JP2008085987A - インピーダンス整合方法およびそれを用いた信号処理回路を製造する方法、信号処理回路、無線装置 - Google Patents

インピーダンス整合方法およびそれを用いた信号処理回路を製造する方法、信号処理回路、無線装置 Download PDF

Info

Publication number
JP2008085987A
JP2008085987A JP2007174213A JP2007174213A JP2008085987A JP 2008085987 A JP2008085987 A JP 2008085987A JP 2007174213 A JP2007174213 A JP 2007174213A JP 2007174213 A JP2007174213 A JP 2007174213A JP 2008085987 A JP2008085987 A JP 2008085987A
Authority
JP
Japan
Prior art keywords
signal processing
processing unit
impedance
path
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007174213A
Other languages
English (en)
Inventor
Seiichi Baba
清一 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007174213A priority Critical patent/JP2008085987A/ja
Priority to US11/896,290 priority patent/US20080136728A1/en
Publication of JP2008085987A publication Critical patent/JP2008085987A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • Y10T29/49018Antenna or wave energy "plumbing" making with other electrical component

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

【課題】インピーダンスの整合状態を安定させること。
【解決手段】アンテナ10は、所定の周波数帯の信号を送受信する。高周波信号処理部20は、アンテナ10で送受信される信号に対して、信号処理を実行する。信号経路は、アンテナ10と高周波信号処理部20とを接続する。信号経路は、その途中の一点において、少なくともインダクタンス成分とキャパシタンス成分とがそれぞれ含まれた複数の支線経路に分岐し、他の一点において、分岐したそれぞれの支線経路が集結するように構成される。複数の支線経路の数は、高周波信号処理部20からアンテナ10に至る経路におけるインピーダンスが、周波数帯において、高周波信号処理部20のインピーダンスと整合するように調整される。
【選択図】図1

Description

本発明は、アナログ回路技術に関し、特に、高周波アナログ回路でのインピーダンスを整合するインピーダンス整合方法およびそれを用いた信号処理回路を製造する方法、信号処理回路、無線装置に関する。
近年、データ通信の高速化を実現するために、UWB(Ultra Wide Band)に代表される様々な高速データ通信方式が提唱されている。高速データ通信においては、通信機器に搭載される種々の回路がブロードバンド化に対応できなければならない。ブロードバンド化とは、使用する周波数帯が広帯域にわたっていることを指し、狭帯域の処理に比べ困難な点が多い。
例えば、UWBに使用されるLNA(Low Noise Amplifier)は、広帯域なインピーダンス整合を実現することが要求される。このインピーダンス整合は、LNAからアンテナまでに配置された信号線路のインピーダンスに依存する。一般的に、信号線路はIC(Integrated Circuit)内にパッケージ化され、複数のリードピンやボンディングワイヤ等が配備される。したがって、これらの信号線路に起因するインピーダンスを考慮して、ICを設計する必要があった。従来、IC、特に、信号線路に含まれるボンディングワイヤのインピーダンスの値を調整することによって、インピーダンス整合を実現していた(たとえば、特許文献1参照)。
特表2004−519941号公報
一般的に、信号線路に含まれるボンディングワイヤ等は、周波数に応じて特性が大きく変動する寄生成分を有することが知られている。ここで、使用周波数帯が広帯域となる場合、ボンディングワイヤ等の寄生成分は周波数に大きく依存して変動するため、インピーダンスの整合状態が安定しないといった課題がある。
本発明はこうした状況に鑑みてなされたものであり、その目的は、安定したインピーダンス整合が実現できるインピーダンス整合方法およびそれを用いた信号処理回路を製造する方法、信号処理回路、無線装置を提供することにある。
上記課題を解決するために、本発明のある態様の信号処理回路は、所定の周波数帯の信号を送受信するアンテナと、アンテナで送受信される信号に対して、信号処理を実行する高周波信号処理部と、アンテナと高周波信号処理部とを接続する信号経路と、を備える。信号経路は、その途中の一点において、少なくともインダクタンス成分とキャパシタンス成分とがそれぞれ含まれた複数の支線経路に分岐し、他の一点において、分岐したそれぞれの支線経路が集結するように構成され、複数の支線経路の数は、高周波信号処理部からアンテナに至る経路におけるインピーダンスが、周波数帯において、高周波信号処理部のインピーダンスと整合するように、調整される。
「複数の支線経路の数は、・・・調整される」は、信号経路の数を調整して設計することを含み、また、信号の周波数帯に応じて、高周波信号処理部に接続される信号経路の数が変更されることを含み、たとえば、処理対象の信号の周波数帯が切り替わる信号処理回路の場合、処理対象の信号の周波数帯の切り替わりに応じて、高周波信号処理部に接続される信号経路の数が変更されることを含む。また、支線経路は、たとえば、高周波信号処理部を含むICのリードピンや、高周波信号処理部を含むICに付着されたボンディングワイヤや、高周波信号処理部を含むIC内の電極パッドなどを含んでもよい。
この態様によると、高周波信号処理部との間でインピーダンスが整合されるように、周波数帯に応じて、支線経路の数を調整することによって、回路規模の増加を抑えつつ、安定的なインピーダンス整合が容易に実現できる。
高周波信号処理部は、実数成分と、実数成分に比べて0に近い虚数成分とを含むインピーダンスを有してもよい。支線経路の数は、高周波信号処理部からアンテナに至る経路での周波数帯におけるインピーダンスの虚数成分が0に近くなり、かつ、その実数成分が高周波信号処理部のインピーダンスの実数成分に近くなるように、調整されてもよい。
この態様によると、高周波信号処理部からアンテナに至る経路での周波数帯におけるインピーダンスの虚数成分が0に近くなり、かつ、その実数成分が高周波信号処理部のインピーダンスの実数成分に近くなるように、支線経路の数が調整されることによって、所望の周波数帯においては、周波数に依存せずに、安定的なインピーダンス整合が容易に実現できる。
支線経路の数は、高周波信号処理部からアンテナに至る経路に含まれるインダクタンス成分とキャパシタンス成分により決定される当該信号経路での反射損失が0に近くなるように、調整されてもよい。この場合、高周波信号処理部からアンテナに至る経路に含まれるインダクタンス成分とキャパシタンス成分により決定される当該信号経路での反射損失が0に近くなるように、支線経路の数が調整されることによって、良好なインピーダンス整合を容易に実現できる。
信号処理回路は、信号経路中のうちのアンテナに接続し分岐された支線経路が集結した点の後段に、一端において接続され、他端において接地された少なくとも1以上のキャパシタンス素子をさらに備えてもよい。高周波信号処理部からアンテナに至る経路におけるインピーダンスが、周波数帯において、高周波信号処理部のインピーダンスと整合するように、支線経路の数とキャパシタンス素子の数とが調整されてもよい。この場合、高周波信号処理部のインピーダンスと整合するように、支線経路の数とキャパシタンス素子の数とを調整することによって、設計の自由度を向上でき、安定的なインピーダンス整合された信号処理回路を容易に設計できる。
本発明の別の態様は、無線装置である。この装置は、信号処理回路と、信号処理回路に接続され、無線通信を実行する通信実行部と、を備える。この場合、安定的にインピーダンスが整合された信号処理回路を備えることによって、良好な通信が実現できる。
本発明のさらに別の態様は、インピーダンス整合方法である。この方法は、所定の周波数帯の信号を送受信するアンテナと、アンテナで送受信される信号に対して、信号処理を実行する高周波信号処理部と、アンテナと高周波信号処理部とを接続する信号経路と、を備えた信号処理回路において、高周波信号処理部のインピーダンスと、高周波信号処理部からアンテナに至る経路におけるインピーダンスとを周波数帯において整合するインピーダンス整合方法であって、周波数帯を決定するステップと、信号経路の途中の一点において、少なくともインダクタンス成分とキャパシタンス成分とがそれぞれ含まれた複数の支線経路に分岐し、他の一点において、分岐したそれぞれの支線経路が集結するように、信号経路を構成するステップと、決定するステップによって決定された周波数帯に応じて、高周波信号処理部からアンテナに至る経路での周波数帯におけるインピーダンスの虚数成分が0に近くなり、かつ、その実数成分が一定になるように、複数の支線経路の数を調整するステップと、調整するステップを実施した後に、高周波信号処理部からアンテナに至る経路での周波数帯におけるインピーダンスに近くなるように、高周波信号処理部のインピーダンスを調整するステップと、を含む。
本発明のさらに別の態様は、信号処理回路を製造する方法である。この方法は、所定の周波数帯の信号を送受信するアンテナと、アンテナで送受信される信号に対して、信号処理を実行する高周波信号処理部と、アンテナと高周波信号処理部とを接続する信号経路と、を備えた信号処理回路であって、高周波信号処理部のインピーダンスと、高周波信号処理部からアンテナに至る経路におけるインピーダンスとを周波数帯においてインピーダンスが整合された信号処理回路を製造する方法であって、周波数帯を決定するステップと、信号経路の途中の一点において、少なくともインダクタンス成分とキャパシタンス成分とがそれぞれ含まれた複数の支線経路に分岐し、他の一点において、分岐したそれぞれの支線経路が集結するように信号経路を構成するステップと、決定するステップによって決定された周波数帯に応じて、高周波信号処理部からアンテナに至る経路での周波数帯におけるインピーダンスの虚数成分が0に近くなり、かつ、その実数成分が一定になるように、支線経路の数を調整するステップと、調整するステップを実施した後に、高周波信号処理部に対し、高周波信号処理部からアンテナに至る経路での周波数帯におけるインピーダンスに近くなるように、高周波信号処理部のインピーダンスを調整するステップと、を含む。
なお、以上の構成要素の任意の組合せ、本発明の表現を製造方法、方法、装置などの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、安定的なインピーダンス整合が実現できる。
本発明の実施形態を具体的に説明する前に、まず、概要について述べる。本発明の実施形態にかかる無線装置は、所望の周波数帯において、安定的に良好なインピーダンス整合状態を保つ特性を有する。また、本実施形態の無線装置は、UWBなどの広帯域通信に好適となる。
一般的に、UWBを適用した無線装置には、マイクロ波帯低雑音増幅器が搭載されている。マイクロ波帯低雑音増幅器では、良好な利得、雑音指数、入力整合等を実現することが望ましい。しかしながら、設計段階において、マイクロ波帯低雑音増幅器に接続されたリードピン、ボンディングワイヤ等のアセンブリに起因する寄生成分を考慮しなければ、所望の特性を得ることができない。
ところが、UWBなどの超広帯域を使用する通信方式を想定した低雑音増幅器の設計では、超広帯域にわたって入力整合を満たす必要があり、LCラダー型増幅器や分布定数型増幅器が回路構成として使用される。これらの回路構成では、増幅器からアンテナに至る経路におけるインピーダンスが周波数に依存して変化しないように、たとえば、50オーム一定となるように設計する必要がある。しかしながら、アセンブリに起因するリアクタンス成分を含めた設計することは難しい。
そこで、本実施形態は、現実的なアセンブリ形態であっても、広帯域にわたって良好な増幅器動作が得られるようにするものである。具体的には、増幅器を基点としたアンテナ側のインピーダンスの周波数依存性を低減し、周波数によらず、ほぼ一定になるように設計する。詳細は後述するが、増幅器とアンテナの間に配置されるRF(Radio Frequency)信号経路(以下、「信号経路」と表記する)を複数設けたり、信号経路中の電極パッドに調整用キャパシタンスを追加する。これにより、インピーダンスの虚数成分を小さくし、インピーダンスの周波数依存性を小さくできる。そうすると、使用帯域でのインピーダンスが大きく変化しなくなるため、ほぼ一定にできる。さらに、インピーダンスを純抵抗化することによって、増幅器との間のインピーダンス整合を容易に実現することができる。なお、以下においては、説明の便宜上、受信系統についてのインピーダンス整合について説明し、送信系統については説明を省略する。
図1は、本発明の実施形態にかかる無線装置100の構成例を示す図である。無線装置100は、アンテナ10と、信号経路400と、高周波信号処理部20とベースバンド信号処理部40と制御部70を含む。アンテナ10は、図示しない通信相手の無線装置から送信された信号を受信する。信号経路400は、アンテナ10からの信号を高周波信号処理部20に伝える。高周波信号処理部20は、信号経路400からの信号に対し、所定の高周波信号処理を実行する。ベースバンド信号処理部40は、高周波信号処理部20によって処理された信号に対し、復調処理などを実行する。制御部70は、高周波信号処理部20とベースバンド信号処理部40のそれぞれの動作を制御する。
図2は、図1の高周波信号処理部20と信号経路400の構成例を示す図である。信号経路400と高周波信号処理部20は、アンテナ10とベースバンド信号処理部40との間に設置され、複数のアナログ素子がパッケージ化されたRFIC(Radio Frequency Integrated Circuit)であってもよい。本実施例では、高周波信号処理部20は、増幅回路30を含む。本図では、増幅回路30のみを図示しているが他の構成が含まれていてもよい。信号経路400は、容量部28で代表される第1容量部28a〜第m容量部28mとを含む。容量部28の個数は、m個となる。また、信号経路400は、支線経路410で代表される第1支線経路410a〜第n支線経路410nを含む。図示するごとく、信号経路400は、その途中の一点において、少なくともインダクタンス成分とキャパシタンス成分とがそれぞれ含まれた複数の支線経路410に分岐し、他の一点において、分岐したそれぞれの支線経路410が集結するように構成される。
それぞれの支線経路410は、リードピン22で代表される第1リードピン22a〜第nリードピン22nと、ボンディングワイヤ24で代表される第1ボンディングワイヤ24a〜第nボンディングワイヤ24nと、電極パッド26で代表される第1電極パッド26a〜第n電極パッド26nと、を含む。リードピン22とボンディングワイヤ24と電極パッド26の個数は、それぞれn個となる。なお、説明の便宜上、高周波信号処理に関する他の構成、たとえば、発振器やフィルタなどは図示を省略した。
図示するごとく、アンテナ10は、信号経路400を介して、高周波信号処理部20と接続される。信号経路400に含まれる支線経路410の数は、処理対象の信号の有する周波数帯に応じて、調整される。詳細は後述する。容量部28は、高周波信号処理部20における静電破壊を防止するために備えられてもよい。容量部28の数は、処理対象の信号の有する周波数帯に応じて、調整されてもよい。高周波信号処理部20に含まれる増幅回路30は、信号経路400を経て受信した信号の振幅を増幅し、ベースバンド信号処理部40に伝える。
一般に、チップ内の増幅器からアンテナ側をみたときのインピーダンスは周波数に対して一定とはならず、信号経路400中のボンディングワイヤ、リードピンなどの寄生成分の影響により、強い周波数依存性を有する。そこで、複数のリードピン、ボンディングワイヤ、パッド電極などを組み合わせた場合における寄生成分の影響を最小にすることで、広帯域整合に適した回路を提供する。
本実施形態の無線装置100におけるインピーダンス整合は、以下の手順により実施される。
(1)等価回路を求め、回路全体のインピーダンスを導出するための式を導く。
(2)等価回路係数を導出し、(1)で導いた式に代入する。
(3)(2)で求めた式における周波数特性を目的関数として、信号経路400の数nと容量部28の数mを最適化する。
(4)(3)で求めた信号経路400の数nと容量部28の数mとを(2)で求めた式に代入し、増幅回路30からアンテナ10に至る経路におけるインピーダンスを求める。さらに、増幅回路30のインピーダンスを、求めたインピーダンスの値に設定する。
後述する図4において図2の等価回路の説明を明瞭にするために、その比較対象として、図2の高周波信号処理部20を簡易に構成した場合、すなわち、支線経路410が1つである場合について、素子レベルの等価回路を示す。図3は、図2の支線経路410の第1等価回路200の構成例を模式的に示す図である。第1等価回路200は、第1インダクタ50と、第1キャパシタンス52と、第2インダクタ54と、第2キャパシタンス56と、第1抵抗58と、第3キャパシタンス60とを含む。
第1インダクタ50と第1キャパシタンス52は、図2のリードピン22の等価回路を示す。第2インダクタ54は、図2のボンディングワイヤ24の等価回路を示す。第2キャパシタンス56と第1抵抗58は、図2の電極パッド26の等価回路を示す。第3キャパシタンス60は、容量部28の等価回路を示す。なお、各々の等価回路は、電磁界シミュレーションや試料測定による等価回路解析などにより、求められる。ここで、第1インダクタ50は、寄生インダクタンスとして、Lpを有する。第1キャパシタンス52は、寄生キャパシタンスとして、Cpを有する。第2インダクタ54は、寄生インダクタンスとして、Lwを有する。第2キャパシタンス56は、寄生キャパシタンスとして、Csを有する。第1抵抗58は、抵抗値として、Rsを有する。第3キャパシタンス60は、寄生キャパシタンスとして、Cesdを有する。
図示するごとく、リードピン22は、寄生成分として、インダクタンスLpとキャパシタンスCpとを含む。具体的なLpとCpの値は、電磁界シミュレータなどによる解析により、それらの形状等から計算できる。本実施形態において処理対象としている信号の周波数帯は、マイクロ波帯であるため、リードピン22は長さが短いものが使用されるため、Lpは、小さな値となる。また、ボンディングワイヤ24の主な寄生成分は、インダクタンスLwとなる。このLwも、Lp等と同様に、その形状から計算できる。なお、近似式を用いて、Lwの値を算出してもよい。
つぎに、図2に示すような、アンテナ10から高周波信号処理部20に至る支線経路410が複数存在する場合についての等価回路を示す。図4は、図2の高周波信号処理部20の第2等価回路300の構成例を示す模式的に示す図である。第2等価回路300は、図2に図示した信号経路400および容量部28の個数を複数にした場合の等価回路である。また、第2等価回路300では、それぞれの寄生インダクタンスまたは寄生キャパシタンスをZで表現している。
図4に破線で図示するごとく、Z0は、図2のアンテナ10のインピーダンスを示す。また、Z1は、リードピン22のインピーダンスを示す。また、Z2は、図2のボンディングワイヤ24のインピーダンスを示す。また、Z3は、図2の電極パッド26のインピーダンスを示す。また、Z4は、図2の容量部28のインピーダンスを示す。なお、前述したごとく、リードピン22のインダクタンスLpの値は比較的小さいため、簡略化のために、無視するものとした。また、図4において、Y’、Y’’、Z’’’、Ytotalは、それぞれ、図示する位置を基準とした図中左側の回路のアドミッタンス、もしくは、インピーダンスを示す。
ここで、アンテナ10の基準インピーダンスをR、リードピン22の寄生キャパシタンスをCp、ボンディングワイヤ24の寄生インダクタンスをLw、電極パッド26の寄生成分をそれぞれCsおよびRs、容量部28の寄生キャパシタンスをCesdとすれば、Y0〜Y4またはZ0〜Z4は、以下のように書ける。なお、Y0〜Y4は、Z0〜Z4のそれぞれのアドミッタンスを示す。
Figure 2008085987
Figure 2008085987
Figure 2008085987
Figure 2008085987
Figure 2008085987
以下に、図4に示す第2等価回路300をもとに、Y’、Y’’、Z’’’(Y’’’)、および、Ytotalを示す。
Figure 2008085987
Figure 2008085987
Figure 2008085987
Figure 2008085987
Figure 2008085987
ここで、式(1)〜式(5)を式(10)に代入することにより、高周波信号処理部20からアンテナ10側をみたアドミッタンスYtotalないしはインピーダンスZtotalは、周波数(ω=2πf)の関数として、以下のように導出される。
Figure 2008085987
Figure 2008085987
Figure 2008085987
Figure 2008085987
ここで、式(14)において、所望の周波数帯におけるIm(Ytotal)が0になり、かつ、式(13)において、所望の周波数帯におけるRe(Ytotal)の微分値が0となるように、係数n、mを調整する。Im(Ytotal)が0となることにより、アドミッタンスYtotalを純アドミッタンス化できる。これにより、増幅回路30の寄生成分を抵抗成分に設定するだけで、インピーダンス整合が実現できることとなる。また、Re(Ytotal)の微分値が0となることにより、アドミッタンスYtotalの周波数依存性を排除できる。すなわち、周波数が変化しても、アドミッタンスYtotalが変化せず、一定となる。また、これらの特性を満たす周波数が広帯域にわたって存在する場合、無線装置100は、広帯域な整合特性を得ることができる。
つぎに、等価回路定数を求める。具体例を用いて説明する。図2に図示したリードピン22は、インダクタンスLpと対接地容量Cpとで等価回路を表現でき、電磁界シミュレータによる解析でその形状から直接計算できる。また、ボンディングワイヤ24の主な寄生成分は、インダクタンスLwである。これも電磁界シミュレータを用いてその形状から計算できるが、近似式を用いたインダクタンス値を算出してもよい。これらの等価回路定数を以下に示す。
リードピン22のインダクタンス(Lp) = 0.2nH ・・・(式15)
リードピン22の対接地容量(Cp) = 0.13pF ・・・(式16)
ボンディングワイヤ24のインダクタンス(Lw) = 2.0nH ・・・(式17)
つぎに、Si半導体基板に形成された電極パッド26は、接地電位との間に基板容量Csと基板抵抗Rsが直列接続で挿入された寄生成分が存在し、Sパラメータ評価により、測定、抽出ができる。なお、本実施形態において、複数の電極パッド26のそれぞれの電極パッド面積は、同一としている。
電極パッド26の基板容量(Cs) = 0.18pF ・・・(式18)
電極パッド26の基板抵抗(Rs) = 550Ω ・・・(式19)
容量部28は、高周波信号処理部20の静電破壊保護回路(以下、「ESD(Electric Static Discharge)」と表記する)として機能する。ESDは、ダイオードやFET(Field Effect Transistor)のダイオード接続を用いて電極パッド26に装荷される。後述する例においては、FETのダイオード接続を用いている。また、ESDとして、対接地容量Cesdを等価回路として与えた。なお、ESDを装荷しない場合は、同等の容量で代替可能である。
単位ESDの対接地容量(Cesd) = 0.05pF (式20)
ここで、式(15)〜式(20)に示した寄生成分、等価回路定数を式(13)、式(14)に与えたときの周波数特性を示す。図5は、図1の無線装置100における第1の周波数特性の例を示す図である。横軸は周波数、縦軸はアドミッタンスYtotalを示す。また、第1の周波数特性の例では、アドミッタンスYtotalの実数成分を実線で示し、虚数成分を破線で示した。また、n=1、m=2としている。
図示するごとく、アドミッタンスYtotalの実数成分は、おおむね、+0.004から+0.02の範囲となる。また、虚数成分は、−0.007から−0.001の範囲となる。ここで、図1に示す無線装置100において使用される周波数が3〜5GHzであると仮定すると、アドミッタンスYtotalの実数成分は、ほぼ一定の+0.01から+0.015の範囲となる。また、虚数成分は、0に近い−0.007から−0.001の範囲となる。
以上のように、無線装置100に支線経路410を1つ設け、さらに、容量部28を2個設けるだけで、高周波信号処理部20からアンテナ10に至る経路のインピーダンスの周波数依存性をほぼ解消できる。また、高周波信号処理部20のインピーダンスを+0.01から+0.015の範囲となるように調整することによって、インピーダンス整合が実現できることを示している。また、高周波信号処理部20からアンテナ10に至る経路のインピーダンスは周波数の変動に対して安定しているため、インピーダンスの整合状態が安定することとなる。
もう1つ例を示す。図6は、図1の無線装置100における第2の周波数特性の例を示す図である。図5と同様に、アドミッタンスYtotalの実数成分を実線で示し、虚数成分を破線で示した。なお、第2の周波数特性の例では、n=2、m=4としている。
図示するごとく、アドミッタンスYtotalの実数成分は、おおむね、+0.014から+0.024の範囲となる。また、虚数成分は、−0.004から+0.002の範囲となる。ここで、図1に示す無線装置100において使用される周波数が3〜5GHzであると仮定すると、アドミッタンスYtotalの実数成分は、ほぼ一定の+0.023から+0.024の範囲となり、また、虚数成分は、0に近い−0.001から+0.001の範囲となる。
以上のように、無線装置100に支線経路410を2つ設け、さらに、容量部28を4個設けるだけで、高周波信号処理部20からアンテナ10に至る経路のインピーダンスの周波数依存性をより解消できる。また、高周波信号処理部20のインピーダンスを+0.023から+0.024の範囲となるように調整することによって、インピーダンス整合が実現できることを示している。この場合、高周波信号処理部20のインピーダンスは、抵抗成分とできるため、調整が容易となる。また、高周波信号処理部20からアンテナ10に至る経路のインピーダンスは周波数の変動に対して安定しているため、インピーダンスの整合状態がより安定することとなる。図5に示した例と比べると、図6に示す例のほうが、虚数成分は0に近く、また、所望の周波数帯における実数成分の範囲はほぼ一定となるため、図6のn=2、m=4のほうが最適な条件となる。
図7は、図1の無線装置100においてインピーダンス整合をするためのフローチャートである。まず、無線装置100において使用する周波数帯を決定する(S10)。つぎに、図4のように、等価回路を導出する(S12)。導出した等価回路をもとに、式(13)、式(14)のように、周波数の関数で示される条件式を導出する(S14)。さらに、式(16)〜式(20)で示されるような等価回路定数を導出し(S16)、S14で導出した条件式に代入する。つぎに、アドミッタンスの実数成分がωの関数とならないように、かつ、虚数成分が0に近くなるように、最適な支線経路410の数mと、容量部28の数nとを導出する(S18)。最後に、導出された支線経路410の数と、容量部28の数とを式(13)に代入して得たインピーダンスの値を高周波信号処理部20におけるインピーダンスとなるように調整する(S20)。なお、S14とS16の実施順序は逆でもよい。
本発明の実施形態によると、高周波信号処理部20との間でインピーダンスが整合されるように、周波数帯に応じて、支線経路410の数を調整することによって、回路規模を増加させずに、安定的なインピーダンス整合が容易に実現できる。また、高周波信号処理部20からアンテナに至る経路での周波数帯におけるインピーダンスの虚数成分が0に近くなり、かつ、その実数成分が高周波信号処理部のインピーダンスの実数成分に近くなるように、支線経路の数を調整することによって、所望の周波数帯においては、周波数に依存せずに、安定的なインピーダンス整合が容易に実現できる。また、虚数成分を0に近くすることによって、整合すべきインピーダンスが純抵抗化されるため、高周波信号処理部20のインピーダンスの調整が簡易となる。また、高周波信号処理部20からアンテナに至る経路での周波数帯におけるインピーダンスが高周波信号処理部20のインピーダンスと整合するように、支線経路410の数と容量部28の数とを調整することによって、設計の自由度を向上でき、安定的なインピーダンス整合された信号処理回路を容易に設計できる。また、インピーダンスが整合された信号処理回路を備えることによって、良好な通信が実現できる。
以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の実施形態において、支線経路410の数と容量部28の数を調整することによるインピーダンスの整合について説明した。しかしながらこれにかぎらず、たとえば、ボンディングワイヤ24の長さや、電極パッド26のパッド面積、あるいは、容量部28の素子サイズをあわせて調整してもよい。これらを調整することによっても、インピーダンスを調整することが可能となるため、より柔軟に、最適な支線経路410の数と容量部28の数を導出することができ、また、インピーダンス整合状態を実現できる。また、無線装置100に受信系統におけるインピーダンス整合について説明したが、これにかぎらず、送信系統やローカル信号用増幅器等にも同様に適用でき、広帯域かつ整合状態のすぐれた高周波装置を実現できることはいうまでもない。
また、等価回路のインピーダンスの実数成分が一定となり、かつ、虚数成分が0に近くなるように、支線経路410の数と容量部28の数を調整することについて説明した。ここで、最適な支線経路410の数と容量部28の数とを導出するための目的関数として、高周波信号処理部20からアンテナ10に至る経路に含まれるインダクタンス成分とキャパシタンス成分により決定される信号経路400での反射損失を用いてもよい。この場合の目的関数は、反射損失が0に近くなるように、設定されればよい。反射損失は、たとえば、以下のように決定されてもよい。このような態様をとることによって、より良好なインピーダンス整合が実現できる。
Figure 2008085987
また、本実施形態では、図1に示す無線装置100について説明したが、図8に示すような無線装置500であってもよい。図8(a)〜(d)は、本発明の実施形態の変形例である無線装置500の構成例を示す図である。図8(a)に示す無線装置500は、アンテナ10と切替スイッチ80と、第1信号経路400aと第1増幅回路30aとを含む受信系統回路と、第2信号経路400bと第2増幅回路30bとを含む送信系統回路とを含む。図示するごとく、切替スイッチ80が、アンテナ10と信号経路400との間に挿入されていてもよい。また、切替スイッチ80が第1増幅回路30aと第2増幅回路30bに接続され、アンテナ10と切替スイッチ80の間に1系統の信号経路が挿入されてもよい。これにより、送受信処理を切替えられる。
図8(b)に示す無線装置500は、アンテナ10と信号経路400とフィルタ82と増幅回路30とを含む。この図では、フィルタ82は、信号経路400と増幅回路30との間に挿入されている場合を示したが、アンテナ10と信号経路400の間に挿入されていてもよい。これにより、不要な帯域を除去できる。
図8(c)に示す無線装置500は、アンテナ10と信号経路400と可変減衰器84と増幅回路30とを含む。この図では、可変減衰器84は、信号経路400と増幅回路30との間に挿入されている場合を示したが、アンテナ10と信号経路400の間に挿入されていてもよい。これにより、ダイナミックレンジを調整できる。
図8(d)に示す無線装置500は、アンテナ10と信号経路400とバラン(Balun)86と増幅回路30とを含む。バラン86とは、平衡−非平衡変換装置を意味する。図示するごとく、バラン86から出力された2つの信号は、それぞれ、信号経路400と増幅回路30を介して、ベースバンド信号処理部40に出力される。これにより、外部雑音の影響を低減できる。
以上のように、図8の無線装置500に示すような態様であっても、図1に示す無線装置100と同様の効果を奏することはいうまでもない。
本発明の実施形態にかかる無線装置の構成例を示す図である。 図1の高周波信号処理部と信号経路の構成例を示す図である。 図2の支線経路の第1等価回路の構成例を模式的に示す図である。 図2の高周波信号処理部の第2等価回路の構成例を示す模式的に示す図である。 図1の無線装置における第1の周波数特性の例を示す図である。 図1の無線装置における第2の周波数特性の例を示す図である。 図1の無線装置においてインピーダンス整合をするためのフローチャートである。 図8(a)〜(d)は、本発明の実施形態の変形例である無線装置の構成例を示す図である。
符号の説明
10 アンテナ、 20 高周波信号処理部、 22 リードピン、 24 ボンディングワイヤ、 26 電極パッド、 28 容量部、 30 増幅回路、 40 ベースバンド信号処理部、 50 第1インダクタ、 52 第1キャパシタンス、 54 第2インダクタ、 56 第2キャパシタンス、 58 第1抵抗、 60 第3キャパシタンス、 70 制御部、 100 無線装置、 200 第1等価回路、 300 第2等価回路、 400 信号経路、 410 支線経路、 500 無線装置。

Claims (7)

  1. 所定の周波数帯の信号を送受信するアンテナと、
    前記アンテナで送受信される信号に対して、信号処理を実行する高周波信号処理部と、
    前記アンテナと前記高周波信号処理部とを接続する信号経路と、
    を備え、
    前記信号経路は、その途中の一点において、少なくともインダクタンス成分とキャパシタンス成分とがそれぞれ含まれた複数の支線経路に分岐し、他の一点において、分岐したそれぞれの支線経路が集結するように構成され、
    前記複数の支線経路の数は、前記高周波信号処理部から前記アンテナに至る経路におけるインピーダンスが、前記周波数帯において、前記高周波信号処理部のインピーダンスと整合するように、調整されることを特徴とする信号処理回路。
  2. 前記高周波信号処理部は、実数成分と、前記実数成分に比べて0に近い虚数成分とを含むインピーダンスを有し、
    前記支線経路の数は、前記高周波信号処理部から前記アンテナに至る経路での前記周波数帯におけるインピーダンスの虚数成分が0に近くなり、かつ、その実数成分が前記高周波信号処理部のインピーダンスの実数成分に近くなるように、調整されることを特徴とする請求項1に記載の信号処理回路。
  3. 前記支線経路の数は、前記高周波信号処理部から前記アンテナに至る経路に含まれるインダクタンス成分とキャパシタンス成分により決定される当該信号経路での反射損失が0に近くなるように、調整されることを特徴とする請求項1または2に記載の信号処理回路。
  4. 前記信号経路中のうちの前記アンテナに接続し分岐された支線経路が集結した点の後段に、一端において接続され、他端において接地された少なくとも1以上のキャパシタンス素子をさらに備え、
    前記支線経路の数と前記キャパシタンス素子の数は、前記高周波信号処理部から前記アンテナに至る経路におけるインピーダンスが、前記周波数帯において、前記高周波信号処理部のインピーダンスと整合するように、調整されることを特徴とする請求項1から3のいずれかに記載の信号処理回路。
  5. 請求項1から4のいずれかに記載の信号処理回路と、
    前記信号処理回路に接続され、無線通信を実行する通信実行部と、
    を備えることを特徴とする無線装置。
  6. 所定の周波数帯の信号を送受信するアンテナと、前記アンテナで送受信される信号に対して、信号処理を実行する高周波信号処理部と、前記アンテナと前記高周波信号処理部とを接続する信号経路と、を備えた信号処理回路において、前記高周波信号処理部のインピーダンスと、前記高周波信号処理部から前記アンテナに至る経路におけるインピーダンスとを前記周波数帯において整合するインピーダンス整合方法であって、
    前記周波数帯を決定するステップと、
    前記信号経路の途中の一点において、少なくともインダクタンス成分とキャパシタンス成分とがそれぞれ含まれた複数の支線経路に分岐し、他の一点において、分岐したそれぞれの支線経路が集結するように、前記信号経路を構成するステップと、
    前記決定するステップによって決定された周波数帯に応じて、前記高周波信号処理部から前記アンテナに至る経路での前記周波数帯におけるインピーダンスの虚数成分が0に近くなり、かつ、その実数成分が一定になるように、前記複数の支線経路の数を調整するステップと、
    前記調整するステップを実施した後に、前記高周波信号処理部から前記アンテナに至る経路での前記周波数帯におけるインピーダンスに近くなるように、前記高周波信号処理部のインピーダンスを調整するステップと、
    を含むことを特徴とするインピーダンス整合方法。
  7. 所定の周波数帯の信号を送受信するアンテナと、前記アンテナで送受信される信号に対して、信号処理を実行する高周波信号処理部と、前記アンテナと前記高周波信号処理部とを接続する信号経路と、を備えた信号処理回路であって、前記高周波信号処理部のインピーダンスと、前記高周波信号処理部から前記アンテナに至る経路におけるインピーダンスとを前記周波数帯においてインピーダンスが整合された信号処理回路を製造する方法であって、
    前記周波数帯を決定するステップと、
    前記信号経路の途中の一点において、少なくともインダクタンス成分とキャパシタンス成分とがそれぞれ含まれた複数の支線経路に分岐し、他の一点において、分岐したそれぞれの支線経路が集結するように前記信号経路を構成するステップと、
    前記決定するステップによって決定された周波数帯に応じて、前記高周波信号処理部から前記アンテナに至る経路での前記周波数帯におけるインピーダンスの虚数成分が0に近くなり、かつ、その実数成分が一定になるように、前記支線経路の数を調整するステップと、
    前記調整するステップを実施した後に、前記高周波信号処理部に対し、前記高周波信号処理部から前記アンテナに至る経路での前記周波数帯におけるインピーダンスに近くなるように、前記高周波信号処理部のインピーダンスを調整するステップと、
    を含むことを特徴とする信号処理回路を製造する方法。
JP2007174213A 2006-08-30 2007-07-02 インピーダンス整合方法およびそれを用いた信号処理回路を製造する方法、信号処理回路、無線装置 Pending JP2008085987A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007174213A JP2008085987A (ja) 2006-08-30 2007-07-02 インピーダンス整合方法およびそれを用いた信号処理回路を製造する方法、信号処理回路、無線装置
US11/896,290 US20080136728A1 (en) 2006-08-30 2007-08-30 Impedance matching method, a method for manufacturing signal processing circuits and a signal processing circuit and a radio apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006233569 2006-08-30
JP2007174213A JP2008085987A (ja) 2006-08-30 2007-07-02 インピーダンス整合方法およびそれを用いた信号処理回路を製造する方法、信号処理回路、無線装置

Publications (1)

Publication Number Publication Date
JP2008085987A true JP2008085987A (ja) 2008-04-10

Family

ID=39356307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174213A Pending JP2008085987A (ja) 2006-08-30 2007-07-02 インピーダンス整合方法およびそれを用いた信号処理回路を製造する方法、信号処理回路、無線装置

Country Status (2)

Country Link
US (1) US20080136728A1 (ja)
JP (1) JP2008085987A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110132378A (ko) * 2009-02-17 2011-12-07 에프코스 아게 적응형 임피던스 정합 네트워크
JP2013141081A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd アンテナ設計方法、アンテナ設計装置、アンテナ設計プログラム
JPWO2019124211A1 (ja) * 2017-12-18 2020-04-02 日本電信電話株式会社 Icチップ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102077000B1 (ko) * 2018-01-29 2020-04-07 주식회사 만도 레이더의 안테나 반사손실 보상 장치 및 방법과, 그를 이용하는 레이더 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571560A (en) * 1985-05-21 1986-02-18 Zenith Electronics Corporation Switched bandpass filter
US7385465B2 (en) * 2005-12-19 2008-06-10 Industrial Technology Research Institute Switchable dual-band filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110132378A (ko) * 2009-02-17 2011-12-07 에프코스 아게 적응형 임피던스 정합 네트워크
KR101714639B1 (ko) 2009-02-17 2017-03-09 퀄컴 테크놀로지스, 인크. 적응형 임피던스 정합 네트워크
JP2013141081A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd アンテナ設計方法、アンテナ設計装置、アンテナ設計プログラム
US9223908B2 (en) 2011-12-28 2015-12-29 Fujitsu Limited Antenna designing method and apparatus
JPWO2019124211A1 (ja) * 2017-12-18 2020-04-02 日本電信電話株式会社 Icチップ
US11233393B2 (en) 2017-12-18 2022-01-25 Nippon Telegraph And Telephone Corporation IC chip

Also Published As

Publication number Publication date
US20080136728A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US11496178B2 (en) High-frequency module
US7218185B2 (en) Impedance circuit, and filter circuit, amplifier circuit, semiconductor integrated circuit, electronic component, and wireless communications device using the same
TWI654831B (zh) 通訊模組
KR101700502B1 (ko) 저 잡음 증폭기에 대한 시스템 및 방법
US10009048B2 (en) High-frequency circuit and transmission and reception circuit using high-frequency circuit
US20040212434A1 (en) Electronic component for high frequency power amplifier and radio communication system
JP6739890B2 (ja) 一体型マイクロ波集積回路用の変換器
EP2779439A1 (en) High-frequency, broadband amplifier circuit
CN112564645A (zh) 一种多频低噪声放大器
JP2013110619A (ja) 増幅器
JP2008085987A (ja) インピーダンス整合方法およびそれを用いた信号処理回路を製造する方法、信号処理回路、無線装置
JP2006303775A (ja) 半導体回路装置および高周波電力増幅モジュール
JP2000312122A (ja) 高周波入力整合回路装置及び高周波出力整合回路装置及び、半導体集積回路
US10277262B2 (en) Communication module
US20200373890A1 (en) Amplification circuit, radio-frequency front end circuit, and communication device
US10326536B2 (en) Electromagnetic device for damping a first circuit with respect to a second circuit
US7795992B2 (en) Electrical circuit comprising a differential signal path and component with such a circuit
US6803817B2 (en) Dual band power amplifier with improved isolation
US20190296701A1 (en) High frequency circuit and high frequency power amplifier
US20220407470A1 (en) Harmonic processing circuit and amplification device
JP3933529B2 (ja) 信号合成回路およびこの回路を用いたアンテナ装置
JP6785680B2 (ja) 増幅器
Shaheen et al. A simultaneous wideband impedance matching and bandpass filtering technique using NUTL segments at 15 GHz
WO2019193826A1 (ja) フィルタ回路および通信装置
KR20150000704A (ko) 인덕턴스 가변용 패드를 사용한 무선송수신기