JP2008084962A - 固体撮像装置及びその製造方法 - Google Patents

固体撮像装置及びその製造方法 Download PDF

Info

Publication number
JP2008084962A
JP2008084962A JP2006261023A JP2006261023A JP2008084962A JP 2008084962 A JP2008084962 A JP 2008084962A JP 2006261023 A JP2006261023 A JP 2006261023A JP 2006261023 A JP2006261023 A JP 2006261023A JP 2008084962 A JP2008084962 A JP 2008084962A
Authority
JP
Japan
Prior art keywords
element isolation
conductivity type
layer
solid
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261023A
Other languages
English (en)
Inventor
Hisanori Ihara
久典 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006261023A priority Critical patent/JP2008084962A/ja
Publication of JP2008084962A publication Critical patent/JP2008084962A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Element Separation (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】画素セル間のリーク電流を低減しかつ微細化に適した画素セル間の分離を実現し、光電変換素子の感度を向上させた固体撮像装置及びその製造方法を提供することである。
【解決手段】本発明の1態様による固体撮像装置は、第1導電型の基板ウェハの上方に設けられた第2導電型の半導体層中に形成された第2導電型の電荷蓄積層を含む複数の画素セルと、前記画素セルの周囲に設けられ各画素セルを電気的に分離し、平面内で部分的に不純物濃度が異なる第1導電型の素子分離拡散層とを具備する。
【選択図】図3

Description

本発明は、固体撮像装置及びその製造方法に係り、画素セル間のリーク電流を低減しかつ微細化に適した固体撮像装置及びその製造方法に関する。
MOS(metal-oxide-semiconductor)タイプの固体撮像装置は、特に、低電圧駆動、低消費電力の用途に、従来のCCD(charge coupled device)タイプの固体撮像装置(以降、CCDイメージセンサと呼ぶ)に代わって使用されてきている。
MOS固体撮像装置は、基本的にはCMOSプロセスで製造されるため他のCMOS回路との統合が容易であり、同一半導体ウェハ上に光電変換素子(フォトダイオードとも呼ばれる)とMOSトランジスタとが併設される。CMOS(complementary MOS)タイプの増幅型固体撮像装置(以降、CMOSイメージセンサと呼ぶ)では、光信号を光電変換素子により検出し、発生した信号電荷を電荷蓄積層に蓄積することによってこの電位を変調し、その電荷蓄積層の電位により画素セル内部の増幅トランジスタを変調することで画素セルの自身に増幅機能を持たせている。このCMOSイメージセンサは、例えば、3Vの低電圧、単一電源で駆動され、50mWの低消費電力である。
CMOSイメージセンサもCCDイメージセンサと同様に多画素化されており、画素サイズをさらに縮小させるために画素の感度を向上させることが要求されている。
従来のCMOSイメージセンサでは、高濃度のドーパント(例えば、1〜3×1018cm−3程度のボロン(B))を含む半導体基板ウェハ、例えば、シリコンウェハにボロン濃度が低い(例えば、1×1015cm−3)エピタキシャル層を5から10μm積層した、いわゆるp/pウェハを使用している。CMOSイメージセンサでp/pウェハを使用する理由は、表面から深い位置にあるボロン濃度が高い領域においてキャリア(電子)のライフタイムが短いためである。具体的には、光電変換素子に強い光が照射され、発生したキャリア(電子)がウェハの深くまで到達したとしても、キャリアのライフタイムの短い領域で電子は容易に再結合して消滅する。このため、光照射された光電変換素子に隣接する光電変換素子へウェハの深い位置を介して電子(キャリア)が漏れ込むことを抑制できるためである。これは、デバイス特性上ブルーミングを抑制する。
さらに、p/pウェハでは、p基板ウェハ近傍の表面から深い位置でボロン濃度が低い領域から高い領域へ変化する界面が存在する。光電変換により発生した電子が、ウェハの深くまで拡散しようとしても、この界面における電気的ポテンシャルによってウェハの表面側に跳ね返される。この場合、跳ね返された電子の一部が拡散などによって光照射された電荷蓄積層に集まるので、深さ方向に不純物濃度が一様なp型半導体ウェハ上に形成された光電変換素子に比べて、感度の向上が期待できる。
また、CCDイメージセンサのようにn型半導体ウェハに光電変換素子を形成する方法も、ウェハ内のより深い位置で光電変換により発生した電子を利用できるため感度向上に有効である。この場合には、CCDイメージセンサで採用されているように、ウェハ表面から3〜4μm程度の深さにp型半導体層(pウェル)を形成する必要がある。さらに、隣接する光電変換素子同士を電気的に分離するために光電変換素子間にp型半導体領域を形成する必要がある(例えば、特許文献1参照)。この構造では、極端に強い光(例えば、太陽光など)が照射された場合には、発生した電子の一部を基板に捨てることができるため、ブルーミングを抑制できる。しかし、pウェルよりも深い位置で発生した電子は、すべて基板に捨てられるため、p/pウェハに比べて感度が低くなる問題がある。
この感度低下の問題を解決するため、CCDイメージセンサでは、電荷蓄積層に高い電圧(例えば、5V)を印加し、電荷蓄積層からの空乏層を大きく広げて効率よく電荷蓄積層にキャリアを集める方法を採っている。
しかしながら、CMOSイメージセンサでは、CCDイメージセンサと比較して低電圧駆動を素子の特徴としており、電荷蓄積層に高電圧を印加できないため、電荷蓄積層の空乏層がCCDイメージセンサに比べて広がらず、光電変換素子の感度向上が難しい。
特開2005−223134号公報
本発明は、画素セル間のリーク電流を低減しかつ微細化に適した画素セル間の分離を実現し、光電変換素子の感度を向上させた固体撮像装置及びその製造方法を提供する。
本発明の1態様による固体撮像装置は、第1導電型の基板ウェハの上方に設けられた第2導電型の半導体層中に形成された第2導電型の電荷蓄積層を含む複数の画素セルと、前記画素セルの周囲に設けられ各画素セルを電気的に分離し、平面内で部分的に不純物濃度が異なる第1導電型の素子分離拡散層とを具備する。
本発明の他の1態様による固体撮像装置の製造方法は、第1導電型の基板ウェハの上方に設けられた第2導電型の半導体層中に絶縁膜からなる素子分離を形成する工程と、前記半導体層上にゲート絶縁膜を介してゲート電極を形成する工程と、前記ゲート電極に隣接する一方の前記半導体層中に第2導電型の不純物をドープして第2導電型の信号検出層を形成する工程と、前記ゲート電極に隣接する他方の前記半導体層中に第2導電型の不純物をドープして第2導電型の電荷蓄積層を形成する工程と、前記ゲート電極、信号検出層、及び電荷蓄積層を含む画素セルを複数個覆う第1のマスクを用いて、該画素セル間の前記素子分離の下方の前記半導体層中に深さを変えて第1導電型の不純物を複数回ドープする工程と、前記第1のマスクとは異なる組み合せの複数の画素セルを覆う別のマスクを用いて該画素セル間の前記半導体層中への前記第1導電型の不純物のドーピングを少なくとも1回繰り返して、前記各画素セル周囲の前記素子分離下方の前記半導体層中に第1導電型の素子分離拡散層を形成する工程とを具備する。
本発明によって、画素セル間のリーク電流を低減しかつ微細化に適した画素セル間の分離を実現し、光電変換素子の感度を向上させた固体撮像装置及びその製造方法が提供される。
本発明の実施形態は、画素セル間のリーク電流を低減しかつ微細化に適した画素セル間の分離を実現し、そして光電変換素子の感度を向上させた固体撮像装置及びその製造方法を開示する。
本発明の実施形態を、添付した図面を参照して以下に詳細に説明する。図面では、対応する部分は、対応する参照符号で示している。以下の実施形態は、一例として示されたもので、本発明の精神から逸脱しない範囲で種々の変形をして実施することが可能である。
固体撮像装置、例えば、CMOSタイプの増幅型固体撮像装置(CMOSイメージセンサ)において、画素セルは、電荷蓄積層を含む光電変換素子、転送トランジスタ及び信号検出層を含む。通常4個の画素セルで1画素ユニットを構成する。
上記したようにCMOSイメージセンサの性能を向上させるために出発材料である半導体ウェハの選択は、重要である。図1は、CMOSイメージセンサの一例を示す断面図である。このCMOSイメージセンサ100では、p基板ウェハ12上にn型エピタキシャル層14(以降、エピ層と呼ぶ)を形成した半導体ウェハ10(以降、n/pウェハと表記する)を使用することによって、感度の向上、ブルーミングの抑制等の性能向上を図っている。これは、例えば、従来のp基板ウェハ上にp型エピ層を形成したp/pウェハを使用する場合と比較して、n型エピ層14に形成した光電変換素子20の電荷蓄積層26は、空乏層が広がりやすいため感度を向上できるという利点を有するためである。
しかしながら、従来のp/pウェハ上にCMOSイメージセンサを形成する場合に対して、n/pウェハ上に固体撮像装置を形成する場合には、いくつかの問題がある。その一つが、光電変換素子20を含む画素セルPx間の電気的分離である。
従来のp/pウェハを使用する場合は、p型エピ層中にn型半導体層からなる電荷蓄積層を設けて光電変換素子を形成するため、隣接する光電変換素子間、すなわち画素セル間が自動的にp−n接合により電気的に分離される。しかしながら,n/pウェハでは、n型エピ層14中にn型半導体層からなる電荷蓄積層26を設けて光電変換素子20を形成するため、そのままでは、隣接する画素セルPx同士が電気的に繋がってしまうという問題がある。また、ウェハ状態から個々のチップに切り分ける(ダイシング)工程では、従来のp/pウェハでは、チップの切断面にp型半導体層が現れる。これに対して、n/pウェハでは、そのままダイシングするとチップ切断面にp−n接合面、すなわち、基板ウェハ12とn型エピ層14との界面が現れる。チップ切断面にp−n接合面が現れると切断面表面がリーク電流の発生源や、リーク経路となり、リーク電流の増大を招く問題がある。
上記の問題を解決するために、隣接する画素セル間BA及びダイシング領域DAにp型不純物を注入深さを変えながら複数回イオン注入して、ウェハ10内部のp型半導体層までのn型エピ層14を分離するp型半導体の素子分離拡散層30を形成する技術が、本発明者らによって開発されている。
しかしながら、上記の開発された技術においても、さらに改善すべき点が出てきている。図2は、図1に示した素子分離拡散層30を形成するためのイオン注入を説明するために示す図であり、図2(a)は平面図、図2(b)は模式的な断面図である。図2(b)では、半導体ウェ中に形成される光電変換素子等の機能素子を省略している。上記の素子分離拡散層30の形成には、高加速電圧、すなわち高エネルギーのイオン注入を使用する。イオン注入では、フォトレジスト膜32をマスクとして使用する。このため、例えば、4〜5μmの厚さに厚く形成したレジスト膜32で画素セルPxを覆い、イオン注入を行う素子分離領域BAを露出させる必要がある。さらに、CMOSイメージセンサ100の微細化が進むにつれて、画素セルPxの1辺の長さは、3μm程度からそれ以下の長さに縮小され、素子分離領域BAの幅も0.7μmからそれ以下に縮小される。その結果、イオン注入のマスクレジスト膜32は、半導体ウェハ10との接触面積が狭く高さが高い形状となり、これを倒れないように垂直に立てることが必要になる。しかし、レジスト膜32は有機膜であるため、例えば、100万個以上形成されるこのような形状の画素セル領域上のレジスト膜32を全て垂直に維持することには限界がある。一部のレジスト膜32が倒れてしまい素子分離拡散層30を形成できない部分が発生すると、CMOSイメージセンサ100の一部の画素において混色が大きくなるという問題を引き起こす。
本発明の複数の実施形態は、複数の画素セルを含むパターンを有するレジスト膜をマスクとして、素子分離拡散層を形成するためのイオン注入を複数回に分けて行う。そして各イオン注入において、それぞれが異なる組み合せの複数の画素セルを含むパターンを有するレジスト膜をマスクとして用いる。これにより、隣接する画素セル間のリーク電流を低減しかつ微細化に適した画素セル間の分離を実現した固体撮像装置及びその製造方法を提供する。さらに、本発明による固体撮像装置は、光電変換素子部分の面積の縮小による飽和出力が低減することを改善でき、素子分離能力を高めることができる。
(実施形態)
本発明の1つの実施形態は、縦縞状のパターンを有する第1のレジスト膜及び横縞状のパターンを有する第2のレジスト膜の2つをマスクレジスト膜として用いて、イオン注入工程を2回繰り返して素子分離拡散層を形成する固体撮像装置及びその製造方法である。
図3は、本実施形態による固体撮像装置、例えば、CMOSイメージセンサ200の断面構造の一例を示す断面図である。図4(a),(b)は、本実施形態にしたがって素子分離拡散層30を形成するために使用する2つのレジスト膜パターン32,34であり、図4(c)は、形成されたCMOSイメージセンサ200の素子分離拡散層30を説明するために示す平面図である。
隣接する画素セルPxを電気的に分離する素子分離拡散層30は、2回のイオン注入工程を経て形成される。まず、図4(a)に示した縦方向に連続して配置された複数の画素セルPxを覆う第1のレジスト膜32をマスクとして、注入エネルギー(すなわち、加速電圧)及びドーズ量を変えて、複数回、図3では5回、注入深さを変えてイオン注入を行う。これにより、n型半導体層14a中にpウェル16に到達するp型の素子分離拡散層30を形成する。素子分離拡散層30は、例えば、図3に示した30−1から30−5のように形成される。次に、図4(b)に示した横方向に連続して配置された複数の画素セルPxを覆う第2のレジスト膜34をマスクとして、同様に注入エネルギー及びドーズ量を変えて、注入深さが異なる複数回のイオン注入を行って素子分離拡散層30を形成する。
このようにして形成した素子分離拡散層30は、図4(c)に斜線を施して示したように、縦方向の素子分離拡散層30と横方向の素子分離拡散層30の交点30Dが2回イオン注入される。すなわち、注入した不純物濃度が部分的に高い領域30D、この場合には2倍の不純物濃度の領域が形成される。
図3に示した本実施形態によるCMOSイメージセンサの断面を参照して、光電変換素子20は、p型不純物、例えば、ボロン(B)を高濃度(例えば、1〜5×1018cm−3)にドープしたp基板ウェハ12上に形成されたn型エピ層14a(例えば、リン(P)濃度1〜5×1015cm−3)中に形成される。p基板ウェハ12とn型エピ層14aとの間にp型のウェル16が後で説明するように形成される。画素セルPxの周囲の素子分離領域BAのn型エピ層14a中には、絶縁膜からなる素子分離18及びp型半導体層からなる素子分離拡散層30が形成される。これらにより、1つの画素セルPxは、素子分離18及び素子分離拡散層30により囲まれて、隣接する画素セルと電気的に分離される。素子分離拡散層30は、上述したように複数回のイオン注入により形成される。したがって、素子分離拡散層30は、深さ方向に不純物濃度が同じ又は異なる複数の部分から構成される。
画素セルPxは、n型エピ層14中に形成された光電変換部であるn型の電荷蓄積層26、電荷蓄積層26の表面に形成されたp型の表面シールド層28、電荷蓄積層26に蓄積された電荷の読み出しを制御する転送トランジスタのゲート電極22及び読み出された電荷信号を供給するために電荷を一時的に蓄積する信号検出層24(転送トランジスタのドレイン)を含む。
次に、本実施形態によるCMOSイメージセンサの製造工程の一例を図5に示した工程断面図を参照して説明する。
図5(a)に示したように、高濃度のp型不純物(例えば、ボロン(B)濃度1〜5×1018cm−3)のp基板ウェハ12上に、例えば、厚さ5μmのエピタキシャル成長させたn型半導体層14(例えば、リン(P)1〜5×1015cm−3)(n型エピ層)を有するn/pウェハ10を出発材料として使用する。
図5(b)を参照して、p型半導体層のウェル16を形成するために、例えば、1150°Cで1.5時間の熱処理を行い、p基板ウェハ12中のボロンをn型エピ層14中に固相拡散させる。これにより、n型エピ層14内部の表面から深さ約3μmの位置でボロン濃度が約1〜5×1015cm−3になり、p基板ウェハ12との界面から厚さ約2μmのp型ウェル16が形成される。これによってn型エピ層14は、実効的な厚さが約3μmのn型エピ層14aになる。
このような不純物濃度分布によってウェハ中の5μmより深い位置では、ボロン濃度が高く電子のライフタイムが短いため、光照射によって発生した電子は、すぐに再結合して消滅する。5μmより浅い位置で発生した電子は、ポテンシャル的に表面に押し戻されて電荷蓄積層26に蓄積される。
次に、n型エピ層14a表面の素子分離領域BA及びダイシング領域DAに素子分離18を形成する。素子分離18は、例えば、STI(shallow trench isolation)を使用することができる。この後、トランジスタやキャパシタ形成のためのゲート絶縁膜21、ゲート電極22やゲート配線、ドレイン24等を形成する。図3に示したゲート電極22は、転送トランジスタのゲート電極であり、ドレイン24は、信号検出層として機能する。
光電変換素子20の電荷蓄積層26を形成する領域以外をレジスト(図示せず)で覆い、n型不純物、例えば、リン(P)をイオン注入し、電荷蓄積層26を形成する。リンのイオン注入条件は、例えば、加速電圧300KV、ドーズ量1〜2×1012cm−2である。これにより、例えば、リン濃度のピークが表面から約0.1〜0.3μmの位置にあるn型拡散層からなる電荷蓄積層26を形成できる。このようにして、図5(b)に示した構造を形成できる。
次に、画素セルPx間を電気的に分離するために、画素セルPxを囲む素子分離領域BA及びダイシング領域DAに素子分離拡散層30を形成する。本実施形態では、素子分離拡散層30は、2回のイオン注入工程によりSTIの下方にイオン注入を行うことによって形成される。まず、例えば、図4(a)に示したような図の縦方向に配置された複数の画素セルPxを覆い縦長の開口部、すなわち、イオン注入領域を有する第1のマスクパターンを形成した第1のレジスト膜32をマスクとして使用する。イオン注入は、イオン注入深さを変えるために、イオン注入条件を変えてボロンを複数回、例えば、5回行って、素子分離拡散層30を形成する。それぞれのイオン注入条件は、例えば、加速電圧100から300KVでドーズ量1×1012cm−2から1×1013cm−2、300から500KVで1×1011cm−2から1×1012cm−2、500から700KVで1×1011cm−2から1×1012cm−2、1000から1300KVで1×1011cm−2から1×1012cm−2、1600から1800KVで1×1011cm−2から1×1012cm−2とすることができる。素子分離拡散層30は、n型拡散層である電荷蓄積層26及び信号検出層24に近い表面側を深い部分よりもボロン濃度を高くすることが好ましい。本実施形態では、1回目のイオン注入のドーズ量を他に比べて1桁程度多くしている。
次に、図4(b)に示したように図の横方向に配置された複数の画素セルPxを覆い横長の開口部を有する第2のマスクパターンを形成した第2のレジスト膜34をマスクとして第2のイオン注入工程を行う。このように、レジスト膜マスクパターンを代えて複数回のイオン注入工程を実施して、画素セルPxを囲む素子分離拡散層30が形成される。
このように複数の画素セルPxを覆うレジスト膜32,34をマスクパターンとすることによって、レジスト膜の底面積を大きくでき、パターンが微細化されてもレジスト膜32,34が倒れることを防止できる。その結果、イオン注入が部分的に行われずに素子分離拡散層30が部分的に途切れることを防止できる。
これによって、イオン注入したボロンの活性化アニール時にp基板ウェハ12からさらにボロンが表面に向かって拡散することを含め、素子分離18(例えば、STI)の下からp型ウェル16に到達するp型拡散層からなる素子分離拡散層30を形成できる。したがって、隣接する複数の画素セルPxのn型エピ層14aは、電気的に分離される。
次に、電荷蓄積層26の上方のn型エピ層14a表面にp型半導体層28を形成する。p型半導体層28は、半導体ウェハ表面の表面準位の影響を抑制するする表面シールド層として機能する。具体的には、表面にレジスト膜(図示せず)を形成し、表面シールド層のパターンをパターニングする。レジスト膜をマスクとして、p型不純物、例えば、ボロンを加速電圧10KV、ドーズ量1〜3×1013cm−2でイオン注入する。このようにして、例えば、表面から約0.1μmの深さまでボロン濃度が約1×1019cm−3の高濃度p型拡散層28を形成できる。その結果、電荷蓄積層26をウェハ10内部に埋め込むことができる。これによって、3S(Surface Shield Sensor)構造の光電変換素子20が形成される。このようにして、図3に示したCMOSイメージセンサを形成できる。
その後、配線工程等の固体撮像装置に必要な工程を行って、本実施形態による増幅型CMOS固体撮像装置200を完成する。
上記のように、本実施形態では、素子分離拡散層30を形成するために、レジスト膜が複数の画素セルPxを覆い縦長のイオン注入領域を有する第1のレジスト膜マスクと横長のイオン注入領域を有する第2のレジスト膜マスクとを用いて2回のイオン注入工程を行っている。このようにして形成した素子分離拡散層30は、図4(c)に斜線を施したように2つのイオン注入領域が交差する部分30Dでは、2回イオン注入され、ボロン濃度が他の部分の2倍になる。このボロン濃度が高くなる部分は、四角い形状の画素セルPx、すなわち光電変換素子20の角に隣接する。光電変換素子20の角部では電界集中が生じやすいため、素子分離特性を強くすることが好ましい。特に、強い光を受け蓄積電荷量が多くなる場合には、高い電界集中が生じることがあるため素子分離特性をさらに強くすることが好ましい。素子分離特性を強めることは、素子分離拡散層30のボロン濃度を高めることによって実現できる。したがって、本実施形態による増幅型CMOS固体撮像装置200は、光電変換素子20の角部に隣接する素子分離拡散層30Dが他の部分に比べて高いボロン濃度、すなわち、高い素子分離特性を有し、画素セルPx間のリーク電流の低減、すなわち、混色の低減を実現できる。
上記の製造方法は、一例を示したもので、工程の順番を入れ替えたり、同等の構造を作成することができる別の工程と置き換えて実行することができる。
上記の実施形態は、種々の変形をして実施することができる。次に、素子分離拡散層を形成するためのイオン注入に使用するレジスト膜マスクのパターン及び出発材料である半導体ウェハに関するいくつかの変形例を説明する。しかし、本発明は、これらの例に限定されるものではない。
(変形例1)
本発明の変形例1の素子分離拡散層を形成するためのイオン注入に使用するレジスト膜パターンを、図6に示す。このパターンは、上記の実施形態で用いた、図4に示した縦縞状及び横縞状のレジスト膜パターンに、n画素セルPx(ここで、n≧2の整数)毎にこれらのパターンに直交する開口部を追加して設けたレジスト膜パターンである。nは、第1及び第2の2つのレジスト膜パターンで同じ値であっても異なる値であっても良い。図6(a),(b)は、n=2とした場合のレジスト膜パターンであり、図6(c)は、イオン注入後のCMOSイメージセンサの素子分離拡散層30を説明するために示す平面図である。
上記したように、CMOSイメージセンサでは、4個の画素セルPxで1つの画素ユニットを構成する。n=2の図6(a),(b)に示したような第1及び第2のレジスト膜32,34のパターンを使用すると、素子分離拡散層30では図6(c)に斜線を施した領域のように、2回イオン注入されて不純物濃度が2倍に高くなる領域30Dが4個の画素セルPx、すなわち、1画素ユニットを囲んで形成される。したがって、画素ユニット毎に素子分離能力を高めることができ、画素ユニット間の混色を低減することができる。さらに、画素ユニット内の中央にも不純物濃度が2倍になる領域30Dが形成される。ここは、各画素セル内の光電変換素子の角部に隣接するため、1つの画素ユニット内でも素子分離能力を向上させることができる。
(変形例2)
本発明の変形例2の素子分離拡散層を形成するためのイオン注入に使用するレジスト膜パターンを、図7に示す。このパターンは、1つの画素ユニット、すなわち4個(2×2)の画素セルPxの大きさのレジスト膜パターンであり、図7(a),(b)に示したように第1及び第2のレジスト膜32,34のパターンは、縦方向及び横方向にそれぞれ1画素セルずらせたものである。図7(c)は、イオン注入後のCMOSイメージセンサの素子分離拡散層30を説明するために示す平面図である。
図7(c)に斜線を施した領域30Dが、イオン注入が2回行われる不純物濃度の高い領域である。図7(c)に破線で示した画素ユニットの中央にこの不純物濃度が2倍になる領域が形成される。ここは、各画素セル内の光電変換素子20角部に隣接するため、1つの画素ユニット内で素子分離能力を向上させることができる。さらに、各画素ユニットの四隅にも不純物濃度が2倍になる領域が形成され、各画素ユニット間においても部分的に素子分離能力を向上させることができる。
(変形例3)
本発明の変形例3は、3つのレジスト膜パターンを使用して素子分離拡散層を形成するためのイオン注入を行う場合である。変形例3のレジスト膜パターンを、図8に示す。本変形例では、図8(a)に示したように、第1のレジスト膜32のパターンは、2画素セル周期の矩形波状の開口部を有するパターンとこれを上下反転させて縦方向に2画素セルずらせたパターンとを組み合せたものである。他の2つのレジスト膜パターン、すなわち、第2のレジスト膜34及び第3のレジスト膜26のパターンは、図8(b)、(c)に示したように、図8(a)のパターンを縦方向に1画素セルずつ順にずらせたものである。図8(d)は、これら3つのレジスト膜パターンを用いてイオン注入した後のCMOSイメージセンサの素子分離拡散層30を説明するために示す平面図である。
図8(c)に斜線を施した領域30Dはイオン注入が2回行われる領域であり、網目のハッチングを施した領域30Tはイオン注入が3回行われる領域である。画素ユニットの区分を図8(d)に破線で示す。各画素ユニットは、1個のR画素、2個のG画素、及び1個のB画素から構成されている。R画素は、赤色光がシリコン中で減衰し難いため、他の画素よりも混色を生じやすい。図8(d)に示されたように、本変形例によれば、4個の画素セルPxのうちの1個は、4辺の全てが2回以上イオン注入された不純物濃度が高い素子分離拡散層30D,30Tにより囲まれる。この画素セルがR画素になるように、図中にR,G,Bで示したように各画素ユニットに対してR,G,B画素を割り付ける。これにより、R画素の素子分離能力を向上させることができ、画素間のリーク電流による混色を効果的に抑制できる。
上記の変形例に示したレジスト膜パターンは、例示であり、これ以外のレジスト膜パターンを使用することができる。例えば、図9に示したような、3×3個の9画素セルを1つのブロックとしたレジスト膜パターンをイオン注入のマスクとして使用することができる。この場合には、縦方向及び横方向にそれぞれ1画素ずらせた3つのレジスト膜32,34,36のパターン使用する。
このように、複数の画素セルを覆うレジスト膜パターンを素子分離拡散層形成のためのイオン注入のマスクに使用することで、イオン注入工程においてマスクレジスト膜が倒れることを防止でき、固体撮像装置が微細化しても、所望の素子分離拡散層を形成できる。
(変形例4)
本発明の変形例4は、出発材料に関する変形例である。図10は、本変形例による固体撮像装置の断面構造の一例を示す断面図である。上記の実施形態では、n/pウェハ10を出発材料として用い、製造工程の初めに図5(b)に示したようにpウェル16をnエピ層14とp基板ウェハ12との界面からnエピ層14内に向かって形成した。本変形例では、図10に示した断面図のように、p基板ウェハ12上にまずp型エピ層13を形成し、そしてさらにその上にn型エピ層14を形成したn/p/pウェハ10aを使用する。上記のpウェル16の形成は、p基板ウェハ12中のボロンを熱拡散させることによって行っている。p基板ウェハ12中のボロン濃度は、規定された範囲内ではあるが、ウェハ間で一定ではない。したがって、このボロン濃度のばらつきが、pウェル層16の厚さのばらつきを生じさせ原因の1つになり、光電変換部である実効的なn型半導体層14aの厚さのばらつきを生じさせる。すなわち、固体撮像素子の光感度をばらつかせる。n/p/pウェハ10aを使用することによって、光電変換部のn型半導体層14の厚さばらつきを抑制できる。
(変形例5)
上記の実施形態及び変形例では、素子分離拡散層を形成できる深さが、イオン注入装置の加速電圧の限界によって制限される。その結果、光電変換部のn型半導体層の厚さが制限されてしまう。しかし、固体撮像装置の感度を向上させるためには、n型半導体層は厚いほうが好ましい。本発明の変形例5は、埋め込み拡散層を有する半導体ウェハを用いる。本変形例では、n/p/pウェハを例に説明するが、n/pウェハにも適用することができる。
本変形例のn/p/pウェハ10aは、図11(a)に断面図を示したように、p基板ウェハ12上にp型エピ層13を形成した後、n型エピ層14を形成する前に、素子分離拡散層30を形成する素子分離領域BA及びダイシング領域DAに対応するp型エピ層13表面に高濃度のボロン拡散層を形成する。ボロンのイオン注入条件は、例えば、加速電圧100KV、ドーズ量1×1013〜1×1015cm−2である。これにより、p基板ウェハ12と同程度又はそれよりも高濃度のボロンの埋め込み拡散層40を形成できる。
埋め込み拡散層40中のボロンは、その後に行われる素子分離拡散層30を形成するイオン注入後のアニールによってn型エピ層14中に拡散する。埋め込み拡散層40中のボロン濃度は、イオン注入により導入されたボロン濃度よりも高濃度であるため、図11(b)に示したように表面に向かう拡散距離が大きくなる。したがって、この埋め込み拡散層40からの拡散距離だけn型半導体層14を厚くでき、固体撮像装置の感度を向上させることができる。
以上説明してきたように、本発明によれば、素子分離拡散層を形成するためのイオン注入工程をレジスト工程も含めて複数回に分けることにより、画素セル間のリーク電流を低減しかつ微細化に適した画素セル間の分離を実現し、光電変換素子の感度を向上させた固体撮像装置及びその製造方法を提供することができる。さらに、本発明による固体撮像装置は、光電変換素子部分の面積の縮小による飽和出力が低減することを改善でき、素子分離能力を高めることができる。
本発明は、上記の実施形態に限定されることなく、本発明の精神及び範囲から逸脱しないで、種々の変形を行って実施することができる。それゆえ、本発明は、ここに開示された実施形態に制限することを意図したものではなく、本発明の趣旨を逸脱しない範囲において他の実施形態にも適用でき、広い範囲に適用されるものである。
図1は、固体撮像装置の断面の一例を示す断面図である。 図2は、図1に示した固体撮像装置の素子分離拡散層を形成するためのイオン注入を説明するために示す図であり、図2(a)は平面図、図2(b)は模式的な断面図である。 図3は、本発明の実施形態の固体撮像装置の断面構造の一例を説明するために示す断面図である。 図4(a),(b)は、本発明の実施形態による固体撮像装置の素子分離拡散層を形成するために使用する2つのレジスト膜パターンの例であり、図4(c)は、図4(a),(b)に示したレジスト膜パターンを使用して形成された素子分離拡散層を説明するために示す平面図である。 図5(a),(b)は、本発明の実施形態による固体撮像装置の製造工程の一例を説明するために示す工程断面図である。 図6(a),(b)は、本発明の変形例1の固体撮像装置の素子分離拡散層を形成するために使用する2つのレジスト膜パターンの例であり、図6(c)は、イオン注入後のCMOSイメージセンサの素子分離拡散層を説明するために示す平面図である。 図7(a),(b)は、本発明の変形例2の固体撮像装置の素子分離拡散層を形成するために使用する2つのレジスト膜パターンの例であり、図7(c)は、イオン注入後のCMOSイメージセンサの素子分離拡散層を説明するために示す平面図である。 図8(a),(b),(c)は、本発明の変形例3の固体撮像装置の素子分離拡散層を形成するために使用する3つのレジスト膜パターンの例であり、図8(d)は、イオン注入後のCMOSイメージセンサの素子分離拡散層を説明するために示す平面図である。 図9(a),(b),(c)は、本発明の変形例3の固体撮像装置の素子分離拡散層を形成するために使用する別の3つのレジスト膜パターンの例であり、図9(d)は、イオン注入後のCMOSイメージセンサの素子分離拡散層を説明するために示す平面図である。 図10は、本発明の変形例4の固体撮像装置の一例を説明するために示す断面図である。 図11(a),(b)は、本発明の変形例5の固体撮像装置の一例を説明するために示す断面図である。
符号の説明
10…半導体ウェハ,12…p基板ウェハ,13…p型エピタキシャル層,14…n型エピタキシャル層,16…pウェル,18…素子分離,20…光電変換素子,21…ゲート絶縁膜,22…ゲート電極,24…信号検出層,26…電荷蓄積層,28…表面シールド層,30…素子分離拡散層,32,34,36…レジスト膜,BA…素子分離領域,DA…ダイシング領域,100,200…固体撮像装置,Px…画素セル。

Claims (5)

  1. 第1導電型の基板ウェハの上方に設けられた第2導電型の半導体層中に形成された第2導電型の電荷蓄積層を含む複数の画素セルと、
    前記画素セルの周囲に設けられ各画素セルを電気的に分離し、平面内で部分的に不純物濃度が異なる第1導電型の素子分離拡散層と
    を具備することを特徴とする固体撮像装置。
  2. 前記素子分離拡散層は、深さ方向に不純物濃度が同じ又は異なる複数の部分を含むことを特徴とする、請求項1に記載の固体撮像装置。
  3. 前記素子分離拡散層は、前記半導体層の表面近傍に設けられた絶縁膜からなる素子分離に接して該素子分離の下方に設けられ、該素子分離に接する部分の不純物濃度がそれよりも下方の部分の不純物濃度よりも高濃度であることを特徴とする、請求項1又は2に記載の固体撮像装置。
  4. 前記素子分離拡散層内の平面内で不純物濃度が高い部分は、該素子分離拡散層内の平面内で不純物濃度が最も低い部分の不純物濃度の整数倍の濃度であることを特徴とする、請求項1ないし3のいずれか1に記載の固体撮像装置。
  5. 第1導電型の基板ウェハの上方に設けられた第2導電型の半導体層中に絶縁膜からなる素子分離を形成する工程と、
    前記半導体層上にゲート絶縁膜を介してゲート電極を形成する工程と、
    前記ゲート電極に隣接する一方の前記半導体層中に第2導電型の不純物をドープして第2導電型の信号検出層を形成する工程と、
    前記ゲート電極に隣接する他方の前記半導体層中に第2導電型の不純物をドープして第2導電型の電荷蓄積層を形成する工程と、
    前記ゲート電極、信号検出層、及び電荷蓄積層を含む画素セルを複数個覆う第1のマスクを用いて、該画素セル間の前記素子分離下方の前記半導体層中に深さを変えて第1導電型の不純物を複数回ドープする工程と、
    前記第1のマスクとは異なる組み合せの複数の画素セルを覆う別のマスクを用いて該画素セル間の前記半導体層中への前記第1導電型の不純物のドーピングを少なくとも1回繰り返して、前記各画素セル周囲の前記素子分離下方の前記半導体層中に第1導電型の素子分離拡散層を形成する工程と
    を具備することを特徴とする固体撮像装置の製造方法。
JP2006261023A 2006-09-26 2006-09-26 固体撮像装置及びその製造方法 Pending JP2008084962A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261023A JP2008084962A (ja) 2006-09-26 2006-09-26 固体撮像装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261023A JP2008084962A (ja) 2006-09-26 2006-09-26 固体撮像装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2008084962A true JP2008084962A (ja) 2008-04-10

Family

ID=39355529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261023A Pending JP2008084962A (ja) 2006-09-26 2006-09-26 固体撮像装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2008084962A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969066A (zh) * 2009-07-27 2011-02-09 索尼公司 固体摄像器件及其制造方法和电子装置
JP2011040543A (ja) * 2009-08-10 2011-02-24 Toshiba Corp 固体撮像装置およびその製造方法
US8466401B2 (en) 2009-09-24 2013-06-18 Canon Kabushiki Kaisha Photoelectric conversion apparatus and imaging system using the photoelectric conversion apparatus
US8519316B2 (en) 2009-09-24 2013-08-27 Canon Kabushiki Kaisha Photoelectric conversion apparatus and imaging system using the same
JP2015041746A (ja) * 2013-08-23 2015-03-02 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード
JP2016058635A (ja) * 2014-09-11 2016-04-21 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9443892B2 (en) 2013-02-25 2016-09-13 Samsung Electronics Co., Ltd. Image sensor and method of forming the same
JP2016181628A (ja) * 2015-03-24 2016-10-13 キヤノン株式会社 半導体装置の製造方法
US9524995B2 (en) 2013-03-04 2016-12-20 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
JP2017005276A (ja) * 2016-09-30 2017-01-05 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード
JP2019190892A (ja) * 2018-04-20 2019-10-31 ソニーセミコンダクタソリューションズ株式会社 受光装置及び測距装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969066B (zh) * 2009-07-27 2012-10-17 索尼公司 固体摄像器件及其制造方法和电子装置
CN101969066A (zh) * 2009-07-27 2011-02-09 索尼公司 固体摄像器件及其制造方法和电子装置
JP2011040543A (ja) * 2009-08-10 2011-02-24 Toshiba Corp 固体撮像装置およびその製造方法
US9040895B2 (en) 2009-09-24 2015-05-26 Canon Kabushiki Kaisha Photoelectric conversion apparatus and imaging system using the same
US8466401B2 (en) 2009-09-24 2013-06-18 Canon Kabushiki Kaisha Photoelectric conversion apparatus and imaging system using the photoelectric conversion apparatus
US8519316B2 (en) 2009-09-24 2013-08-27 Canon Kabushiki Kaisha Photoelectric conversion apparatus and imaging system using the same
US8796609B2 (en) 2009-09-24 2014-08-05 Canon Kabushiki Kaisha Photoelectric conversion apparatus and imaging system using the photoelectric conversion apparatus
US9443892B2 (en) 2013-02-25 2016-09-13 Samsung Electronics Co., Ltd. Image sensor and method of forming the same
USRE48878E1 (en) 2013-03-04 2022-01-04 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
US9524995B2 (en) 2013-03-04 2016-12-20 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
USRE49793E1 (en) 2013-03-04 2024-01-09 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
US9754994B2 (en) 2013-03-04 2017-09-05 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures and methods of fabricating the same
US9780142B1 (en) 2013-03-04 2017-10-03 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
JP2015041746A (ja) * 2013-08-23 2015-03-02 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード
JP2016058635A (ja) * 2014-09-11 2016-04-21 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2016181628A (ja) * 2015-03-24 2016-10-13 キヤノン株式会社 半導体装置の製造方法
JP2017005276A (ja) * 2016-09-30 2017-01-05 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード
JP2019190892A (ja) * 2018-04-20 2019-10-31 ソニーセミコンダクタソリューションズ株式会社 受光装置及び測距装置
JP7246863B2 (ja) 2018-04-20 2023-03-28 ソニーセミコンダクタソリューションズ株式会社 受光装置、車両制御システム及び測距装置
US11714172B2 (en) 2018-04-20 2023-08-01 Sony Semiconductor Solutions Corporation Light reception device and distance measurement device
TWI815877B (zh) * 2018-04-20 2023-09-21 日商索尼半導體解決方案公司 光接收裝置及距離測量裝置

Similar Documents

Publication Publication Date Title
US7855406B2 (en) Solid-state imaging device and method of manufacturing the same
JP2008084962A (ja) 固体撮像装置及びその製造方法
JP5100988B2 (ja) イメージセンサー及びその製造方法
JP4718875B2 (ja) 固体撮像素子
KR100619396B1 (ko) 시모스 이미지 센서 및 그 제조방법
US7705380B2 (en) Amplification-type solid-state image sensing device
JP2000031525A (ja) イメ―ジセンサのピンドフォトダイオ―ド及びその製造方法
JP2002134730A (ja) フォトダイオード間の漏れ電流を防止できるイメージセンサ及びその製造方法
WO2012176454A1 (ja) 固体撮像装置
JP2008034772A (ja) 固体撮像装置及び固体撮像装置の製造方法およびカメラ
KR100696995B1 (ko) 고체 촬상 장치
JP2012109540A (ja) 固体撮像装置の製造方法
JP7129664B2 (ja) 光検出器
KR20080040744A (ko) 포토 다이오드, 고체 촬상 장치, 및 그 제조 방법
JP2008153566A (ja) 固体撮像装置及びその製造方法
JP2008103566A (ja) 固体撮像装置
JP2010512641A (ja) イメージセンサおよびその製造方法
US6566722B1 (en) Photo sensor in a photo diode on a semiconductor wafer
JP5325006B2 (ja) 固体撮像装置
JP2008053721A (ja) 垂直型バイポーラ接合トランジスタ及びその製造方法
JP2007235029A (ja) 光電変換装置、イメージセンサ、及び、光電変換装置の製造方法
KR20060107992A (ko) 두 종류의 소자분리영역들을 포함하는 씨모스 이미지센서및 그 제조 방법
KR100893054B1 (ko) 크로스토크를 방지할 수 있는 이미지센서 및 그 제조 방법
JP4561328B2 (ja) 固体撮像装置およびその製造方法
JP4725673B2 (ja) 固体撮像装置及びその製造方法