというような問題があった。
この発明は、上記のような問題点を解決するためになされたものであり、各半導体スイッチ素子に流れる電流を同一にし、信頼性の高い半導体モジュールを得ることを目的としている。
この発明に係る半導体モジュールは、ベース板上に正極側電極パターンを介して第1の半導体スイッチ素子群と第2の半導体スイッチ素子群とが載置され、正極側外部端子と正極側電極パターンとは正極側配線導体を介して接続されるとともに、負極側外部端子と第1及び第2の半導体スイッチ素子群とは負極側配線導体を介して接続され、第1の半導体スイッチ素子群はベース板に設定された対称線に関して第2の半導体スイッチ素子群と略対称になるよう配置されるとともに、正極側外部端子は対称線に関して負極側外部端子に対し略対称になるよう配置され、負極側配線導体は第1の半導体スイッチ素子群側へ分岐する第1の負極側配線導体と第2の半導体スイッチ素子群側へ分岐し、対称線に対して負極側外部端子と同じ側に位置する第2の負極側配線導体とを有し、第2の負極側配線導体の自己インダクタンスが第1の負極側配線導体の自己インダクタンスよりも大きくなるように構成したしたものである。
また、この発明に係る半導体モジュールは、ベース板上に負極側電極パターンを介して第1の半導体スイッチ素子群と第2の半導体スイッチ素子群とが載置され、負極側外部端子と負極側電極パターンとは負極側配線導体を介して接続されるとともに、正極側外部端子と上記第1及び第2の半導体スイッチ素子群とは正極側配線導体を介して接続され、第1の半導体スイッチ素子群はベース板に設定された対称線に関して第2の半導体スイッチ素子群と略対称になるよう配置されるとともに、正極側外部端子は対称線に関して負極側外部端子に対し略対称になるよう配置され、負極側配線導体は第1の半導体スイッチ素子群側へ分岐する第1の負極側配線導体と第2の半導体スイッチ素子群側へ分岐し、対称線に対して負極側外部端子と同じ側に位置する第2の負極側配線導体とを有し、第2の負極側配線導体の自己インダクタンスが第1の負極側配線導体の自己インダクタンスよりも大きくなるように構成したものである。
この発明に係る半導体モジュールによれば、ベース板上に正極側電極パターンを介して第1の半導体スイッチ素子群と第2の半導体スイッチ素子群とが載置され、正極側外部端子と正極側電極パターンとは正極側配線導体を介して接続されるとともに、負極側外部端子と第1及び第2の半導体スイッチ素子群とは負極側配線導体を介して接続され、第1の半導体スイッチ素子群はベース板に設定された対称線に関して第2の半導体スイッチ素子群と略対称になるよう配置されるとともに、正極側外部端子は対称線に関して負極側外部端子に対し略対称になるよう配置され、負極側配線導体は第1の半導体スイッチ素子群側へ分岐する第1の負極側配線導体と第2の半導体スイッチ素子群側へ分岐し、対称線に対して負極側外部端子と同じ側に位置する第2の負極側配線導体とを有し、第2の負極側配線導体の自己インダクタンスが第1の負極側配線導体の自己インダクタンスよりも大きくなるように構成したので、各半導体スイッチ素子に流れる電流を同一にし、信頼性の高い半導体モジュールを得ることができる。
また、この発明に係る半導体モジュールによれば、ベース板上に負極側電極パターンを介して第1の半導体スイッチ素子群と第2の半導体スイッチ素子群とが載置され、負極側外部端子と負極側電極パターンとは負極側配線導体を介して接続されるとともに、正極側外部端子と上記第1及び第2の半導体スイッチ素子群とは正極側配線導体を介して接続され、第1の半導体スイッチ素子群はベース板に設定された対称線に関して第2の半導体スイッチ素子群と略対称になるよう配置されるとともに、正極側外部端子は対称線に関して負極側外部端子に対し略対称になるよう配置され、負極側配線導体は第1の半導体スイッチ素子群側へ分岐する第1の負極側配線導体と第2の半導体スイッチ素子群側へ分岐し、対称線に対して負極側外部端子と同じ側に位置する第2の負極側配線導体とを有し、第2の負極側配線導体の自己インダクタンスが第1の負極側配線導体の自己インダクタンスよりも大きくなるように構成したので、各半導体スイッチ素子に流れる電流を同一にし、信頼性の高い半導体モジュールを得ることができる。
実施の形態1.
以下この発明の一実施形態を図に基づいて説明する。図1はこの発明の実施の形態1による半導体モジュール1の内部配線構造を示す斜視図、図2は同じく平面図である。複数の半導体スイッチ素子であるIGBT2a,2bは正極側電極パターン3a,3b上に載置されるとともに、各IGBT2a,2bの正極側電極であるコレクタ電極と正極側電極パターン3a,3bははんだ等により接続されている。
正極側電極パターン3a,3bと負極側電極パターン4a,4bは絶縁層5a,5b上に配置されるとともに、正極側電極パターン3a,3bと負極側電極パターン4a,4bとの間には一定の絶縁距離が設けられている。
負極側電極パターン4a,4bとIGBT2a,2bの負極側電極であるエミッタ電極はボンディングワイヤ12a,12bによって接続される。IGBT2a,2b、正極側電極パターン3a,3b、負極側電極パターン4a,4b、絶縁層5a,5bはベース板6上に載置されるとともに、更にはIGBT2aとIGBT2bはベース板6上に設置された所定の対称線に対し垂直な面7(以下対称面と呼ぶ)に関して略対称になるように配置される。そして正極側電極パターン3aと3b、負極側電極パターン4aと4b、及び絶縁層5aと5bの関係も上記対称面に関して略対称となる位置関係にある。尚図1においては、対称線がベース板6の中央軸線と一致するように示されているが、対称線は中央軸線である必要はなく、ベース板6上に設置された任意の直線でよい。
また、正極側外部端子8と負極側外部端子9も対称面7に対して略対称になるように配置される。正極側外部端子8と正極側電極パターン3a,3bは正極側配線導体10,10a,10bを介して接続され、負極側外部端子9と負極側電極パターン4a,4bは負極側配線導体11,11a,11bを介して接続される。図3は正極側配線導体10,10a、10bを示す斜視図、図4は負極側配線導体11,11a、11bを示す斜視図である。
正極側配線導体10は、対称面7に関して正極側外部端子8と同じ側に位置し、IGBT2a側へ分岐する第1の正極側配線導体10aと、対称面7に関して負極側外部端子9と同じ側に位置し、IGBT2b側に分岐する第2の正極側配線導体10bの2方向に分岐する。
同様に負極側配線導体11は、対称面7に位置する分岐点13で、対称面7に関して正極側外部端子8と同じ側に位置し、IGBT2a側に分岐する第1の負極側配線導体11aと、負極側外部端子9と同じ側に位置し、IGBT2b側に分岐する第2の負極側配線導体11bの2方向に分岐する。
第2の負極側配線導体11bの自己インダクタンスが第1の負極側配線導体11aの自己インダクタンスより大きくなるように、第2の負極側配線導体11bの長さは、第1の負極側配線導体11aの長さより大きくなるように構成される。又半導体モジュール1には、図示していないがIGBT2a,2bのゲートを制御するための制御用配線が設けられている。
図2において、正極側電極パターン3a,3bからIGBT2a,2b内を流れた電流は、IGBT2a,2bに設けられたエミッタ電極からボンディングワイヤ12a,12b、負極側電極パターン4a,4b、負極側配線導体11a,11b,11を介して負極側外部端子9に至る。
そして各導体を交流が流れるので、発生する磁束が時間変化し、それらが自己インダクタンス及び相互インダクタンスの発生原因となる。尚各導体を流れる電流の大きさは、抵抗とインダクタンスの大きさによって決定されるが、高周波の電流が流れるので、インダクタンス値が抵抗値よりもはるかに大きく、抵抗値による影響は無視できるものである。
矢印Aで示される第2の負極側配線導体11bを流れる電流の向きは、矢印Bで示される第2の正極側配線導体10bを流れる電流の向き、及び矢印Cで示される負極側配線導体11を流れる電流の向きとは逆方向であるので、矢印Aで示される電流によって発生する磁束は、矢印B及び矢印Cで示される電流によって発生する磁束によって減少させられることとなる。
一方矢印Dで示される第1の負極側配線導体11aを流れる電流に関しては、矢印Eで示される第1の正極側配線導体10aを流れる電流の向きと、矢印Fで示される正極側配線導体10を流れる電流の向きが逆であるので、この部分で磁束は相殺される方向に働くが、矢印Fの電流は矢印Eの電流より大きいので、矢印Fの電流による磁束のほうが大きく、従って第1の負極側配線導体11a部分においては、矢印Dの電流によって発生する磁束に矢印Fの電流によって発生する磁束が加算されることとなる。
このため、矢印Aで示される部分における第2の負極側配線導体11bで発生する相互インダクタンスは、第2の負極側配線導体11b全体の配線インダクタンス(自己インダクタンスと相互インダクタンスの総和、以下同じ)を小さくする。一方、矢印Dで示される部分における第1の負極側配線導体11aで発生する相互インダクタンスは、第1の負極側配線導体11a全体の配線インダクタンスを大きくする。
また、第1の負極側配線導体11aと第2の負極側配線導体11bを対称面7に関して略対称の形状にした場合、負極側外部端子9から負極側配線導体11及び第2の負極側配線導体11bを介して負極側電極パターン4bに至るまでの最短距離が、負極側外部端子9から負極側配線導体11及び第1の負極側配線導体11aを介して負極側電極パターン4aに至るまでの最短距離より短くなり、自己インダクタンスも小さくなる。
そこで以上の点を考慮し、本発明においては、第2の負極側配線導体11bにおいて、第1の負極側配線導体11aより長くなる部分11b1を設けるように構成したものである。このように構成することにより、第2の負極側配線導体11bの自己インダクタンスが第1の負極側配線導体11aの自己インダクタンスより大きくなり、第1の負極側配線導体11a及び第2の負極側配線導体11bの矢印部分A、Dにおいて発生した相互インダクタンスの差を相殺することができる。
これにより負極側外部端子9から対称面7に関して負極側外部端子9と同じ側にあるIGBT2bまでに至る配線インダクタンスと、負極側外部端子9から対称面7に関して正極側外部端子8と同じ側にあるIGBT2aまでに至る配線インダクタンスとのバランスをとることができ、対称面7に関して略対称に配置されたIGBT2a,2bに流れる電流を同一にすることができる。
また、第2の負極側配線導体11bの自己インダクタンスを変化させるだけでなく、ボンディングワイヤ12b及び負極側電極パターン4bの自己インダクタンスを、ボンディングワイヤ12a及び負極側電極パターン4aの自己インダクタンスより大きくすることにより、第1の負極側配線導体11a及び第2の負極側配線導体11bの矢印部分A、Dにおいて発生した相互インダクタンスの差を相殺することもできる。
これにより、負極側外部端子9から対称面7に関して負極側外部端子9と同じ側にあるIGBT2bまでに至る配線インダクタンスと、負極側外部端子9から対称面7に関して正極側外部端子8と同じ側にあるIGBT2aまでに至る配線インダクタンスとのバランスをとることができる。
次に上記実施の形態の場合に11b1の長さを具体的にどのような値に設定するかについて以下説明する。図5に示すような細線に電流が流れた場合の相互インダクタンスMは(1)式のように示される。
M=μ0・l・{ln(2・l/D)−1}/(2・π) ・・・(1)
また、図6に示すような長さLe、幅w、厚さtを有する自己インダクタンスLは(2)式のように示される。
L=μ0・Le・[ln{2・Le/(w+t)}+0.5]/(2・π) ・・・(2)
次に図7に示すように、第1の負極側配線導体11aを流れる電流Dと正極側配線導体10を流れる電流Fとの間の相互インダクタンスM1及び第2の負極側配線導体11bを流れる電流Aと負極側配線導体11を流れる電流Cとの間の相互インダクタンスM2は、(1)式より、
M1=μ0・l・{ln(2・l/D1)−1}/(2・π)
M2=μ0・l・{ln(2・l/D2)−1}/(2・π) ・・・(4)
となる。
尚電流Eと電流Bは大きさが同じで、しかも電流D及び電流Aに対し向きが逆であるので、相互インダクタンスの差は相殺されることとなり、考慮する必要はない。又第1の負極側配線導体11aの自己インダクタンスをL1、第2の負極側配線導体11bの自己インダクタンスをL2とすると、図8に示すように、11a側の配線インダクタンスは、L1+M1、11b側の配線インダクタンスはL2−M2となる。
11b側配線のうち、11a側配線より長い部分11b1の自己インダクタンスをL3とすると、L2−M2=L1+L3−M2となる。
11a側の配線インダクタンスと11b側の配線インダクタンスを同じにするためには、L1+M1=L1+L3−M2とする必要があり、従ってL3=M1+M2とする必要がある。
(4)式より、
L3=μ0・l・{ln(2・l/D1)−1}/(2・π)+μ0・l・{ln(2・l/D2)−1}/(2・π)
0・l・[{ln(2・l/D1)−1}+{ln(2・l/D2)−1}]/(2・π) ・・・(5)
また、(2)式より、
L3=μ0・Le・[ln{2・Le/(w+t)}+0.5]/(2・π) ・・・(6)
(5),(6)式より、
μ0・l・[{ln(2・l/D1)−1}+{ln(2・l/D2)−1}]/(2・π)=
μ0・Le・[ln{2・Le/(w+t)}+0.5]/(2・π)
Le・[ln{2・Le/(w+t)}+0.5}]=l・[{ln(2・l/D1)−1}+{ln(2・l/D2)−1}]となるように11b1の形態を決定すればよい。
ここで例えば、w=8[mm],t=1[mm],l=25[mm],D1=10[mm],D2=15[mm]の場合、
Le=13.0[mm]となる。
実施の形態2.
図9はこの発明の実施の形態2による半導体モジュールの内部配線構造を示す斜視図、図10は配線導体を取り除いた状態を示す平面図である。対称面7に関して正極側外部端子8と同じ側に2個のIGBT2a1及びIGBT2a2が設けられるとともに、負極側外部端子9と同じ側に2個のIGBT2b1及びIGBT2b2が配置される。
実施の形態1の場合と同様第2の負極側配線導体11bの自己インダクタンスが第1の負極側配線導体11aの自己インダクタンスより大きくなるように、第2の負極側配線導体11bの長さは第1の負極側配線導体11aの長さより長くなるように構成される。即ち図9に示すように、第2の負極側配線導体11bの先端部を折り曲げて構成することにより、第2の負極側配線導体11bの長さを第1の負極側配線導体11aの長さより長くなるようにしたものである。
また、図10で示すように、第1の負極側配線導体11aと負極側電極パターン4aとの接続点21aは、IGBT2a1とIGBT2a2から等しい距離に配置されるとともに、第2の負極側配線導体11bと負極側電極パターン4bの接続点21bもIGBT2b1とIGBT2b2から等しい距離に配置される。これにより各IGBTに至るまでの自己インダクタンスが等しくなるので、流れる電流も等しくなる。
以上のように構成することにより、実施の形態1の場合と同様、負極側外部端子9からIGBT2bまでの配線インダクタンスと、負極側外部端子9からIGBT2aまでの配線インダクタンスを同じにすることができ、対称面7に対し対称に配置されたIGBT2aとIGBT2bに流れる電流を同じにすることができる。本実施形態においては、さらにIGBT2a1とIGBT2a2に流れる電流を同じにするとともに、IGBT2b1とIGBT2b2に流れる電流を同じにすることができる。
次に上記のように形成した第2の負極側配線導体11bの長さを具体的にどのように設定するかについて以下説明する。
図11に示すように、導体を折り返し構造とした場合、自己インダクタンスLは
L=μ0・Le・d/wとなる。
従って図8に示したL3は
L3=μ0・Le・d/w ・・・(7)となる。
(5),(7)式より、
μ0・l・[{ln(2・l/D1)−1}+{ln(2・l/D2)−1}]/(2・π)=μ0・Le・d/w
Le・d/w=l・[{ln(2・l/D1)−1}+{ln(2・l/D2)−1}]/(2・π)
Le=w・l・[{ln(2・l/D1)−1}+{ln(2・l/D2)−1}]/(2・π・d)
ここで例えば、w=8[mm],d=3[mm],l=25[mm],D1=10[mm],D2=15[mm]の場合、
Le=8.6[mm]となる。
実施の形態3.
図12はこの発明の実施の形態3による半導体モジュールの内部配線構造を示す斜視図、図13は同じく平面図である。負極側配線導体11は、分岐点13において、対称面7に関して正極側外部端子8と同じ側に位置する第1の負極側配線導体11aと、負極側外部端子9と同じ側に位置する第2の負極側配線導体11bとの2方向に分岐する。
そして第2の負極側配線導体11bの自己インダクタンスが第1の負極側配線導体11aの自己インダクタンスより大きくなるように、第2の負極側配線導体11bの導体幅は第1の負極側配線導体11aの導体幅より小さくなるように構成される。
図13において、正極側電極パターン3a,3bからIGBT2a,2b内を流れた電流は、IGBT2a,2bに設けられたエミッタ電極からボンディングワイヤ12a,12b、負極側電極パターン4a,4b、負極側配線導体11a,11b,11を介して負極側外部端子9に至る。
矢印Aで示される第2の負極側配線導体11bを流れる電流の向きは、矢印Bで示される第2の正極側配線導体10bを流れる電流の向き、及び矢印Cで示される負極側配線導体11を流れる電流の向きとは逆方向であり、互いの磁束を相殺する方向に流れる。
一方矢印Dで示される第1の負極側配線導体11aを流れる電流に関しては、矢印Eで示される第1の正極側配線導体10aを流れる電流の向きと、矢印Fで示される正極側配線導体10を流れる電流の向きが逆であるので、この部分で磁束は相殺される方向に働くが、矢印Fの電流は矢印Eより大きいので、矢印Fの電流による磁束のほうが大きく、従って第1の負極側配線導体11a部分の磁束は増える方向に働く。
このため、矢印Aで示される部分における第2の負極側配線導体11bで発生する相互インダクタンスは、第2の負極側配線導体11b全体の配線インダクタンスを小さくする。一方、矢印Dで示される部分における第1の負極側配線導体11aで発生する相互インダクタンスは、第1の負極側配線導体11a全体の配線インダクタンスを大きくする。
また、第1の負極側配線導体11aと第2の負極側配線導体11bを対称面7に関して略対称の形状にした場合、負極側外部端子9から負極側配線導体11及び第2の負極側配線導体11bを介して負極側電極パターン4bに至るまでの最短距離が、負極側外部端子9から負極側配線導体11及び第1の負極側配線導体11aを介して負極側電極パターン4aに至るまでの最短距離より短くなり、自己インダクタンスも小さくなる。
そこで以上の点を考慮し、本実施形態においては、第2の負極側配線導体11bの導体幅が第1の負極側配線導体11aの導体幅より小さくなるようにして、第2の負極側配線導体11bの自己インダクタンスを第1の負極側配線導体11aの自己インダクタンスよりも大きくなるようにする。
このように構成することにより、第2の負極側配線導体11bの自己インダクタンスが第1の負極側配線導体11aの自己インダクタンスより大きくなり、第1の負極側配線導体11a及び第2の負極側配線導体11bの矢印部分A、Dにおいて発生した相互インダクタンスの差を相殺することができる。
これにより負極側外部端子9から対称面7に関して負極側外部端子9と同じ側にあるIGBT2bまでに至る配線インダクタンスと、負極側外部端子9から対称面7に関して正極側外部端子8と同じ側にあるIGBT2aまでに至る配線インダクタンスとのバランスをとることができ、対称面7に関して略対称に配置されたIGBT2a,2bに流れる電流を同一にすることができる。
次に上記のように形成した導体の幅を具体的にどのような値に設定するかについて以下説明する。第1の負極側配線導体11aの導体幅をw1、第2の負極側配線導体11bの導体幅をw2としたとき、(2)式より
L1=μ0・Le・[ln{2・Le/(w1+t)}+0.5]/(2・π),
L2=μ0・Le・[ln{2・Le/(w2+t)}+0.5]/(2・π)
図8に示すように、L1+M1=L2−M2であるから
μ0・Le・[ln{2・Le/(w1+t)}+0.5]/(2・π)+μ0・l・{ln(2・l/D1)−1}/(2・π)=
μ0・Le・[ln{2・Le/(w2+t)}+0.5]/(2・π)−μ0・l・{ln(2・l/D2)−1}/(2・π)
Le・[ln{2・Le/(w1+t)}+0.5]+l・{ln(2・l/D1)−1}=
Le・[ln{2・Le/(w2+t)}+0.5]−l・{ln(2・l/D2)−1}
Le・[ln{2・Le/(w1+t)}−ln{2・Le/(w2+t)}]=
−l・{ln(2・l/D1)−1+ln(2・l/D2)−1}
Le・ln{(w2+t)/(w1+t)}=−l・[ln{4・l^2/(D1・D2)}−2]
(w2+t)/(w1+t)=exp(−l・[ln{4・l^2/(D1・D2)}−2]/Le)
w2=(w1+t)・exp(−l・[ln{4・l^2/(D1・D2)}−2]/Le)−t
ここで例えば、Le=40[mm],t=1[mm],l=25[mm],D1=10[mm],D2=15[mm],
w1=10[mm]の場合、
w2=5.6[mm]となる。
実施の形態4.
図14はこの発明の実施の形態4による半導体モジュールの内部配線構造を示す斜視図、図15は平面図、図16は図15におけるG−G線断面図、図17は図15におけるH−H線断面図、図18は正極側配線導体10,10a,10bを示す斜視図、図19は負極側配線導体11,11a,11bを示す斜視図である。
図において、正極側配線導体10は、対称面7に関して正極側外部端子8と同じ側に位置する第1の正極側配線導体10aと、負極側外部端子9と同じ側に位置する第2の正極側配線導体10bの2方向に分岐する。
同様に、負極側配線導体11は、分岐点13において、対称面7に関して正極側外部端子8と同じ側に位置する第1の負極側配線導体11aと、負極側外部端子9と同じ側に位置する第2の負極側配線導体11bの2方向に分岐する。
第1の負極側配線導体11aと第2の負極側配線導体11bは対称面7に関して略対称になるように配置される。正極側配線導体10,10a,10bと負極側配線導体11,11a,11bは、一定の絶縁距離を隔てて配置されるとともに、正極側配線導体10,10a,10bに流れる電流の向きは負極側配線導体11,11a,11bに流れる電流の向きと逆である。
また、図16、図17に示すように、第2の正極側配線導体10bと第2の負極側配線導体11bの間に発生する相互インダクタンスが第1の正極側配線導体10aと第1の負極側配線導体11aの間に発生する相互インダクタンスより小さくなるように、第2の正極側配線導体10bと第2の負極側配線導体11bの間の距離は第1の正極側配線導体10aと第1の負極側配線導体11aの間の距離より大きく構成される。
図15において、正極側電極パターン3a、3bからIGBT2a,2bに流れた電流は、IGBT2a,2bに設けられたエミッタ電極からボンディングワイヤ12a,12b、負極側電極パターン4a,4b、負極側配線導体11a,11b,11を介して負極側外部端子9に至る。
矢印Aで示される第2の負極側配線導体11bを流れる電流の向きは、矢印Cで示される負極側配線導体11を流れる電流の向きとは逆方向であり、互いの磁束を相殺する方向に流れる。一方矢印Dで示される第1の負極側配線導体11aを流れる電流の向きは、矢印Fで示される正極側配線導体10の向きとは同方向である。
このため、矢印Aで示される部分における第2の負極側配線導体11bで発生する相互インダクタンスは、第2の負極側配線導体11b全体の配線インダクタンスを小さくする。一方、矢印Dで示される部分における第1の負極側配線導体11aで発生する相互インダクタンスは、第1の負極側配線導体11a全体の配線インダクタンスを大きくする。
また、負極側外部端子9から負極側配線導体11及び第2の負極側配線導体11bを介して負極側電極パターン4bに至るまでの最短距離が、負極側外部端子9から負極側配線導体11及び第1の負極側配線導体11aを介して負極側電極パターン4aに至るまでの最短距離より短くなるので、自己インダクタンスも小さくなる。
一方、図16、図17に示すように、第1の正極側配線導体10aを流れる電流の向きは第1の負極側配線導体11aを流れる電流の向きとは逆方向であり、更に第2の正極側配線導体10bを流れる電流の向きは、第2の負極側配線導体11bを流れる電流の向きとは逆方向であるので、それぞれ互いの磁束を相殺する方向に電流が流れることとなる。
従って両者の間に発生する相互インダクタンスは、配線インダクタンス全体の値を小さくする方向に働く。このため、本実施形態においては、図16、図17に示すように、第2の正極側配線導体10bと第2の負極側配線導体11b間の距離を第1の正極側配線導体10aと第1の負極側配線導体11a間の距離より大きくすることにより、第2の正極側配線導体10bと第2の負極側配線導体11bの間に発生する相互インダクタンスを第1の正極側配線導体10aと第1の負極側配線導体11aの間に発生する相互インダクタンスより小さくするものである。
これにより第1の負極側配線導体11a及び第2の負極側配線導体11bの矢印部分A、Dにおいて発生した相互インダクタンスの差を相殺することができるとともに、負極側外部端子9から負極側電極パターン4aに至るまでの自己インダクタンスと、負極側外部端子9から負極側電極パターン4bに至るまでの自己インダクタンスとの差を相殺することができる。
これにより負極側外部端子9から対称面7に関して負極側外部端子9と同じ側に位置するIGBT2bまでに至る配線インダクタンスと、負極側外部端子9から対称面7に関して正極側外部端子8と同じ側に位置するIGBT2bまでに至る配線インダクタンスとのバランスをとることができ、対称面7に関して略対称に配置されたIGBT2a,2bに流れる電流を同一にすることができる。
上記のように本実施形態によれば、第2の負極側配線導体11bと第2の正極側配線導体10bとの間隔が、第1の負極側配線導体11aと第1の正極側配線導体10aとの間隔よりも大きくなるようにしたものである。
次に第2の正極側配線導体10bと第2の負極側配線導体11bの間の距離d2及び第1の正極側配線導体10aと第1の負極側配線導体11aの間の距離d1を具体的にどのような値に設定するかについて以下説明する。
第1の負極側配線導体11a側における第1の正極側配線導体10aとの相互インダクタンスも含めた自己インダクタンスをL1、第2の負極側配線導体11b側における第2の正極側配線導体10bとの相互インダクタンスも含めた自己インダクタンスをL2とすると、図11に示したモデルにより、L1=μ0・Le・d1/w, L2=μ0・Le・d2/wとなる。
図8に示すように、L1+M1=L2−M2であるから、
μ0・Le・d1/w+μ0・l・{ln(2・l/D1)−1}/(2・π)
0・Le・d2/w−μ0・l・{ln(2・l/D2)−1}/(2・π)
Le・(d1−d2)/w=−l・{ln(2・l/D1)+ln(2・l/D2)−2}/(2・π)
Le・(d1−d2)/w=−l・[ln{4・l^2/(D1・D2)}−2]/(2・π)
d2−d1=w・l・[ln{(4・l^2/(D1・D2)}−2]/(2・π・Le)
ここで例えば、Le=40[mm],l=25[mm],w=8[mm],D1=10[mm],D2=15[mm]の場合、
d2−d1=0.65[mm] となる。
尚上記実施の形態1〜4において、正極と負極とを逆になるように構成しても良い。即ち正極側電極パターン3a、3b、正極側外部端子8,正極側配線導体10を負極になるよう構成するとともに、負極側電極パターン4a、4b、負極側外部端子9,負極側配線導体11を正極になるよう構成して、電流の向きが逆になるように構成することもできる。
この発明の実施の形態1による半導体モジュールを示す斜視図である。 この発明の実施の形態1による半導体モジュールを示す平面図である。 正極側配線導体を示す斜視図である。 負極側配線導体を示す斜視図である。 配線状態を示す側面図である。 導体を示す斜視図である。 配線状態を示す概念図である。 配線状態を示す概念図である。 この発明の実施の形態2による半導体モジュールを示す斜視図である。 この発明の実施の形態2による半導体モジュールを示す平面図である。 導体を示す斜視図である。 この発明の実施の形態3による半導体モジュールを示す斜視図である。 この発明の実施の形態3による半導体モジュールを示す平面図である。 この発明の実施の形態4による半導体モジュールを示す斜視図である。 この発明の実施の形態4による半導体モジュールを示す平面図である。 図15におけるG―G線断面図である。 図15におけるH―H線断面図である。 正極側配線導体を示す斜視図である。 負極側配線導体を示す斜視図である。
符号の説明
1 半導体モジュール、3a,3b 正極側電極パターン、6 ベース板、
8 正極側外部端子、9 負極側外部端子、10,10a,10b 正極側配線導体、
11,11a,11b 負極側配線導体。

Claims (5)

  1. ベース板上に正極側電極パターンを介して第1の半導体スイッチ素子群と第2の半導体スイッチ素子群とが載置され、
    正極側外部端子と上記正極側電極パターンとは正極側配線導体を介して接続されるとともに、負極側外部端子と上記第1及び第2の半導体スイッチ素子群とは負極側配線導体を介して接続され、
    上記第1の半導体スイッチ素子群は上記ベース板に設定された対称線に関して上記第2の半導体スイッチ素子群と略対称になるよう配置されるとともに、上記正極側外部端子は上記対称線に関して上記負極側外部端子に対し略対称になるよう配置され、
    上記負極側配線導体は上記第1の半導体スイッチ素子群側へ分岐する第1の負極側配線導体と上記第2の半導体スイッチ素子群側へ分岐し、上記対称線に対して上記負極側外部端子と同じ側に位置する第2の負極側配線導体とを有し、
    上記第2の負極側配線導体の自己インダクタンスが上記第1の負極側配線導体の自己インダクタンスよりも大きくなるように構成したことを特徴とする半導体モジュール。
  2. ベース板上に負極側電極パターンを介して第1の半導体スイッチ素子群と第2の半導体スイッチ素子群とが載置され、
    負極側外部端子と上記負極側電極パターンとは負極側配線導体を介して接続されるとともに、正極側外部端子と上記第1及び第2の半導体スイッチ素子群とは正極側配線導体を介して接続され、
    上記第1の半導体スイッチ素子群は上記ベース板に設定された対称線に関して上記第2の半導体スイッチ素子群と略対称になるよう配置されるとともに、上記正極側外部端子は上記対称線に関して上記負極側外部端子に対し略対称になるよう配置され、
    上記負極側配線導体は上記第1の半導体スイッチ素子群側へ分岐する第1の負極側配線導体と上記第2の半導体スイッチ素子群側へ分岐し、上記対称線に対して上記負極側外部端子と同じ側に位置する第2の負極側配線導体とを有し、
    上記第2の負極側配線導体の自己インダクタンスが上記第1の負極側配線導体の自己インダクタンスよりも大きくなるように構成したことを特徴とする半導体モジュール。
  3. 上記第2の負極側配線導体の長さが、上記第1の負極側配線導体の長さよりも長いことを特徴とする請求項1又は請求項2記載の半導体モジュール。
  4. 上記第2の負極側配線導体の幅が、上記第1の負極側配線導体の幅よりも小さいことを特徴とする請求項1又は請求項2記載の半導体モジュール。
  5. 上記正極側配線導体は上記第1の半導体スイッチ素子群側へ分岐する第1の正極側配線導体と上記第2の半導体スイッチ素子群側へ分岐する第2の正極側配線導体とを有し、
    上記第2の負極側配線導体と上記第2の正極側配線導体との間隔が、上記第1の負極側配線導体と上記第1の正極側配線導体との間隔よりも大きいことを特徴とする請求項1又は請求項2記載の半導体モジュール。
JP2006273580A 2006-10-05 2006-10-05 半導体モジュール Pending JP2008091809A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273580A JP2008091809A (ja) 2006-10-05 2006-10-05 半導体モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273580A JP2008091809A (ja) 2006-10-05 2006-10-05 半導体モジュール

Publications (1)

Publication Number Publication Date
JP2008091809A true JP2008091809A (ja) 2008-04-17

Family

ID=39375620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273580A Pending JP2008091809A (ja) 2006-10-05 2006-10-05 半導体モジュール

Country Status (1)

Country Link
JP (1) JP2008091809A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277975A (ja) * 2008-05-16 2009-11-26 Toyota Industries Corp 半導体装置
JP2010027710A (ja) * 2008-07-16 2010-02-04 Mitsubishi Electric Corp 半導体モジュール
JP2010087400A (ja) * 2008-10-02 2010-04-15 Mitsubishi Electric Corp 半導体装置
CN102881682A (zh) * 2011-07-11 2013-01-16 株式会社日立制作所 半导体功率模块
CN103367284A (zh) * 2013-07-04 2013-10-23 株洲南车时代电气股份有限公司 双l型均流耐应力igbt模块母排端子
JPWO2013047231A1 (ja) * 2011-09-30 2015-03-26 富士電機株式会社 半導体装置及びその製造方法
JPWO2016084622A1 (ja) * 2014-11-28 2017-04-27 富士電機株式会社 半導体装置
JPWO2016129097A1 (ja) * 2015-02-13 2017-11-16 株式会社日産アーク ハーフブリッジパワー半導体モジュール及びその製造方法
US9967991B2 (en) 2014-10-10 2018-05-08 Fuji Electric Co., Ltd. Semiconductor device and busbar
WO2019021731A1 (ja) * 2017-07-27 2019-01-31 株式会社デンソー 半導体モジュール
US10756057B2 (en) 2014-11-28 2020-08-25 Nissan Motor Co., Ltd. Half-bridge power semiconductor module and method of manufacturing same
JP2021072293A (ja) * 2019-10-29 2021-05-06 三菱電機株式会社 半導体パワーモジュール
US11521933B2 (en) 2018-04-18 2022-12-06 Fuji Electric Co., Ltd. Current flow between a plurality of semiconductor chips
CN116130469A (zh) * 2023-04-19 2023-05-16 烟台台芯电子科技有限公司 一种功率半导体器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235258A (ja) * 1992-02-26 1993-09-10 Fuji Electric Co Ltd トランジスタモジュール
JPH08191130A (ja) * 1995-01-11 1996-07-23 Hitachi Ltd 半導体モジュール
JPH09172139A (ja) * 1995-12-20 1997-06-30 Mitsubishi Electric Corp 半導体装置
JPH10125856A (ja) * 1996-10-18 1998-05-15 Hitachi Ltd パワー半導体装置
JP2001102519A (ja) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp パワー半導体モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235258A (ja) * 1992-02-26 1993-09-10 Fuji Electric Co Ltd トランジスタモジュール
JPH08191130A (ja) * 1995-01-11 1996-07-23 Hitachi Ltd 半導体モジュール
JPH09172139A (ja) * 1995-12-20 1997-06-30 Mitsubishi Electric Corp 半導体装置
JPH10125856A (ja) * 1996-10-18 1998-05-15 Hitachi Ltd パワー半導体装置
JP2001102519A (ja) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp パワー半導体モジュール

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277975A (ja) * 2008-05-16 2009-11-26 Toyota Industries Corp 半導体装置
JP2010027710A (ja) * 2008-07-16 2010-02-04 Mitsubishi Electric Corp 半導体モジュール
JP2010087400A (ja) * 2008-10-02 2010-04-15 Mitsubishi Electric Corp 半導体装置
CN102881682A (zh) * 2011-07-11 2013-01-16 株式会社日立制作所 半导体功率模块
JPWO2013047231A1 (ja) * 2011-09-30 2015-03-26 富士電機株式会社 半導体装置及びその製造方法
CN103367284A (zh) * 2013-07-04 2013-10-23 株洲南车时代电气股份有限公司 双l型均流耐应力igbt模块母排端子
US9967991B2 (en) 2014-10-10 2018-05-08 Fuji Electric Co., Ltd. Semiconductor device and busbar
JPWO2016084622A1 (ja) * 2014-11-28 2017-04-27 富士電機株式会社 半導体装置
US10756057B2 (en) 2014-11-28 2020-08-25 Nissan Motor Co., Ltd. Half-bridge power semiconductor module and method of manufacturing same
JPWO2016129097A1 (ja) * 2015-02-13 2017-11-16 株式会社日産アーク ハーフブリッジパワー半導体モジュール及びその製造方法
US10396057B2 (en) 2015-02-13 2019-08-27 Nissan Arc, Ltd. Half-bridge power semiconductor module and method for manufacturing same
WO2019021731A1 (ja) * 2017-07-27 2019-01-31 株式会社デンソー 半導体モジュール
JP2019029457A (ja) * 2017-07-27 2019-02-21 株式会社デンソー 半導体モジュール
EP3660899A4 (en) * 2017-07-27 2020-06-03 Denso Corporation SEMICONDUCTOR MODULE
US11521933B2 (en) 2018-04-18 2022-12-06 Fuji Electric Co., Ltd. Current flow between a plurality of semiconductor chips
JP2021072293A (ja) * 2019-10-29 2021-05-06 三菱電機株式会社 半導体パワーモジュール
CN116130469A (zh) * 2023-04-19 2023-05-16 烟台台芯电子科技有限公司 一种功率半导体器件

Similar Documents

Publication Publication Date Title
JP2008091809A (ja) 半導体モジュール
US8981553B2 (en) Power semiconductor module with integrated thick-film printed circuit board
KR102055458B1 (ko) 전력반도체 모듈
JP2020515034A (ja) ゲートパスインダクタンスが低いパワー半導体モジュール
JP4292652B2 (ja) パワー半導体モジュール
JP4826845B2 (ja) パワー半導体モジュール
JP6271765B1 (ja) 半導体モジュール
JP5207862B2 (ja) 半導体モジュール
KR20190095144A (ko) 반도체 장치
JP2015225918A (ja) 半導体モジュールおよび半導体スイッチ
JP6415467B2 (ja) 配線基板、および半導体モジュール
JP2016054224A (ja) シャント抵抗器
US10056175B2 (en) Thermistor mounting apparatus and thermistor component
JP2005252305A (ja) 電力用半導体装置
JP2007053371A (ja) ライン要素を備えたパワー半導体モジュール
US10536090B2 (en) Bus bar structure and power conversion device using same
JP6585847B2 (ja) 電動機のための電力モジュール
JP2021114893A (ja) 電子回路ユニット
JP5206188B2 (ja) 半導体装置
US20210013183A1 (en) Semiconductor module
JP7034043B2 (ja) パワーモジュール及びパワーモジュールを有する電気装置
US9445497B2 (en) Semiconductor device
JP4461639B2 (ja) 半導体装置
JP2019145641A (ja) 半導体装置
JP5494851B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117