US6803817B2 - Dual band power amplifier with improved isolation - Google Patents

Dual band power amplifier with improved isolation Download PDF

Info

Publication number
US6803817B2
US6803817B2 US10/366,062 US36606203A US6803817B2 US 6803817 B2 US6803817 B2 US 6803817B2 US 36606203 A US36606203 A US 36606203A US 6803817 B2 US6803817 B2 US 6803817B2
Authority
US
United States
Prior art keywords
power amplifier
band power
dual band
amplifier circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/366,062
Other versions
US20040155706A1 (en
Inventor
Thomas A. Winslow
Xinjian Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MACOM Technology Solutions Holdings Inc
Original Assignee
MA Com Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MA Com Inc filed Critical MA Com Inc
Priority to US10/366,062 priority Critical patent/US6803817B2/en
Assigned to M/A-COM, INC. reassignment M/A-COM, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WINSLOW, THOMAS A., ZHAO, XINJIAN
Priority to DE602004020591T priority patent/DE602004020591D1/en
Priority to EP04709851A priority patent/EP1595330B1/en
Priority to CN2004800098076A priority patent/CN1774858B/en
Priority to PCT/US2004/003756 priority patent/WO2004075400A2/en
Publication of US20040155706A1 publication Critical patent/US20040155706A1/en
Application granted granted Critical
Publication of US6803817B2 publication Critical patent/US6803817B2/en
Assigned to COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION reassignment COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAYCHEM INTERNATIONAL, M/A COM, INC., THE WHITAKER CORPORATION, TYCO ELECTRONICS CORPORATION, TYCO ELECTRONICS LOGISTICS AG
Assigned to COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION reassignment COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION SECURITY AGREEMENT Assignors: KIWI STONE ACQUISITION CORP.
Assigned to KIWI STONE ACQUISITION CORPORATION reassignment KIWI STONE ACQUISITION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION
Assigned to M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC. reassignment M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KIWI STONE ACQUISITION CORP.
Assigned to RBS BUSINESS CAPITAL, A DIVISION OF RBS ASSET FINANCE, INC., AS AGENT reassignment RBS BUSINESS CAPITAL, A DIVISION OF RBS ASSET FINANCE, INC., AS AGENT SECURITY AGREEMENT Assignors: M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC., MIMIX BROADBAND, INC.
Assigned to M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC. reassignment M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
Assigned to MIMIX BROADBAND, INC., M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC. reassignment MIMIX BROADBAND, INC. RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 25444/920 Assignors: RBS BUSINESS CAPITAL, A DIVISION OF RBS ASSET FINANCE, INC., AS ADMINISTRATIVE AGENT
Assigned to M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC. reassignment M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not

Definitions

  • the invention pertains to dual band power amplifiers such as those commonly employed in dual mode digital cellular telephones. More particularly, the invention pertains to a method, apparatus and technique for improving isolation between two physically adjacent amplifiers operating at different frequencies.
  • a dual mode, dual band digital cellular telephone is an example of one such component.
  • the governments have assigned at least two frequency bands for digital cellular telephone communications.
  • a first band called the American Mobile Phone System or AMPS band
  • AMPS band has been assigned at 824-849 MHz
  • PCS band has been assigned at 1850-1910 MHz.
  • a first band called the Global System for Mobile Communications or GSM band has been assigned at 880-915 MHz and a second band, called the Digital Communications System or DCS band has been assigned at 1710-1785 MHz.
  • dual band digital cellular telephones typically have two power amplifiers, one for each of the two bands. Note that, in both the U.S. and Europe, the higher frequency band is at about twice the frequency of the lower frequency band. Thus, in both the U.S. and Europe, the second harmonic of the lower frequency band is very close in frequency to the fundamental frequency of the higher frequency band.
  • spurious signals that couple into the output conductors of the high band amplifier will bleed right through the filters and/or duplexers downstream of the high band power amplifier, reach the antenna, and be transmitted.
  • Such high power spurious transmissions are, of course, undesirable.
  • the fourth harmonic of the low band power amplifier will be very close in frequency to the second harmonic of the high band power amplifier, which can also be a problem.
  • Another technique that has been used to improve isolation involves making the output conductors of one of the power amplifiers orthogonal to the output conductors of the other power amplifier.
  • the magnetic field lines of the output signals of the low band power amplifier are orthogonal to the output wire bonds of the high band power amplifier so that they do not couple to each other as readily.
  • the power amplifiers are typically mounted on a printed circuit board or other substrate containing other RF driver and power control circuitry to which the power amplifiers must be coupled electrically.
  • the outputs of the power amplifiers typically must be coupled to separate filters and/or duplexers or a diversity switch and then to the same antenna.
  • the input and output conductors of the two amplifiers it is often desirable for the input and output conductors of the two amplifiers to be parallel and/or adjacent to each other to shorten and/or simplify the conductor traces that must be placed on the printed circuit boards in order to carry the output signals to their ultimate destination, i.e., the same antenna.
  • Making the output conductors of the two amplifiers orthogonal to each other can significantly complicate the design and layout realization of conductor traces on the substrate and increases the necessary size of the board.
  • Dual band power amplifier circuitry for cellular telephones and the like commonly are available in LTCC form, FR-laminate module form, or a large plastic molded package. Dual band power amplifier circuits available on the market today typically yield isolation power levels of about ⁇ 25 dBm to ⁇ 20 dBm. It would be desirable to attain better isolation.
  • the invention is a dual band power amplifier with a small footprint and having excellent band-to-band isolation.
  • the first and primary aspect is a dual frequency (second and fourth harmonic) trap at the output of the low band power amplifier comprising a first series capacitance, preferably, on the power amplifier chip, in series with an inductance, the inductance preferably in the form of a transmission line of predetermined length, and further including a second capacitance coupled between an intermediate point of the transmission line inductance and ground.
  • This LC circuit forms a dual resonant second and fourth harmonic trap that provides a very low impedance at the output of the power amplifier at the second and fourth harmonics of the low band power amplifier.
  • This type of harmonic trap substantially increases the band-to-band isolation comparative to a conventional second harmonic trap.
  • Band-to-band isolation can be additively increased by further forming a ground loop between the output conductors of the two power amplifiers.
  • the ground loop is formed by using a looping wirebond that spans from one grounded location to another location positioned between the parallel output wirebonds of the high and low band power amplifiers.
  • the ground loop further isolates the high band amplifier from the low band amplifier by causing the magnetic fields generated around the output wire bonds of the low band power amplifier to set up circulating currents primarily in the ground loop, rather than coupling into the output wire bonds of the high band power amplifier.
  • the invention finds particular use in cellular telephones for CDMA, TDMA and GSM. systems.
  • FIG. 1 is a plan view of a printed circuit board of a dual band power amplifier within which the present invention can be employed.
  • FIG. 2 is a close up plan view of a portion of the printed circuit board shown in FIG. 1 .
  • FIG. 3 is another plan view of a portion of the printed circuit board of FIG. 1 schematically illustrating magnetic coupling between the output conductors of the amplifiers.
  • FIG. 4 is a circuit diagram of a second harmonic trap in accordance with one embodiment of the present invention.
  • FIG. 5 is a plan view of a portion of the printed circuit board of FIG. 1 showing a ground loop in accordance with the present invention.
  • FIG. 6 is a circuit diagram of a second and fourth harmonic trap in accordance with another embodiment of the present invention.
  • FIG. 7 is a more detailed circuit diagram of the second and fourth harmonic trap shown in FIG. 5 .
  • FIG. 1 is a plan view of a printed circuit board (PCB) 10 bearing a dual band power amplifier circuit. It includes an integrated circuit (IC) chip carrying plastic molded package (familiar to anyone skilled in the art) containing a dual band power amplifier configuration in which the present invention may be implemented. Each amplifier is on a separate die 14 a , 14 b with both dies mounted to a single lead frame 16 . However, this is merely exemplary and both amplifiers may be formed on a single die. Furthermore, while the dual band power amplifier of this exemplary embodiment is embodied on a FR-4 based PCB, this is merely exemplary and the present invention is essentially independent of the particular substrate used. Most dual or multiband power amplifier circuits presently available on the market are single package units of LTCC, FR4/laminate or a large plastic package.
  • IC integrated circuit
  • the low band power amplifier 14 a may be adapted to amplify signals in the AMPS frequency band and the high band power amplifier 14 b may be adapted to amplify signals in the PCS band.
  • the lead frame comprises a central ground plane 22 , on which the dies 14 a , 14 b are mounted, and a plurality of lead fingers 26 extending therefrom. Electrical signals on the dies, such as the outputs of the amplifiers, are routed to bond pads 25 on the top surfaces of the dies. The bond pads are electrically coupled to appropriate ones of the lead fingers by conventional bond wires 24 . The distal ends of the lead fingers 26 are attached to conductors on the printed circuit board 10 that carry the signals to/from other circuitry on the printed circuit board and/or to edge connectors or other connectors on the PCB 10 for coupling to circuitry external of the PCB.
  • the IC 12 is only 4 to 5 mm square. Accordingly, the two power amplifiers are extremely close to one another physically.
  • the output signal from each amplifier is split among a plurality of bond pads, bond wires and lead fingers since the total current in the output signals is quite high and could not be transported effectively via a single bond wire.
  • the output signal is routed to six cojoined bond pads on each die 14 a , 14 b (labeled 25 a′ and 25 b′ , respectively, in FIG. 2 in order to differentiate from other bond pads 25 ).
  • the bond pads 25 a′ , 25 b′ are wire bonded via six bond wires (labeled 24 a′ , 24 a′ in FIG. 2 in order to differentiate from other bond wires 24 ) to three lead finger (labeled 26 a′ , 26 b′ in FIG. 2 in order to differentiate from the other lead fingers 26 ) on the lead frame 16 . Accordingly, for each amplifier 14 a , 14 b , there are six parallel and adjacent bond wires 24 a′ , 24 b′ carrying the output signal to three lead fingers 26 a′ , 26 b′ .
  • each amplifier 14 a , 14 b are coupled to electrical contact points on the PCB 10 and recombined in a large trace 33 a , 33 b , respectively, that carries the output signals to conditioning circuitry such as filters and duplexers (not shown). After the conditioning circuitry, the signals are sent via further traces on the PCB, edge connectors and/or other conductors to an antenna (none of which is shown in the Figures).
  • the six bond wires 24 a′ for the output of amplifier 14 a are parallel and close to the six bond wires 24 b′ for the output of amplifier 14 b .
  • the undesirable magnetic coupling of output signals of the low band amplifier 14 b to the output conductors of the high band amplifier occurs primarily, if not exclusively, in the bond wires.
  • circulating magnetic fields represented by arrows 28 b are set up in and around the bond wires of the low band power amplifier 14 b .
  • Similar circulating magnetic fields 28 a are set up around the wire loops for the high band power amplifier 14 a .
  • Time varying magnetic fields containing the second and fourth (as well as other) harmonics of the main signal being amplified by the low band amplifier 14 b can couple to the bond wires 24 a′ of the high band power amplifier 14 a , as illustrated by arrow 30 , thus causing all of the aforementioned deleterious effects.
  • a harmonic trap is coupled to the output of the low band power amplifier 14 b to short out signals at at least the second harmonic frequency of the low band amplifier 14 b to help isolate them from the high band power amplifier 14 a.
  • FIG. 4 is a schematic circuit diagram of an exemplary second harmonic trap in accordance with the present invention that improves isolation between the two amplifiers.
  • the actual physical components corresponding to the circuit components shown schematically in FIG. 4 can be seen in FIG. 2 and are indicated with the same reference numerals.
  • the trap includes a capacitor 31 formed on the low band power amplifier die 14 b and electrically coupled to the output signal of low band amplifier 14 b directly before the output bond pads 25 b′ and bond wires 24 b′ that carry the output signal off die.
  • the output signal of the low band amplifier 14 b is coupled through capacitor 31 via a pad (not labeled) and bond wire 24 b′′ to another lead finger 26 b′′ to a tuned, narrow, inductive transmission line 35 formed on the PCB 10 .
  • the transmission line 35 should have a high Q and be precisely tuned in length to resonate with the on-chip capacitance 31 at the second harmonic frequency of the low band power amplifier.
  • the particular capacitance and inductance values are selected to resonate and trap signals at the determined frequency, i.e., the second harmonic of the frequency band of the low band amplifier 14 b.
  • the far end of the transmission line 35 is coupled to the ground plane of the PCB.
  • the capacitor 31 is about 2 pF
  • the transmission line 35 is about 200 mils in length and 8 mils in width to provide an inductance of about 3.9 nH.
  • the harmonic trap shorts much of the signal at the second harmonic frequency of the low band amplifier 14 b to ground. However, some of the signal at the second harmonic still exists on the bond wires 24 b′ of the low band amplifier 14 b and can bleed through to the output of the high band amplifier via the aforementioned magnetic coupling at the bond wires.
  • FIG. 5 is a plan view of a portion of the PCB illustrating one particular embodiment of a ground loop in accordance with the present invention.
  • a PCB grounded lead finger 26 ′′′ is positioned between the three lead fingers 26 a′ carrying the output of the high band amplifier 14 a and the three lead fingers 26 b′ carrying the output signals of the low band power amplifier.
  • Lead frame finger 26 ′′′ is electrically coupled to a point on the ground plane 22 of the lead frame 16 between the two power amplifiers 14 a , 14 b via a large looping bond wire 24 ′′′.
  • the distal end of the lead finger 26 ′′′ is coupled to ground of the PCB 10 .
  • the intense magnetic fields generated around the output bond wires of the low band power amplifier will set up circulating currents in the ground loop positioned between the two power amplifiers, thus diminishing the coupling of those intense magnetic fields onto the more distant output bond wires 24 a′ of the high band power amplifier 14 a.
  • FIG. 6 is a schematic circuit diagram illustrating a second embodiment of the harmonic trap circuit that is designed to trap signals at both the second and fourth harmonics of the low band amplifier, e.g., at about 1.8 GHz and at about 3.6 GHz.
  • the aspects of the harmonic trap in accordance with the circuit diagram of FIG. 6 are also shown in the plan view of FIG. 2 .
  • a second capacitor 39 is placed on the PCB 10 electrically coupled between an intermediate point 35 a along the length of the transmission line 35 and ground 41 .
  • the exact point intermediate the length of the transmission line and the exact capacitance value of the capacitor should be selected to provide the precise LC circuit characteristics needed to trap the desired frequencies.
  • the second capacitor 39 has a value of approximately 1 pF and the transmission line is 8 mils wide and about 200 mils in length with the second capacitor 39 tapped at about the middle of that length.
  • FIG. 7 is a more detailed circuit diagram illustrating one specific detailed circuit model of the dual resonant second and fourth harmonic trap circuit of FIG. 6 showing details such as inherent parasitic reactances (see, e.g., capacitance 43 and inductance 45 ) of the package materials and dimensions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

The invention is a dual band power amplifier with a small footprint having excellent band-to-band isolation. An improved second and fourth harmonic trap at the output of the low band power amplifier comprises a first capacitance shunted to ground placed in series with an inductance, the inductance preferably in the form of a transmission line of predetermined length, and a second capacitance coupled between an intermediate point of the transmission line inductance and ground. Band-to-band isolation can be additively increased by further forming a ground loop between the outputs of the two power amplifiers. The ground loop further isolates the high band amplifier from the low band amplifier by causing the magnetic fields generated around the output wire bonds of the low band power amplifier to set up circulating currents primarily in the ground loop, rather than coupling into the output wire bonds of the high band power amplifier.

Description

FIELD OF THE INVENTION
The invention pertains to dual band power amplifiers such as those commonly employed in dual mode digital cellular telephones. More particularly, the invention pertains to a method, apparatus and technique for improving isolation between two physically adjacent amplifiers operating at different frequencies.
BACKGROUND OF THE INVENTION
In cellular telephones and other electronic devices, it is often necessary for two power amplifiers operating on signals of different frequencies to be positioned very close to one another. For example, a dual mode, dual band digital cellular telephone is an example of one such component. Particularly, in the U.S., Europe, Japan, and other countries, the governments have assigned at least two frequency bands for digital cellular telephone communications. In the U.S. for instance, a first band, called the American Mobile Phone System or AMPS band, has been assigned at 824-849 MHz and a second band, called the Personal Communications System or PCS band has been assigned at 1850-1910 MHz. In Europe on the other hand, a first band called the Global System for Mobile Communications or GSM band has been assigned at 880-915 MHz and a second band, called the Digital Communications System or DCS band has been assigned at 1710-1785 MHz. Accordingly, dual band digital cellular telephones typically have two power amplifiers, one for each of the two bands. Note that, in both the U.S. and Europe, the higher frequency band is at about twice the frequency of the lower frequency band. Thus, in both the U.S. and Europe, the second harmonic of the lower frequency band is very close in frequency to the fundamental frequency of the higher frequency band.
In accordance with the ever-present desire to miniaturize most electronic devices, including cellular telephones, there is pressure to place the two power amplifiers physically very close to one another. When the conductors carrying the output signals of two amplifies are placed near each other, the output signals tend to magnetically couple to each other. If the frequency of the output signals of the higher frequency (high band) power amplifier is near a harmonic of the frequency of the output signals of the lower frequency (low band) power amplifier, spurious signals at the second harmonic of the lower frequency band that are generated at the output of the low band power amplifier that couple into the output of the high band power amplifier can be a problem. Specifically, these spurious signals that couple into the output conductors of the high band amplifier will bleed right through the filters and/or duplexers downstream of the high band power amplifier, reach the antenna, and be transmitted. Such high power spurious transmissions are, of course, undesirable. In fact, there are regulations regarding the maximum allowable spurious emissions for cellular telephones and other wireless devices. Further, the fourth harmonic of the low band power amplifier will be very close in frequency to the second harmonic of the high band power amplifier, which can also be a problem.
Several techniques have been tried to improve isolation of the two power amplifier bands within cellular telephones and other electronic devices. Probably the simplest technique is to provide as much physical separation between the two power amplifiers as possible. However, as noted above, cellular telephones, and particularly their electronic components, have become so small and the pressure remains to make them even smaller that increasing physical separation generally is not an acceptable solution. Another technique employed to maximize low band to high band power amplifier isolation involves using a second harmonic trap on the output of the lower band power amplifier to cancel second harmonic signals at the output of the low band power amplifier. It has been found, however, that there still tends to be quite a bit of second harmonic signal from the low band power amplifier coupling into the higher band power amplifier even with a second harmonic trap.
Another technique that has been used to improve isolation involves making the output conductors of one of the power amplifiers orthogonal to the output conductors of the other power amplifier. Thus, the magnetic field lines of the output signals of the low band power amplifier are orthogonal to the output wire bonds of the high band power amplifier so that they do not couple to each other as readily. However; this solution has some practical problems. Particularly, the power amplifiers are typically mounted on a printed circuit board or other substrate containing other RF driver and power control circuitry to which the power amplifiers must be coupled electrically. For instance, the outputs of the power amplifiers typically must be coupled to separate filters and/or duplexers or a diversity switch and then to the same antenna. Accordingly, it is often desirable for the input and output conductors of the two amplifiers to be parallel and/or adjacent to each other to shorten and/or simplify the conductor traces that must be placed on the printed circuit boards in order to carry the output signals to their ultimate destination, i.e., the same antenna. Making the output conductors of the two amplifiers orthogonal to each other can significantly complicate the design and layout realization of conductor traces on the substrate and increases the necessary size of the board.
Typical dual band power amplifier circuitry for cellular telephones and the like commonly are available in LTCC form, FR-laminate module form, or a large plastic molded package. Dual band power amplifier circuits available on the market today typically yield isolation power levels of about −25 dBm to −20 dBm. It would be desirable to attain better isolation.
Accordingly, it is an objective present invention to provide an improved dual band power amplifier.
It is another objective present invention to provide a dual band power amplifier with improved isolation between the two amplifiers.
SUMMARY OF THE INVENTION
The invention is a dual band power amplifier with a small footprint and having excellent band-to-band isolation. There are several aspects of the present invention that, acting together, maximize low-band-to-high-band isolation. The first and primary aspect is a dual frequency (second and fourth harmonic) trap at the output of the low band power amplifier comprising a first series capacitance, preferably, on the power amplifier chip, in series with an inductance, the inductance preferably in the form of a transmission line of predetermined length, and further including a second capacitance coupled between an intermediate point of the transmission line inductance and ground. This LC circuit forms a dual resonant second and fourth harmonic trap that provides a very low impedance at the output of the power amplifier at the second and fourth harmonics of the low band power amplifier. This type of harmonic trap substantially increases the band-to-band isolation comparative to a conventional second harmonic trap.
Band-to-band isolation can be additively increased by further forming a ground loop between the output conductors of the two power amplifiers. The ground loop is formed by using a looping wirebond that spans from one grounded location to another location positioned between the parallel output wirebonds of the high and low band power amplifiers. The ground loop further isolates the high band amplifier from the low band amplifier by causing the magnetic fields generated around the output wire bonds of the low band power amplifier to set up circulating currents primarily in the ground loop, rather than coupling into the output wire bonds of the high band power amplifier.
The invention finds particular use in cellular telephones for CDMA, TDMA and GSM. systems.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plan view of a printed circuit board of a dual band power amplifier within which the present invention can be employed.
FIG. 2 is a close up plan view of a portion of the printed circuit board shown in FIG. 1.
FIG. 3 is another plan view of a portion of the printed circuit board of FIG. 1 schematically illustrating magnetic coupling between the output conductors of the amplifiers.
FIG. 4 is a circuit diagram of a second harmonic trap in accordance with one embodiment of the present invention.
FIG. 5 is a plan view of a portion of the printed circuit board of FIG. 1 showing a ground loop in accordance with the present invention.
FIG. 6 is a circuit diagram of a second and fourth harmonic trap in accordance with another embodiment of the present invention.
FIG. 7 is a more detailed circuit diagram of the second and fourth harmonic trap shown in FIG. 5.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a plan view of a printed circuit board (PCB) 10 bearing a dual band power amplifier circuit. It includes an integrated circuit (IC) chip carrying plastic molded package (familiar to anyone skilled in the art) containing a dual band power amplifier configuration in which the present invention may be implemented. Each amplifier is on a separate die 14 a, 14 b with both dies mounted to a single lead frame 16. However, this is merely exemplary and both amplifiers may be formed on a single die. Furthermore, while the dual band power amplifier of this exemplary embodiment is embodied on a FR-4 based PCB, this is merely exemplary and the present invention is essentially independent of the particular substrate used. Most dual or multiband power amplifier circuits presently available on the market are single package units of LTCC, FR4/laminate or a large plastic package.
Again, merely as an example, the low band power amplifier 14 a may be adapted to amplify signals in the AMPS frequency band and the high band power amplifier 14 b may be adapted to amplify signals in the PCS band.
As is conventional, the lead frame comprises a central ground plane 22, on which the dies 14 a, 14 b are mounted, and a plurality of lead fingers 26 extending therefrom. Electrical signals on the dies, such as the outputs of the amplifiers, are routed to bond pads 25 on the top surfaces of the dies. The bond pads are electrically coupled to appropriate ones of the lead fingers by conventional bond wires 24. The distal ends of the lead fingers 26 are attached to conductors on the printed circuit board 10 that carry the signals to/from other circuitry on the printed circuit board and/or to edge connectors or other connectors on the PCB 10 for coupling to circuitry external of the PCB.
In one preferred embodiment of the invention, the IC 12 is only 4 to 5 mm square. Accordingly, the two power amplifiers are extremely close to one another physically. In this particular embodiment, as best seen in FIG. 2, which is a close up of a portion of the PCB, the output signal from each amplifier is split among a plurality of bond pads, bond wires and lead fingers since the total current in the output signals is quite high and could not be transported effectively via a single bond wire. Specifically, on the dies 14 a, 14 b, the output signal is routed to six cojoined bond pads on each die 14 a, 14 b (labeled 25 a′ and 25 b′, respectively, in FIG. 2 in order to differentiate from other bond pads 25). The bond pads 25 a′, 25 b′ are wire bonded via six bond wires (labeled 24 a′, 24 a′ in FIG. 2 in order to differentiate from other bond wires 24) to three lead finger (labeled 26 a′, 26 b′ in FIG. 2 in order to differentiate from the other lead fingers 26) on the lead frame 16. Accordingly, for each amplifier 14 a, 14 b, there are six parallel and adjacent bond wires 24 a′, 24 b′ carrying the output signal to three lead fingers 26 a′, 26 b′. The three output fingers 26 a′, 26 b′ of each amplifier 14 a, 14 b are coupled to electrical contact points on the PCB 10 and recombined in a large trace 33 a, 33 b, respectively, that carries the output signals to conditioning circuitry such as filters and duplexers (not shown). After the conditioning circuitry, the signals are sent via further traces on the PCB, edge connectors and/or other conductors to an antenna (none of which is shown in the Figures).
As can be seen in FIG. 2, the six bond wires 24 a′ for the output of amplifier 14 a are parallel and close to the six bond wires 24 b′ for the output of amplifier 14 b. We have determined that the undesirable magnetic coupling of output signals of the low band amplifier 14 b to the output conductors of the high band amplifier occurs primarily, if not exclusively, in the bond wires. As illustrated in FIG. 3, circulating magnetic fields represented by arrows 28 b are set up in and around the bond wires of the low band power amplifier 14 b. Similar circulating magnetic fields 28 a are set up around the wire loops for the high band power amplifier 14 a. Time varying magnetic fields containing the second and fourth (as well as other) harmonics of the main signal being amplified by the low band amplifier 14 b can couple to the bond wires 24 a′ of the high band power amplifier 14 a, as illustrated by arrow 30, thus causing all of the aforementioned deleterious effects.
In accordance with one aspect of the present invention, a harmonic trap is coupled to the output of the low band power amplifier 14 b to short out signals at at least the second harmonic frequency of the low band amplifier 14 b to help isolate them from the high band power amplifier 14 a.
FIG. 4 is a schematic circuit diagram of an exemplary second harmonic trap in accordance with the present invention that improves isolation between the two amplifiers. The actual physical components corresponding to the circuit components shown schematically in FIG. 4 can be seen in FIG. 2 and are indicated with the same reference numerals. The trap includes a capacitor 31 formed on the low band power amplifier die 14 b and electrically coupled to the output signal of low band amplifier 14 b directly before the output bond pads 25 b′ and bond wires 24 b′ that carry the output signal off die. The output signal of the low band amplifier 14 b is coupled through capacitor 31 via a pad (not labeled) and bond wire 24 b″ to another lead finger 26 b″ to a tuned, narrow, inductive transmission line 35 formed on the PCB 10. The transmission line 35 should have a high Q and be precisely tuned in length to resonate with the on-chip capacitance 31 at the second harmonic frequency of the low band power amplifier. The particular capacitance and inductance values are selected to resonate and trap signals at the determined frequency, i.e., the second harmonic of the frequency band of the low band amplifier 14 b.
The far end of the transmission line 35 is coupled to the ground plane of the PCB.
In this particular embodiment in which the fundamental frequency of the low band amplifier 14 b is about 900 MHz and the desired trap frequency is the second harmonic frequency of about 1.8 GHz, the capacitor 31 is about 2 pF, and the transmission line 35 is about 200 mils in length and 8 mils in width to provide an inductance of about 3.9 nH.
The harmonic trap shorts much of the signal at the second harmonic frequency of the low band amplifier 14 b to ground. However, some of the signal at the second harmonic still exists on the bond wires 24 b′ of the low band amplifier 14 b and can bleed through to the output of the high band amplifier via the aforementioned magnetic coupling at the bond wires.
Hence, in accordance with the second aspect of the invention, a ground loop is placed between the output conductors of the two amplifiers 14 a, 14 b. FIG. 5 is a plan view of a portion of the PCB illustrating one particular embodiment of a ground loop in accordance with the present invention. Particularly, a PCB grounded lead finger 26′″ is positioned between the three lead fingers 26 a′ carrying the output of the high band amplifier 14 a and the three lead fingers 26 b′ carrying the output signals of the low band power amplifier. Lead frame finger 26′″ is electrically coupled to a point on the ground plane 22 of the lead frame 16 between the two power amplifiers 14 a, 14 b via a large looping bond wire 24′″. The distal end of the lead finger 26′″ is coupled to ground of the PCB 10.
The intense magnetic fields generated around the output bond wires of the low band power amplifier will set up circulating currents in the ground loop positioned between the two power amplifiers, thus diminishing the coupling of those intense magnetic fields onto the more distant output bond wires 24 a′ of the high band power amplifier 14 a.
We also have determined that the isolation between the two power amplifiers can be further improved by designing the harmonic trap circuit to trap both the second and the fourth harmonics of the low band amplifier. FIG. 6 is a schematic circuit diagram illustrating a second embodiment of the harmonic trap circuit that is designed to trap signals at both the second and fourth harmonics of the low band amplifier, e.g., at about 1.8 GHz and at about 3.6 GHz. The aspects of the harmonic trap in accordance with the circuit diagram of FIG. 6 are also shown in the plan view of FIG. 2.
In this embodiment, a second capacitor 39 is placed on the PCB 10 electrically coupled between an intermediate point 35 a along the length of the transmission line 35 and ground 41. The exact point intermediate the length of the transmission line and the exact capacitance value of the capacitor should be selected to provide the precise LC circuit characteristics needed to trap the desired frequencies. In the particular embodiment described herein, in which the fundamental frequency of the low band amplifier is about 900 MHz and the desired fourth harmonic trap frequency is about 3.6 GHz, the second capacitor 39 has a value of approximately 1 pF and the transmission line is 8 mils wide and about 200 mils in length with the second capacitor 39 tapped at about the middle of that length.
FIG. 7 is a more detailed circuit diagram illustrating one specific detailed circuit model of the dual resonant second and fourth harmonic trap circuit of FIG. 6 showing details such as inherent parasitic reactances (see, e.g., capacitance 43 and inductance 45) of the package materials and dimensions.
Having thus described a few particular embodiments of the invention, various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications and improvements as are made obvious by this disclosure are intended to be part of this description through not expressly stated herein, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only, and not limiting the invention is limited only as defined in the following claims and equivalents thereto.

Claims (20)

We claim:
1. A dual band power amplifier circuit comprising:
a first power amplifier adapted to amplify signals in a first fundamental frequency band and having an output coupled to a first output conductor;
a second power amplifier adapted to amplify signals in a second fundamental frequency band higher than said first fundamental frequency band and having an output coupled to a second output conductor; and
a dual resonant harmonic trap circuit coupled to the output of the first power amplifier adapted to trap signals at a second harmonic of said first fundamental frequency and a fourth harmonic of said first fundamental frequency.
2. The dual band power amplifier circuit of claim 1 wherein said dual resonant harmonic trap circuit comprises a first capacitor having a first terminal coupled to said output of said first amplifier and a second terminal, a transmission line coupled between said second terminal of said capacitor and ground of said dual band power amplifier circuit and a second capacitor having a first terminal coupled to an intermediate point in said transmission line and a second terminal coupled to ground.
3. The dual band power amplifier circuit of claim 2 wherein said first and second power amplifiers are formed on an integrated circuit die, said integrated circuit die being attached to a substrate and wherein said first capacitor is formed on said integrated circuit die and said transmission line and said second capacitor are formed on said substrate.
4. The dual band power amplifier circuit of claim 3 wherein said integrated circuit die comprises first and second dies on which said first and second amplifiers are disposed, respectively.
5. The dual band power amplifier circuit of claim 3 wherein said first capacitor and said transmission line are connected via at least one bond wire between said die and said substrate.
6. The dual band power amplifier circuit of claim 5 further comprising a lead frame disposed between said die and said substrate, said lead frame having at least one lead finger, said at least one bond wire coupled between said die and said at least one lead finger of said lead frame and said at least one lead finger coupled to said transmission line on said substrate.
7. The dual band power amplifier circuit of claim 6 wherein said substrate is a printed circuit board.
8. The dual band power amplifier circuit of claim 6 wherein said lead frame is 5 mm square.
9. The dual band power amplifier circuit of claim 3 wherein said transmission line has a high Q.
10. The dual band power amplifier circuit of claim 3 wherein said first capacitor and said length of said transmission line are selected to provide a capacitance and an inductance, respectively, so as to form an LC circuit that will trap signals at said second harmonic frequency.
11. The dual band power amplifier circuit of claim 10 wherein said second capacitor and said intermediate point of said transmission line are selected to provide a capacitance and an inductance, respectively, so as to form an LC circuit that will trap signals at said fourth harmonic frequency.
12. The dual band power amplifier circuit of claim 1 further comprising a ground loop positioned between said output conductor of said first amplifier and said output conductor of said second power amplifier.
13. The dual band power amplifier circuit of claim 12 wherein said dual resonant harmonic trap circuit comprises a first capacitor having a first terminal coupled to said output of said first amplifier and a second terminal, a transmission line coupled between said second terminal of said capacitor and ground of said dual band power amplifier circuit and a second capacitor having a first terminal coupled to an intermediate point in said transmission line and a second terminal coupled to ground.
14. The dual band power amplifier circuit of claim 12 wherein said output conductor of said first amplifier and said output conductor of said second amplifier are parallel and adjacent to each other and said ground loop comprises a conductor disposed parallel to said output conductor of said first amplifier and said output conductor of said second amplifier and disposed between said output conductors of said first and second power amplifiers.
15. The dual band power amplifier circuit of claim 14 wherein said output conductors of said first and second amplifiers comprise bond wires and said ground loop comprises a bond wire disposed parallel to and between said output conductors of said first and second power amplifiers.
16. The dual band power amplifier circuit of claim 15 further comprising a lead frame having a plurality of lead fingers and wherein said first and second amplifiers are formed on an integrated circuit die mounted on said lead frame, and said bond wires electrically couple between said die and said lead fingers, said lead frame being disposed between said die and a substrate.
17. The dual band power amplifier circuit of claim 16 wherein said lead frame comprises a ground plane disposed between said first and second amplifiers and said bond wire of said ground loop is coupled between said ground plane of said lead frame and a lead finger of said lead frame, and said lead finger to which said ground loop bond wire is coupled is further coupled to a ground of said substrate.
18. The dual band power amplifier circuit of 17 wherein said bond wires forming said output conductors comprise a plurality of bond wires for each of said first and second power amplifiers.
19. The dual band power amplifier circuit of claim 17 wherein said dual resonant harmonic trap circuit comprises a first capacitor having a first terminal coupled to said output of said first amplifier and a second terminal, a transmission line coupled between said second terminal of said terminal of said capacitor and ground of said dual band power amplifier circuit and a second capacitor having a first terminal coupled to an intermediate point in said transmission line and a second terminal coupled to ground.
20. The dual band power amplifier circuit of claim 19 wherein said first point in said integrated circuit and said transmission line and said second capacitor are formed on said substrate.
US10/366,062 2003-02-12 2003-02-12 Dual band power amplifier with improved isolation Expired - Fee Related US6803817B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/366,062 US6803817B2 (en) 2003-02-12 2003-02-12 Dual band power amplifier with improved isolation
DE602004020591T DE602004020591D1 (en) 2003-02-12 2004-02-10 DOUBLE BELT POWER AMPLIFIER WITH IMPROVED ISOLATION
EP04709851A EP1595330B1 (en) 2003-02-12 2004-02-10 Dual band power amplifier with improved isolation
CN2004800098076A CN1774858B (en) 2003-02-12 2004-02-10 Dual band power amplifier with improved isolation
PCT/US2004/003756 WO2004075400A2 (en) 2003-02-12 2004-02-10 Dual band power amplifier with improved isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/366,062 US6803817B2 (en) 2003-02-12 2003-02-12 Dual band power amplifier with improved isolation

Publications (2)

Publication Number Publication Date
US20040155706A1 US20040155706A1 (en) 2004-08-12
US6803817B2 true US6803817B2 (en) 2004-10-12

Family

ID=32824673

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/366,062 Expired - Fee Related US6803817B2 (en) 2003-02-12 2003-02-12 Dual band power amplifier with improved isolation

Country Status (5)

Country Link
US (1) US6803817B2 (en)
EP (1) EP1595330B1 (en)
CN (1) CN1774858B (en)
DE (1) DE602004020591D1 (en)
WO (1) WO2004075400A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188834A1 (en) * 2003-03-26 2004-09-30 Satoru Konishi Semiconductor device
US20110032052A1 (en) * 2009-08-06 2011-02-10 Hon Hai Precision Industry Co., Ltd. Harmonic suppression device
US10355850B2 (en) * 2016-12-21 2019-07-16 Murata Manufacturing Co., Ltd. High frequency module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6336504B2 (en) * 2015-03-31 2018-06-06 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Multiband power amplifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188877B1 (en) * 1997-07-03 2001-02-13 Ericsson Inc. Dual-band, dual-mode power amplifier with reduced power loss

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9126616D0 (en) * 1991-12-16 1992-02-12 Texas Instruments Ltd Improvements in or relating to amplifiers
DE19823049C2 (en) * 1998-05-22 2000-09-21 Ericsson Telefon Ab L M Power amplifier output circuit for suppressing harmonics for a mobile radio unit with double band operation and method for operating the same
US5973568A (en) * 1998-06-01 1999-10-26 Motorola Inc. Power amplifier output module for dual-mode digital systems
US6688390B2 (en) * 1999-03-25 2004-02-10 Schlumberger Technology Corporation Formation fluid sampling apparatus and method
JP4207328B2 (en) * 1999-09-14 2009-01-14 ソニー株式会社 Antenna switching circuit and communication device using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188877B1 (en) * 1997-07-03 2001-02-13 Ericsson Inc. Dual-band, dual-mode power amplifier with reduced power loss

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188834A1 (en) * 2003-03-26 2004-09-30 Satoru Konishi Semiconductor device
US20110032052A1 (en) * 2009-08-06 2011-02-10 Hon Hai Precision Industry Co., Ltd. Harmonic suppression device
US8217735B2 (en) * 2009-08-06 2012-07-10 Hon Hai Precision Industry Co., Ltd. Harmonic suppression device
US10355850B2 (en) * 2016-12-21 2019-07-16 Murata Manufacturing Co., Ltd. High frequency module
US11283584B2 (en) 2016-12-21 2022-03-22 Murata Manufacturing Co., Ltd. High frequency module

Also Published As

Publication number Publication date
CN1774858B (en) 2010-04-14
US20040155706A1 (en) 2004-08-12
EP1595330A2 (en) 2005-11-16
DE602004020591D1 (en) 2009-05-28
EP1595330B1 (en) 2009-04-15
WO2004075400A3 (en) 2005-02-10
CN1774858A (en) 2006-05-17
WO2004075400A2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US11121733B2 (en) Semiconductor device, radio-frequency circuit, and communication apparatus
US10911008B2 (en) Power amplifier module
JP3874241B2 (en) Electronic component and design method
US11476226B2 (en) Radio-frequency module and communication device
CN107710607B (en) Antenna matching circuit, antenna circuit, front-end circuit, and communication device
KR102448318B1 (en) Radio frequency module and communication device
US7180373B2 (en) High frequency power amplifier module and semiconductor integrated circuit device
US11757478B2 (en) Radio frequency module and communication device
US9978732B2 (en) Network with integrated passive device and conductive trace in packaging substrate and related modules and devices
KR102419331B1 (en) High-frequency modules and communication devices
US11870401B2 (en) Power amplifier module, frontend circuit, and communication device
KR20120112982A (en) Power combiner, power amplifying module having thereof, and signal transceiver module
US11489551B2 (en) Radio-frequency module and communication device
US9402314B2 (en) Semiconductor module
US11539385B2 (en) Radio-frequency module and communication device
CN110710119B (en) High frequency module
US20130309985A1 (en) Transmission module
US6803817B2 (en) Dual band power amplifier with improved isolation
US11418225B2 (en) Radio frequency module and communication device
CN115244850A (en) High-frequency circuit and communication device
CN111628733B (en) High frequency front-end circuit
KR20010037874A (en) Apparatus and ac ground method of load on chip for simultaneous dual-band matching in rf ic amplifier of cdma mobile system

Legal Events

Date Code Title Description
AS Assignment

Owner name: M/A-COM, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WINSLOW, THOMAS A.;ZHAO, XINJIAN;REEL/FRAME:013772/0494

Effective date: 20030211

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
AS Assignment

Owner name: COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION, MAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:M/A COM, INC.;RAYCHEM INTERNATIONAL;TYCO ELECTRONICS CORPORATION;AND OTHERS;REEL/FRAME:022266/0400;SIGNING DATES FROM 20080108 TO 20090113

Owner name: COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION,MASS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:M/A COM, INC.;RAYCHEM INTERNATIONAL;TYCO ELECTRONICS CORPORATION;AND OTHERS;SIGNING DATES FROM 20080108 TO 20090113;REEL/FRAME:022266/0400

Owner name: COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION, MAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:M/A COM, INC.;RAYCHEM INTERNATIONAL;TYCO ELECTRONICS CORPORATION;AND OTHERS;SIGNING DATES FROM 20080108 TO 20090113;REEL/FRAME:022266/0400

AS Assignment

Owner name: COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION, MAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:KIWI STONE ACQUISITION CORP.;REEL/FRAME:022482/0016

Effective date: 20090330

Owner name: COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION,MASS

Free format text: SECURITY AGREEMENT;ASSIGNOR:KIWI STONE ACQUISITION CORP.;REEL/FRAME:022482/0016

Effective date: 20090330

AS Assignment

Owner name: KIWI STONE ACQUISITION CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION;REEL/FRAME:022714/0890

Effective date: 20090521

Owner name: KIWI STONE ACQUISITION CORPORATION,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION;REEL/FRAME:022714/0890

Effective date: 20090521

AS Assignment

Owner name: M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC., MASSA

Free format text: CHANGE OF NAME;ASSIGNOR:KIWI STONE ACQUISITION CORP.;REEL/FRAME:023476/0069

Effective date: 20090526

Owner name: M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC.,MASSAC

Free format text: CHANGE OF NAME;ASSIGNOR:KIWI STONE ACQUISITION CORP.;REEL/FRAME:023476/0069

Effective date: 20090526

AS Assignment

Owner name: RBS BUSINESS CAPITAL, A DIVISION OF RBS ASSET FINA

Free format text: SECURITY AGREEMENT;ASSIGNORS:MIMIX BROADBAND, INC.;M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC.;REEL/FRAME:025444/0920

Effective date: 20101203

AS Assignment

Owner name: M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC., MASSA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COBHAM DEFENSE ELECTRONIC SYSTEMS CORPORATION;REEL/FRAME:025445/0947

Effective date: 20101203

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY AGREEMENT;ASSIGNOR:M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC.;REEL/FRAME:027015/0444

Effective date: 20110930

AS Assignment

Owner name: MIMIX BROADBAND, INC., MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 25444/920;ASSIGNOR:RBS BUSINESS CAPITAL, A DIVISION OF RBS ASSET FINANCE, INC., AS ADMINISTRATIVE AGENT;REEL/FRAME:027028/0021

Effective date: 20110930

Owner name: M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC., MASSA

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 25444/920;ASSIGNOR:RBS BUSINESS CAPITAL, A DIVISION OF RBS ASSET FINANCE, INC., AS ADMINISTRATIVE AGENT;REEL/FRAME:027028/0021

Effective date: 20110930

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20121012

AS Assignment

Owner name: M/A-COM TECHNOLOGY SOLUTIONS HOLDINGS, INC., MASSA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:032857/0032

Effective date: 20140508